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Abstract

Estimating human poses from videos is critical in human-computer interac-

tion. Joints cooperate rather than move independently during human movement.

There are both spatial and temporal correlations between joints. Despite the

positive results of previous approaches, most of them focus on modeling the

spatial correlation between joints while only straightforwardly integrating fea-

tures along the temporal dimension, which ignores the temporal correlation

between joints. In this work, we propose a plug-and-play kinematics modeling

module (KMM) to explicitly model temporal correlations between joints across

different frames by calculating their temporal similarity. In this way, KMM

can capture motion cues of the current joint relative to all joints in different

time. Besides, we formulate video-based human pose estimation as a Markov

Decision Process and design a novel kinematics modeling network (KIMNet) to

simulate the Markov Chain, allowing KIMNet to locate joints recursively. Our

approach achieves state-of-the-art results on two challenging benchmarks. In

particular, KIMNet shows robustness to the occlusion. Code will be released at

https://github.com/YHDang/KIMNet.
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1. Introduction

Human pose estimation (HPE) plays a fundamental role in pattern recognition.

Pose sequences exhibit resilience against superficial visual variations, such as

the background, clothing texture, and illumination conditions [1], enabling pose

sequences to offer pure action representations for other computer vision tasks,

including action recognition [2], person re-identification [3], and human parsing

[4]. Enhancing the performance of HPE is significant for advancing the field of

pattern recognition. According to data type, HPE can be roughly divided into

image-based and video-based HPE. Unlike images, videos contain appearance

features for each frame and encapsulate valuable temporal information. As

a result, effectively modeling this temporal information becomes crucial for

accurately estimating poses from videos.

（a）LSTM-based method （b）Optical flow-based method

（c）CNN-based method （d）Our approach
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Figure 1: Comparisons between our approach and other existing methods. (a) LSTM-based

methods. (b) Optical flow-based approaches. (c) CNN-based methods. (d) The proposed

KIMNet.

Due to its remarkable progress in the computer vision community, deep

learning approaches have been commonly used to model temporal information
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for video-based HPE. As shown in Figure1, LSTM-based methods [5, 6] aggregate

vanilla sequential features of poses in adjacent frames. Optical flow-based [7, 8]

approaches align the same joints in different frames through the joints’ optical flow

information. CNN-based [9, 10, 11, 12] methods model the motion information

of poses by integrating local features within the convolutional kernel along the

temporal dimension. Despite the positive results shown in previous methods,

there is a commonly essential but neglected factor among these approaches. Most

methods model the motion information of the poses in the temporal dimension

but ignore the temporal correlation between different joints.

The joints of the human associate with each other rather than moving

independently during human movement. In other words, there is simultaneous

cooperation among all joints to maintain coordination of actions [13]. The

cooperation of joints can be viewed as the spatial and temporal dependency

between joints. The spatial dependency between joints can be regarded as

the pose structural information that is represented by the spatial correlations

between joints [12]. Meanwhile, the temporal dependency between joints can

be seen as the relative motion between different joints. For a clip of video, the

joints in frame t+ 1 move relative to all joints in frame t. This relative motion

can be expressed as the temporal correlation between joints to some content.

Based on the temporal correlation, the model can infer the positions of joints in

the current frame via the information about joints in the previous frames. The

model can infer its position for the occluded joint according to the information

of joints related to the occluded joint in other frames. Therefore, the temporal

dependency between joints is significant for locating joints. However, most

approaches pay much attention to modeling the pose structural information,

while ignoring the temporal correlation between joints, which limits the model’s

performance for estimating poses from videos.

In this paper, we propose a KInematics Modeling based Network (KIMNet)

to locate joints by explicitly modeling the temporal dependency between joints

across different frames. Specifically, we present a novel and plug-and-play kine-

matic modeling module (KMM) based on the attention mechanism to explicitly
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explore the temporal correlation between joints by modeling their temporal

similarity. In this way, the KMM learns the motion cue of each joint relative to

all joints in the previous frame. By combining motion cues and the historically

positional information of poses, KMM can preliminarily predict the initial posi-

tions of joints from the current frame in advance. Based on this, we formulate the

video-based human pose estimation as a Markov decision process. The proposed

KIMNet recursively estimates human poses from each frame. Besides, thanks

to the temporal dependency, the proposed KIMNet locates the current joint by

aggregating the information of other joints related to the current joint instead of

locating it only based on its own features.

Contributions of this work are summarized as follows.

• We propose a plug-and-play kinematics modeling module (KMM) based

on the attention mechanism to explicitly model the temporal correlation

between joints across different frames. The KMM can predict the initial

joints’ positions in advance by aggregating joints’ motion information and

historical positions.

• We formulate video-based human pose estimation as a Markov decision

process and present a KInematics Modeling based Network (KIMNet)

to simulate it. With the guidance of the temporal correlation, KIMNet

locates the current joint by integrating the information of other joints from

other frames rather than only depending on the current joint’s information,

which improves the model’s robustness against the occlusion.

• The proposed KIMNet achieves new state-of-the-art performance among

methods on the challenging Penn Action and Sub-JHMDB datasets. Fur-

thermore, Experimental results demonstrate that the KMM is compatible

with existing pose estimation frameworks.
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2. Related Works

2.1. Video-based Human Pose Estimation

Human pose estimation has always been one of the hot issues in computer

vision tasks. With the improvement of deep learning, image-based pose esti-

mation [14, 15, 16, 17] has made significant progress. However, due to the lack

of temporal modeling, image-based HPE approaches are difficult to maintain

superior performance in video-based HPE.

There has been a lot of work trying to explore temporal information of poses.

The optical flow [7, 8] was first used to align joints across different frames. These

methods have achieved attractive results while suffering from high computational

cost. [5, 6] applied LSTM to extract temporal features. LSTM shows superior

performance on temporal modeling, but the above methods are constrained

to model the sequential correlation based on image features simply. Recently,

CNN [9, 11, 18] is commonly used to extract spatio-temporal representation

of poses. The spatio-temporal features are usually limited by the receptive

field of convolutional kernels for these CNN-based approaches. [19] proposed a

diffusion architecture to aggregate visual evidence across frames. [20] leveraged

a hierarchical framework to capture coarse-to-fine deformations of poses across

frames. Unlike these methods that focus on enhancing the temporal features of

poses, the proposed method aims to capture the motion of poses by explicitly

modeling the temporal correlation between joints across frames.

2.2. Relation Modeling in Human Pose Estimation

The effectiveness of relation modeling has been demonstrated in many fields,

such as image re-ranking [21], image [22] and action recognition [1]. Yu et

al. [21] proposed a multimodal hypergraph learning-based sparse coding to

explore the complementarity of different features. Zhang et al.[22] presented

a vector of locally and adaptively aggregated descriptors to improve image

feature representation. Compared with the image, the human body is more

structural because of the apparent connection between joints. To model the
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structural information of the human body, Bin et al. [17] utilized a graphic

convolution to model the physical connection between joints. [23] designed a

graph structure network (GSN) to locate invisible joints by aggregating other

joints’ information. Jiang et al. [24] pointed out that multi-scale features of

poses are significant for locating joints and proposed a pyramid gating network

to capture semantic features of poses. Yang et al.[25] used pairwise attention to

explore the association between joints. Dang et al. [12] introduced a relation

modeling module based on an attention mechanism to explore the structural

information of poses. Yang et al. [25] used a self-attention mechanism to explore

the relationship between different instances’ joints. Similarly, [26, 27] used a

transformer to model the spatial correlations between pose tokens. Most methods

mentioned above focus on spatial correlation modeling. Gai et al. [28] proposed

an SLT-Pose to strengthen the interaction of poses between the target frame

and the local sequence through the cross-attention mechanism. Different from

[28] that explore the pose-level interaction across frames, the proposed KIMNet

is able to model the joint-level temporal correlations.

2.3. Temporal Correlation Modeling in Video Analysis

Temporal correlations have been widely used in various tasks. Wu et al.

[29] used the attention mechanism for integrating spatiotemporal features in

a person re-identification task. Wang et al. introduced pixel-wise contrastive

algorithm [30] and co-attention classifier [31] to associate the salient objects for

the semantic segmentation task. Furthermore, Wang et al. proposed COSNet

[32] with the group co-attention mechanism [33] to predict object masks and

associate them across multiple frames for the video-based object segmentation

task. Similar to video-based object segmentation, object tracking also needs to

match the same target in different frames. Wu et al. [34] presented an online

TraDeS tracker that assigns the same target in multiple frames by calculating

a pixel-wise similarity between adjacent frames. The above approaches usually

aim at associating objects from different frames by modeling their correlations

at the pixel level. For the human pose estimation, it is worth focusing on the
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correlation between the whole joints (represented by feature maps or heatmaps).

The pixel-level correlation between joints’ features will destroy the integrity of

joints to some content. To solve this issue, KMM is proposed to model the

temporal correlations between joints across frames.

3. Methodology

3.1. Problem Statement

We formulate the video-based human pose estimation as a Markov decision

process in this paper. There are slight changes between poses in adjacent frames.

When the pose in frame t is given, we can roughly infer the corresponding pose

in the next frame. Based on the above observation, the temporal correlation

of the pose can be simplified into a Markov decision process [35], that is, the

pose at the current moment is only related to the previous moment. Given the

state at time t (i.e., the human pose mt), the state at time t+ 1 (mt+1) can be

denoted as follows.

P (mt+1|mt,mt−1, · · · ,m1) = P (mt+1|mt) (1)

where P (·) is the state transition matrix. Eq. 1 shows that the state at time

t+ 1 can be obtained based on the state at time t.

For a series of sequential frames (i.e., I = {It, It+1, · · · , It+T }) randomly

sampled from a video, we take joints’ heatmaps, M = {mt,mt+1, · · · ,mt+T }, as

states in T continuous frames. We can obtain the observation F (It) from frame t

via a function F (·). Based on the observation values of two adjacent frames, the

target’s latent motion (Ot,t+1) can be modelled through a motion function ϕ(·).

Combining the motion information and the state at frame t will preliminarily

predict the state for the frame t+ 1. The predicted state is uncertain due to the

lack of information about frame t+ 1. Therefore, the observation of frame t+ 1

(Ft+1) is used to balance the above uncertainty. And the accurate state of frame
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Figure 2: Overview of the proposed kinematics modeling network.

t+ 1 (mt+1) can be formulated as follows.

mt+1 = ψ(ζ (Ot,t+1,mt) + F (It+1))

Ot,t+1 = ϕ(F (It), F (It+1))
(2)

where ζ(·) represents the initial state prediction function. ψ(·) is the correction

function to generate the correct state for frame t+1. ϕ(·) is the motion function

used to model the dynamics of the target in continuous frames. In practice, we

take joints’ heatmaps and appearance features as the states and observations.

Function ψ(·), ϕ(·), and F (·) are implemented by the convolutional blocks.

Details are described in Subsection 3.2.

3.2. KIMNet Model for Video-based Pose Estimation

We design a kinematics modeling network (KIMNet) to fit equation 2, as

shown in Figure 2. As stated in eq. 2, there are four critical steps in KIMNet’s

modeling process, including acquisition of observations and initial state, motion

modeling of joints, prediction of the state, and correction of the state.

Acquisition of observations and initial state. We use a feature encoder

(i.e., F ) based on the convolutional neural network to extract appearance features

from each input frame as the observation (i.e., ft). Moreover, we adopt a

pretrained pose initializer to estimate the initial pose from the first frame as the
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initial state. For the convenience of description, we take the frame (t+ 1) as the

current frame and the frame t as the historical frame in this paper.

Motion modeling of joints. Human motion cues are significant for es-

timating poses from videos. If the motion cues are modeled effectively, it is

possible to infer joints’ positions in frame t+ 1 by combining the motion cues

with the historical positions of joints. To extract robust motion cues, we pro-

pose a kinematic modeling module (KMM) to explore each joint’s dynamical

information by modeling the temporal correlation between any two joints. Then

each joint’s motion cues are combined with its historical position in frame t to

predict its positions in frame t+ 1.

As mentioned above, the motion information is modeled by modeling the

temporal similarity between joint features ft and ft+1. Joints are represented by

a set of feature maps consisting of h× w pixels during modeling process. The

motion of the whole feature map, that is, the motion of all pixels should be

modeled to represent the motion of the joint. Considering that the dot-product

can measure the correlation [12]. Furthermore, the dot-product is essentially a

weighted sum that integrates the information of all pixels in the feature map.

Thus, it can reflect the motion of the whole joint’s feature map to some extent.

Ot,t+1 = ϕ (ft, ft+1) , t = 1, 2, ..., T − 1 (3)

where ϕ(·) is the motion function that is implemented based on the dot-product

to model the temporal dependency between joints across frames by calculating

the temporal similarity between any them. Ot,t+1 ∈ RK×K reflects the movement

of the joint in frame t+ 1 relative to all joints in frame t.

Prediction of the state. Ot,t+1 contains the motion information about

each joint, and mt includes the positional information of joints in the t-th frame.

By fusing the positional information and motion cues of joints, the model can

preliminarily predict the joints’ positions in frame t+ 1 as follows.

mp
t+1 = ζ(Ot,t+1,mt), t = 1, 2, . . . , T − 1 (4)

where mp
t+1 ∈ Rh×w×K is the initial state, i.e., predicted joint heatmaps in
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frame t + 1. ζ (·) is the prediction function based on the dot-product. Since

each element in Ot,t+1 reflects the motion degree of j-th joint Jj
t+1 in frame

t+ 1 related to J i
t in frame t, the model can predict the joints’ initial position

mp
t+1 by conducting the weighted sum between motion information Ot,t+1 and

position information mt.

Correction of the state. To obtain precise joint heatmaps, we apply a pose

decoder to produce the final heatmaps. For the first frame, the pose decoder is

directly applied to the initial pose predicted by the pose initializer to get the

final pose.

For subsequent frames, there are some uncertainties in predicted states mp
t+1

due to the lack of information for frame t + 1. Therefore, we introduce the

observation from frame t+ 1 (i.e., joint features ft+1) into the current predicted

state to alleviate these uncertainties. Practically, we adopt a correction function

ψ(·) consisting of a 3× 3 and a 1× 1 convolutions (i.e., Convg and Convd) to

fuse the pose features and predicted poses.

f coarset+1 =

K∑
i=1

wi
g∗m

p
t+1 +

D∑
j=K+1

wj
g ∗ ft+1

ffinet+1 =

K∑
i=1

wi
d ∗ f coarset+1

(5)

where f coarset+1 ∈ Rh×w×D and ffinet+1 ∈ Rh×w×K represent the coarse- and fine-

grained pose representations, respectively. wi
g ∈ R3×3 and wi

d ∈ R1×1 are

convolutional filters in Convg and Convd. And ∗ represents the convolutional

operation. In practice, KIMNet takes the concatenation both of mp
t+1 and ft+1

as the input, and conducts Convg to generate the coarse pose feature, which is

equivalent to the sum of performing Convg on mp
t+1 and then on ft+1. After

Convg and Convd, we obtain the coarse-to-fine pose features.

Finally, the pose decoder is used to produce the final heatmap for each joint.

mt+1 = Decoder
(
ffinet+1

)
, t = 1, 2, ..., T − 1 (6)

where Decoder(·) is implemented by the joint relation extractor [12].
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3.3. Kinematics Modeling Module

In order to model the temporal correlations between joints, we present a plug-

and-play kinematics modeling module (KMM) based on the attention mechanism,

as shown in Figure 3. KMM fits the motion function ϕ(·) and the initial state

prediction function ζ(·) in eq. 2, where the motion function ϕ(·) contains two

steps: robust pose representation extraction and temporal dependency modeling.

Convq: 1×1×K

Convc: 1×1×K

ft

ft+1

Reshape

Reshape

Reshape

mt

Softmax

Reshape

mp
t+1

h×w×D

h×w×D

h×w×K

hw×K

K×hw

K×hw

hw

hw

K

B

B

B

B

K

K B

K

fth

fct+1

K

hw

h×w×K

Wr

Convh: 1×1×K
Matrix Multiplication

Conv Convolutional Layer

mt
v

Figure 3: The structure of the proposed kinematics modeling module.

Robust pose representations extraction. The information of the ad-

jacent two frames is similar, resulting in the similarity between appearance

feature ft and ft+1. To explore robust motion information of poses, we adopt

two independent 1 × 1 convolutions denoted as Convh and Convc to extract

discriminative pose representations from ft and ft+1. Then reshaping operation

is used to convert the feature matrix into a feature vector for facilitating the

temporal correlation modeling.

fht = Reshape (σ(Wh ∗ ft)) ∈ R(h×w)×K

f ct+1 = Reshape (σ(Wc ∗ ft+1)) ∈ RK×(h×w)
(7)

where ft ∈ Rh×w×D and ft+1 ∈ Rh×w×D are joint features in frame t and t+ 1.

Wh ∈ R1×1×K and Wc ∈ R1×1×K are weights of Convh and Convc. σ(·) and
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∗ represents the nonlinear function and convolutional operation, respectively.

Each column in fht and each row f ct+1 represent one joint.

Temporal dependency modeling. Considering that joints are relevant

to each other when the person is moving, we model the temporal correlation

between any two joints by calculating their temporal similarity. Specifically,

the dot-product can measure the similarity between two vectors to some extent.

We apply the dot-product of pose features fht and f ct+1 to model the temporal

correlation between any two joints across different frames. For the i-th and

j-th joints represented by fhi
t ∈ R(h×w)×1 and f

cj
t+1 ∈ R1×(h×w), the temporal

correlation between them can be modeled as follows.

oi,jt,t+1 = f
cj
t+1 · f

hi
t , t = 1, 2, . . . , T − 1 (8)

where oi,jt,t+1 represents the temporal dependency between the joint J i
t and the

joint Jj
t+1. Because the dot-product is essentially a weighted sum of joints’

feature maps, it reflects the overall motion of the joint Jj
t+1 relative to J i

t .

Similarly, the temporal dependency between Jj
t+1 and other joints in frame t

can also be captured following Eq.8. This process can be realized by the matrix

multiplication as follows.

Ot,t+1 =

(
f ct+1 ⊗ fht√

d

)
∈ RK×K , t = 1, 2, . . . , T − 1 (9)

where ⊗ denotes matrix multiplication used to model the temporal correlation

between any two joints in different frames. Ot,t+1 = {o1,1t,t+1, o
1,2
t,t+1, · · · ,

oi,jt,t+1, · · · , o
K,K
t,t+1} ∈ RK×K represents the temporal dependency between joints

across frames t and t+1. d is the normalized factor that is equal to the dimension

of features fht and f ct+1.

In order to enhance the motion cues of the joint Jj
t+1, the softmax operation,

then, is used to model the global correlation [36] that can be regarded as the

dependency between the Jj
t+1 and all joints in the t-th frame.

wi,j
r =

1
K∑
l=1

ol,jt,t+1

· oi,jt,t+1,
t = 1, 2, . . . , T − 1

i = 1, 2, . . . ,K
(10)
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where wi,j
r is the temporal attention weight between Jj

t+1 and J i
t , reflecting

the relative motion degree between two joints. Wr = {w1,1
r , w1,2

r , · · · , wK,K
r } ∈

RK×K highlights the attention of joints that are closely related to the current

moving joint. Because oi,jt,t+1 includes the temporal dependency between two

joints across different frames, the sum of ol,jt,t+1 integrates temporal dependency

of all joint pairs. Therefore, the Eq.10 can reflect the motion information of Jj
t+1

relative to all joints in the t-th frame to some extent.

Prediction of joints’ initial positions. By fusing the known state (i.e.,

the historical joint’s heatmap mt) and the motion information, intuitively, the

model is able to predict the initial state for frame t+ 1 (i.e., mp
t+1) in advance.

Since Wr includes the motion information of joints, we apply Wr to joint’s

position in frame t to predict the k-th joint’s position in frame t+ 1. The KMM

computes the response at a position of Jk
t+1 as a weighted sum of the positions

of all joints at frame t, which can be denoted as:

m̄p
t+1 =Wr ·mv

t ∈ RK×(h×w) (11)

where m̄p
t+1 is the initial heatmap vector of joints. In practice, we transfer the

heatmap mt to mt
v ∈ RK×(h×w) for the convenient inference of mp

t+1. The

reshaping operation is used to convert m̄p
t+1 to the initial heatmap mp

t+1 with

the shape of K × h× w.

3.4. Training Loss Function

In this paper, we minimize the L2 norm between the output of the model and

the heatmap of ground truth to optimize the proposed KIMNet. Specifically,

Loss =
1

T

T∑
t=1

∥Mt −M ′
t∥

2
2, t = 1, 2, . . . , T (12)

where Mt = {mt
1,mt

2, . . . ,mt
K} denotes the output of KIMNet. M ′

t =

{m′
t
1
,m′

t
2
, . . . ,m′

t
K} is the joints’ heatmap generated according to the ground

truth. T is the total number of training frames. ∥·∥ represents the L2 norm.
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3.5. Comparisons with RPSTN

Although the structure of the proposed KIMNet is similar to [12], there are

essential differences between them. 1. Motivations are different. [12] aims

to explore the spatial affinity among joints by modeling the spatial correlations

between joints within a frame. While the proposed KIMNet is designed to model

the temporal dependency among joints across different frames. 2. Temporal

modeling approaches are different. [12] uses several convolutional layers

to transfer the historical pose knowledge and template matching to search for

similar regions in the current frame, which ignores the temporal correlation

between joints in different frames. In addition, as the number of convolution

layers increases, the feature resolution decreases continuously, leading to the

loss of historical pose information to a certain extent. In contrast to [12], the

proposed KIMNet explicitly models the temporal correlation between joints

across different frames. In this way, the model can locate the current joint by

aggregating joints’ information in the previous frame. Furthermore, the proposed

KMM is implemented via attention mechanism, which preserves the original

resolution of pose features while propagating historical features. Compared with

RPSTN [12], KIMNet can avoid the loss of pose information due to the reduction

of the resolution.

4. Experiments

We first introduce specific experimental settings. Then, we compare the

proposed KIMNet against existing state-of-the-art video-based methods. We

also provide ablation studies to confirm the effectiveness of the proposed KMM.

Finally, we conduct comprehensive experiments in the occluded scene to show

advantages of the proposed model.

4.1. Experimental Settings

4.1.1. Datasets

Penn Action dataset contains 2326 video clips. Each frame is annotated

with 13 joints, including the head, shoulders, elbows, wrists, hips, knees, and
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ankles. Besides, the Penn Action dataset annotates the position of the person,

i.e., the bounding box, and gives visibility for each joint. Keeping the consistency

with [11, 12], we train the model with 1258 video clips, and the others are used

to evaluate the model.

Sub-JHMDB dataset includes 316 videos. There are 15 body joints in

each frame. Following [12], 3-fold-cross-validation is used to evaluate the model.

According to existing methods, training sets include 227, 236, and 224 video clips,

respectively, and testing sets correspondingly contain 89, 80, and 92 samples. To

make a fair comparison with previous approaches, we take the average result on

three testing sets as the final result.

4.1.2. Implementation details

Following [12], SimpleBaseline [15] takes ResNet-101 as the backbone and

is used as the pose initializer. SimpleBaseline [15] that takes ResNet-50 as the

backbone is chosen as the feature encoder. Both pose initializer and feature

encoder are pre-trained on the MPII [37] dataset. Furthermore, to make a fair

comparison with existing methods, keeping consistency with works [11, 12], we

also: randomly select 5 contiguous frames from each training video clip; adopt the

same data augmentation settings as [11, 12] including random scaling, rotation,

and flipping; use the Adam [38] optimizer to train the model and the training

epoch is set to 100 following [12]. The learning rate is initialized to 0.005, and

the batch size is set to 16 on the Penn Action dataset. Because the scale of the

Sub-JHMDB dataset is smaller than that of Penn Action dataset, the learning

rate and batch size are set to 0.001 and 8. All experiments are conducted on

two NVIDIA GeForce RTX 3080Ti GPUs.

4.1.3. Evaluation metric

The percentage of correct keypoints (PCK) is used as the evaluation metric.

The PCK for each joint is calculated as follows.

PCKk =

S∑
n=1

T∑
t=1

η
(

dk
t

Lt
≤ α

)
S · T

(13)
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where PCKk is the k-th joint’s PCK. S denotes the number of sequences; T is

the number of frames in each sequence. η (·) is the indicator function. When

the condition in parentheses is true, η (·) is 1, otherwise it is 0. dtk represents

euclidean distance between the estimated value and the ground truth. α is the

hyperparameter which is set to 0.2 following [11, 12] to control the range of

errors. Lt is the threshold of the error distance. According to [11, 12], we set L

to the person size and the torso size, respectively. Based on the PCK of each

joint, we also use the mean PCK (mPCK) to measure the overall performance

of the model [11, 12].

mPCK =

S∑
n=1

T∑
t=1

K∑
k=1

η
(

dk
t

Lt
≤ α

)
S · T ·K

(14)

4.2. Comparison with State-of-the-arts

4.2.1. Results on the Penn Action dataset

PCK normalized by person size. We record the performance, parameters,

and inference time of commonly used approaches, as shown in Table 1. The

proposed KIMNet achieves the best performance on the PCK for each joint

and mPCK The KIMNet outperforms the LSTMPM [5], TCE [10], DKD [11]

and RPSTN [12] by 2.0%, 1.7%, 1.9%, and 1.0% mPCK, respectively. These

methods aggregate features along the temporal dimension but ignore the temporal

correlations between joints. In contrast to these methods, the proposed KIMNet

explicitly models the temporal correlations between joints, which is beneficial for

locating joints. Furthermore, compared with the CNN-based methods, such as

RPSTN [12] and DKD [11], the attention mechanism makes KMM maintain the

high resolution of feature maps, which can avoid the loss of spatial information

caused by the reduction of the resolution. Besides, KIMNet abandons the

cumbersome convolutional module that is used to model the temporal features

of poses, so it spends less time estimating poses during inferencing.

PCK normalized by torso size. As shown in Table 1, our approach also

ranks first among the existing methods with fewer parameters and inferencing

time. And the overall performance of KIMNet is 1.2% higher than that of
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Table 1: Comparisons with the state-of-the-art methods on the Penn Action dataset. Values

in brackets indicate the gap between the corresponding approach and the proposed KIMNet.

Methods Params (M) Time (ms) Head Sho. Elb. Wri. Hip Knee Ank. mPCK

Normalized by person size

Thin-slicing [8] - - 98.0 97.3 95.1 94.7 97.1 97.1 96.9 96.5 (↓ 3.2)

K-FPN [18] - - 98.7 98.7 97.0 95.3 98.8 98.7 98.6 98.0 (↓ 1.7)

TCE [10] - - 99.3 98.5 97.6 97.2 98.6 98.1 97.4 98.0 (↓ 1.7)

UniPose [6] - - - - - - - - - 99.3 (↓ 0.4)

DCPose [39] - - - 98.6 96.2 96.0 98.7 98.8 98.7 97.9 (↓ 1.8)

LSTMPM [5] 231.5 25 98.9 98.6 96.6 96.6 98.2 98.2 97.5 97.7 (↓ 2.0)

DKD [11] 219.92 11 98.8 98.7 96.8 97.0 98.2 98.1 97.2 97.8 (↓ 1.9)

RPSTN [12] 222.17 12 99.0 98.7 98.8 98.5 98.8 98.7 98.8 98.7 (↓ 1.0)

KIMNet 214.70 10 99.4 99.6 99.1 99.0 99.8 99.5 99.4 99.7

Normalized by torso size

LSTMPM [5] 231.5 25 96.0 93.6 92.4 91.1 88.3 94.2 93.5 92.6 (↓ 4.3)

DKD [11] 219.92 11 96.6 93.7 92.9 91.2 88.8 94.3 93.7 92.9 (↓ 4.0)

RPSTN [12] 222.17 12 98.2 96.9 95.2 93.2 96.6 95.7 95.0 95.7 (↓ 1.2)

KIMNet 214.70 10 98.6 97.7 96.6 95.7 96.9 97.3 96.3 96.9

RPSTN, which demonstrates the effectiveness of the KIMNet. In particular,

we obtain encouraging improvements for those more challenging joints, such as

wrists and ankles : with a PCK of 95.7% (↑ 1.8%) for wrists and a PCK of 96.3%

(↑ 1.5%) for ankles, confirming the advantages of the KIMNet in locating the

challenging joints. Experimental results prove that the temporal dependency

between joints is beneficial for estimating poses from videos.

Compatibility of KMM. We integrate KMM into various pose estimation

frameworks, including LSTMPM [5], DKD [11], and RPSTN [12], to evaluate its

generality, as shown in Table 2. Specifically, we replace the temporal modeling

modules in raw backbones with the KMM. The performance of some joint points

decreases slightly after integrating KMM, but the overall performance of the

network is improved, which proves that the proposed KMM is compatible with

the current popular video-based pose estimation frameworks.
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Table 2: Verification of KMM’s generality on the Penn Action dataset. Evaluation metric is

the PCK normalized by torso size.

Methods Head Sho. Elb. Wri. Hip Knee Ank. mPCK

LSTMPM [5] 96.0 93.6 92.4 91.1 88.3 94.2 93.5 92.6 (↓ 0.4)

LSTMPM-KMM 97.3 94.3 92.3 93.9 89.8 94.5 91.3 93.0

DKD [11] 96.6 93.7 92.9 91.2 88.8 94.3 93.7 92.9 (↓ 0.8)

DKD-KMM 97.7 96.4 91.5 96.2 89.7 95.4 91.4 93.7

RPSTN [12] 98.2 96.9 95.2 93.2 96.6 95.7 95.0 95.7 (↓ 0.2)

RPSTN-KMM 97.9 97.0 94.8 93.3 96.6 96.9 95.9 95.9

4.2.2. Results on the Sub-JHMDB dataset

We evaluate the KIMNet on the challenging Sub-JHMDB dataset to further

confirm its effectiveness, as shown in Table 3.

PCK normalized by person size. We observe that previous approaches

have achieved impressive results on the Sub-JHMDB dataset. KIMNet achieves

98.5% mPCK that surpasses RPSTN [12] by 1.1% and outperforms SLT-Pose

[28] by 2.5%. KIMNet explicitly models the temporal dependency between joints

across different frames. In this way, KIMNet can locate the current joint via

other joints correlated with the current joint. SLT-Pose [28] models the temporal

correlation between poses in different frames, but it only considers the pose-level

correlations while ignoring the temporal correlation between joints.

PCK normalized by torso size. Similar to the results on the Penn

Action dataset, KIMNet also achieves the best performance. The advantages of

our model over RPSTN [12] are more significant, achieving over 2.3% mPCK

improvement. Especially for the joints with high flexibility, such as elbows, wrists,

knees, and ankles, our model achieves 5.0%, 5.3%, 2.9%, and 2.4% improvements

over the RPSTN [12]. The reason is that KIMNet can explicitly model the

temporal dependency between joints across frames while maintaining the original

resolution of the feature maps, which makes KIMNet locate one joint according

to rich auxiliary information of other joints. However, KIMNet shows inferior

performance for the head and hip joints against RPSTN [12]. The possible

reason is that a person’s scale in the Sub-JHMDB dataset is small. Furthermore,
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the head and hip move smoothly relative to other joints. It is possible to locate

these two joints through their spatial and temporal features. RPSTN [12] adopts

a CNN-based structure to model the dynamics of poses. Compared to the

KMM containing two 1x1 convolutions, the CNN-based module can extract more

discriminative features about the head and hip.

Table 3: Comparisons with the state-of-the-art methods on the Sub-JHMDB dataset. Values

in brackets indicate the gap between the corresponding approach and the proposed KIMNet.

Methods Head Sho. Elb. Wri. Hip Knee Ank. mPCK

Normalized by person size

Thin-slicing [8] 97.1 95.7 87.5 81.6 98.0 92.7 89.8 92.1 (↓ 6.4)

K-FPN [18] 95.1 96.4 95.3 91.3 96.3 95.6 92.6 94.7 (↓ 3.8)

TCE [10] 99.3 98.9 96.5 92.5 98.9 97.0 93.7 96.5 (↓ 2.0)

LSTMPM [5] 98.2 96.5 89.6 86.0 98.7 95.6 90.9 93.6 (↓ 4.9)

DKD [11] 98.3 96.6 90.4 87.1 99.1 96.0 92.9 94.0 (↓ 4.5)

DCPose [39] - 97.9 93.2 92.1 98.4 97.8 95.9 95.8 (↓ 2.7)

FAMI-Pose [20] 99.3 98.6 94.5 91.7 99.2 91.8 95.4 96.0 (↓ 2.5)

SLT-Pose [28] 99.3 98.6 94.3 91.4 99.2 91.9 95.3 96.0 (↓ 2.5)

RPSTN [12] 98.9 99.1 99.0 97.9 97.8 97.8 97.3 97.4 (↓ 1.1)

KIMNet (Ours) 98.9 99.1 98.7 98.5 98.6 98.3 97.2 98.5

Normalized by torso size

LSTMPM [5] 92.7 75.6 66.8 64.8 78.0 73.1 73.3 73.6 (↓ 14.5)

DKD [11] 94.4 78.9 69.8 67.6 81.8 79.0 78.8 77.4 (↓ 10.7)

RPSTN [12] 91.0 87.1 82.1 80.5 88.8 85.9 83.8 85.8 (↓ 2.3)

KIMNet (Ours) 90.1 88.8 87.1 85.8 87.9 88.8 86.2 88.1

4.3. Ablation Studies

We first evaluate the effectiveness of the proposed method from the temporal

modeling method. Then we change the internal structure and the resolution of

KMM to verify the validity of KMM. Finally, we validate the influence of the

feature encoder.

4.3.1. Ablation studies about temporal modeling method

To demonstrate the effectiveness of the KMM, we compare the proposed

KMM with previous temporal modeling modules, as shown in Table 4. We first
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remove the temporal modeling module, i.e., the Baseline. Obviously, compared

with our KIMNet, the model’s performance degrades significantly after removing

the temporal modeling, which proves the necessity of temporal modeling for

video-based human pose estimation.

Second, to evaluate the predictive performance of KMM, we remove the

features for frame t+ 1 (i.e., F (It+1) in eq. 2, and denote it as “Predicted" in

Table 4). Experimental results show that KMM provides acceptable prediction

results. After integrating the observations of the current frame, the model

obtains accurate positions of joints, demonstrating the necessity of F (It+1) for

refining joints’ positions.

Third, we adopt the DKD proposed in [11] and JRPSP introduced by [12] to

model the temporal information. Specifically, we successively replace the KMM

in KIMNet with DKD and JRPSP. Compared with DKD and JRPSP, KMM

brings a 1.1% and 0.9% improvement of overall performance. Especially for the

flexible wrists and ankles, the improvements are obvious. These joints generally

move violently and are easily prone to motion blur. It is helpful to locate these

joints by fusing other joints’ information.

Table 4: Ablation studies about the temporal modeling module. Evaluation metric is the

PCK normalized by torso size. Values in brackets indicate the gap between the corresponding

approach and our method.

Method Head Sho. Elb. Wri. Hip Knee Ank. mPCK

Baseline 97.5 96.7 93.1 91.2 96.0 95.1 93.7 94.5 (↓ 2.4)

Predicted 93.0 94.5 92.3 85.1 95.2 90.0 89.3 91.2 (↓ 5.7)

DKD [11] 97.2 97.0 94.6 93.6 96.3 96.8 95.4 95.8 (↓ 1.1)

JRPSP [12] 97.5 97.2 96.2 92.5 97.1 96.9 95.5 96.0 (↓ 0.9)

KIMNet 98.6 97.7 96.6 95.7 96.9 97.3 96.3 96.9

4.3.2. Ablation studies about KMM’s structure

We have carried out a comprehensive analysis about the structure of KMM.

Experimental results are recorded in Table 5.

Influence of shared Convh and Convc. We adopt two 1× 1 convolutions
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whose weights are shared to extract pose representations from two adjacent

frames, i.e., KIMNet-Shared-hc in Table 5. As can be seen that the performance

of KIMNet-Shared-hc decreases by 1.1% mPCK over that of KIMNet. Two

independent convolutions can extract discriminative pose features from two

contiguous frames, which is beneficial for capturing the robust motion information

of joints.

Influence of historical heatmaps. We introduce the residual, i.e.,

heatmaps in frame t, into KMM for evaluating the influence of historical position

for predicting joints’ positions, i.e., KIMNet-Residual. The performance de-

creases obviously after introducing the historical position of joints. We think that

mp
t+1 has included the positional information about joints in frame (t+ 1). The

model pays much attention to the historical position after introducing historical

positions.

Temporal correlations between heatmaps. We adopt heatmaps in two

frames to model the temporal correlation between joints, i.e., KIMNet-Heatmap.

The performance of KIMNet-Heatmap also decreases a lot. Compared with joints’

heatmaps which include positional information, pose features f contain rich

semantic information about joints, including appearance features and positional

information, which is helpful for learning the robust motion cues.

Table 5: Ablation studies about the rationality of KMM’s design. Evaluation metric is the

PCK normalized by torso size. Values in brackets indicate the gap between the corresponding

approach and our method.

Method Head Sho. Elb. Wri. Hip Knee Ank. mPCK

KIMNet-Share-hc 97.4 97.1 95.0 93.1 96.8 96.7 95.1 95.8 (↓ 1.1)

KIMNet-Residual 97.4 95.7 88.9 81.1 94.8 91.8 85.9 90.3 (↓ 6.6)

KIMNet-Heatmap 96.2 94.9 86.3 82.5 95.6 92.8 87.6 90.4 (↓ 6.5)

KIMNet 98.6 97.7 96.6 95.7 96.9 97.3 96.3 96.9

4.3.3. Ablation studies about resolution of propagating features

The attention mechanism allows KMM to maintain the original resolution

of pose features during modeling the temporal dependency between joints. We
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gradually reduce the resolution of KMM’s input to verify the importance of

retaining the original resolution during propagating pose knowledge. As shown

in Table 6, the performance of the KIMNet degrades with the reduction of the

resolution, demonstrating that the significance of the high resolution for pose

features.

Table 6: Ablation studies about the resolution of KMM’s input. Evaluation metric is the PCK

normalized by torso size. “KIMNet-S ” represents the size of KMM’s input is S × S. Values in

brackets indicate the gap between the corresponding approach and our method.

Method Head Sho. Elb. Wri. Hip Knee Ank. mPCK

KIMNet-8 96.0 94.8 88.2 81.1 95.9 93.1 88.9 90.8 (↓ 6.1)

KIMNet-16 96.6 95.3 90.9 85.8 96.6 94.6 90.5 92.4 (↓ 4.5)

KIMNet-32 97.3 95.8 91.0 87.0 97.2 96.1 91.7 93.5 (↓ 3.4)

KIMNet-64 98.6 97.7 96.6 95.7 96.9 97.3 96.3 96.9

4.3.4. Ablation studies about feature encoder

We adopt various models, including SimpleBaseline [15] with different struc-

tures (ResNet-18, ResNet-34, and ResNet-50), Hourglass [14], and HRNet [16]

as the feature encoder to evaluate the influence of different backbones. Feature

encoders are pre-trained on the MPII dataset [37]. Experimental results are

listed in Table 7. For different feature encoders, the performance of KIMNet is

improved with the enhancement of the feature extraction ability of the feature

encoder. Compared to the SimpleBaseline with ResNet-50 as the backbone, i.e.,

KIMNet†, Hourglass [14] (KIMNet(HG)) and HRNet (KIMNet(HRNet)) bring

limited improvement. Considering the performance and computational cost, the

SimpleBaseline with ResNet-50 as the backbone is chosen as the feature encoder

in this paper.

4.4. Qualitative Analysis about Features Learned by KMM

4.4.1. Visualization of temporal correlation

To intuitively observe the temporal dependency between joints at different

times, we randomly visualize two continuous frames and the corresponding
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Table 7: Ablation studies about the feature encoder. Evaluation metric is the PCK normalized

by torso size. KIMNet† represents the structure used in this paper. Values in brackets indicate

the gap between the corresponding approach and the proposed KIMNet†.

Methods Head Sho. Elb. Wri. Hip Knee Ank. mPCK

KIMNet (Res18) 97.2 97.1 95.0 93.9 96.1 96.2 94.8 95.6 (↓ 1.3)

KIMNet (Res34) 97.6 97.3 95.4 93.3 96.2 96.4 95.0 95.8 (↓ 1.1)

KIMNet (HG) 98.4 97.7 96.8 95.6 97.2 97.6 97.1 97.1 (↑ 0.2)

KIMNet (HRNet) 98.0 97.8 97.2 95.7 97.3 97.5 97.1 97.2 (↑ 0.3)

KIMNet† (Res50) 98.6 97.7 96.6 95.7 96.9 97.3 96.3 96.9

temporal correlation matrix, as shown in Figure4. The size of joints at frame

t represents the degree of temporal dependency. The right wrist has a high

temporal dependency with the right wrist, right elbow, and shoulders in frame t.

At the same time, the left and right ankles work as the support foot and the

force generating foot, respectively, and they cooperate with the right wrist to

complete the action while ensuring the coordination of the action. Therefore,

there is a temporal dependency between the right wrist and two ankles in frame

t. These joints provide extra temporal information to help locate the right wrist

from frame t+1. Similarly for the occluded left elbow at frame t+1, the auxiliary

temporal information provided by the head, shoulders, wrists, and left knee at

frame t helps the model to locate left elbow from frame t+ 1. Therefore, with

the help of the temporal dependency between joints, the proposed KIMNet uses

more extra temporal information provided by other joints to locate the current

joint rather than only depending on the current joint’s information to locate it.

4.4.2. Visualization of joint heatmaps

To further validate the effectiveness of KIMNet, we visualize the predicted

maps of KMM and heatmaps of KIMNet for different poses with various com-

plexity, and display heatmaps of ground truth (2nd column), outputs of KMM

(the 3rd column), and KIMNet (the 4th column) in Figure 5. Specifically, we

randomly select one frame from the 2nd frame to the T -th frame and visualize

heatmaps of joints.
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Figure 4: Visualization of the temporal correlation between joints. The size of joints at frame

t represents the degree of temporal dependency between joints.

We observe that KMM can provide accurate initial positions of joints for

those simple actions, as shown in Figure 5a, actions weight lifting and jumping

jack. Joints move homogeneously in these simple actions. Thus, it is easy for

KMM to model the temporal dependency between joints, which makes KMM

learn obvious motion cues for these joints. Moreover, KMM can guide the model

to pay much attention to the posing area for those complex actions, as shown

in Figure 5b. For the action play baseball, joints move violently, especially the

joints of the upper limbs. Therefore, KMM pays much attention to the upper

limb, indicating that joints of the upper limbs have similar movements. Based

on the regions activated by the KMM, KIMNet can locate joints accurately.

4.5. Verification of Performance in Occlusion Scenes

To explore the potential of the proposed KIMNet in occluded scenes, we

evaluate the KIMNet in two cases of the occlusion, including the manually

occluded scenario and the naturally occluded scenario.

4.5.1. The Manually Occluded Scenario

We randomly generate several masks with a size of 40× 40 from time and

space to occlude joints for evaluating KIMNet’s performance against the temporal

and spatial occlusion, respectively.
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Image GT KMM KIMNet

(a) Visualization for simple poses.

Image GT KMM KIMNet

(b) Visualization for complex poses.

Figure 5: Outputs of the proposed KMM and KIMNet. The visualization results from left to

right are the original input frames, ground truth, outputs of the KMM, and outputs of the

KIMNet.

Time

GT

(a)

(b)

GT

(a)

(b)

Time

Figure 6: Visualization of the temporal occlusion. (a) is the output of RPSTN [12]. (b) is the

output of KIMNet. We use red circles to highlight the joints that are localized more accurate

by KIMNet.
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Verification of temporal occlusion. We randomly select a frame from

the input sequence and generate two masks to occlude joints. Experimental

results of the proposed KIMNet and RPSTN are shown in Figure6. Because our

proposed KIMNet explicitly models the temporal dependency between joints

across different frames, it can use all joints in the previous frame to help locate

joints in the current frame.

Verification of spatial occlusion. To explore the potential of KIMNet

for occlusion, we randomly generate two masks from the 2nd to the T -th frame,

as shown in Figure7. Because the spatial information of the occluded pose is

missing, it is difficult for RPSTN to match similar regions in adjacent frames.

Therefore, RPSTN provides inferior results for occluded joints. The proposed

KIMNet can utilize all joints in the 1st frame to locate occluded joints. It can

provide reasonable positions for occluded joints in subsequent frames.

GT

(a)

(b)

Time

Figure 7: Visualization of occluded poses. (a) is the output of RPSTN [12]. (b) is the output

of KIMNet. We use red circles to highlight the joints that are localized more accurate by

KIMNet.

Influence of the number of occluded joints. To evaluate the influence

of the number of occluded joints, the number of occluded joints is increased

from 1 to 9. Under the same experimental settings, we compare the performance

of the proposed KIMNet with existing methods, as shown in Figure8. With

the increase in the number of occluded joints, the performance of all models

declines. However, compared to previous approaches, our KIMNet is more robust

to occlusion.
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Figure 8: Comparison of the performance between KIMNet and existing methods under the

occlusion scene.

4.5.2. The Naturally Occluded Scenario

To explore the potential of the KIMNet, we evaluate it on the naturally

occluded scenario. Qualitative results are shown in Figure 9. Because the

KIMNet considers the temporal dependency between the joint in the current

frame and all joints in the previous frame, the KIMNet is able to locate the

current joint according to the information of all joints in the previous frame.

Therefore, the proposed KIMNet provides more reasonable positions of the

occluded joints (such as the joints in red circles).

5. Conclusion

Capturing temporal correlations between joints at different time is the crucial

issue for video-based pose estimation. In this paper We propose a kinematics

modeling network (KIMNet) that equipped with a plug-and-play kinematics

modeling module (KMM) to capture each joint’s motion cues by modeling the

temporal correlation between any two joints across frames. In this way, the model

can locate the current joint according to all joints’ information in the previous

frame, rather than only relying on the current joint’s information. Especially,

for the joints suffering from the occlusion or motion blur, information from other
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Figure 9: Experimental results in naturally occluded scenario. Joints that the KIMNet

estimates better than the RPSTN are marked by the red circles.

joints is beneficial for locating them. Experimental results show the advantages

of the proposed KIMNet in achieving state-of-the-art results on two challenging

benchmarks.

Limitation and Discussion. Although the proposed KIMNet performs

well against state-of-the-arts on the challenging datasets, it also suffers from

some dilemmas in extremely complex scenarios, such as the severely occluded or

truncated poses. For the heavily occluded poses, almost half of the joints are

invisible, making it difficult to locate those invisible joints through several visible

joints. In this case, one possible solution is that the symmetry of the human

body can be used to help locate the joints on the occluded side of the body.

For the severely truncated poses, the structural information of human poses is

destroyed to a certain extent, which makes it challenging for the model to learn

the correlation between joints. In this case, the possible solution is to introduce

the prior knowledge of the human body to assist model learning. Therefore, we

will do further research from above two aspects in future work.
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