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QUASI-COMPACTNESS OF TRANSFER OPERATORS FOR
TOPOLOGICAL MARKOV SHIFTS WITH HOLES

HARUYOSHI TANAKA

ABSTRACT. We consider transfer operators for topological Markov shift (TMS) with
countable states and with holes which are 2-cylinders. As main results, if the closed sys-
tem of the shift has irreducible transition matrix and the potential is a weaker Lipschitz
continuous and summable, then we obtain a version of Ruelle-Perron-Frobenius Theo-
rem and quasi-compactness of the associated Ruelle transfer operator. The escape rate
of the open system is also calculated. In corollary, it turns out that the Ruelle operator
of summable potential on topologically transitive TMS has a spectral gap property. As
other example, we apply the main results to the transfer operators associated to graph

iterated function systems.

1. INTRODUCTION AND OUTLINE OF MAIN RESULTS

Let S be a countable set and A = (A(ij))sxs & zero-one matrix. Consider the topo-
logical Markov shift X = X, with state space S and transition matrix A, namely
X ={w =wowi-- € [[,2oS : Alwwiy1) = 1forany i > 0} with the shift trans-
formation 0 : X — X which is defined by (ow), = w,y1 for any n > 0. We call a
function ¢ : X — R summable if

(1.1) Z exp(sup ¢(w)) < oo,

€S [s]£0 wE€ls]

where for word w € S™, [w] means the cylinder set [w] = {w € X : wy - w,_1 = w}.
Such a summability is treated by [12| 14 16, 21, 23] in mainly fractal analysis. Note
the difference of the terminologies ‘summable’ and ‘summable variation’. Here a function
¢ : X — R is said to be summable variation if ) >, var,p < oo, where var,p =
sup{|p(w) — ()| : w; =v; (1 =0,1,...,n—1)}. For 6 € (0,1), a metric dy on X is
given by dg(w,v) = gmin{n=0:wnunl if oy o v and dg(w,v) = 0 if w = v. Let K = R or C.
For f : X - K and k > 1, we define

[fls = sup{var, f/0" : n > k}.
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Notice [f]x > [flk+1. When [f]1 < oo, f is called locally Lipschitz continuous, and if
[fle < oo then f is called weak Lipschitz continuous. Let C(X,K) be the set of all
K-valued continuous functions on X, and F*(X,K) the set of all f € C(X,K) with
[f]r < oo. We define Cy(X, K) by the Banach space consisting of all bounded functions
f € C(X,K) endowed with the supremum norm || f||.. = supy |f| and Ff(X,K) by the
Banach space consisting of all bounded functions f € F*(X,K) endowed with the norm
| flle = I flloo + [f]x. For simplicity, ‘K’ is omitted from these definitions when K = C.

Let Sy C S be a nonempty subset and M = (M (ij)) a zero-one matrix indexed by Sy
such that M(ij) < A(ij) for any i, j € Sp. Assume the following three conditions:

(A.1) The matrix A is irreducible.
(A.2) The subsystem Xj; of X, with the transition matrix M has a periodic point for o.
(A.3) A function ¢ : X — R is summable and satisfies [p]x1 < 400 for some k > 1.

(see Section 2 for terminology). We introduce a transfer operator associated with an open
system of the shift. An operator £y, = L, associated to M and ¢ is defined by

(1.2) Lafw)=Laugfw):= Y  #"fa-w)

a€S : M(awo)=1
for f : X — C and w € X formally, where a-w means the concatenation awgws - - -. Note
that the operator £, acting on FF(X) and on Cy(X) are both bounded. Such an operator
is used in studying system with hole [7, 26, 27, 29]. In fact when put X = ;. ps(5)=1[0],
we regard the map o|y : ¥ — X as an open system and the map o : X — X as a closed
system. Denoted by P(p) the topological pressure of ¢ (see (2.2])).

Outline of our main results are the following (I)-(IV) under the conditions (A.1)-(A.3):

(I) letting A = exp(P(¢|x,,)), there exist a nonnegative function g € FF(X,R) with

lg9]loc = 1 and a Borel probability measure v on X such that £y;g = Ag and L},v = \v.
In particular, A equals the spectral radius of £y (Theorem B.I(1));

(IT) the essential spectral radius regs (L) of Ly acting on FJF(X) satisfies 0N < res(Lar) <
A if X4 is not reduced to finite single orbit, and equals 0 otherwise (Theorem B.I](2));

(IIT) the escape rate of the open system ols is P(¢|x,,) — P(¢) (Theorem B1); and

(IV) if M is irreducible, then the peripheral eigenvalues of £, are the p-th roots of z# = \?
and simple, where p is the period of M (Theorem [3.4]).

In particular, if A is finitely irreducible, then the essential spectral radius ress(Ly)
coincides with O\ exactly (Corollary B.2]). These results are generalizations of [7, Theorem
2.1] who gave the spectral gap property and the escape rate of £, under finite primitivity
of M and locally Lipschitz potential with finite pressure (therefore summable from [14]
Proposition 2.1.9]). When A = M, our results are also extensions of previous work in

[2, T3] who considered under the finite irreducibility of M and locally Lipschitz continuous
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of p : Xy — R. Moreover, [6] introduced the notion of strongly positive recurrent which
is a necessary and sufficient condition for the existence of a Banach space F' such that
L : F — F is a bounded linear operator with spectral gap. Since F' may not contain
a subset of FF(Xys) (see Remark B.6), our result is different from [6]. In [29], we gave

similar spectral results for £;; under the finite state case. ~ To prove quasi-compactness

of Ruelle operators, the property of Gibbs measures was used in previous study [2], [14].
Since this property imposes a topological restricting to the transition matrix concerning
finite irreducibility, we need another technique in general TMS. The main tool of the
proof of our results is a perturbation method of transfer operators involving a change
of symbolic dynamics. Precisely, we introduce a perturbed system (Xa,¢(e,-)) such
that A is finitely irreducible, (e, ) € F'(X4,R) is summable uniformly in ¢ > 0 and
the operator L4 ,(,.) converges to Ly in a supremum norm (see (B.I) in Section Bl and
the conditions (B.1)-(B.3) in Section H]). By calculating the essential spectral radius of
L A, we obtain an upper bound of the essential spectral radius of L, (see the key
proposition 8. The lower bounded is yielded by the existence of eigenvalues in open
ball with the radius A. Therefore the above (II) is obtained. Other results are mainly
due to techniques of transfer operators in [3 5 [7, 1], 14, 20, 29]. = The motivation of

our study is to extend the result of perturbed Markov systems with holes in the finite
state case [26, 27] to the infinite state case. Precisely, we consider a perturbed system
(Xa, (€, +)) with perturbed functions ¢(e, -) defined on X4 satisfying that the perturbed
system has a unique Gibbs measure p(e, -) of the potential (e, -) for each € > 0 and on the
other hand the unperturbed system (X, ¢) possesses several shift-invariant probability
measures (f,),>1. In previous work |26, 27] in the finite state case, we gave a necessary
and sufficient condition for convergence of (e, ) and showed that the limit measure is
a convex combination of some Gibbs measures. In the infinite state case, however, the
assumption that the unperturbed system possesses Gibbs measures imposes a restriction
on the transition matrix M. To avoid restriction in M, we need an additional condition
for ¢ and this is the summability (ILT]). We shall apply our results to infinite-state Markov
systems with holes in a future work. In this paper, we demonstrate convergence of the
topological pressure and the Gibbs measure of perturbed potential in our open system
setting (Section [6.1]). In other examples, we apply our results to iterated function systems
endowed with strongly connected multigraph (Section [63]), and treat locally constant
potentials in TMS (Section [6.4]).  We recall in Section 2.1] the notion and the results

of topological Markov shifts. We state in Section the fundamental results of Ruelle
operators and the derivation of thermodynamic features. The main results are described
in Section Bl In Section 4l we give some auxiliary propositions which need to show our

main results. The proofs of the main results are devoted in Section Bl We treat in Section
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various applications and examples. Finally, we provide a method of extending potentials
defined on X to on X4 in Appendix [Al and give a brief review of perturbed eigenvectors
in Appendix Bl

Acknowledgment. The author thanks Nakano Yushi in Tokai University and Shintaro
Suzuki in Tokyo Gakugei University for valuable comments and advice. This study was
supported by JSPS KAKENHI Grant Number 20K03636.

2. PRELIMINARIES

2.1. Topological Markov shifts. We recall the notion of topological Markov shifts. Let
A be a zero-one matrix indexed by countable set S. Fix a nonempty subset Sy C S and
an Sy X Sy zero-one matrix M = (M(ij)) with M (ij) < A(ij). Consider the set

(2.1) Xy ={well[Zy5 : M(wywpy1) =1 for all n > 0}.

Namely, X, is a subsystem of X4 with the state space Sy and the transition matrix M.

By the sake of convenience, if i € S\ Sy or j € S\ Sy, then M (ij) is referred as zero.

A word w = wyws ... w, € S™ is M-admissible if M (w;w;1) =1 for all 1 <i < n. We
write W, (M) = {w € S™ : w is M-admissible}. For a,b € S, we write a - b if there
exist an integer n > 1 and w € W, 1(M) such that w; = a and w,y; = b. The matrix
M is said to be irreducible if for any a,b € S, a = b for some n > 1. We say that M is
weakly primitive if for any a,b € S, there exists N, > 1 such that a = b for any n > Ny,
and M is primitive if sup,, yeg Nop < 00. The matrix M is said to be finitely irreducible if
there exists a finite subset F' of | J -, S™ such that for any a,b € S, there is w € F so that
awb is M-admissible. The matrix M is called finitely primitive if there exist an integer
N > 1 and a finite subset F' of S™ such that for any a,b € S, awb is M-admissible. The
matrix M has the big images and pre-images (BIP) property if there is a finite subset
F C S such that for any a € S, there exist b, ¢ € F such that M(ba) = M(ac) = 1. Note
that M is finitely irreducible (finitely primitive) if and only if M is irreducible (weakly
primitive) and has the BIP property.

Next we introduce tools for non-irreducible transition matrix. For a,b € S, we write
a <> b when either ¢ = b, b = a for some m,n > 1 or a = b. Consider the quotient
space S/<. For 51,9, € S/, S; = S5 denotes either S; = S5 or there exist a € S and
b € S5 such that a = b for some n > 1. Then the relation < is a semi-order on S /. For
T € S/, denoted by M(T') the irreducible submatrix of M indexed by T'. Therefore we
obtain countable many transitive components Xy 1) of X (T € S/«).

2.2. Ruelle transfer operators and thermodynamic formalism. We will recall

some facts of Ruelle transfer operators which were manly introduced by [14]. Let X
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be a topological Markov shift with countable state space S and transition matrix A. For

real-valued function ¢ on X, the topological pressure P(p) of ¢ is given by

(2.2) P(p) ;== lim llog Z exp(sup Spp(w))

TN e wEl]
formally, where we put S,p(w) := 3.0 ¢(0'w). Tt is known in [I4, Lemma 2.1.2] that if
¢ : X — R is summable, then the number P(p) exists in [—o0, +00).

A o-invariant Borel probability measure p on X is called a Gibbs measure of a potential
¢ : X — R if there exist constants ¢ > 1 and P € R such that for any w € X and n > 1

-1 =)
© = exp(—nP + S,p(w)) s ¢

Theorem 2.1 ([14, [19]). Let X be a topological Markov shifts whose transition matriz
is irreducible. Assume that ¢ € F'(X,R) is summable. Then o possesses an (invariant)

Gibbs measure if and only if A is finitely irreducible.

Proof. Due to [14, Theorem 2.2.6 and Corollary 2.7.4]. See also [19, Theorem 1]. O

Theorem R.1] tells that the existence of Gibbs measure imposes a restriction in the

transition matrix.

Finally we recall spectral properties of Ruelle operators £4 = L4, of ¢. For ¢ > 0, let
(2.3) AP =AMX)={fecC(X):0<f flw) <D f)ifwe [vy---vp_i]}.

The properties of A* will be given in Proposition EIl The following is a special version

of Ruelle-Perron-Frobenius Theorem for £ 4.

Theorem 2.2 ([19, 20]). Let X be a topological Markov shift whose transition matriz A
is finitely irreducible. Assume that ¢ € F*(X,R) is summable. Let k > 1 be an integer
and ¢ > 0[p]r1/(1 — 0). Then there exists a unique triplet (A, h,v) € R x A¥ x Cy(X)*
such that X is equal to the spectral radius of L4 : FH(X) — FNX), Lah = Ah, LYv = I
and v(1) = v(h) = 1. In particular, h is bounded uniformly away from zero and infinity,
A equals exp(P(yp)), and p = hv becomes the Gibbs measure of the potential .

Proof. The existence of such a triplet (A, h, v) is also referred a positive recurrent in [20].
Since ¢ has a Gibbs measure from Theorem 2.1, positive recurrence of ¢ is guaranteed (see
the proof of [I9, Theorem 1]). It is remain to check that h € A* with ¢ > 0[¢]i11/(1—0).
The function h satisfies the inequality vary(logh) < Y77, var,e for each [ > 1 (see [19,
Corollary 2| or [1I8, Proposition 3.4]). Therefore for w,v with wy--- w1 = vo- - vi_1,
w # v and I > k, we have [logh(w) — logh(v)| < 3207, [e]ir10" = (([¢le+10)/(1 —
0))dg(w,v) < cdp(w,v). Hence h € AF. O
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3. MAIN RESULTS

The following is one of our main results.

Theorem 3.1. Assume that the conditions (A.1)-(A.3) are satisfied. Putcy := [p]p410/(1—
0). Then we have the following:

(1) There exists a triplet (\,g,v) such that (i) X is equal to exp(P(y|x,,)) and is the
positive spectral radius of the operator Ly FF(X) — FF(X) and of Ly : Cp(X) —
Cy(X) both, (ii) g € Afm(X) with ||g]l = 1 and Lyrg = Ag, and (iii) v is a Borel
probability measure on X supported on Xy and L,v = Av.

(2) If X4 is not reduced to finite single orbit, then the essential spectral radius ress(Lar)
of the operator Ly = FF(X) — FF(X) satisfies N0 < regs(Lar) < A In particular,
for any r € [0, \0) except for at most a countable number, p € C with |p| = r is an
eigenvalue with infinite multiplicity. If X4 is a finite single orbit, then rqs(Lyr) = 0.

For the corollary of this theorem, we introduce the following condition which is stronger
than the condition (A.1):

(A.1)" The matrix A is finitely irreducible.

Corollary 3.2. Assume that the conditions (A.1), (A.2) and (A.3) are satisfied. Then if
X 4 is not reduced to finite single orbit, then the essential spectral radius Ly : FF(X) —
FF(X) is equal to \0.

The proofs of Theorem B.1] and Corollary will be stated in Section (.11

Remark 3.3. (1) Assume that the conditions (A.1)-(A.3) are satisfied. The TMS X can
be recoded in a natural way to a TMS with the state S* = {w € S**! : M-admissible}
and with the transition matrix (A*(ww’)) as A*(ww') =1 iff wy - - wy, = w} - - wj_;.
Then ¢ is reduced to a potential ¢* : X4+ — R satisfying [p*]; < co. However ¢*
may not be summable.

(2) Assume that (A.1) and (A.3) are satisfied. Then (A.2) holds if and only if the spectral
radius of Ly, is positive (Proposition B2]). Moreover, if the state space S is finite,
then the condition (A.2) is satisfied if and only if X, is non-empty.

To state our second result, assume that M is irreducible. In fact, since any nonnegative
matrix is decomposed into topological transitive components, it is important to know
spectrum properties of £, when M is irreducible. Denoted by p the period of M. Since
M is irreducible, there exists a decomposition Sy = Spo U - -+ U Sp,—1 such that

31 Bii=Ues,[sh  Xip=Xun%,  oX5) =X ™7 (0<i<p)

and each (X¢,,0?) is topologically mixing. Then we have the following:
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Theorem 3.4. Assume that the conditions (A.1)-(A.3) are satisfied and the matriz M is
irreducible. Let p > 1 be the period of M and put k = exp(2m\/—1/p). Then the operator
Ly FF(X) — FF(X) obtain the spectral decomposition

(3.2) L= g AP+ R

satisfying that each \; = Ak' is a simple eigenvalue of Ly, P; is a projection and has
the form P; = h; ® v; with the eigenfunction h; = E?;(l] H_jih)(g]. and the eigenvector
v = E;’;é K|, and the spectral radius of R is less than X, where h = g/v(g) and
(A, g,v) appears in Theorem[3.1)(1). Here xs, means the indicator of the set ¥;.

Corollary 3.5. Assume that the conditions (A.1)-(A.3) are satisfied and the set {S; €
S/t Plolxys,,) = Plelx,)} is only one element Sy. Let p be the period of M(S:).
Then the operator Ly = FF(X) — FF(X) has the spectral decomposition as well as (3.3).
In particular, supp h; = \J{U,erla) : T = S1} and supprv; = Xpy N {U,erlal © S1 2T}
are satisfied.

We prove Theorem [3.4] and Corollary in Section and Section [B.3] respectively.

Remark 3.6. Let X4 be a topological Markov shift whose shift is topological mixing and
¢+ X4 — R a weak dp-Lipschitz continuous and summable, and we put M = A (i.e. the
cases X4 = Xy, p=1and k =1 in Theorem [B.4)). Then the result of Theorem B.4] tells
us that ¢ is strongly positive recurrent (SPR) in the sense of the notion in [6]. Precisely,
if we define a Banach space F' = {f € C(Xy) : || f||r < oo} endowed with the norm || - || g:

£ 1|7 = sup{(sup k)~ (sup | | + sup{| f(w) = f(0)|/0*“) : w,0 € [b], w#v})}
beS  [b] [t]

So(w,v) :=#{0 <i <t(w,v)—1:2;=y; =a} with t(w,v):=min{n : w, # v,},

where fix a € S, then the Ruelle operator L4 : F — F has a spectral gap property.
In the case infxy h = 0, any bounded function f € F}(X) with infy |[f| > 0 is not in F.
Thus F}(X) € F in general. Theorem [3.4 states that the Ruelle operator £, also has a
spectral gap property on F}'(X).

Finally, we give the escape rate from the open system o|x under the conditions (A.1)-
(A.3). Recall the set ¥ = Ujjeqe. ar(iy)=1[ij] and put " = (L ;07'S. By Theorem
B4 replacing M by A, there exists a unique triplet (A4, ha,v4) such that A4 is spectral
radius of £4 acting on FF(X) and is equal to exp(P(p)), Laha = Aaha, L4V4 = Aava
and v4(1) = va(ha) = 1. Put pug = hava. Then py is a o-invariant Borel probability
measure and supp s = X (see Proposition [L5]). Then we obtain the following:

Theorem 3.7. Assume that the conditions (A.1)-(A.3) are satisfied. Then we have the
limit lim,, oo (1/n) log ua(X") = P(¢|x,,) — P(¥).
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We will give this proof in Section When A # M, P(y|x,,) is strictly less than
P(y). Therefore the escape rate of the open system o|y is exponential.

4. AUXILIARY PROPOSITIONS

In this section, we enumerate and show some auxiliary propositions which are useful to

prove our main results. We use the notation defined in Section [I] and in Section 2L

Proposition 4.1. Assume that the conditions (A.1)-(A.3) are satisfied. Then

(1) ifwe|Ji, S then Xiw] € A for all ¢ > 0, where X} is the indicator of the set [w];
(2) if f,g € A¥ and o, B > 0, then af + Bg € AF;

(3) if ¢ > qqand f € A} with Ly f € C(X), then Ly f € AL

Proof. The assertions (1)-(2) immediately follow by direct checking. We will see the
validity of (3). For f € A¥ and d(w,v) < 6"
LMf(w) < Z e(p(a-v)+[<p]k+1d9(a.w,a-v)f(a . U>€cd9(a-w,a-v) _ LMf(,U)e@([ip]k+1+c)d9(w,v).
a: M(avg)=1

Here we note 0([¢]r+1 + ¢) < ¢ if and only if q < c. Hence Ly f € AL O

Denoted by (L) the spectral radius of a bounded linear operator £ acting on FF(X),
and by r¢(L) the spectral radius of £ acting on Cp(X).

Proposition 4.2. Assume that the conditions (A.1) and (A.3) are satisfied. Assume
also that M is an Sy x Sy (So C S) zero-one matriz such that M(ij) < A(ij). Then
r(Lar) = rc(Lar). Moreover r(Lyy) is positive if and only if (A.2) is satisfied.

Proof. First we show r(Ly) = ro(La)- By 1LYl = 1£% e < [1£%1]|x, we have
re(Lar) < r(Lar). To see the inverse inequality, let n >k, f € FF(X) and w,v € X with
dp(w,v) < 0F. We note the basic inequality
(A0 @) =Ll Y e w) — fle- vl

w: wwoEWn41(M)

eSntp(w-v)|€Sn<p(w-w)75n<p(w-v) . 1||f(w . ’U)‘}
SNL3 oo (Lf160" + il fll o) do (w, v)
with ¢p = eekcmcm. Therefore [L3; flx < (1 + q@)||L3 1ol flx- Consequently, we obtain
1L% 1k < (2 + @) l|L3 1|00 and thus r(Las) < re(Lar).

Next we prove the second assertion. Assume that X,; has a period point w with

0c™w = w. For any integer [ > 1, we have

(4.2) Lilw) = 2 eSim () > Simel) — lSme(),
wE(S0)!™ : w-wo €W y1(M)
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Thus r.(Ly;) > e¥¥@)/m > (. Hence we obtain the assertion.

Conversely, we assume that Xj; has no period point. Choose any n > 0. Since ¢ is
summable, there exists a subset S; C S such that Sy := S\ 5] is finite and Zsesl S ¥
7. Since any finite M-admissible w = wy - - - w,, satisfies that wy, ..., w, are different each
other, we have £{i : w; € So} < m :=#S;. We see for n > m

Lﬁ/ll(w) < Z 62?:1 SUP[y,] P

W1,...,wn €S : mutually different

n n—m m
< X g (Fem) N (Teme) sor

WL 5eeey Wp_—m €S s€ST seS
Wyl wn €S
for a constant ¢ > 0. Thus we obtain r(Ly;) < 7. Hence r.(Ly) = 0. O

Assume that the conditions (A.1)-(A.3) are satisfied. We also introduce the following

conditions for perturbed potentials (¢, ) with a small parameter € € (0, 1):

(B.1) (e, ) € FY(X,R) for any € > 0 and ¢ := sup¢[¢(€, -)]k41 is finite.

(B.2) ¢4 := Y g €XP(SUP,~q SUP, e[y ¢ (6, w)) < 00.

(B.3) Take ¢ : X — R so that ¢(w) = exp(p(w)) if M(wow;) =1 and 1(w) = 0 otherwise.

Then sup,,¢(q le#(e) — 4h(w)| — 0 as e — 0 for each a € S.

For convenience, let A(€) = exp(P(¢(¢,-))), cs = qgf/(1—0) and cg = max(qp, [¢]x10/(1—
0)). Take v € Xy so that o™v = v and put A, = ([[/"5" ¥ (%)™ Then we notice
liminf. ,o A(¢) > A« by (@2) and (B.3).

Proposition 4.3. Assume that the conditions (A.1)-(A.3) and (B.1)-(B.3) are satisfied.
Then ||Lape,y — Larllooc = 0 as € = 0.

Proof. Put N = UUy;. a¢j)=1.mj)=0lid]. We write S = {s1,5s,...,54} with d < oco. For
n=1,2...,e>0,we X and f € Cp(X), we define

Hn(@ W, f) :eso(aSn-W)f(Sn : w), Hn<07 w, f) = 1/}<3n : w)<1 - XN(Sn : w))f<3n : w)

if A(s,wo) = 1, and Hy(e,w, f) = H,(0,w, f) = 0 if A(s,wp) = 0. Then we see
Lape)f(w) =202 Hu(e,w, f). Put a, = exp(Sup.oSup, ey, 96, w)) + Sup,eps,) Y(w).
Note Z;’Ozl a, < oo by the conditions (B.2) and the summability of ¢. We obtain
|H, (€, w, f)] < anl|f]leo for any € > 0, w and f. Moreover

| Ho(e,w, f) = Ha(0,w, f)] < sup,ep,, [e79) = h(w) (1 = X (@))[[|f]l-

Choose any n > 0. Then there exists ng > 1 such that > > a, < n. Furthermore,

n=ng+1

the condition (B.3) implies that there exists €; > 0 such that for any 0 < € < ¢ and for
any a € {s1,52,. .., 50y}, SUP,ela [€79) — (W) (1 — xn(w))| < n/ng. Therefore, for any
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f e Cy(X) with ||fllee <land 0 < e < ¢

”(LA,cp(E,-) —Lu)flloo = 21612 | ZHn(E,w, f)— ZHn((],W’ 1)

n>1

< sup Z w6, ) = Ha(0.o, )+ sup S (|Hale,w, )] + [Ha(0,0, f)]) < 3n.

weX weX n>no+1
This implies that £ () converges Ly with respect to || - ||oo. O

Proposition 4.4. Assume that the conditions (A.1)-(A.3) and (B.1)-(B.3) are satisfied.
Assume also that for each e > 0, there exists a Borel probability measure v(e, ) on X such
that L . yv(€,-) = A€)v(e,-). Then {v(e,-)} has a converging subsequence in the sense
of weakly topology. Moreover, any limit point v of v(e,-) as € — 0 is a Borel probability
measure on X and an eigenvector of X of the dual L3, of Ly = Co(X) — Cy(X), where
A is a limit point of A(e).

Proof. We write S = {1,2,...,d} with d < co. First we will use a technique of Prohorov’s
theorem for the sequence {v(e, )}, i.e. we will show the tightness of this. For n > 1, let

T @ X = S be m,(w) = w,. In this case, m, is continuous. For s € S we have
)\<€)ny<€’ W;l(S)) :/ Z eSn%@(e,w-w)Xﬂ_gl(s) (U} . w) dV(G, w) < C@ eSup 5] »(e, )
X wesn: w-woEWnyt1(A)

where qg appears in (B.2). Choose any n > 0. By using A(¢) > A, /2 for any small € > 0,

vie,m  ([s +1,00))) < ()\*/Q)fnclﬁ;l—l 3 1oy P05 pler)

Therefore v(e, 7, }([s(n) + 1,00))) < n/2" for some s(n) > 1. Thus

vie, Mazy ™ ' [Ls(n)]) =1 = v(e, Uz 7t [s(n) +1,00)) = 1=,

Since (72, 7, }[1,s(n)] is compact, the sequence {v(e,-)} is tight. Prohorov’s theorem

nln

implies that there exist a subsequence {v(e,, )} and a Borel probability measure v on
X such that v(e,,-) converges to v weakly, namely v(e,, f) — v(f) as n — oo for each
f € Cyp(X). Since {A(e)} is bounded, we may assume convergence \., — A. We have

[Av(f) = Ly ()]
<IA(f) = Mevle, /)l + [v(e, LageS) = vle, Luf)l + |vle, Lo f) — v(Lu )]
<W(f) = Mevle, NI+ 1Lape) = Lallool[ flloo +[(v(e; ) =) (Lar f)] = 0

as € — 0 running through {¢,}. Hence the proof is complete. O

Proposition 4.5. Assume that the conditions (A.1)-(A.3) are satisfied and M 1is irre-
ducible. If v # 0 is a finite Borel measure with Ly,v = A\v and X\ > 0, then suppv = X)y.
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Proof. Choose any w € X \ Xj;. There is m > 1 so that M (w,,—1w;,) = 0 and therefore
V([wo wm)) = A (LY X wowm]) = 0. Thus supp v C Xy To check the converse,
we show v(0) > 0 for any open set O with w € O for each w € Xy;. Let 7 € S§ with
v([r]) > 0. Since M is irreducible, for any n > 0 there exists w € S§* such that w,, - w -7

is M-admissible. Let [ =n + m + 1. For an element v € [7], we see
(4.3) v([wo - wal) =ATV(LY X o won]) = )\’legk(mesl”(“’o"'“"'w'”)1/([7’]) > 0.
Since all cylinders are open base, we get v(O) > 0. Hence supp v = Xy;. U

Proposition 4.6. Assume that the conditions (A.1)-(A.3) and (B.1)-(B.3) are satisfied.
Assume also that for each € > 0, there exists a nonnegative functions g(e,-) € A* _ such
that ||g(€,)|loo = 1 and La pe9(€,-) = Me€)g(e,-). Then {g(e,-)} has a converging sub-
sequence {g(€,, )} in the sense that g(e,,w) converges to a function g(w) for each point
w € X. Moreover, the limit g is a nonzero nonnegative function belonging in A%l and 1

an eigenfunction of \ of the operator Ly, where X is a limit point of A(e).

Proof. By g(e,w) < ¢B*“"g(e,v) for any dg(w,v) < 0" and by ||g(e, )l = 1, {g(e, )}
is equicontinuous and uniformly bounded. By Ascoli Theorem, there exist a subsequence
(€,) and g € Cy(X) such that g(e,,w) — g(w) for each w € X. From g satisfies g(w) <
e(ﬂde(w’v)g(v) for w € [vg - vg_1], g is in A%l. We show g # 0. There exists Sy C S such

that S; := S\ Sp is finite and Y, o e™Pe1#(9) < clj;lk+1()\*)k/(6k)_ Forwe X
)\k

g*g(@ w) < )‘<€>kg(€7 w) = ‘Cﬁl,go(e;)g(@ w) = Z €Skip(€7w.w)g(€7 w - (,U)
we(SpUSy)k cwwoEWg11(A)

D SR YA

wWESK 1 w-wo €Wy 1(A)

(A"
6

holds for any small € > 0 so that (A.)*/2 < A(e)¥. Choose any v € X with g(e,v) > 2/3
and v* € [w] for any w € Wi(A) N SF. We have

A)E () PWL b
(A) < (A) g(e,v) — —( 6) < e Z Hesupwosup[wi] S"(’77')g(e, vv).

2
6 wEW(A)NSk i=1

Since S¥ is finite, there exist a subsequence (¢,) and w € S¥ such that inf, g(e,,v*) > 0.
this implies that any limit point g of g(e, -) is not zero.

Take limit points A of A(¢) and g of g(¢, ). We show L;g = Ag. By virtue of Proposition
4.4 replacing M by A, there exists a pair (5\, v) such that ) is positive and 7 is a Borel

probability measure 7 on X and satisfies L7 = Ab. Remark that  has full support on
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X by Proposition We have
[A(e)g(e. ) = Laugllerey <I(Lape) = Lar)gle, )o@y + 1£arg(€, ) — Laglle)

<N Lapier — Latlloe + /X Lalgle, ) — gl(w) diw)

SNLape) = Lalloo + Allgle, ) = gllL1),
By Lebesgue dominated convergence theorem, g(e,, -) converges to g in L' (X, ») for some
sequence (€,). Letting € = ¢, — 0, we obtain Ly;g = A\g v-a.e. By continuity of g and
supp? = X, we have L9 = Ag. O

Proposition 4.7. Assume that the conditions (A.1)-(A.3) are satisfied and M is irre-
ducible. If g € A¥ satisfies g # 0 and Lyrg = N\g with \ > 0, then supp g = Uaes, lal-

Proof. For w € X with wy ¢ Sy, g(w) = A 'Lyg(w) = 0 by the definition of L.
Therefore supp g C (J,¢g,[s]- Conversely, choose any w € X with wy € Sp. Take v € X so
that w := vg...v;_1 € S¥ and g(v) > 0. Since M is irreducible, there exists w’ € S5**

with m > k such that w - w’ - wg is M-admissible. We see
g(w) = ALY g(w) ZATeIm T gy ) 2 AT e g (1) > 0,
where the second inequality holds from g € A%. Thus we obtain supp g = J,cg [s]. O
Next we show an important proposition about quasi-compactness of Lj;.

Proposition 4.8. Assume that the conditions (A.1)', (A.2) and (A.3) are satisfied. We
also assume that a function oo € FY(X,R) is finite pressure and satisfies p < g on
{w e X : M(wowr) = 1}. Let Ay = exp(P(po)). Then the essential spectral radius
Tess(Lar) of the operator Ly = FF(X) — FF(X) satisfies ress(Lar) < Aob.

Proof. Choose any 1 > 0. By virtue of Theorem 2.2l there exists a unique triplet
(Ao,ho,l/o) such that £A7¢0h0 = tho, Ez#pol/o = )\01/0, Vo(ho) = 1/0(1) = ]_, ||h0||oo < 00
and ||hy'||ee < 00 hold. Since A is finitely irreducible, pg := hgtp is the Gibbs measure
for the potential ¢o. Put Q := A\;'Ly;,. We will show that the operator Q satisfies the

Hennion’s condition [9]. In order to this, we check the following four claims.

Claim 1. There exist constants c7,cg > 1 such that || Q™ f|lx < qqll fll1uo) + I f11£0™
for any f € FF(X) and m > k.

For any f € FF(X), m > k, A-admissible word w € S™ and w,v € [w], we have
17(w) — )] < [fludo(w,v) < [f1:6" and therefore f(w) < f(v) + [fli0™. By integrating
for the measure py on v € [w] in both sides and by dividing by wuo[w], we obtain

1 m
1) < oty L 0 (o) + 140




QUASI-COMPACTNESS OF TRANSFER OPERATORS 13

for any w € [w]. Moreover, by the Gibbs property for g, we get eSmvo@w)=mloglo <
qto([w]) for some constant cg > 1. We see for w € X

(Q™fD(w) = ALy f1(w) SAG™LE Lo F1(w)
1
d g™
- wesS™m :w-cu%Werl(A) WO[M] (:MO[U)] /[w} f Ho ¥ [f]k )
<qll fll£r(uo) + q@lf160™,

Moreover, for w,v € X with wq---wi_1 = vy Vp_1

Q" f(w) = Q" f (V)] <A™ > S fw - w) — ¥ fw - v)

WES™ : w-woEWiy1 (M)

<A™ > S 1" dp(w, v)
weS™ : w-woEWp41(M)
Y (g[Sl el ]

wWES™ : w-woEWymt1 (M)
<O™ Q™ 1(w)[flidp(w, v) + (Q"|]) (v)e T gy (w, v)
<™ [frds(w, v) + (q@ll Fll1 ) + @ 1e0™)e Degeo(w, v).
Therefore the assertion of Claim [Mlis valid by putting q = qg = qg(1 + 2eTqy).

Claim 2. For anyn > 0 there exists ko > k such that [|Q* f|lx. < qgll fll 21 (uo)+ 11 f IIn(0(1+
m)* for any f € Fy(X).

This claim is satisfied by choosing ko in Claim [ 'so that (qg)*/* <n+ 1.
Claim 3. Q({f € FF(X) : || fllx < 1}) is totally bounded in || - || 11 (u)-

It is sufficient to show that any sequence f,, € FjF(X) with || f,,||» < 1 has a subsequence
{fa@ }1 so that Qf,;y converges in the sense of the norm || - || 11(,,). By Claim [} {Qf,(w)}
is uniformly bounded in C for any w € X and equicontinuous. Thus Ascoli Theorem and

Lebesgue dominated convergence theorem tell us that such a sequence exists.
Claim 4. There exists ¢ > 0 such that for any f € Fy(X), |Qf21u0) < qquill 1 1 (o) -

Take the corresponding eigenfunction hg of the eigenvalue exp(P(pg)) of L4,,,. Then

197111y < A5 /X Cotlfldpy <5 /X Lol i

<[lhollg® /X Lol fldvo < gl i)
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Hennion’s theorem [9, Theorem XIV.3| says that Claim 2 Claim Bl and Claim E] imply
that the essential spectral radius res(Q) of Q@ : FF(X) — FF(X) is less than or equal to
0(n +1). By arbitrary choosing 1 > 0, we see res(Q) < 0. From Q = \; 'L, we obtain
Tess(Lar) < Aof. Hence the proof is complete. O

Recall the quotient space S/« and the semi-order < on S/<» defined in Section 211

For subset T' C S, we write X7 := [J,crlal, and x7 := x5, the indicator of the set Xr.
Denoted by p(L) the resolvent set of £ : Ff(X) — FF(X).

Proposition 4.9. Assume that the conditions (A.1)-(A.3) are satisfied. Then
(1) r(Lar) = maxpeg/o, *(Laery), where M(T) means the submatriz of M indexed by T';
(2) Nresyes P(Larry) C p(Lar).

Proof. (1) Choose any S; € S/« and put Sy = S\ S1. we let Lyf = xs5,Lm(xs, f)
for f € FF(X). By direct checking, we see || Liflloe < 1Larflloo and [Liiflx < [Larfls-
Therefore, we see max;—127(Ly;) < r(Ly). Conversely, note that L1 = O or Loy = O
by So A Sy or S; A S;. We assume L5 = O. Then we obtain the expansion L%, =
Lo+ Lo+ 3770 L Loy £777 for any n > 1. It is not hard to show that there exist
constants ¢;; > 0 and ng > 1 such that for any n > ng, [|[L}[|x < qrpmaxi—127(Ls)"
Thus r(Ly) < max;—127(L;). The case L9 = O is treated similarity. Thus we obtain
r(Lyr) = max;—127(Ly;).

Choose any 0 < A\g < r(Lys). By the summability of ¢, there exists a decomposition
S/<>="Ti UTy such that T; is finite and letting T} := (Uper, T 7(Lar(ry)) is less than Ag.
By using above argument repeatedly, we have r(Ly;) = maxpeg 7(Larry) by the fact
(L) > r(Larery))- Hence the assertion is valid.

(2) Take the notation Sy, Sy, £;; in (1). We display L as the block operator matrix

»Cll £12

Lo =
M7 Loy Lo

Y

namely we decompose Ly = L1 + L2 + Lo1 + Lo (see [4, B0]). Assume L5 = O. By
Frobenius-Schur factorization [4, Theorem 4.2], we have that for n € p(L4;)

T @
Lo(Lyy—nI)™t T

Ell — T}I O

Ly —nT =
M (@) Lo —nT

Since the former 2 x 2 block matrix is invertible and the inverse is bounded, n € p(L£11) N
p(La2) implies n € p(Lyr). In the case L7 = O, we obtain the same assertion by a similar
argument. Choose any 1 € (ycg/., P(Lar(r)) and put Ao = |n|. We may assume 7 # 0 by
ker Ly # {0} for T with r(Larry) > 0. When we take 77,75, T as the same notation in
(1), we see n € p(Lareryy) by |n| > r(Larry)). By the above argument repeatedly, we have
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p(Larery) N Nper P(Lary) C p(Lar). Since n belongs to the left hand side, we obtain
n € p(Lyr). Hence the proof is complete. O

Finally we consider the case when M is irreducible. We recall some notions in ergodic
theory. A non-singular map 7" on a sigma finite measure space (X, B, i) is conservative if
for every set W € B satisfying that {T""W} are pairwise disjoint, W = @) or X mod p.
Such a set W is called a wandering set. The measure p is called ezact if p(E)u(X\E) =0
for any E € (|~ , T "B.

Proposition 4.10. Assume that the matriz M is irreducible with period p and @ : Xy —
R satisfies [p]g+1 < 00 and ||Larl]|e < 00. Assume also that there exist a triplet (A, g,v)
and an integer 0 < i < p such that X is equal to the spectral radius of Ly = FF(Xu) —
FF(Xur), g is a nonzero function in A*(X%,) for some ¢ > 0 with L%,g = \°g on X},, and
v is a nonzero Borel finite measure on X', with L37v = NPv, where X}, is defined in (31).
Then supp g = suppv = X&; and putting h = g/v(g), |\""PLY f — hl/(f)||L1(X]iWV) -0
asn — oo for each f € L'(X},,v).

Proof. The equalities of the support of g and v are proved by the proof of Proposition
[4.7 and Proposition [4.5] respectively. Put p = hv. We define a bounded operator Lf:=
(LR, (hf))/(Nh) for f € LY(Xi,, u). Consider the non-singular map T := o” on the
measure space (X4, ). Note that £ becomes the transfer operator of T on L'(X%,, i) is
given by Lf := dusoT~"/du with duy := fdu. Indeed, for f; € L=(X},) and f, € L}(X},)

CALfedu=XT" | Lh(fioThfy)dv= [ fioTfydpu.
X}L\/I X}L\/I X}L\/I
First we will see that the measure p is conservative. Choose any wandering set W. By
the definition of W, we see Y xw oT™ < 1, where xy denotes the indicator of the set
W. By Monotone convergence theorem,

u(l)Z/i ZXWOTndN:Z/i xwo T dp =Y u(W).
M n n=0 M

n=0
Since p is finite, p(W) must be zero. Thus p is conservative.

Next we prove that the measure y is exact. We define S = {w = wp---w,_; € S
wy € Sp; and w is M-admissible} and a zero-one matrix M indexed as S by M(ww') = 1
if ww' is M-admissible and M (ww') = 0 otherwise. Then we notice that X, is regarded
as the topological Markov shift X,; with the state space S, the transition matrix M
and the shift 7. Furthermore, (X, T) is topological mixing, u is a T-invariant Borel
probability measure on X ;;, and the log Jacobian log(du/duoT) is equal to the potential
@ = Spp—log h+log hoT'—log AP. Observe that ¢ : X;; — R satisfies at least [@]x41 < 00

with respect to dg». Moreover, by recoding X ; below, the function ¢ is deduced a function
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whose first variation is finite, i.e. [¢]; < co. Indeed, let S* = {w* = wy - - -wy, € SF*1 -
M-admissible}. We give a zero-one matrix M* indexed as S* by M*(w*v*) = 1 if and
only if wy -+ wgp = vy ---vp_1 for w* = wy---w, and v* = vy - --vg. Then the TMS X/«
is conjugate to the TMS X, by the map © : Xy — Xy, m(wiwi - --) = wowy - -+ for
W] = Ww;W;y1 - - - Wiy This map 7 is bijective, bi-Lipschitz and satisfies that moT™ = Tom
and [p o]y < [Pler1 < +00, where T™ is the shift-transformation on Xys-. It is not hard
to check that p o7 is a T*-invariant Borel probability measure on X+ and conservative.
By virtue of [3, Theorem 3.2] (also [20), Section 3.2] or [I8, Theorem 2.5]), it turns out
that the measure p o 7 is exact and so is p.

Finally we show the assertion of this proposition. By virtue of Lin’s theorem ([II] or

Il Theorem 1.3.3]), the exactness of 1 means
[T , 0
1A=L (hfo) — B (hfo)ll oty =1L (fo = m(fo))llpxt, oy — O

as n — oo for each fy € L'(Xi, u). Hence we obtain the assertion (2) by putting
fo:= f/h € LN(Xi,, p) for any f € L'(Xi,, v). O

5. PROOFS OF MAIN RESULTS

5.1. Proof of Theorem [B.TJ(1). Assume that (A.1)-(A.3) and (B.1)-(B.3) are satisfied.
In order to prove this theorem, we need to show the following lemmas. We put N :=

Uij:A(ij):l,M(ij):O [ij] and

_ Jelw) = (1/exnw), if p(w) > supy,, ¢ — 1/
61 plew) = |

S, P — (1/€) — (1/e)xn(w), if p(w) < supp, ¢ —1/€
for ¢ > 0 and w € X. Observe that p(w) < ¢(e,w) for w with M(wow;) = 1. Put
= exp() (1 = xw)-

Lemma 5.1. Assume that (A.1)-(A.3) and (B.1)-(B.3) are satisfied. Then the potential
(21) satisfies the condition (B.1)-(B.3).

Proof. We start with the validities of [p(e, -)]; < oo for 1 < i < k and [p(€, *)]k11 < [@]rr1-
Let w,v € X with wy---w;_1 = vo---v;_1 and w; # v; for an integer [ > 1

xn(w) = xn(v) if I > 2. Consider the three cases:
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Case I: p(w), p(v) > supy,, ¢ — 1/e. In this case, we have
lo(e,w) — @6, v)| <[p(w) — (V)] + (1/€)[xn(w) = xn (V)]

SUP(  — (Supy ¢ — 1/e) +1/e, i1 <1<k
lp(w) — (V)] if 1>k

(2/(0%€))dp(w,v), if1<I<k
[¢]k1da(w, V), if 1 > k.

Case II: p(v) < supy, ¢ —1/€ < p(w) or p(w) < supy, » — 1/e < p(v). We obtain
o€, w) = (e, v)| Smax(p(w), p(v)) = (supp,) ¢ — 1/€) + (1/€)xn(w) — xn (V)|

2/e, if1<l<k
<

max(p(w), p(v)) — min(p(w), p(v)), it 1>k
Therefore the same assertion as in Case [ is satisfied.
Case ML p(w), p(v) < supy, ¢ — 1/e. We see [p(e,w) — (e, v)| < 1/eif | = 1 and
equals 0 if [ > 2. Thus the condition (B.1) is fulfilled. The condition (B.2) is valid from

SUD¢.0 SUDyeps) P(€, W) < SUp,e(q ¢ for any s € S and the summability of ¢. The condition
(B.3) follows from for each a € S and w € [al,

5Pl g~ 1/€ if M(wowr) =0
|e? ) —yp(w)| < {0, if M(wowr) =1 and p(w) > supy,, ¢ — 1/€
e Pleol P71 4 e#@) - if M (wow;) = 1 and ¢(w) < supy, ¢ — 1/e
<2eSWPlal e/ ().

Hence (B.1)-(B.3) are fulfilled. O

Lemma 5.2. Assume that (A.1)-(A.3) and (B.1)-(B.3) are satisfied. Let X := r(Lyr).
Then there exist a nonnegative function g € A‘kfﬂ with ||g||c = 1 and the Borel probability

measure v on X such that Lyrg = Ag and Ly,v = Av.

Proof. First we assume the condition (A.1)’, i.e. A is finitely irreducible. By this assump-
tion and by Lemma [5.T], Theorem 2.2limplies that there exists a triplet (A(e), g(e, -), v(e,-)) €

R x A%l x Cy(X)* such that A(e) = exp(P(p(e, )))

(5'2) ‘CAy‘P(ey')h(€7 ) = )‘<6)h’(€7 ')7 E*A,ap(e,-)y(ev ) = )‘<€>V(€7 ')7 Hg<€7 )HOO = V<67 1) =1,
where g(e, -) is defined by h(e, -)/||h(€, -)||- By noting that € — P(p(e,)) is increasing,

the limit A; := lim,0 exp(P(¢(e, -)) exists. In addition to the fact qg < [@]x11, Proposi-
k

h that L9 = A
(mSUC at Lyg 19

tion implies that there exists a nonnegative function g € A
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and ||g|lcc = 1. Therefore A\ < A :=r(Ly;). Moreover by
1% ey Ul 2 1% ey Uloo 2 1£5pe ) Uloo = 151 0o = [1£5/ oo,

we notice A\; > A and thus A\ = A;. On the other hand, Proposition .4 yields the existence
of a Borel probability measure v on X such that L3,v = Av.

Next we consider the general case (A.1). We take a finitely irreducible matrix A indexed
by S so that A(ij) = 1 implies A(ij) = 1. For example, we let A(ij) = 1. Fix ¢ > 0.
By Proposition [A.1] there exists ¢(e,-) : X; — R such that ¢(e,-) = p(e,-) on Xy,
[(e, )esr = [@(€, )]s and @(e, -) is summable. By replacing A and M with A and A,
respectively and repeating the argument above, we obtain a triplet (A(e), §(e, -), o(e, -))
satisfying that \(e) = r(Lage)), G(6,-) € AF_ (e, -) is a Borel probability measure on

(m7
X ; and
'CA,@(67~)§](€7 ) = 5‘(6)9(67 ')7 ‘C*A,aﬁ(e,-)ﬁ(ea ) = 5‘(6)79(6’ ')’ ||§](€, )HOO = 79(6’ 1) =L

According to Proposition and Proposition 7] we see that supp g(e,-) = X, and
supp 2(€,-)) = Xa. Then we define g(e, ) = g(e, - )xx./llg(€, )xx4lle and v(e, -) =
v(€,|Xa). By considering the restricted operator L4 () = Lag(e.)|5r(x,) 01 FF(X4), we
get the same equations as (5.2)). The equation A(e) = A(¢) is guaranteed from A(e) > A(e)
by the definition and from 5\(6) is an eigenvalue of L4 o). By a similar argument above

again, we obtain the assertion. Hence the proof is complete. O
Lemma 5.3. Assume that (A.1)-(A.3) and (B.1)-(B.3) are satisfied. Then A = exp(P(y)).

Proof. In view of Proposition B9(1), there exists 7' € S/<+ such that 7(Ly ) = A. By

using Proposition .0 and proposition A7 replacing M by M (T'), we get the corresponding
k

il

N"g0(w) =Lirry90(w) < Lirgo(w) < D exp( sup  Sup(v)).

wEWn(M) UE[’LU}PIXM

eigenfunction gy € Al of Ly with supp go = J,cr[a]. Take any w € Xy ). We see

Therefore log A < P(¢|x,,). On the other hand, in addition to the fact p(w) < p(€,w)
for w with M (wow;) = 1, we have that for w € W, (M)

exp( sup Spp(w)) <exp( sup Spp(e,w)) < exp(sup S,p(ew)).

we[w]NX s we[w]NX s we[w]
Thus P(p|x,,) < P(e(e, ) and P(p|x,,) < logA. Hence the assertion is fulfilled. O
Proof of Theorem[31|(1). It follows from Lemma [5.2] and Lemma [5.3] O

The proof of Theorem B.1[(2) will be carried over after the proof of Theorem B.4.



QUASI-COMPACTNESS OF TRANSFER OPERATORS 19

5.2. Proof of Theorem [3.4l First we prove this theorem under the assumption (A.1)".
Lemma 5.4. Assume that (A.1), (A.2) and (A.3) are satisfied. Then ress(Lpr) < Or.

Proof. By virtue of Proposition .8 we get the inequality ress(Lar) < exp(P(p(e, -)))0 for
any € > 0. Letting € — 0, we obtain 7es(Ly) < M. O

Lemma 5.5. Assume that (A.1), (A.2) and (A.3) are satisfied. Then the assertion of
Theorem holds.

To show this, we start with the general spectral form of £y, : FFf(X) — FF(X). By
virtue of Lemma 5.4, we have the form
(5.3) Ly =3 1"0(\Pj+ D))+ R
satisfying the following (1)-(5):
(1) each \; € C are eigenvalues of £j; with finite multiplicity and with |A;| = A;
(2) each P; is the projection onto the generalized eigenspace associated to \;;
(3) each D; is nilpotent, i.e. D;Lrl # O and D?j = O for some n; > 1;
(4) Pilar = LyPi, P? = Py, P;D; = D;P; = D; for i and P;P; = D;D; = P;R = RP; =
RD; = D;R = O for each i # j;
(5) the spectral radius of R is less than .
Take the eigenfunction ¢ and the eigenvector v of the eigenvalue A given in Theorem
B.I)(1). Since M is irreducible, the equalities supp g = (J,g, [s] and supp v = X}; hold by
Proposition .7 and Proposition 3. We need the following ten claims:

Claim 1. L}, f = S0 NePif + R f on Xar for any f € FF(X) andn > 1.

Choose any f € Ff(X) and 0 < i < ¢ — 1. We will show D{f = 0 on X, for each
s =mn; —1,n; —2,...,1 inductively. We may assume n; > 2. Put £ = D *P;f with
s =mn; — 1. Then D¢ = Dif and D¢ = 0 on X, for [ > 2. Note also P;§ = £. The
equation (B5.3) implies

q—1 n;—1

(5.4) ne = <)\”77 £+ Z ( )A" *Ds ) +RME = NIE+ A D¢

=0
on X;;. Therefore
(5.5) A" L3816y 2 nAT Dl ) — 18]l
The left hand side is bounded by v(|£]). Thus v(|D;£|) must be zero. Since v is positive
with full support on X, and D;¢ is continuous, we get D;§ = D; f =0 on Xy;.
Assume D! f = 0on Xy for j = n;—1,n;—2, ..., s with s > 2 and put £ = D! "'P; f with
j = s — 1. By repeatedly considering (5.4]) and (5.3]), we get the equation D;§ = Dg f=0

on X,;. Hence we obtain the claim.
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Claim 2. ci3 1= sup,,»; [[A7"L}/1]|o < +00.

Recall L7,1 € A%] for n > 1 by Proposition 1}(3). For any w € X with wy € Sy, we
have that by taking v € X, with wy = vy € Sy,
AL (w) = AL (L0761 (w) <eT A > eSeelwe) proky ()
wESE 1 wwo €Wy y1(M)

q—1

<M A L5 oo (3 1P oo + sup AR Je)
i=0 J

for any n > k by using Claim [Il Since the last expression is finite, the claim is satisfied.
Claim 3. The operator Ly; has the form Ly = 23;01 NP+ R.

Suppose n; > 2, ie. DF1 #£ O and D = O. Let f € FF(X) and & = DI 'Pf
with s = n; — 1. Observe D;§ = Dif. It follows from (5.4) and the claim 2 that
nA | Diélloe < qry+ €]l < 400 for any n. Therefore | Diflo = ||Df flloc = 0. By a
similar argument for each s =n; — 2, ..., 1 repeatedly, we obtain the assertion.

Claim 4. If f € FF(X,) satisfies L5, f = XN f on 3; for some j, then there exist nonneg-

ative functions f; € FF(3;) (i = 0,1,2,3) such that f = fo— fi++v—1fs —v/—1f3 on %;
and LY, f; = N f; on X; fori=0,1,2,3.

Since L5, Rf = NWPRf and L5,3f = WS f on X;, we may assume f = Rf and f =0 on
X \ Z;. By Claim 2l and the basic inequality (4.1), c13 := sup,~q [|[A\""L},||x is finite. We
decompose into f = f,—f_ with f; > 0and f_ > 0. Since |fi(;;)—fi(v)| < |f(w)—f(v)]
holds, we get fy, f- € FF(X). Note the form f = (1/n) Z;:ol AL = in) —
by putting fin) = (1/n) S0 ALY fo. In addition to the fact ||fin)||k < qgll fllx
for any n > 1, Ascoli Theorem implies that there exist a subsequence (n;) and functions

ioo) : X — Rsuch that fim)(w) — fioo)(w) ast — oo foreachw € X. By sup,LZl[fin)]k <
00, We see fioo),fﬁoo) € FF(X). Take any potential ¢ € F'(X,R) satisfying that \ =
exp(P(p)) < oo and L& < L45€ for any € > 0 (e.g. (5I)) for the existence). Let fi be
the corresponding positive eigenvector of A of L% ; with full measure on X and fi(1) = 1.
We have A\?Lh, f — f = (1/n)(\""PLY P fu — fo) = 0in || - |4, and

122, £ — 22 1 g < / L0150 — £ dp < / 1A — 199 d
X X

—\P (ni) _ p(00) ~ 0

Hfi fi ||L1(,u)_>

as 1 — oo using Lebesgue dominated convergence theorem. Consequently we get fj(fo) =
APLE, £ fi-a.e. By continuity, we obtain £h, () — \p ) 6n X. By noting the form
f= fioo) —f SOO), the assertion of the claim is yielded.
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Claim 5. If f € FF(3;) satisfies L5, f = NP f and f >0 on Y, then f € A’%D(Zi).
For any w,v € ; with dg(w,v) < 6% and n > 0 with np > k, we have
F(w) = \PLY flw) AT > IR (f (- 0) + [f]5077 )

wESE : wwo€Wnpt1(M)
<e T f(0) + qrglfluf™.
Letting n — oo, we see f(w) < eT™“") f(v) and thus f € A%](Ei).
Claim 6. If f € FF(X) and n € C satisfy Lorf = nf and |n| = X, then for each
i=0,1,...,p— 1 there exists a constant ¢ > 0 such that |f| = ch on X};.

By Alfl = Infl = |Luf| < Larlf| and v(Lar| f] = Alf]) = 0, we have Ly|f] = Alf]
v-a.e. From supprv = Xy, we see Lyf|f| = A|f] on Xy, and therefore L5/ |f] = A|f] on
Xi,. Put v :=v(:|Xi,) and h := hys, /(h). By virtue of Proposition E.I0, we see

L1 =B Dl = IN"PL37 1| = ho(| ) zry — 0

as n — oco. By continuity of |f| and A, it turns out that |f| = c¢h on X%, with ¢ =
v(|f])/2(h). Hence the claim is fulfilled.

Recall \; = M&?, h; = ?;(1] K 7'hxs, and v; = ?;(1] k7'v|y, in Theorem B4 with

k = exp(2mv/—1/p). In addition to the fact Ly(xx,f) = x=, ., Luf for [ € Cp(X), it
follows that the equations Lyh; = A\;h; and L},v; = A\,

Claim 7. For 0 < | < p, the eigenvalue N, is simple, namely if f € FF(X) satisfies
Ly f = Nf then f = chy for some constant ¢ € C.

Choose any 0 < j < p. By noting the equation L%,f = A f on ¥;, it follows from

Claim M4l and Claim [ that there exist f; € A%](Zj) (1=0,1,2,3) such that f = fo — f1 +

V=1(f2 — f3) on X;, L}, fi = A f; on ;. Claim [ tells us that equation f; = qrz(ij)h on
X3, for some constant c14(zj) > 0. Moreover, this equation is extended on ¥;. Indeed,
for any w,v € ¥; with v € X and wy = vp and for any w € Sif with w - wy € W41 (M),
we notice fi(w-w) < e fi(w-v) = ewnqﬂ(ij)h(w cv) < e2ffﬂgn@(ij)h(w -w). This
observation implies for any n > k
filw) = AL filw) < STNTLY (qrg(if)h(w)) = €T qrgif)h(w).

Letting as n — oo, we get fi(w) < qrz(ij)h(w). Similarity, the converse qrz(ij)h(w) <
fi(w) holds and thus f; = qqg(ij)h on ¥;. Consequently, we obtain f = qrr(j)h on
%, by putting c15(j) = qz(04) — qum(1)) + vV—1(quz(2j) — qrz(37))- Finally we prove
the equation f = qrg(0)h on X. We notice the equation Nqre(j)hxs;, = Nifxs, =

Ly(xs; . f) = ngcm(j — 1)Ah. Therefore qm(j) =AN) oy =kl = /{*jlqm(O).
Thus f = qqr)(0)hy is valid by the definition of h;.
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Claim 8. If Ly f = nf for some f € Ff(X) and|n] = X, then || flleo < q[suPuex,, |f(w)].
Let w € suppf C |, £; and take v € X/ so that wy = vy. We have

| fl(w) ALYy fl(w)
DAY I 0) + [T < qgsup 7]+ /e

w:wwoEWn41(M)

for any n > k. Letting n — oo, we obtain the assertion.

Claim 9. If f € FF(X) and n € C satisfy Ly f =nf, f#0 and |n| = A, then n? = M.
Namely, the number q in Claim[3 equals p.

By virtue of Claim B we notice f # 0 on X}, for some i. Put o = v(-|X?%,). Proposition
410 implies that n™ A~ f = \="P LY f converges in L'(7) as n — co. By || f|lr1 > 0,

the number n? AP must be 1.
Claim 10. P, = h; ® v; for each i.

Since \; is simple, for any f € FJF(X) there exists a unique number 7(f) € C such
that P;f = 7(f)h,;. It is no hard to check that 7 is a linear functional and bounded by
| Pilli/ || il Since 7(Larf)hi = Pi(Laf) = NiPif = N7(f)h; holds, 7 satisfies L4, =
Ai7. Note the equation P;f = lim, o (1/n) Z?:_& N7L) f in FF(X) (e.g. [9) Corollary
I11.4]). Therefore we have v;(f) = v;((1/n) Z;.:Ol NL ) = vi(Pif) = m(Hvih) =
7(f) as n — oco. Thus v; = 7 holds.

Hence Lemma follows from Claim [, Claim [ and Claim [0 OJ

Proof of Theorem [3.4]. Assume that (A.1)-(A.3) are satisfied. Take any topological Markov
shift X ; whose transition matrix is S x S finitely primitive and satisfies A(ij) < A(ij) for
any i,7 € S. For example, we set A(ij) = 1. Therefore, M(ij) < A(ij) is satisfied. By
virtue of Proposition [AT] there exists ¢ : X ; — R such that [¢]+1 = [@]rt1 < 00, ¢ i
summable, and ¢ = ¢ on X4. By Lemmal55, Ly : FF(X ;) — FF(X4) has the decom-
position L5 = Zf:—ol \iP; + R and P; = h; ® v; for i. Proposition [A ] also implies that
for any f € FJF(Xy), there exists f € FF(X ;) such that f = f on X4 and | f|lx = |||«
Note that such a function f is not unique. Remark also that Ly, f(w) = Ly f(w) for
f € FF(Xy) if w € X4. We define operators Q; and S acting on Ff(X,4) by Q,f(w) =
Pif(w) and Sf(w) = Rf(w) for f € FF(X,) and w € X4, respectively. These operators
are well-defined. Indeed, if fi, fo are in F}¥(X) satisfying fi = f> on X4, then we see
Pif1 = vi( fixxy )hi = vi(faxx,, )hi = Pif2 since the support of v; is equal to Xj,. More-
over, Rfi(w) = Lypfi(w) — Zﬁ’;& AiPifi(w) = Ly fa(w) — Zﬁ’;& AiPif2(w) = R fo(w)
for w € X4. The equations Q? = Q,, 9, =0fori #j, QL =LY, = \Q, and
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Q9,8 = §9,; = O are valid by the definitions of Q; and R. Thus we obtain the spectral
decomposition of Ly, : FF(X4) = FF(Xa)

Loty =30 N0 +S.

Next we show that the spectral radius n of Ly, equals the spectral radius A of Ly .
Letting g := hol|x,, the equation Ly sho = Aho implies Ly, = Ag and then X is an
eigenvalue of £. Therefore A < 1. Moreover when we take f € F}(X) so that || f||, =
1Fllx, we obtain (L5, Flle < L5 e < L3Ikl Flle- Then g = lim, oo | L3 [l <
lim,, 00 ||£”M7¢||i/" = A holds and we get n = A.

We will prove that Ly, has a spectral gap at A. By a similar argument above, we see
IS™ Ik < ||R"||x for n > 1 and thus the spectral radius of S is not larger than r(R) < A.

Finally we check the simplicity of nx' = \;. If f € F}F(X4) satisfies Lys,f = A\if, then
for any j # i, the equation 0 = v;(Larof — Nif) = l/j(EM,@f— Af) = (A —)\i)Vj(f) holds
by supp v; = X and thus l/j(f) = 0. This means Q,f = 0. Furthermore, f = X\;"L"f =
Qif +N"S"f — O,f in FF(X4) asn — oo and then f = Q;f = v;(f)h; on X4. Hence
A; is simple. Consequently, we obtain the assertion by replacing @); and S with P; and
R, respectively. O

5.3. Proof of Corollary [3.5. Put S; = S\ S;. Denoted by L;jf = xs,L(xs,f) for
i,j = 1,2, where xg, is the indicator of |J,.4[a]. In view of Proposition .9, we see
1(La2) = r(Lr(sy)) < A. By Theorem [3.4] we obtain the spectral decompositions L1 =
SPONP + R and Py = hy @ v Let hy = (MT — Lag) ' Lorhy and 5 = (L12(NT —
Lo9)"H)*v;. We consider the decomposition £y = Ef:—ol AP; + R with

R Lo — Ef:_ol ANh; @ U
Loy — 5:01 Nihi @ vy Lo — 5:01 Nh; @ 7

hi @v; h; @

751': ~:

9

by displaying as operator matrix. Note that there is no M-admissible word w € S"
such that wy,w, € S; and w; € S; for some 1 < [ < n for any {i,5} = {1,2}. It
follows from this observation in addition to the form (\Z — La9) ™! = S50, Lhy /AL that
LioLy = Lo1L1o = O, L7, = 0, Ligh; = 0 and #;(h;) = v;(hs) = 7;(h;) = 0 for any
i,j. Therefore we get (P;)? = P; and P;R = RP; = O. Moreover, the simplicity of
\; follows fr0m~£Mf = Nfiff Li(fx1) = M(fxa) and fxa = (MZ — L) Lo (fx1)
iff f = c(hy + hy) for some ¢ € C (see [26, Proposition 2.7] for a proof). Similarity,
L= N iff = c(v; + ;) for some ¢ € C. By the form P; = (h; + il,l) ® (v; + 1), P, is
a projection onto the one-dimensional eigenspace of the eigenvalue \;. Finally, we show
r(R) < \. By Proposition ZJ(1), we see r(R) = max(r(R),r(Ry)) with Ry = Lgy + Q
and Q@ = — Zf:_ol )\iizi ® v;. By the fact QE%QQ = O for any ¢ > 0, we obtain the form
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Ry = LY, + Z?;OI L£5,0L5 1 and thus we get r(R1) < r(La2) < A. Hence the proof is
complete by replacing h; := h; + izl and v; == v; + 1. O

5.4. Proof of Theorem [3.1](2).

Lemma 5.6. Assume that (A.1)-(A.3) are satisfied. Assume also that X4 is a finite
single orbit, i.e. X4 = {w,ow, -+ 07 w}. Then re(Ly) = 0.

Proof. Notice that A is finitely irreducible in that case. Moreover, any function ¢ : X —
K is in F}¥ for all § € (0,1). Thus res(Lar) = 0 from Lemma 5.4, O

Lemma 5.7. Assume that (A.1)-(A.83) are satisfied. Then r.s(Lp) < A.

Proof. By virtue of Theorem [3.4] the operator £y has spectral gap at A and the periph-
eral eigenvalues of this operator consists of at most a finite number of simple eigenvalues
for all T' € S/ <». Thus it follows from Proposition £.9(1)(2) that £, has also spectral
gap at A and the essential spectral radius is less than A. 0

Lemma 5.8. Assume that (A.1)-(A.3) are satisfied. Assume also that X s is not a finite
single orbit. Then r.(Lyr) > N0, In particular, for any r € [0, \0) except for at most a

countable number, p € C with |p| = r is an eigenvalue with infinite multiplicity.

Proof. Then we will prove that p € C with 0 < |p| < 0\ is an eigenvalue of £, under
X 4 is not finite single orbit. Take the function g of £, in Theorem 31l We consider the

three cases:

Case I: M is irreducible and X, is not finite single orbit. In this case, we take a period
point v € Xj; with v = olv and j € Sy so that M (ju,) = 1, vy # j and vy, ..., v, are
distinct. Put f := (Xjuovr-vp1] — Xljor-vp1])€ ¢ and fo, == f(X[rvn,_y © 0) for m > k.
Then it is not hard to check that f,, € FF(X) and f,, € ker £j;. Recall the eigenfunction
g of Ly given in Theorem B.1(1). Put §(w) = g(w) if w € supp g = U,g,[a] and j(w) =1
otherwise. Let fy,n = > o0 o(p/A)"(fin/g) 0 ™. It follows from the fact f,,/g € FF(X)
that f,., € F(X). Notice the equation

Gt =) (35 (2 () ) =

Now we also check that {f, ., }m>m, is independent for a large mg. By the irreducibly
of M and by the assumption X,; # {v,ov,---,0' v}, there exists an M-admissible
word w = wy -+ -w, such that M(vsw;) = 1 and w; # vgyq for some 0 < s < [ and
M(w,wy) = 1. Put v™ = vg -+ U1V + - Vs - w - w -+ -. Then for any m with ml > |w|,
we see fp,m(v™) = frn(v™) = e™#™) £ 0 and f, 4 (v™) = 0 for all # > 1. This says that
Zmzw /1 Cm fp.m = 0 for ¢, € C implies ¢, = 0 for all m. Thus we obtain the assertion.
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Case II: M is irreducible and X, = {v, 00, ..., 07w} with olv = v. In this case, there
exist an A-admissible word w = w; - - - w, and 0 < s,t < [ such that A(vsw;) = A(w,v;) =
1 and M(vswy) = M(wywg) = -+ = M(wy_qwy,) = 0. We put fi, = X[u,-w-vp-vp,_1]- Lhen
we see f, € ker Ly for any & € FF(X). Put fpm = 9> oo o(@/AN)"fin 0 0™ Then
fom € FF(X) and Lysfpm = pfpm hold. Now we will show that {f,,,} are all nonzero
and independent. Put w’' = w-v; - v, and 0™ = v w - Vg -+ Vpp_1 - W' - w' - --. Then in
addition to the fact [vs] C supp g, we get f, (V™) = g(v™) fr (V™) # 0 and f, 4 (V™) =0
for all 4 > 1. Thus p is an eigenvalue with infinite multiplicity.

Case III: M is not irreducible. We will check that if any p € C satisfying that (i)
0 < [p| <O, (ii) |p| # r(Las(r))d for any T € S/<+ and (iii) p is not eigenvalue of L)
with |p| > r(Lar))0 for any T' € S/<, then p is an eigenvalue of L.

By the summability of ¢ together with Proposition .9|(1), there exists S; € S/ such
that letting 7 := {T' € §/<«+: Sy X T'and T # S1} and Sy := [Jpor T, p satisfies
Ip| < r(Lasy))d and [p| > r(Lars,))0. Since p is in the resolvent set of L) for any
T € T, it follows from Proposition E9(2) that p is in the resolvent of Lys(g,). We define
Lijf = xs;Lum(xs, f), where xs, denotes the indicator of the set ¥; = (J g [a]. Let g1 €
FF(X) be an eigenfunction of the eigenvalue p of L5,y and put go = (pZ—Ls(sy))  Lo1g1
and g = g1+ go. Note that there is no path from a state in S;USs to a state in S\ (S1USs).
By this observation, we obtain Lyg = Lyr(s,us,)9 = Las)g1 + L2191 + Lar(s) 92 = pg-
Hence we get the assertion. 0

Proof of Theorem [31(2). This follows from Lemma [5.6] Lemma 5.7 and Lemma Bb.8 O
5.5. Proof of Corollary It is guaranteed by Lemma [5.4] and Lemma (5.8 O

5.6. Proof of Theorem B.7. First we prove limsup,, . ua(3")Y" < A 'r(Ly). For
n>1, f € FF(X) and w € X, we note the equation

(5.6) Lo f(w) = > 5 f (- w) = L (st ) (w).

weSY : w-woEWn11(M)

Therefore ua(E") < [hallva(Z) = [halled i va(Cil) < [hallcA3 15

Thus the assertion holds by using the fact r(Ly) = re(Ly) = limy, o0 HU]QlHéé"

Next we show liminf, ,o pa(X")Y™ > A'r(Ly). Recall the quotient space S/ <
defined in Section 2.1l Choose any T' € S/4+ so that X/ has a periodic point. We see
(5.7) pa(X") = A"wa(Lirha) = A3"va(Lirry ha)

using the equation (B.6]). By virtue of Theorem 34 replacing M by M(T'), we have the

spectral decomposition Ly, = 1" Ef;ol K"MP; +R™, where we put 7 = r(Lyr)) and the
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notation k, P;, R are given in this theorem. For any n > 1, we denote ¢(n) = n mod p.

We notice the equation

p—1 p—1 p—1
Z I{mPZ‘f — Z I{Z(n+]_l)hXZjV(fXEl) =p Z hXEL+q(n)V(fXZl)'
=0 i,4,1=0 1=0
Thus we obtain for any large n

p—1
(58)  valLhimha) = 0"va(p Y hxsi, v (haxs)) + va(R'ha) > Ly
1=0

with ¢ = minogq@ngol valhxs, v(haxs,)) > 0, where the last inequality uses
the fact ||[n™"R"hallc < qg/2 for any large n. It follows from (5.7) and (5.8)) that
lim inf,, o0 pa(E")Y"™ > X3 (Larery) for any T € S/<+. Proposition (1) says r(La) =
maxres/o (Lary) and consequently we get liminf, . pa(EM)Y™ > X' (Ly). Hence
the assertion holds together with the facts A = exp(P(¢|x,,)) an Aa = exp(P(p)). O

6. APPLICATIONS AND EXAMPLES

6.1. Convergence of the topological pressure and the Gibbs measure of per-
turbed potential in our open system setting.

Proposition 6.1. Assume that the conditions (A.1)-(A.3) and (B.1)-(B.3) are satisfied.

Then the topological pressure of p(€,-) converges to the topological pressure of ¢|x,, -

Proof. Choose any limit point 1 of {exp(P(p(¢,-)))}e. By Proposition 6l 7 becomes
an eigenvalue of L), and therefore n < A := r(Ly;). On the other hand, we can
choose T' € S/ <> so that exp(P(¢]x,,)) = A together with Proposition E.9(1). Let
N = Unrijy=1.mm)ij)=0ltd] and ¢(€, ) = p(€,) — (1/€)xn. Let Ag be any limit point of
{exp(P(¢(¢,-)))}e. Then we may assume Ay < 7 by the definition of (e, -). We will
show Ao = A. Take a nonnegative eigenfunction gy of A\g of Ly ) from Proposition E.6]
and a positive eigenvector v of A of L} from Theorem B.4l Since M(T) is irreducible,
v(go) > 0 and therefore the equation (Ao — A)v(g0) = v((Larery — Ly(r))go) = 0 implies
Ao = A. Thus A = 7. Hence the proof is complete. O

Proposition 6.2. Assume that the conditions (A.1)-(A.3) and (B.1)-(B.3) are satisfied.
Assume also that {T' € S/<>: P(¢lxy ) = P(plxy)} is only one element T Take the
pair (h,v) in Corollary [33. Then the Gibbs measure u(e,-) of ¢(e,-) converges to the
o-tnvariant Borel probability measure hv weakly as ¢ — 0.

Proof. Take (A(¢€), h(e,-),v(e,+)) as the spectral triplet given as (5.2) and (), ho, 1) as
the spectral triplet given in Corollary Put g(e,-) = h(e,-)/||h(e, -)]|s. Note the
form h(e,-) = g(e,-)/v(e, g(e, ). First we state v(e,-) — 1y weakly. This is yielded
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by the existence of limit point of v(e,-) (Proposition £4]) and by the simplicity of A
of the dual £}, (Corollary B.H). Next we show sup.. ||h(e, )|l < co. To do this, we
check liminf. (e, g(e,-)) > 0. Fix an M-admissible word w € T*. Since g(e,v) <
ellg(e,w) holds for any w,v € [w] and since g(e,w) has a limit point qrgho(w) > 0
for some c;; > 0, we obtain liminf._,oinff, g(e,-) > eicﬂtho(w) > 0. Therefore
v(e, g(e,-)) > v(e, [w])infp,) g(e, ) and the right hand side has a positive lower bound
by v(e, [w]) — vo([w]) > 0. Consequently {h(e,-)} has a finite upper bound and satisfies
limsup,_,q || h(€, -) ||z < co. Finally we prove convergence of p(e,-) = h(e, -)v(e, ). Let f €
FF(X). By using Theorem [B.1] we have the estimate of (e, f) := v(e, h(e, ) f)/v(e, ho):

(e, ) = v(hle, ) )| =l6(e, (Lapee) — La) (b ® ke, ) = T)(E — AI) ™ (h(e, ) )

Mo~ Luls (il
- v(e, ho) v(e, ho)

as € — 0 by using convergence v(e, hg) — vo(hg) = 1 and Proposition 43| where £ :=

+ 1)1 = XZ) lellhde, ) flle = 0

Ly — A(ho ® v9). Moreover, when we take a limit point ¢ighg of {h(e, )} with a constant
qrg > 0, we see v(h(e, ) f) — qgro(hof) as € — 0 running through a suitable sequence. If
we put f = 1, then we see that qrgymust be 1 by (e, 1) — 1. Thus v(h(e, ) f) = vo(hof).
Hence the assertion is valid by noting vo(hof) = to(xy, pahof) = V(R f). O

6.2. Example (A Markov measure with countable states). Put S = {1,2,...} and
take positive numbers a,,, b, with ) _¢max{an,b,} < 4+o00. Let S x S zero-one matrix
M = (M(ij)) be M(ij) = 1if j =1or j =i+ 1, and M(ij) = 0 otherwise. We set
¢ Xy = R by p(w) =loga,, if wy =1 and p(w) = logb,, if w1 = wo+ 1. Then ¢ is
summable. The below follows immediately from Theorem [3.4] with k& = 1.

Proposition 6.3. Under the above notation, the Ruelle operator L : FN Xyr) — FH(Xar)
of ¢ has the decomposition L = A\(h @ v) + R and the spectral radius of R is less than A,
where (A, h,v) appears in Theorem [3.4.

We define a stochastic matrix P = (P(ij)) indexed by Sx.S as P(i1) = byby - - - b;_1a; /N,
P(i1+1)=1and P(ij) = 0 otherwise. Then the measure 1 = hr becomes the Markov
measure of P which runs backwards. We can check that the potential w — log P(wow;)
is cohomologous to ¢ — P(yp) via the transfer function log h.

6.3. Example (Graph iterated function systems). Let G = (V| F) be a directed
multigraph with the countable set V' of vertices and the countable set E of edges. For
e € E, denoted by i(e) the initial vertex of e and by ¢(e) the terminal vertex of e. We
introduce a set (G, (Jy)vev, (Oy)vev, (Te)ecr) as follows:

(G.1) The graph G is strongly connected, i.e. there is a path between any two vertices.
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(G.2) Each J, is a nonempty closed subset of a Banach space (Y, | - ||,) with c9 =
sup,, diam.J, < 4o0.
(G.3) Each O, is an open convex subset of Y, and .J, C O,.
(G.4) Each T, is a C" map from Oy to O;(.) satisfying T, Jy) C Ji(e). There exists 0 < r < 1
such that the norm || DT,(x)|| of the derivative of T, at x is no larger than r for any
e € E and x € Oy.). Moreover, there exist constants ¢y > 0 and 0 < 3 < 1 such that
IDT.(2)| = IDT.()| < qull DTe(@) [z = ylly,, for any z,y € Jy) and e € E.
(G.5) s, :=inf{s >0 : Y cpsupsey,,, |DTe(x)||* < oo} is defined as an real number.
Let M = (M(e€')) be E x E zero-one matrix defined by M(ee’) = 1 if t(e) = i(e’) and
M(ee') = 0 otherwise. Then X = X), is topological transitive by (G.1). For w € X,
we define 7w € Y by mw = (o gTwy © -+ © To, (Jywn)). This is well-defined by
|DT.|| <r <1 and is called the coding map of the limit set 7(X). Let ¢ : X — R be

(6.1) p(w) = log || DT, (mow)|-

Then the thermodynamic future of the potential s (s > s,) provides us important infor-
mation in the fractal analysis. In fact, under a suitable condition for (G, (J,), (Os), (T%)),
the Hausdorff dimension dimy 7(X) of the limit set 7(X) is given by inf{s > 0 : P(sp) <
0} which is so-called a generalized Bowen formula (e.g. [12, 14} [16] 15, 17]). Moreover,
the spectral decomposition of a (unperturbed) Ruelle operator L, of sy is an important
role for perturbation analysis of (G, (J,), (Op), (Te)) [25, 27, 28]. In previous work, it is
known in [13] [I4] I7] that if the incidence matrix M is finitely primitive, then Ly, has
a gap property in the eigenvalue exp(P(s¢)). By using results in present paper, it turns
out that the finite irreducibility is not needed to obtain such a gap property:

Theorem 6.4. Assume that the conditions (G.1)-(G.5) are satisfied. Take the function
¢ of (61) and 6 = rP. Then the Ruelle operator of the potential s¢ acting on F}(Xy)
has the decomposition (33) replacing by ¢ := s@ for each s > s,.

Proof. 1t is sufficient to check the conditions of Theorem [3.4l Since G is strongly con-
nected, the incidence matrix M is irreducible. The summability of sy follows from the
condition (G.5) and ||DT.|| < 1. Further, the condition (G.4) together with the chain
rule for the derivatives of T, implies that for any wy---w, 1 = vg---v,_1 and w, # v,
with n > 1, [sp(w) — sep(v)] < sqrogmr™ 7. Thus ¢ is a locally r°-Lipschitz continuous
function. Hence we obtain the assertion by applying Theorem 3.4l to the potential sp. [

6.4. Example (locally constant potentials). A function ¢ : X — R is called uni-
formly locally constant if [¢], = 0 for some n ([I0] for terminology). For example, the
countable Markov chains [8, 22] are of the case [p]o = 0. Note that this notion does not
depend on choosing 6. The following immediately follows from Theorem [3.1k
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Theorem 6.5. Assume that the conditions (A.1)-(A.3) with fized integer k > 1 are satis-
fied and the potential ¢ is uniformly locally constant with [p|g.1 = 0. Then the eigenfunc-
tion g in Theorem [Z1(1) of the eigenvalue exp(P(p)) of the operator Ly = FF(X) —
FF(X) is uniformly locally constant with [gly = 0. Moreover, for any 6 € (0,1), the es-
sential spectral radius of Ly acting on FF(X) with the metric dy is equal to 0 exp(P(p)).

APPENDIX A. EXTENSION OF POTENTIALS

Let X = X4 be a nonempty topological Markov shift with transition matrix A and
with countable states S. Take a subsystem Y = Xj; of X with S x S transition matrix
M with M(ij) < A(ij) and with [a] N Y # () for any a € S. Let ¢ : ¥ — R be a
summable function. For each A-admissible word w € (7, S™ with [w]NY # 0, fix an
element v € [w]NY. We define a function ¢ on X by

5(w) e(v™), ifw=uwy-- wy, satisfies [w]NY # 0, [wwy,1]NY =0 for an m >0
Pw) =
p(w), ifweY.
Proposition A.1. Under the above conditions, (i) ¢ = ¢ on Y; (ii) sup,e p(w) <
]

SUDe(s) (W), in particular, ¢ is summable; (ii) ||Qllco = |¢lloos (i) [Pln = [@]n for all
n>1.

Proof. By the definition, ¢ is an extension of ¢ and satisfies ||¢]|c = ||¢||co- Moreover,
by g€ Pec P < S eSPeell ?(9) < oo, ¢ is also summable. Now we check (iv).
Let w,v € X with dy(w,v) = O+ for some n > 0. Let my > 0 be the smallest number so
that wg := wp * - - Wi, satisfies [wo] MY # 0 and [wow,,1]NY =0 if w ¢ Y and mg = +oo
if w € Y. Similarity, we take m; > 0 and wy; = vg - - - Uy, for v. Consider the four cases:
Case I: my < n. In this case, we see ng = mg and wy = wy, and therefore |p(w) — p(v)| =
(™) = ()] = 0 < dp(w, v).
Case II: n < my < oo and m; < oo. We notice v™°, v*' € [wy - --w,| and thus |p(w) —
P = lp(v™) = e(0*)] < [Plnr10""" = [ln1do(w, v).
Case III: n < my < oo and m; = co. By v", v € [wy- - wy], we get |p(w) — ¢(v)] =
o(0*) = o (V)] < [Plns16™" = [Plniads(w, v).
Case IV: my = co. By switching w and v, similar arguments above Case I and Case 111
imply [@]n1 < [@]ngr for all n > 0.

On the other hand, for w,v € Y with w € [vg---v,_1], we have |p(w) — p(v)| =
|p(w) — @(v)| < [P]nde(w,v). Thus [p], < [@],. Hence the proof is complete. O

APPENDIX B. PERTURBATION OF EIGENVECTORS OF LINEAR OPERATORS

In this section, we recall a special case given in [24], Theorem 2.2]. Assume the following;:
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L is a linear operator acting on a linear space B over K.

There exists a triplet (A, h,v) € K x B x B* such that A # 0, Lh = Ah, L*v = Av and
v(h) = 1, where B* is the dual space of B and L£* is the dual operator of £. Moreover,
& := L\ h®v) satisfies that (\Z —&)~! : B — B is well-defined as linear operator.
L€, -) is a parametrized linear operator acting on B with € > 0 and there exists a pair

(A(e),v(e,+)) € K x B* such that L(e,-)*v(e,-) = Ae)v(e, ) and v(e, h) # 0 for any e.

Theorem B.1. Under the conditions above, k(e, ) := v(e,-)/v(e, h) has the form k(e, f) =

v(f)+ (e, L(e, ) (h@K(e,-) =LY E = NI)"Lf) for each f € B, where L(e,-) :== L(e,-) — L.

Proof. We start with the equation Z — h @ v = (£ — \)(€ — AZ)~!. This is obtained by
direct checking (Z—h®v)(E—AT) = (E—NT)(Z—h®v) = L—AZ. Note also the equation
v(e, (A(€) — A)h) =v(e, (L(e,-) — L)h) using the conditions (II) and (III). Moreover,

ke, f) —v(f) = ke, (T = (h@v))f) =k(e, (L = AI)(€ = AT)"'f)

(e, (=Lle.+) + (M) = NI)(E = AT)" ).

Hence the assertion holds together with A(€) — X\ = r(e, L(e, -)h). O
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