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Abstract

While classical scaling, just like principal component analysis, is parameter-free, other meth-
ods for embedding multivariate data require the selection of one or several tuning parameters.
This tuning can be difficult due to the unsupervised nature of the situation. We propose a
simple, almost obvious, approach to supervise the choice of tuning parameter(s): minimize a
notion of stress. We apply this approach to the selection of the patch size in a prototypical
patch-stitching embedding method, both in the multidimensional scaling (aka network localiza-
tion) setting and in the dimensionality reduction (aka manifold learning) setting. In our study,
we uncover a new bias–variance tradeoff phenomenon.

1 Introduction

In the general problem known as multidimensional scaling (MDS), the primary objective is to
represent a set of items as points within a Euclidean space of a specified dimension. This rep-
resentation should ideally preserve the given pairwise dissimilarities as accurately as possible, by
ensuring that the Euclidean distances between these points mirror the original dissimilarities. MDS
is a extensively researched problem found in diverse fields such as psychometrics [16], mathematics,
and computer science [9, 14, 57], engineering (where it is also known as network localization) [61],
as well as statistics [3, 71] and machine learning [43, Ch 14].

Dimensionality reduction (DR) aims at embedding data points in a Euclidean space into a
lower-dimensional Euclidean space while preserving, as much as possible, the geometry of the point
cloud [36, 59]. When the data points are assumed to be on or near a smooth submanifold, a variant
of DR known as manifold learning, this typically means preserving the pairwise intrinsic distances
to the greatest extent. As is well-known, the two problems, MDS and DR, are closely related.

While classical scaling, and its equivalent in DR, principal component analysis, do not require
the choice of a tuning parameter (other than the embedding dimension, whose choice we only
discuss in Section 4.1), other methods for embedding data necessitate the specification of one or
several parameters, and being the situation unsupervised in that the items (in MDS) or the points
(in DR) are not labeled, it is not obvious how to tune these parameters. In fact, we are not aware
of any data-driven procedures for choosing such parameters that are currently in use. There is
no equivalent to cross-validation — a widely used method for parameter tuning in the context of
supervised learning such as regression or classification — that we know of. We propose a simple
approach: to use a notion of stress — a measure of quality of fit — to supervise the choice of
tuning parameters. We apply this approach to the selection of the patch size in a prototypical
patch-stitching embedding method, both in MDS and in DR.
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Although the proposed approach this is rather natural, bordering on the obvious, the specter
of overfitting might have dissuaded its use. We argue in this paper that there is no danger of
overfitting when choosing tuning parameters other than the embedding dimension.

In our investigation, we uncover a new form of bias–variance tradeoff. While such a tradeoff
is well-known in regression [43, Ch 7] — where it is foundational in the textbook understanding
of statistical complexity and the need to appropriately select method parameters — the discussion
of such a phenomenon appears to be absent from the MDS literature in particular. For patch-
stitching methods, the choice of patch size needs to balance out how much noise is present in
the dissimilarities with how complex the configuration domain is: a high level of noise requires
a larger patch size, while a domain that is far from convex requires a smaller patch size. Our
numerical experiments show that choosing a patch size that minimizes a notion of stress helps
strike a seemingly good compromise when these two aspects need to be balanced out.

The remainder of the paper is organized as follows. In Section 2, we consider patch-stitching
methods in the context of MDS. This is where we discuss the bias–variance phenomenon mentioned
above. In Section 3, we consider patch-stitching methods in the context of DR. The particular
variant that we introduce can be seen as a local form of Isomap. We conclude the paper with a
brief discussion in Section 4.

2 Multidimensional scaling

In this section we consider multidimensional scaling (MDS). We first formalize the setting in Sec-
tion 2.1. We then discuss methods in Section 2.2. We use a popular class of methods known under
the umbrella name of patch-stitching to showcase the data-driven choice of tuning parameter —
here the patch size — by stress minimization, and also the bias–variance tradeoff at play. We
present the result of some numerical experiments in Section 2.3 meant to illustrate the proposed
approach.

2.1 Setting

In MDS, the data consist of a weighted undirected graph G = (V, E , d), with node set V = [n] :=
{1, . . . , n} and edge set E ⊂ V×V, together with non-negative weights on the edges. The weight on
(i, j) ∈ E is referred to as the dissimilarity between i and j, and denoted dij . The matrix D = (dij),
which is incomplete unless the graph is complete, gathers these dissimilarities. Given a dimension
p ≥ 1, we seek a configuration y1, . . . , yn ∈ Rp such that ∥yi − yj∥ ≈ dij for all or most (i, j) ∈ E .
The problem is further formalized by translating it into an optimization problem that consists in
minimization a notion of what is traditionally called stress in Psychometrics, for example,∑

(i,j)∈E

(
∥yi − yj∥2 − d2ij

)2
. (2.1)

(This stress variant was proposed by Takane et al. [76] and is called the s-stress in the psychometrics
literature.)

We will focus on the noisy realizable situation in which

dij = (1 + ηij)∥xi − xj∥, (i, j) ∈ E , (2.2)

where {x1, . . . , xn} ∈ Rp will be referred to as the latent configuration — although it is only
determined up to a rigid transformation, as no anchor is assumed available — and {ηij : (i, j) ∈ E}
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stands for (multiplicative) measurement error. The latent positions will be assumed to be somewhat
dense in a subset of Rp referred to as the latent domain.

Throughout, the dimension p will be assumed given (see Section 4.1) and ∥ · ∥ will denote the
Euclidean norm in the appropriate space (which will be Rp in the entire section).

2.2 Methods

Many approaches have been suggested in the literature, including classical scaling [38, 79, 80] and
other spectral methods [41]; first-order [54, 55], second-order [48], as well as other Newton and
quasi-Newton approaches [37, 49]; augmentation and majorization [27, 44], including the popular
SMACOF [28, 29, 60]; incremental approaches [18, 21, 85]; semidefinite programs (SDP) [1, 12, 13,
19, 32, 47, 75, 84]; dissimilarity matrix completion by graph distances, including the original MDS-
D of Kruskal and Seery [56], and its multiple incarnations [65, 66, 73]; and sequential lateration
[7, 8, 33, 35, 40, 49, 58].

2.2.1 Patch-stitching methods

We focus on patch-stitching methods. These are divide-and-conquer methods that consist in em-
bedding appropriately selected subgraphs as ‘patches’ in the target Euclidean space and then
‘stitching’ these patches together by applying a form of Procrustes analysis to align patches that
have a large enough intersection. This alignment (aka synchronization) can be done in a greedy
manner, by sequentially aligning a new patch with a sufficient overlap with the current embed-
ding; or by a more global approach that attempts to align all patches simultaneously based on
all (multiway) intersections. A wide variety of patch-stitching approaches have been proposed
[24, 25, 32, 45, 52, 53, 63, 72, 74, 81, 86, 87], motivated by two main reasons. The first reason is
computational: the computation of patches can be done in parallel, and the overall procedure can
have, depending on the variant, low run time. The second reason is that such methods can work
well even when the underlying domain that the latent positions populate has a complex shape. By
contrast, for example, methods that rely on shortest path distances like MDS-D, and also some
SDP methods like semidefinite embedding of Weinberger et al. [84], can have a substantial bias
when the latent domain is far from non-convex.

Shang and Ruml [72] cite both reasons as motivation for their patch-stitching method, MDS-
MAP(P), and present them as advantages, in particular as compared to a method they had previ-
ously suggested, MDS-MAP [73], which was in fact a rediscovery of MDS-D. MDS-MAP(P) stitches
the patches in a greedy fashion: see Figure 2.1 for a visualization of the patches and their sequential
stitching.

2.2.2 Tuning by stress minimization

MDS-MAP(P), like any other patch-stitching method, requires the choice of a parameter controlling
the patch size. In this particular case, it’s the number of hops. A detail the variant that we imple-
mented in Algorithm 1, which is a somewhat simplified variant of the original, which, for example,
weighs connections according to the number of hops and uses these weights in the refinement step
— while we do not do that. Although we could have used almost any other patch-based method,
we adopt MDS-MAP(P) simply to illustrate how to choose that tuning parameter in a data-driven
manner.

The approach we propose for choosing one or even several tuning parameters, such as the
number of hops in MDS-MAP(P), consists in minimizing a notion of stress. We adopt the variant
(2.1) for no particular reason other than it is fairly popular. Although the embedding dimension
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Figure 2.1: In the MDS-MAP(P) algorithm, each patch is embedded separately and then merged
sequentially. The points in the seed patch are in dark blue, while points added with subsequent
patches are more and more red as the stitching progresses. Plotted above are embeddings with
number of hops h ∈ {1, 2, 5}.

Algorithm 1: A variant of MDS-MAP(P)

Data: weighted graph G = (V, E , D), number of hops h, embedding dimension p
Result: configuration Y = [y1 · · · yn]⊤ ∈ Rn×p

1 for v ∈ V do
2 Nv ← h-hop neighborhood of v;
3 Dv ← D[Nv, Nv] = (dij : i, j ∈ Nv; (i, j) ∈ E);
4 Λv ← MDS-D applied to Dv;
5 Xv ← classical scaling applied to Λv;
6 Xv ← SMACOF applied to Xv;

7 end
8 v∗ ← argmaxv card(Nv);
9 Y ← Xv∗ ;

10 NY ← Nv∗ ;
11 while there exist unmapped nodes do
12 v∗ ← argmaxv card(Nv ∩NY );
13 X∗ ← align Xv∗ to Y by Procrustes;
14 Y ← Y ∪X∗;

15 end
16 Y ← SMACOF applied to Y ;
17 return Y ;

may be seen as a tuning parameter, minimizing the stress is not an appropriate way to select it,
simply because it will always lead to choosing the largest possible embedding dimension, which is
p = n− 1. See Section 4.1 for further discussion.

Although this approach would seem rather natural, we have not seen it suggested in the litera-
ture, where the choice of tuning parameter is often ad hoc or just left to the user. There might be
some hesitation to use the stress, as it stands for what is called empirical risk in statistical learning,
and minimizing the risk is known to lead to overfitting unless the model complexity is under control.
This is particularly true in nonparametric regression. The situation in MDS is not immediately
translatable to regression, which is by now well-understood, but we can reason in similar terms.
On the one hand, the parameter that we need to estimate is very high dimensional: it is the latent
configuration {x1, . . . , xn} in (2.2) modulo an arbitrary rigid transformation. Thus, even if the
embedding dimension is small, say p = 2, the parameter is of O(n) dimension. This needs to be
contrasted with the number of observations, which is |E|. It turns out that, as long as the latent
configuration is in general position and the graph is connected enough that it is generically globally
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rigid [23] or even a lateration graph [7], minimizing the stress recovers the latent configuration in
the noiseless setting (ηij = 0 for all (i, j) ∈ E); and although the recovery is no longer exact in
the presence of noise, it degrades graceful with the noise level as shown in [2] and [4] in the same
situations, respectively. Therefore, minimizing the stress is a reasonable target, and this can be
done by all means necessary, as long as the embedding dimension is fixed, since being generically
globally rigid or a lateration graph depends in a crucial manner on the dimension p.

2.2.3 Bias–variance tradeoff

In the standard textbook exposition of statistical complexity such as [43, Ch 7], one is taught that,
in the context of regression, as the model being fitted to the data increases in complexity, the bias
decreases while the variance increases. Model complexity is often driven by one or several tuning
parameters (e.g., the bandwidth in kernel regression), and a ‘good’ selection of these parameters
is one that results in a ‘good’ compromise between (squared) bias and variance, often understood
as being equivalent to minimizing the prediction error. In [43, Fig 7.1], we see that, as the model
complexity increases, the empirical error (as measured on training data) decreases, while the pre-
diction error (as measured on the test data) decreases at first but then increases — and a ‘good’
selection of model complexity would be so that the prediction error is at its minimum.

The discussion of such a bias–variance tradeoff, or the choice of model complexity, seems absent
from the MDS literature, except for the choice of embedding dimension (see Section 4.1). But it is
clearly observed in our experiments involving a non-convex domain, in the case of a hollow rectangle
(Figures 2.4–2.5), a C-shaped domain (Figures 2.6–2.7); and an H-shaped domain or ‘dumbbell’
(Figures 2.8–2.9). Indeed, we can clearly see that, as the number of hops increases, the embedding
error decreases and then increases. On the other hand, we observe that the stress does not function
as the empirical error does in regression.

In the particular case of MDS-MAP(P), we may explain this as follows. When a domain is non-
convex, using a large enough patch that covers the entire domain, MDS-MAP(P) coincides with
MDS-D, and MDS-D is known to be biased unless the domain is convex. This is because the shortest
path distances are consistent for the intrinsic distances [6, 11], and the intrinsic distances are not
Euclidean unless the domain is convex. The choice of a smaller patch size enables MDS-MAP(P)
to better avoid that bias, as it only relies on being able to cover the domain with approximately
convex balls the size of the patches. Thus the number of hops can be understood as controlling
model complexity here: the smaller the number of hops, the smaller the patch size, and the more
flexible and therefore complex the domain shape model being implicitly fitted. However, in the
presence of noise, one also has to contend with the variance, as the smaller a patch is, the more
difficult it may be to accurately embed it.

2.3 Experiments

2.3.1 Synthetic data

We start with some synthetic datasets that exemplify the setting of Section 2.1. All our experiments
are in dimension p = 2. We first describe how the datasets used in the experiments are constructed.
Recall that the latent configuration is denoted by x1, . . . , xn ∈ R2. In all cases, these points are
chosen dense in a domain with varying shape. This is done by considering a fine square grid of
points inside the domain to which we add some jitter. The added jitter is small and plays two
roles: it makes the configuration generic and it also prevents some possible systematic bias from
arising when computing shortest path distances in the graph (which is a building block of MDS-
MAP(P)). The jittered grid inside the domain gives the configuration. The graph structure is
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given by connecting each point to its k = 15 nearest neighbors. The pairwise Euclidean distances
between configuration points that are connected in the graph are then corrupted by multiplicative
noise as in (2.2), where the ηij are drawn iid from the uniform distribution on [−σ, σ], where the
noise amplitude σ varies from experiment to experiment.

We work with some emblematic shapes: a rectangle in Figures 2.2–2.3; a hollow rectangle in
Figures 2.4–2.5; a C-shaped domain in Figures 2.6–2.7; and an H-shaped domain or ‘dumbbell’ in
Figures 2.8–2.9 and also in Figure 2.10 for different noise levels. For each dataset, we apply the
variant of MDS-MAP(P) described in Algorithm 1 with different choices for the number of hops and
track the (average) stress and the (average) embedding error. We align the output configuration
with the true configuration by (orthogonal) Procrustes. We work with rather sparse graphs to
better showcase the result of applying MDS-MAP(P) with different choices for the number of hops.

Figure 2.2: Experiment with n = 4000 points on a rectangle with σ = 0.15.

Figure 2.3: Same setting as Figure 2.2. Examples of embeddings with number of hops h =
1, 2, 3, 5, 10.

2.3.2 Real data: intercity distances

Besides synthetic datasets, we also examined the application of our approach to the problem of
locating cities in a geographical region (California and Texas) using intercity distances. The latitude
and longitude of each city are readily available online1. The haversine formula is used to construct
the observed dissimilarity matrix of as-the-crow-flies distances from the geographical coordinates.
That is, if (λ1, φ1), (λ2, φ2) denote the latitude and longitude of a pair of cities, then their distance

1 For example, at https://simplemaps.com/data/us-cities

https://simplemaps.com/data/us-cities
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Figure 2.4: Experiment with n = 4140 points on a rectangle with a rectangular hole with σ = 0.15.

Figure 2.5: Same setting as Figure 2.4. Examples of embeddings with number of hops h =
1, 2, 3, 5, 10.

Figure 2.6: Experiment with n = 4528 points on a C-shaped domain with σ = 0.15.

is computed as follows

2 arcsin
√
sin2(12(φ2 − φ1)) + cos(φ1) cos(φ2) sin

2(12(λ2 − λ1)) .

We work with the k = 12 nearest neighbor graph. Although no noise is added, we note that even
without noise an exact realization in the plane is not possible since the points are effectively on a
curved surface (the surface of the Earth). Figure 2.11 displays the result of applying MDS-MAP(P)
to the intercity distances of California. To illustrate the size of patches for the different choices of
number of hops, the patch originating in the capital Sacramento is highlighted. Figure 2.12 shows
the result for Texas with the patch originating in the capital Austin being highlighted.
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Figure 2.7: Same setting as Figure 2.6. Examples of embeddings with number of hops h =
1, 2, 5, 10, 20.

Figure 2.8: Experiment with n = 4278 points on an H-shaped domain or ‘dumbbell’ with σ = 0.15.

Figure 2.9: Same setting as Figure 2.8. Examples of embeddings with number of hops h =
1, 2, 5, 10, 20.

3 Dimensionality reduction

After discussing multidimensional scaling (MDS) in Section 2, we now turn to dimensionality
reduction (DR). As is well-known to the expert, the two problems are intimately related. In fact,
some of the most emblematic methods in DR can be recovered by applying methods for MDS to
the pairwise Euclidean distances after discarding the larger distances. This is most famously true
of PCA, whose embedding can be obtained by an application of classical scaling; but it is also true
of Isomap [78], which can be obtained in this fashion from MDS-D [56]; of Laplacian eigenmaps
[10], which corresponds to applying [41]; of maximum variance unfolding [83], which corresponds to
semidefinite embedding [84]; and even recent approaches such as t-SNE [82] and UMAP [62] have
been shown to be in correspondence with force-directed layouts popular in graph drawing in [15]
and in [26], respectively. Because of this strong parallel, we are able to draw a parallel with the
MDS setting discussed in the previous section. The structure of the section is very similar.
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Figure 2.10: In this experiment, we look at the effect of noise on the optimal parameter choice. The
dataset features n = 2866 points on an H-shaped domain or ‘dumbbell’. Figures in the ith column
have noise σ = 0.1i and the jth row uses number of hops = j, for 1 ≤ i ≤ 4 and 1 ≤ j ≤ 7 integers.
As the noise increases, the embeddings tend to shrink. The shrinkage appears to be caused by the
under-estimation of some of the distances by graph distances when applying MDS-D.



10

Figure 2.11: MDS-MAP(P) applied to the California intercity dataset. Top left: Plot of cities
in California using ground truth latitude and longitude. Top right: Comparison between stress
and embedding error. Bottom: In reading order, output of MDS-MAP(P) with number of hops
h = 1, 2, 3, 5, 10, 20. In each case, the patch originating in Sacramento is highlighted.

3.1 Setting

In DR, the data consist of points z1, . . . , zn ∈ Rp0 , and given a dimension p < p0, the goal is to
embed these points into Rp as faithfully as possible. If by this we mean to preserve the pairwise
distances as much as possible, then it can be done by principal component analysis (PCA), which
is in fact optimal among linear projections for a particular way of quantifying the accuracy. We
adopt the manifold learning setting in which the data points are assumed to be on or near a
smooth submanifold of given dimension p and the goal is to preserve as much as possible the
pairwise distances on the submanifold. In that case, PCA will not succeed unless the submanifold
is affine or nearly so. Most of the DR methods suggested in recent times have been proposed for
this setting and, as already noted, can be seen as (i) computing the Euclidean distances between
the data points, i.e., dij := ∥zi − zj∥ for all i, j ∈ [n]; (ii) only keeping the smallest distances, i.e.,
for the neighborhood graph with edge set E = {(i, j) : dij ≤ r} where r is the connectivity radius
and a tuning parameter; and then applying a method for MDS to the resulting weighted graph.
The rationale for only keeping or trusting the smallest Euclidean distances is because, in the limit
of an infinitesimally small neighborhood around a point on a smooth submanifold, the Euclidean
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Figure 2.12: MDS-MAP(P) applied to the Texas intercity dataset. Top left: Plot of cities in Texas
using ground truth latitude and longitude. Top right: Comparison between stress and embedding
error. Bottom: In reading order, output of MDS-MAP(P) with number of hops h = 1, 2, 3, 5, 10, 20.
In each case, the patch originating in Austin is highlighted.

distances are close to the distances on the submanifold.

3.2 Methods

Manifold learning has a substantial literature. We already mentioned that Isomap [30, 77, 78] is
in correspondence with graph distance methods in MDS such as MDS-D [56] and MDS-MAP [73];
Laplacian eigenmaps [10], and the closely related diffusion maps [22], are in correspondence with
spectral methods in MDS [41]; maximum variance unfolding [83] is an SDP method that was in
fact simultaneously proposed for DR and MDS by the authors [84]; and some of the latest methods,
such as t-SNE [82] and UMAP [62], are in correspondence with force-directed approaches in graph
drawing [50, Sec 5.7] as argued in [15] and [26]. Not all methods proposed for DR can be derived
from a method originally proposed for MDS. For example, self-organizing maps [51], principal
surfaces [42], and Kernel PCA [69] approximate the data with a surface of given dimension directly
in the ambient space.
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Algorithm 2: Local Isomap via MDS-MAP(P)

Data: Data points z1, . . . , zn ∈ Rp0 , connectivity radius r, embedding dimension p
Result: Configuration y1, . . . , yn ∈ Rp

1 Form the neighborhood graph on x1, . . . , xn with connectivity radius r;
2 Apply MDS-MAP(P) to the resulting weighted graph to obtain an embedding y1, . . . , yn;

3.2.1 Patch-stiching methods

Here too, we work with a class of methods that could also be referred to as patch-stitching methods,
and work very much in the same way. To quote Brand [17], the protypical steps are “to decompose
the sample data into locally linear low-dimensional patches, [and] merge these patches into a single
low-dimensional coordinate system”. Local linear embedding [67, 68] and manifold charting [17]
are clearly of that type, but even more geometrical methods such as Hessian eigenmaps [31] and
local tangent space alignment [88] operate in a similar fashion. This parallel has been known for
quite some time, at least by some, including Chen and Buja [20], who draw inspiration from the
extensive literature on graph drawing, and in particular, force-directed methods, to suggest their
local MDS algorithm.

To illustrate the choice of tuning parameter in the context of DR, we simply leverage our variant
of MDS-MAP(P) (Algorithm 1) into a method for manifold learning obtaining a local variant of
isomap (Algorithm 2). In light of this close connection between MDS and DR, this is a natural
idea, which has already been proposed, including in [70].

3.2.2 Tuning by stress minimization

Assuming, as we have done, that the embedding dimension p is given (see Section 4.1 for a dis-
cussion), local isomap (Algorithm 2) relies on two tuning parameters: the connectivity radius r in
Step 1 and the number of hops h required by MDS-MAP(P) in Step 2.

While we continue to advocate that the number of hops be chosen by minimization of a notion
of stress such as (2.1), the choice of connectivity radius r cannot be chosen in the same way for
the simple reason that the connectivity radius defines the graph. In our experiments, we follow
standard practice and choose r as a small multiple of what is needed for the resulting graph to be
connected. We discuss the choice of connectivity radius further in Section 4.2.

3.2.3 Bias–variance tradeoff

A similar manifestation of bias–variance tradeoff as discussed in Section 2.2.3 in the MDS setting
is at play in the DR setting when tuning the patch size parameter, and so for similar reasons.

3.3 Experiments

Although one could anticipate that local isomap behaves in the context of DR in a way that is
parallel to how MDS-MAP(P) behaves in the context of MDS, we perform some simple numerical
experiments to confirm this.

To simulate the data in the manifold learning setting, we start with data points in R2 as in
Section 2.3, and then embed these into R3. We chose to work with the hollow rectangle of Figure 2.5.
Note that here, unlike in the MDS setting, the graph structure is not given but needs to be chosen.
This is done in Step 1 of local isomap. We used two different embeddings that seem popular in
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the literature: a cylindrical surface based on an S curve and a cylindrical surface based on a spiral,
often referred to as a Swiss roll. The ‘S’ surface is obtained via the following embedding of [0, 1]2:

φS,α(u, v) =
(
α−1 sin(αv), u, α−1(cos(αv)− 1)

)
; (3.1)

the Swiss roll is obtained via the following embedding of [0, 1]2:

φSwiss,α(u, v) =
(
s(v) cos(αs(v)), u, s(v) sin(αs(v))

)
, (3.2)

where s(v) is the solution to
∫ s
0

√
1 + (αt)2 dt = v. The parameter α allows us to increase the

curvature of the resulting surface. In our experiments, α = 10 for the ‘S’ surface and α = 50 for
the Swiss roll. Although the estimation of the local intrinsic distances by the ambient Euclidean
distances implies a bias which already plays the role of noise, we add a small amount of Gaussian
noise to obtain the data points: see Figure 3.1 for the ‘S’ surface and Figure 3.2 for the Swiss
roll. The result of applying local isomap for various choice of the number of hops is displayed in
Figures 3.3–3.4 for the ‘S’ surface and Figures 3.5–3.6 for the Swiss roll.

Figure 3.1: Data points (about n ≈ 4000 of them) generated based on embedding the hollow
rectangle of Figure 2.5 as an ‘S’ surface using (3.1), without (left) and with (right) added noise.

Figure 3.2: Data points (about n ≈ 4000 of them) generated based on embedding the hollow
rectangle of Figure 2.5 as a Swiss roll using (3.2), without (left) and with (right) added noise.

4 Discussion

4.1 Choice of embedding dimension

Some applications, as in sensor network localization where the items are known to be in a 2D
physical space, the embedding dimension comes with the problem itself. In other situations, it
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Figure 3.3: Experiment with n = 5008 points near an ‘S’ surface.

Figure 3.4: Same setting as Figure 3.3. Examples of embeddings with number of hops h =
1, 2, 5, 10, 15.

Figure 3.5: Experiment with n = 4137 points near an Swiss roll surface.

needs to be chosen by the analyst. In the context of MDS, this is discussed in [16, Sec 3.5], where
the suggested approach consists, for a particular method under consideration, in plotting the stress
for the output embedding as a function of the embedding dimension, and look for an ‘elbow’ in
the resulting plot indicating that the gains in stress from increasing the dimension have started to
dampen. Similar strategies have been suggested in DR, for example, [39], although a number of
competing methods have also been proposed — [64, Sec 2.1] provides a partial review.

While this ad hoc approach can be formalized for particular methods (e.g., the one proposed
in [39] is shown to be consistent in [5]), we can already see that the situation is very different as
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Figure 3.6: Same setting as Figure 3.5. Examples of embeddings with number of hops h =
2, 5, 10, 15, 20.

compared to choosing a tuning parameter such as the number of hops for MDS-MAP(P) because
the stress is decreasing as a function of the embedding dimension. Consequently, using the stress
to choose the embedding dimension is useless as it would result in choosing the largest possible
dimension, meaning p = n − 1. (n points, even in an infinite-dimensional linear space, are always
contained in the affine subspace that they span, which is of dimension at most n− 1.) Thus, stress
minimization is not a good strategy for choosing the embedding dimension.

4.2 Choice of connectivity radius

Most modern methods in manifold learning rely on a construction of a neighborhood graph, and
this necessitates the choice of a connectivity radius.2 In the literature, the choice of connectivity
radius appears to be ad hoc. One of them is a small multiple of what is needed for the resulting
graph to be connected, which was our choice in our numerical experiments.

It turns out that the connection with MDS can inform that choice in a more principled manner.
Indeed, considerations of rigidity — in that we want the result to be well-defined up to a rigid
transformation — would prompt us to choose the connectivity radius a little larger than what is
needed for the resulting graph to be generically globally rigid. Actionable, sufficient conditions for
that to be true exist. For example, in the important case of p = 2, it is enough that the graph be
6-connected [46, Th 7.2], and this can be checked using a variety of algorithms [34].
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