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Abstract  

Understanding the structure of matter or materials and interaction or correlations 

among the constituent elementary particles are the central tasks of all branches of 

science, from physics, chemistry, to biology. In physics, this ultimate goal has spurred 

a constant search for high-order correlated entities or composite particles for nearly 

all states and forms of matter, from elementary particles, nuclei, cold atoms, to 

condensed matter. So far, such composite particles involving two or three 

constituent particles have been experimentally identified, such as the Cooper pairs, 

excitons, and trions in condensed matter physics, or diquarks and mesons in 

quantum chromodynamics. Although the four-body irreducible entities have long 

been predicted theoretically in a variety of materials systems alternatively as 

quadruplons1, quadrons2, or quartets3, the closely related experimental observation 

so far seems to be restricted to the field of elementary particles (e.g. the recent 

tetraquark at CERN4) only. In this article, we present the first experimental evidence 

for the existence of a four-body irreducible entity, the quadruplon, involving two 

electrons and two holes in a monolayer of Molybdenum Ditelluride. Using the 

optical pump-probe technique, we discovered a series of new spectral features that 

are distinct from those of trions and bi-excitons. By solving the four-body Bethe-

Salpeter equation in conjunction with the cluster expansion approach, we are able 

to explain these spectral features in terms of the four-body irreducible cluster or the 

quadruplons. In contrast to a bi-exciton which consists of two weakly bound 

excitons, a quadruplon consists of two electrons and two holes without the presence 

of an exciton. Our results provide experimental evidences of the hitherto theorized 

four-body entities and thus could impact the understanding of the structure of 

materials in a wide range of physical systems or new semiconductor technologies.  
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Main  

Whereas the search for the most “elementary” constituent particles of matter has 

been a never-ending pursuit in high-energy physics, the understanding of the 

interactions or correlations among these particles dominates studies in lower energy 

scales that are more relevant to our daily experience and technology. Such interactions 

lead to the formation of correlated entities or composite particles that determine the 

basic material properties, underline our fundamental understanding of almost all 

fields of physical and material sciences, and provide the foundation for all modern 

technologies. In condensed matter physics, correlated entities, such as excitonic 

complexes: excitons (X), trions (T), and bi-excitons (BX), are critical to our 

understanding of the basic material properties, and especially to the ever-richer 

physics of the celebrated Mott transition beyond the simple exciton-plasma picture. 

Recently, higher-order correlated entities have attracted much interests, including the 

Bose-Einstein condensation (BEC)5, BEC-BCS crossover via different bosonizations of 

Fermions in strongly correlated systems, or dropletons6-8 in semiconductors. In 

superconductivity theories, the charge-4e configuration was proposed as an 

alternative to the conventional Cooper-pair mechanism3,9. Multiplons (including 

quadruplons) were also recently studied theoretically in the 1D Hubbard model1. It 

was shown theoretically that the formation of the quadron (quadruplon) was more 

favorable than the bi-exciton in a strongly confined parabolic quantum dot2. The 

situation is completely analogous in elementary particle physics where the bi-exciton 

analogue, the meson-meson molecules10,11, and the quadruplon analogue, the 

genuine tetraquarks4,11-13 (see Fig. 1 in Ref. 11), were both predicted theoretically10 and 

observed experimentally4,12,13. In terms of cluster expansion language, bi-exciton and 

meson molecules are two weakly interacting irreducible clusters of order 2, or △2 △2 , 

while quadruplon and tetraquarks correspond to irreducible cluster of order 4, or △4 . 

To date, experimental evidence for the existence of such a 4B irreducible cluster (or 

entity) is still lacking in other fields beyond the high-energy physics.  
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Two-dimensional (2D) layered semiconductors, such as monolayer transition metal 

dichalcogenides (ML-TMDCs), provide a unique platform for the study of high-order 

correlated entities or excitonic complexes. The reduced dielectric screening in ML-

TMDCs leads to extremely large excitonic binding energies14,15 and much more stable 

high-order excitonic complexes than those in conventional semiconductors. Indeed, 

trions16,17, bi-excitons18-22, and even charged bi-excitons23-27 were experimentally 

observed in such ML-TMDCs with larger binding energies and at higher temperatures 

than those in bulk semiconductors. In addition, the unique spin-valley locking28,29 leads 

to more varieties of the correlated entities than in conventional semiconductors. For 

the same reason, the correlated entities with specific spin-valley polarizations are 

addressable by choosing the helicity of the pump or probe light21,22. The combined 

unique features described above have never before been available for the study of 

these correlated entities.  

 

To take advantages of these unprecedented opportunities, we conducted a combined 

theoretical and experimental investigation into the possible existence of higher-order 

correlated complexes in ML-TMDCs beyond the known trions and bi-excitons 

(including those that are reducible to excitons, trions, or bi-excitons). Using the 

helicity-resolved pump-probe technique, we observed a series of unexpected spectral 

features in the transient reflectance in a wide range of probe photon energies in gate-

controlled monolayer molybdenum ditelluride (ML-MoTe2) samples. Up to six spectral 

peaks were revealed, extending over 40 meV from below T all the way up to X. These 

spectral features cannot be attributed to familiar origins such as defects or phonon-

related processes. To understand the new spectral features, we developed a 

perturbation theory based on the 4-body Bethe-Salpeter equation (4B-BSE) for the 

two-electron-two-hole (2e2h) system. By recasting the Feynman diagrams of the 4B-

BSE into the cluster expansion formalism, we are able to compare the spectral 

contributions of the irreducible clusters of various orders up to the 4th. Interestingly, 

we show that the clusters corresponding to the trions and bi-excitons cannot produce 

most of the new spectral features, thus excluding the trions and bi-excitons as their 
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origin. Importantly, our theory-experiment comparison shows that the 4th-order 

irreducible 2e2h-cluster, or quadruplon, is necessary and sufficient in producing all the 

experimental spectral features, thus providing experimental verification of the 

existence of the quadruplons.  

 

Four-body interactions and the cluster expansion  

The most natural way of visualizing correlated entities of various orders and associated 

many-body interactions is through the cluster expansion method30. This theoretical 

method has more recently been proven successful in describing the high-order 

excitonic correlations in e-h dropletons6,7. Generalizing such cluster expansion of 

excitons to the case of individual electrons and holes with the spin degree of freedom, 

we can write down the complete sequence of irreducible clusters for the 2e2h system 

as in Fig. 1a – 1c. The specialization of such cluster expansion for ML-MoTe2 leads to 

the similar sequence of clusters, now expressed together with the band structures in 

Fig. 1d & 1e. △n  represents an irreducible cluster of the nth-order with n Fermions. 

Clearly △1  is a quasi-free electron or hole. △2  represents a direct or indirect e-h 

pair, or 2-body (2B) state, including all the excitonic Rydberg series: 1s-X, 2p-X, 2s-X, …. 

△3   represents an e-e-h or e-h-h 3-body (3B) state. In the language of multiplons 

proposed by Rausch et al1, △2 , △3 , and △4  are doublon, triplon, and quadruplon, 

respectively. Each time we include one more cluster of higher order into a truncated 

expansion, it re-introduces weak interactions (indicated by the wavy lines in, e.g. Fig. 

2a & Extended Data Fig. 1) among irreducible clusters of all the lower orders, as 

explained in more details in Methods S1. Here, we truncated the cluster expansion up 

to the 4th order. As a result, the original non-interacting cluster △2 △2  shown in Fig. 

1b – 1e (also Extended Data Fig. 1d) becomes weakly interacting, i.e. △2   △2  

(Extended Data Fig. 1f), representing a bi-exciton (1s-X)   (1s-X) including all its excited 

states such as (1s-X)   (2p-X), (1s-X)   (2s-X) …. Obviously, cluster △4  or quadruplon 
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(or quadron2) represents generally a distinct physical entity than the bi-exciton △2

 △2 . The most fundamental difference between a bi-exciton and a quadruplon is the 

absence of an exciton in the latter and the lack of a clear association of any one of the 

two electrons to a given hole. But it is easy to imagine that a certain disassociation 

event (e.g. an excitation) of a quadruplon could possibly lead to the formation of a bi-

exciton. In this sense, a bi-exciton could be an excited state of a quadruplon.  
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Fig. 1 | A cluster expansion picture of a four-body system. a, Decomposition of the 2e2h 4B system 

into three parts according to the time reversal (K ↔ K’) symmetry, as indicated by the blue-red 

symmetry of the square boxes. The first two terms/boxes are mutually exchanged under the time 

reversal and only term is presented in detail in b or d. The third term/box is time reversal invariant, 

as presented in c or e. b, c, Cluster expansions of the 4B system into irreducible clusters 

(represented by the filled or unfilled circles connected by the straight lines) of various orders (sizes). 

d, e, Analogous to b & c, but directly in the representation of a band structure for ML-MoTe2 with 

valleys (K and K’) locked to the spin degree of freedom of electrons. The spin-up and spin-down 

electrons are colored in blue and red, respectively. For brevity, we exclude those 2B clusters with 

the same charges, such as e-e and h-h, in the figures, but these clusters are included in our 

theoretical calculations.  
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Experimental results  

Figure 2a represents schematically the experimental situation where a strong pump 

produces an e-h “soup”: a combination of various excitonic complexes or correlated 

entities of various orders and their corresponding excited states. Figure 2b shows our 

device structure of a ML-MoTe2 sandwiched between two hexagonal boron nitride (h-

BN) layers, with fabrication details presented in Methods S2. A back gate was used to 

control the background charge of the ML-MoTe2. The temperature-dependent 

reflection contrast spectra (RCS) of Device #1 are obtained from the continuous-wave 

(CW) reflectance spectra with (R) and without (R’) the sample, i.e. defined as (R – R’)/R’ 

(for the details of data processing see Methods S3.1, Extended Data Fig. 2a – 2h, and 

Ref. 31). The RCS are shown under the charge-neutral condition at Vg = –1 V in Fig. 2c 

and for the case of p-type doping at Vg = –6 V in Fig. 2d. The grey dots with an 

additional minus sign (i.e. –(R – R’)/R’) could represent the ground-state absorption 

(GSA) of the material. According to the fittings for the results at 4K, the X peak is 

spectrally positioned at   1.168 eV at the gate-compensated charge-neutral voltage, 

Vg = –1 V (Fig. 2c), and the T peak appears at   1.149 eV in the doped regime at Vg = –

6 V (Fig. 2d).  

 

The GSA spectra show two simple features: 1) The single T peak for ML-MoTe2 (see 

also previous papers on MoTe231-35) corresponds to the inter-valley spin-singlet trion. 

This is closely related to the special band-structure of ML-MoTe2 (or ML-MoSe2): i.e. 

intravalley bright exciton has a smaller energy than intravalley dark exciton27,33 (in 

contrast to ML-WS2 and ML-WSe223-26), and the spin-orbit (SO) splitting of conduction 

band (CB),   30 – 60 meV32, is sufficiently large (in contrast to ML-MoS2,   3 – 15 

meV36,37). 2) More importantly, there are no additional absorption features below X in 

the charge-neutral regime without pump (see the low-energy side of X in Fig. 2c). The 

simple GSA spectra can be used as a base or reference for later study of complicated 

features in the transient differential absorption or reflection spectra (TDAS or TDRS). 

The fact that there is no more complicated feature below T and X makes the MoTe2 

one of the ideal systems among various TMDCs (for more specific reasons or 
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advantages that we chose to study MoTe2 see Methods S4).  

 

Typically by measuring the CW RCS and PL spectra (for both of low and high excitation 

densities), we pre-screened the samples for the following pump-probe experiments 

and selected those without visible defect features. Representative CW RCS and PL 

spectra of ML-MoTe2 could be seen with or without defect peaks below T, as presented 

in Methods S3.2, Extended Data Fig. 3 & 4.  
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Fig. 2 | Basics of experiment and key observations. a, Illustration of the e-h “soup” generated by 

the intense pump pulse, showing the possible 2B and 4B states. b, Schematic of the charge-tunable 

device by the gate voltage, Vg. c, d, CW RCS (R – R’)/R’ (see Methods S3.1 for definition) at several 

temperatures under the charge-neutral condition at Vg = –1 V (c) and under the p-doping condition 

at Vg = –6 V (d) (Device #1). The solid lines are the results of the Gaussian fittings. e, TDAS (see the 

main text for definition) at different temperatures for the cross- (σ+ σ+) circularly polarized pump-

probe configuration at the pump-probe delay time t ≈ 0 ps at the charge-neutral voltage, Vg = –1 V. 

Each spectrum for a given temperature was fitted with 6 Gaussian peaks marked by P1 – P6. The 

points are experimental values, while the red solid lines are the results of the Gaussian fittings. f, 

Plots of the fitted central energies of the Gaussian peaks with respect to the temperatures for P1 – 

P6 (e) and T (d). The spectral locations of T marked with the green dashed lines in e were obtained 

from the CW results in d.  

 

The ultrafast pump-probe experiment is described in Methods S3.3, with the 

experimental setup illustrated in Extended Data Fig. 5. The pump energy of 1.174 eV 

is   6 meV above X with a fluence of   60 μJ·cm–2 (corresponding to an e-h pair density 

np estimated to be   3 × 1012 cm–2, see Methods S3.4 for the estimate), while the probe 

energy was tuned from 1.127 to 1.161 eV with a resolution of   0.2 meV. The gate 
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voltage was set at –1 V to maintain charge neutrality. The temperature-dependent 

transient differential absorption spectra (TDAS) of Device #1 are shown in Fig. 2e. Here, 

the TDAS (–Δα) is defined as –Δα = –(αp – α0) ∝ Rp – R0, where Rp and R0 are the RCS 

from the sample with and without pump (α denotes the corresponding absorption. 

See Methods S3.3 and Ref. 34 for more details about the relation between TDAS and 

TDRS). It is worth noting that –Δα＜0 means a pump-induced absorption increase, 

typically related to those of excited-state absorption (ESA) processes. In Fig. 2e, we 

observe rich spectral features with absorption increases as marked with P1 – P6. Based 

on their relative positions to T and X, these features and the associated fitted peaks 

can be divided into three energy intervals: P1, P2 (below T), P3, P4 (near but below T), 

and P5 & P6 (above T or between T and X).  

 

To obtain more quantitative information about these features, we performed multi-

peak Gaussian fittings on the spectra at various temperatures in Fig. 2e (The 

applicability of such multi-peak fittings for P1 – P6 in the TDAS will be discussed then 

in connection with Fig. 3l – 3n). The central energies of the obtained Gaussian peaks 

P1 – P6 (Fig. 2e) and the fitted peak T (Fig. 2d) are plotted in Fig. 2f versus temperature. 

The intervals between the neighboring peaks in P1 – P6 are in the range of 4 – 7 meV, 

while the total spread of these peaks is around 25 meV. The lowest peak (P1,   1.134 

eV at 4K) is about 35 meV below the original X peak (  1.168 eV at 4K) and   15 meV 

below the T peak (  1.149 eV at 4K). When temperature increases from 4K to 80K, P1 

– P6 in the ultrafast spectroscopy (Fig. 2e) show a redshift of   1 – 3 meV, while peaks 

T and X extracted from the CW results (Fig. 2c & 2d) show a redshift of   7 meV. As can 

be seen in Fig. 2e, P1 – P6 are well resolved at 4K, but merged more together with 

increase in temperature due to increased broadening with temperature. To show the 

reproducibility of the results (the 4K case in Fig. 2e), we measured the TDAS with a 

finer spectral resolution of 0.1 meV. The similar six peaks can be seen quite clearly 

even without the multi-Gaussian fitting, as presented in Extended Data Fig. 6, Methods 

S5.  
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Fig. 3 | Gate-voltage and polarization dependence of the TDAS. a, CW RC contour in the plane of 

photon energy and gate voltage (Device #2 at 4K). b – k, TDA contours in the plane of probe energy 

and delay time for the cross- (σ– σ+) (b – f) and co- (σ+ σ+) (g – k) circularly polarized pump-probe 

configurations. The voltages (5 V, 1 V, –3 V (charge-neutral), –7 V, –11 V) applied for observing the 

TDAS in b – k are marked with the five cyan dashed lines in a. In d & i, the similar new spectral 

features (P1 – P6) to those in Fig. 2e are marked accordingly. l – n, Schematics of the relationship 

between the TAS (upper panels) and the TDAS (lower panels) under the charge-neutral condition. 

In the upper panels, the curves filled with red and blue denote the absorption spectra with (αp) 

and without (α0) pump, respectively. The zoomed-in inset in l shows the X with (Xp) and without 

(X0) pump to illustrate GSB and BGR. l – n show the cases with (m & n) and without (l) ESA caused 

by the potential many-body effect of high-order correlation, thus corresponding to the presence 

and absence of P1 – P6 in m & n and l, respectively.  

 

We notice that previous studies have also observed a peak below T attributed to 

charged bi-excitons23-27. To examine the charge dependence of our new spectral peaks, 

we performed a gate-dependent experiment on a device of the same design (Device 

#2) at 4K. The gate-dependent CW RC (or absorption) map is shown in Fig. 3a. Similar 

to the case of Device #1 (Fig. 2c), there are no observable features below X in the 
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charge-neutral regime (Vg = –3 V) without pump. A few selected TDAS are shown in 

Fig. 3b – 3k. From top to bottom, the system was gated into the charge-negative, 

neutral, and positive regimes corresponding to the five voltages as marked by the cyan 

dashed lines in Fig. 3a. In Fig. 3b – 3k, the spectral features of P1 – P6 similar to those 

in Fig. 2e are visible, and are the strongest in the charge-neutral situations of Vg = –3 

V (Fig. 3d & 3i). The features fade away as the system deviates from charge neutrality. 

Such gate-dependent behavior was also observed for another device of the same 

design (Device #5) (see Methods S7, Extended Data Fig. 10 for details). Contrary to the 

previous observations of the PL of charged bi-excitons23-26 that are the weakest in the 

charge-neutral regimes, our new peaks P1 – P6 are the strongest in these regimes, 

pointing to the existence of charge-neutral entities.  

 

As can be seen from the polarization-dependent results, the spectral features are 

stronger for the case of (σ– σ+) (Fig. 3d) than for the case of (σ+ σ+) (Fig. 3i) and this is 

also true for two other devices we measured (see Methods S5, Extended Data Fig. 6 

for Device #1, and Methods S6, Extended Data Fig. 7 for Device #4). Compared to P1 – 

P6, the signals around X show less such a polarization contrast. The polarization 

contrast for P1 – P6 was also observed for bi-exciton signals in previous 

experiments21,22,27. It means that the inter-valley (σ– σ+) configuration is always more 

favorable than the intra-valley (σ+ σ+) one21,22,27, which is also similar to the case of 

bounding and anti-bounding states of a Hydrogen molecule. Such a polarization 

contrast is also consistent with our theoretical results (see Methods S13.1, Extended 

Data Fig. 15 for details). In contrast to the six peaks observed here, previous studies 

have shown one peak for BX18-21,23-27,38-40 and no more than three peaks for fine 

structure of BX (BXFS)22,41. The spectral positions (or the corresponding binding 

energies) of BX and BXFS have been calculated for ML-TMDCs previously22,38-41, and 

widely accepted to be between T and X (14.4 meV below X for ML-MoTe238). Therefore, 

the sequence of our experimental spectral features, i.e. P1 – P6, which extend   40 meV 

from below T all the way up to X, could not be explained by BXFS.  
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To better understand the new spectral features P1 – P6 & X in Fig. 3d & 3i (also Extended 

Data Fig. 7), we schematically illustrate the relationship between the TAS (αp & α0) and 

the TDAS (–Δα), as shown in Fig. 3l – 3n. Under the charge-neutral condition without 

pump, α0 has only a single X peak, X0 (the corresponding RCS can be seen in Fig. 2c). 

Under optical pumping, the X peak in αp (Xp) shows a reduced oscillation strength due 

to ground-state bleaching (GSB) and a redshifted resonance energy due to bandgap 

renormalization (BGR), as illustrated in the inset in Fig. 3l. To obtained TDAS, a 

subtraction of α0 from αp with a redshifted X peak leads to the typical anti-symmetric 

feature shown in the lower panel of Fig. 3l (also Ref. 42) schematically or in actual 

experimental data (see Methods S6, Extended Data Fig. 7). In addition to GSB and BGR, 

a strong pump could lead to the excited-state absorption (ESA) corresponding to 

transitions from existing 2B states to 4B entities such as bi-exciton21,22,39,40, etc. Figure 

3m & 3n and 3l compare cases with and without ESA. With ESA, new peaks in αp 

emerge with pump in addition to X. A subtraction of α0 from αp produces the 

corresponding pump-induced peaks in the TDAS, i.e. P1 – P6 as shown in the lower 

panel of Fig. 3m & 3n (see also Ref. 21,22,39,40 for the BX peak in TDAS). In other word, 

peaks (P1 – P6) resulting from ESA remain in TDAS as in TAS, in contrast to the anti-

symmetric feature that corresponds to GSA processes.  

 

To fit the TDAS, we assign six negative Gaussian peaks for P1 – P6 and a combination of 

negative (for Xp) and positive (for X0) peaks for the antisymmetric line-shape around X 

(see Methods S6 for the fitting details, the fitting method can be seen also in Ref. 22). 

We notice that Xp is red-shifted from X0 by   5 – 7 meV, while peaks P1 – P6 are red-

shifted by from Xp   6 – 40 meV. Since peaks P1 – P6 are sufficiently narrow and well-

separated from Xp, they can be independently fitted.  
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Fig. 4 | Pump-density dependence of the TDAS. a, TDA contours in the plane of probe energy and 

delay time for the cross- (σ– σ+) circularly polarized pump-probe configuration (Device #3, 

measured at 4K in the charge-neutral regime). b, Gaussian fittings (red solid lines) of the TDA 

extracted from a (dots) at a delay time of   0.9 ps. Each spectrum is fitted with 6 Gaussian peaks 

marked by P1 – P6 as in Fig. 2e. The spectral location of T is marked with the green dashed lines in 

a & b. The total e-h pair density, np, generated by the pump was marked in each panel of a & b. c, 

d, The total areas (corresponding to absorption increment) (c) and central energies (d) of P1 – P6 

with respect to the above pump densities.  

 

To study the pump-density dependence of P1 – P6, we performed a series of pump-

probe experiments with a varying pump fluence on a device of the same design (Device 

#3) at 4K. Based on the results of Device #2 presented in Fig. 3, the system was gated 

into the charge-neutral regime to have the maximum effects of the spectral features. 

The pump-fluence-dependent TDAS are shown in Fig. 4a. From top to bottom, the 

pump fluence was varied from   4 μJ·cm–2 to   320 μJ·cm–2 (np estimated to be 2.0×

1011 cm–2 to 1.6×1013 cm–2, see Methods S3.4 for the estimates). Figure 4b show the 

spectra in x-y plot (corresponding to those of Fig. 4a at the delay time of   0.9 ps, 

where the signals are the strongest) with the multi-Gaussian fittings similar to those 

shown in Fig. 2e. The integrated intensities and central energies of the fitted Gaussians 

are plotted in Fig. 4c & 4d, respectively (We re-plotted Fig. 4c in a linear scale, as can 
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be seen in Methods S8). As can be seen in Fig. 4a & 4b, the spectrum is nearly 

featureless when the pump density is below 4.0×1011 cm–2. As the pump density is 

above 4.0×1011 cm–2, P6 (between T and X) is the first to appear in the spectrum, 

followed by P2 – P4 (below or near T) & P5 (between T and X) with blurred features. 

With the further increase of the pump density beyond 1.6×1012 cm–2, P2 – P4 & P5 

become increasingly visible and better distinguishable, and P1 (below T) starts to 

appear (better visible in Fig. 4b than in Fig. 4a). When the pump density reaches 8.0×

1012 cm–2, all the peaks of P1 – P6 are visible and can be fitted within relatively small 

errors (Fig. 4c & 4d). At any pump level as shown in Fig. 4c, P1 is always the weakest 

among the 6 peaks while P6 is the strongest. The pump dependence described here 

will be further explained in connection with the discussions of Fig. 5. With the increase 

of the pump density, P1, P2, & P6 exhibit larger redshifts of   2.5, 2.2, and 2.8 meV than 

P3 – P5 of   1.5 meV or smaller (Fig. 4d).  

 

Spectral features represented by P1 – P6 as we characterized so far have not been seen 

before in other semiconductors. It is important to rule out other effects as potential 

origins of these new features such as defects18-20,23,26, phonons43-46 (e.g. exciton 

phonon replicas, etc), any emission signals, second-harmonic generation, and other 

non-linear mixing effects typically related to e.g. χ(3), χ(5), … contributions and those 

charge-neutral entities involving more than two excitons (tri-excitons △2   △2   △2  , 

quad-excitons △2  △2  △2  △2 , … dropletons △2  △2  △2   …  △2 , as we discuss in 

more detail in Methods S15. The significant difference between the cross- and co-

polarized pump-probe configurations is also a strong indication that many of the above 

origins can be excluded. In addition, the good agreement between experiment and 

theory as presented in the following also favors the intrinsic origins of 4B states, since 

the following theory does not include any of the above effects.  
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To understand the origin of P1 – P6, we will develop a many-body theory based on the 

Bethe-Salpeter equation for the 4B case in the following.  

 

Theory for four-body systems of two electrons and two holes  

The standard 2-body Bethe-Salpeter equation (2B-BSE) has been extensively applied 

to excitonic systems47,48 to obtain the Hydrogen-like Rydberg series49 (for details about 

the 2B-BSE see Methods S10 – S12.1). The 3B-BSE has also been applied to explain the 

trion-related features in 2D materials37,50,51. Figure 5a presents the absorption 

spectrum calculated using the 3B-BSE for ML-MoTe2, where we see clearly only the T 

peak in its neighborhood. Obviously, such 3B-BSE does not provide an explanation for 

the features related to P1 – P6. The BX-related spectral features have been calculated 

theoretically22,38-41 to be between T and X. Specifically, the BX resonance of 14.4 meV 

below X for ML-MoTe2 was calculated to be between T and X by combining the density 

functional theory with the path-integral Monte Carlo method38. But so far, there has 

been no experimental observation of the BXs in MoTe2. In addition, our spectral 

features P1 – P6 contain more spectral peaks in a much larger spectral range than those 

BX related peaks22,39-41. To explain these new features, we developed the 4B-BSE 

theory that describes the 2e2h system by including all the 4B correlations (as 

illustrated in Fig. 1). Details of the theory and the calculation of absorption spectra are 

presented in Method S12.2 – S13.2. Here we show only the key steps. The 

wavefunctions of the 4B and 2B states, 1 1 2 2e h e h  and 3 3e h , are expressed in terms 

of creation and annihilation operators,  

( )

, , , † †

1 1 2 2
, , ,

ˆ ˆ ˆ ˆ 0e h e h B a a a a=  1 1 2 2

1 2 1 2
1 1 2 2

v c v c
c c v v

v c v c

,               (1) 

( )

, †

3 3
,

ˆ ˆ 0e h A a a=  3 3

3 3
3 3

v c
c v

v c

,                     (2) 

where vi ’s and ci ’s index the single-particle states including the valence (v) and 

conduction (c) band indices with the momenta. Coefficients 
,A 3 3v c
  and 

, , ,B 1 1 2 2v c v c
 

are determined by the solutions of the 2B-BSE and 4B-BSE, respectively. The 

corresponding eigen-energies of the 2B and 4B states can also be solved and denoted 
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by 
3 3e h   and 

1 1 2 2e h e h  , respectively (see Methods S12.1 & S12.2, respectively; for the 

numerical techniques see Methods S14). In this way, dielectric function  for each 

given 3 3e h  can be calculated via  

 
( )

( )1 1 2 2 3 3

2

3 3 1 1 2 2
, , , ,

2
ˆ e h e h e he h e h e h i





      − − − 

1 2 3
e p

i iv c i=
,    (3) 

where,   is the photon energy, e  is the unit vector of the in-plane electric field 
component for a normal incident field, p̂  is the dipole momentum operator defined 

via 
( )

, †

,

ˆ ˆ ˆa a=  4 4

4 4
4 4

p pv c
c v

v c

 with the independent-particle inter-band dipole momentum 

,4 4pv c
 given in Methods S10, eq. (S8) & (S9),   is the serial number of all the 4B 

eigen-states in the sequence of the eigen-energies from low to high, and   

represents the Gaussian broadening function with a phenomenological broadening 

parameter,  . Finally, the absorption coefficient is given by the imaginary part of the 

dielectric function for both (σ– σ+) and (σ+ σ+) pump-probe configurations.  

 

Clearly, one has to calculate the dipole matrix elements of all the 2B-4B transitions to 

obtain the dielectric function (eq. (3)). Even more challenging is the knowledge of the 

distributions and weightings of all the possible species in the “soup” at a given set of 

parameters (temperatures and the total e or h densities, etc.). In the case of e-h 2B 

systems such as excitons and plasmas, a self-consistent description of the coupling 

between distributions and polarizations is given by the Semiconductor Bloch 

equation52. Since a complete theory involving self-consistent coupling between 

distributions of all the species in a 2e2h 4B system and the possible polarizations is 

lacking, we will only consider possible spectral contributions from all the 2B-4B 

transitions, without considering the exact distributions of various entities and the 

weighting of each transition.  
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Another important notice to make of is the relationship between the cluster expansion 

approach and direct solutions of the 4B-BSE using the Feynman diagrammatic 

technique. The relations between the terms in these two expansion techniques are 

given in Methods S12.3. Due to the intuitive pictures and transparent physics of the 

cluster expansion approach, we will use the language of cluster expansion to describe 

the results. For the 2B states, we have a total of 15 discrete states from 1s-X, 2p-X, 2s-

X, … plasma for ML-MoTe2 (see Methods S12.1). For the 4B states, we consider 

following three cases of truncation (in connection with Methods S1, Extended Data Fig. 

1), in order to extract and identify the effects of each: Case 1, up to △2 △2 ; Case 2, up 

to △3 △1 ; Case 3, up to △4  (for details see Methods S12.2 – S13.2). For each case, a 

series of 4B states are solved from the corresponding truncated 4B-BSE. The dipole 

matrix elements of all the possible 2B-4B transitions are then calculated as follows,  

( )
( )

*, , , , , † † † †

3 3 1 1 2 2
, , , , ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 0e h e h e h A B a a a a a a a a=  3 3 1 1 2 2 4 4

3 3 4 4 1 2 1 2
1 2 3 4

p p
i i

v c v c v c v c
v c c v c c v v

v c i=
. (4) 

An expansive form of eq. (4) can be seen in Methods S13, eq. (S19). The dipole matrix 

elements thus calculated are inserted into eq. (3) (also eq. (S20)) to obtain the spectra 

corresponding to photon absorption or emission shown in Fig. 5b – 5e (also Extended 

Data Fig. 15 & 17).  

 

To obtain a correct and complete picture of the possible 2B-4B transitions, especially 

the relative positions of spectral lines and their origins, we emphasize here the 

difference between the typical optical spectrum and the total-energy spectrum. Such 

total-energy spectrum of the 2e2h 4B system is shown in Fig. 5g (see Extended Data 

Fig. 18 for the 4B system truncated to △2 △2  , △3 △1   and △4  ). It is important to 

realize that the optical spectrum measured in an absorption or emission experiment 

does not reflect the absolute energies on the total energy scale. As shown in Fig. 5g 

(also Extended Data Fig. 18), a series of transitions occur between different 2B states 

and the corresponding 4B states on the total energy scale, as marked by the vertical 

double-arrowed lines with ① – ⑥ (6 examples, selected out of 15 2B states shown 



19 
 

in Extended Data Fig. 17). The actual spectrum of the transitions corresponding to the 

superposition (Fig. 5j) of all possible individual transitions at different total energies 

are shown schematically in Fig. 5g. Unfortunately, such total-energy spectra are not 

easy to obtain in an optical experiment, where only the energy difference (photon 

energy) between the initial and final states of these transitions is measured. Or 

equivalently, all these total energy spectra are shifted relative to a common reference 

(e.g. the 1s-X energy), as shown in Fig. 5i. The actual optical spectrum is the 

superposition (Fig. 5j) of 15 of these spectra shown in Fig. 5i, or 15 vertically “collapsed” 

spectra shown in Fig. 5h (the same layout can be seen for each figure in Extended Data 

Fig. 18).  
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Fig. 5 | Theory-experiment comparison of absorption spectra. a – e, Absorption spectra calculated 

based on the 3B-BSE (a) and the 4B-BSE (b – e) for ML-MoTe2. d shows the spectra of transition 

between the 2B state (1s-X) and the 4B states solved from the full 4B-BSE. b, c, & e show the cases 

with the same 2B state (plasma), but the 4B states solved from the 4B-BSE truncated up to △2 △2  

(b), △3 △1  (c), and △4  (e). The vertical dashed line is the calculated trion (T) energy. The vertical 

black lines underneath the spectral profiles mark the calculated spectral positions with the height 

representing the strength of the dipole transitions calculated from eq. (3) (also eq. (S19) in 

Methods S13). The spectral function, Γ, in eq. (3) is a Gaussian with a broadening parameter, γ, 

chosen to be 0.5 meV (unfilled profiles) or 2 meV (shaded profiles). We label the Gaussian-

broadened peaks in each spectrum with italic numerals from low to high energy. The solid black 

profile in f represents Δα at the zero delay for Device #2 at 4K in the charge-neutral regime, where 

we also overlay the contour of –Δα in the plane of probe energy and delay time (see also Fig. 3d). 

The features are labelled with P1 – P6 (and X), consistent with those in Fig. 3d. The relationship 

between the total-energy spectra and the optical spectra is shown in g – j (for the explanation in 

more details see the main text). The calculated total energies are shown beside the upward axis in 

g for those typical 2B and 4B states (not to the scale, for such a total-energy spectrum and the 

optical spectra plotted strictly to energy scale see Extended Data Fig. 16 in Methods S13.1). The 

energy range of 1.432 – 1.770 represents the continuous absorption band (see Methods S12.1). 

Transition ① and ⑥ correspond to d & e, respectively. The flag notation in g marks the 4B ground 

state, whose spectral feature corresponds to peak 1 in d.  
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Figure 5b & 5c show the optical spectra corresponding to 3 3 1 1 2 2ˆe h e h e hp  in eq. (4) 

with the 4B states calculated from the 4B-BSE truncated up to △2 △2  (Fig. 5b) and 

△3 △1  (Fig. 5c) and the 2B state given the plasma state (see transition ⑥ in Extended 

Data Fig. 18a & 18b, respectively). We notice a peak between T and X in the case of 

△3 △1   (peak 1 in Fig. 5c) versus the featureless background in △2 △2   (Fig. 5b). 

Strictly speaking, the only peak in Fig. 5b represents a 4B state of non-interacting (1s-

X)(plasma) (without wavy lines). In the case of Fig. 5c, △3 △1  introduces interaction 

(wavy lines) between the low-order clusters, leading to the formation of △2  △1 △1 , 

or (1s-X)   (plasma) (in connection with Extended Data Fig. 1e, Methods S1). Therefore, 

peak 1 and the tiny splitting peaks below X in Fig. 5c should correspond to those of 

△3 △1  or △2  △1 △1 . Clearly, we do not see any spectral features corresponding to 

P1 – P4, especially the features below T. This means that P1 – P4 do not originate from 

cluster △2 △2  or △3 △1 .  

 

Our next approximation is to include all the 4B states calculated from the full 4B-BSE 

(truncated up to △4  ). The relationship between the total-energy spectra and the 

optical spectra in this case is shown in Fig. 5g – 5j (also Extended Data Fig. 18c). The 

optical spectra calculated with the 2B states given the 1s-X (transition ①) and plasma 

(transition ⑥) are shown in Fig. 5d & 5e, respectively (see Methods S14, Extended 

Data Fig. 19 & 20, for the convergence test for the spectra in Fig. 5c – 5e). A direct 

comparison is shown in Fig. 5f and Extended Data Fig. 15c & 15f (It is very important 

to point out that the experimental result should not be compared with only one of 

these calculated spectra, because the actual spectrum is a superposition of all possible 

2B-4B transition spectra as we illustrated in Fig. 5g – 5j and Extended Data Fig. 18c). 

We see that the spectral features (peak 1 – 6 in Fig. 5e, and those in Extended Data Fig. 

17c & 18c) in the entire spectral region resemble closely to those of P1 – P6. In other 



22 
 

words, the spectral features of P1 – P4 originate from cluster △4 . By comparing various 

2B-4B transitions in Fig. 5g – 5j for cluster △4  (also Extended Data Fig. 17c & 18c), 

clusters △3 △1  (Extended Data Fig. 17b & 18b), and △2 △2  (Extended Data Fig. 17a 

& 18a) both on the total-energy scale and optical spectrum, we could make the 

following conclusion: The states from cluster △4  for each of the same 2B states have 

lower energies and are thus more stable than those of △2   △2   (BX) and △3   △1  

(T+ e and T– h), indicating the most stable existence of cluster △4  or quadruplon. 

Importantly, we notice from the transitions in the total-energy scale that the lower-

frequency features (below T) in the optical spectrum such as P1 – P3 correspond to the 

transitions (such as ④, ⑤, and ⑥ in Fig. 5g) between the more-excited states in the 

4B manifold. This explains why P1 – P3 decays faster as we mentioned in connection 

with the discussions of Extended Data Fig. 7a & 7d for Device #4. Nearly all the 2B-4B 

transitions shown in the total-energy spectrum in Fig. 5g, e.g. from ① (low energy) to 

⑥ (high energy), can contribute to the spectral peaks between T and X. Especially, the 

spectral peak related to the 4B ground state is calculated to be between T and X (close 

to P5 or P6, see the flag notation in Fig. 5d). This explains why P6 has the largest 

intensity and appears the earliest with increasing pump (Fig. 4). However, only the 

transitions between the highly excited 2B and 4B states such as those of ③ – ⑥ in 

Fig. 5g, can contribute to the peaks well below T. The fact that P1 only emerges at high 

pump levels signifies the existence of highly excited states of both the 2B & 4B entities. 

Through such 2B-4B spectroscopy, we observe a much more complex many-body 

system with more refined interplays of these 2B, 3B, and 4B complexes than the simple 

picture of the Mott transition. The similar spectra (to e.g. Fig. 5d & 5e) were also 

calculated for the inter- (σ– σ+) and intra- (σ+ σ+) valley 4B states (Extended Data Fig. 

15), and extensively discussed in connection with such continuous Mott transition (see 

Methods S13).  
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One more experimental fact to support the picture of 2B-4B transitions is that, the 

relative position of P1 – P6 are less affected by the temperature than the T and X peaks 

(Fig. 2e & 2f). We notice that the transition energies of T and X follow the same 

sensitive temperature dependence as bandgap, given by the Varshni formula. The total 

energy of a 4B system also follows a similar temperature dependence. But since the 

transition energies of P1 – P6 are determined by the differences between the total 

energies of the 4B system and the 2B system, the difference becomes much less 

sensitive to temperature change. This explains the much weaker temperature 

dependence of the P1 – P6.  

 

It is important to note that △4   in the 4B cluster expansion represents a 2e2h 4B 

irreducible cluster, where none of the 2 electrons or 2 holes belongs to a specific 

exciton, or there is no a well-defined exciton in such a 4B system. The entity is 

therefore not a bi-exciton or an excited-state bi-exciton anymore, rather a quadruplon, 

as schematically shown as the last cluster in Fig. 1b – 1e. We notice that exactly such 

a system was recently calculated for a quantum dot system and was called a 

“quadron”2. Therefore, our consistent theoretical and experimental results show that 

the spectral features corresponding to P1 – P4 indeed originate from the quadruplons. 

Similar quadruplon consisting of 4 identical fermions was recently theoretically 

studied in a 1D Hubbard model1. Recent study showed that the e-h/e-e exchange 

interaction22,41 can result in fine structure of bi-exciton, which would correspond to 

△2  △2 . Therefore, quadruplon features from irreducible cluster △4  should not have 

been called BXFS53 (see Reference List for an explanation in more detail).  

 

Conclusion  

The focus of this paper is the experimental observation of several new spectral peaks 

that appeared below the trion features and the development of a microscopic theory 

based on the 4B-BSE to explain the origin of these peaks. The observation of these 

peaks covering a large energy range of   40 meV was made experimentally possible 
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through a helicity-resolved pump-probe spectroscopy in gate-controlled ML-TMDC 

samples. It was at the charge-neutral point that we observed the new rich spectral 

features. This might be one of possible reasons that the they were not observed in 

previous ultrafast-spectroscopic experiments on ML-TMDCs (for more reasons in detail 

see Methods S9). Through the establishment of a systematic relationship between the 

Feynman diagrams of the 4B-BSE and cluster expansions of various orders, we showed 

that these new spectral features could not be explained by clusters associated with 

trions or bi-excitons, while the irreducible cluster associated with 2e2h was necessary 

and sufficient in producing these new spectral features. This agreement between our 

new theory and experiment established the existence of a new correlated 4B entity, 

the quadruplon. The existence of the 4B entity is further corroborated by the pump 

dependent experiment where systematic changes of the absorption spectra are 

consistent with the possible occupation of higher 2B states and the existence of the 

final 4B states upon the absorption of the probe photons. Interestingly, these 4B states 

can stably exist even at a relative high temperature of   60 K.  

 

We would like to make a few comments about other multi-particle states that are 

products of lower order clusters. Examples include the Suris tetron54-56 that contains a 

conventional exciton and another e-h pair formed near the Fermi surface, or △2  △2  

bi-exciton-like, or trion-hole-like57 entity in the language of this paper. Other examples 

include the quarternion58 (an exciton bound to two free charges of the same sign), 

charged bi-exciton or trion-exciton23-27, and even 6B and 8B ones: the hexciton and 

oxciton59 (an exciton plus multiple fermi-sea e-h pair, also known as the sub-terms of 

the exciton polaron together with the Suris tetron), or tri-exciton60 △2  △2  △2  and 

quad-exciton △2   △2   △2   △2   and dropleton △2   △2   △2    …  △2   as exciton 

ladders, etc. All these many-body complexes are reducible to product states of excitons, 

trions, and charges. Not association with higher irreducible clusters than 3 has been 

made. Thus the possibility of 4th order irreducible clusters has not been considered so 

far23-27,54-56,58-60. The difference between product of lower order irreducible clusters 
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and the corresponding higher order irreducible clusters are also important and 

analogous in the field of elementary particles, where meson molecules and genuine 

tetra-quarks represent separate milestone discoveries4,10-13. In the context of ultracold 

gas, the 4B states (related to the Efimov effects) were theoretically discussed61 in terms 

of all irreducible clusters such as B4, B3+B, B2+B+B, B2+B2, or B+B+B+B. Attempts were 

also made to explain an earlier experiment62 in terms of the above theory61. Also, the 

quadruplons consisting of 4 holes were theoretically revealed in the sequence of Q 

(quadruplon), T (triplon), D (Doublon), and B (Band-like part) in the calculated two-

hole excitation spectrum at different filling factors in a 1D Hubbard model1.  

 

To conclude, the observation of quadruplons would also contribute in a very important 

way to the fundamental understanding of the Mott transition, one of the most 

celebrated aspects of condensed matter physics. The existence of a new 4B entity adds 

to the complexity of the Mott physics and would definitely lead to more new physical 

phenomena. For example, the co-existence and mutual conversion of various known 

species have been the subjects of extensive studies for their interesting optical 

transitions, leading to bi-exciton gain63 or trion gain31. Bi-exciton emission processes 

are also related to the generation of entangled photons. It would be of great interests 

to study the co-existence and mutual conversion of quadruplons with other known 

species. The existence of quadruplons opens many new exciting opportunities to study 

its consequences on optical gain, generation of quantum states, and nonlinear optics, 

beyond the Mott transitions.  

 

Finally, our study may stimulate more similar studies to search for clusters or many-

body complexes of even higher orders beyond the quadruplons and their excited states. 

Another interesting issue that arises from this study is the experimental study of the 

total energy spectrum of a 2e2h 4B system. As shown in Fig. 5g, the total energy of the 

2e2h system extending over   0.3 – 0.6 eV shows very rich spectral features that cannot 

be determined through optical spectroscopy. A comparison of our 4B-BSE theory with 

the total energy spectrum would allow us to study many different states of the 4B 
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irreducible clusters in a more unique fashion. More importantly, it would allow the 

determination of the relative energetic stabilities of various states. Among all of these 

states, the experimental verification of the relative stability of bi-excitons versus 

quadruplons would be of great special interest.  

 

Data availability  

The data that support the findings of this study are available from the corresponding 

author upon request.  
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--Methods-- 

S1. The cluster expansion model with different orders of truncation  

The cluster expansion model is one of the most common and intuitive approaches to 

many-body interactions, in which an interacting N-body system is expressed as the 

sum of all the possible combinations involving irreducible clusters of the Nth and all the 

lower orders.  

 

In our special case of the two electrons and two holes (2e2h) with the inclusion of the 

spin degree of freedom, the 4-body (4B) cluster expansion is expressed in terms of the 

following 5 classes, i.e. △1 △1 △1 △1 , △2 △1 △1 , △2 △2 , △3 △1  and △4 , as shown 

in Fig. 1 in the main text. To better recapitulate the essence of the 4B interaction, we 

consider a simplified model with the Hamiltonian truncated up to different orders, i.e. 

up to cluster △2 △2 , △3 △1  and △4 , as illustrated in Extended Data Fig. 1a, 1b, & 

1c, respectively. Hii ’s (i = 1, … 5) stand for the diagonal matrices of the Hamiltonians 

for the 5 corresponding classes, with their dimensions given by the numbers of the 

combinations of the irreducible clusters in Fig. 1 in the main text. The base vectors are 

illustrated accordingly on the right side in Extended Data Fig. 1a – 1c. The full 5 basis 

in Extended Data Fig. 1c correspond to the above 5 classes in the 4B cluster expansion.  

 

To illustrate appearance of the weak interactions (the wavy lines in Fig. 2a in the main 

text) among the irreducible clusters, we recall the basic process of successive 

truncations in the cluster expansion approach. Starting from H11 (△1 △1 △1 △1 ) for the 

case without any correlation or interaction, the inclusion of the next order, H22 (△2 △1

△1  ), not only increases the dimension of the new total Hamiltonian, but also 

introduces the coupling (H12 and H21) between the two orders. Such a process 

continues until a final cut off of the cluster expansion is made. Each time we include 

one more cluster of higher order into a truncated expansion, mainly two changes occur 

to the Hamiltonian (see the variances in Extended Data Fig. 1a – 1c): First, new 
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diagonal elements are introduced (i.e. ,  3,  4,  5iiH i = ), whose appearance expands 

the dimension (size) of the Hamiltonian matrix and would lead to new many-body 

states; Second, the original off-diagonal elements (blocks) are updated to new ones 

(i.e. ij ij ijH H H → →  ). Such off-diagonal elements in Extended Data Fig. 1a – 1c 

introduce the weak interactions among the irreducible clusters of lower orders 

indicated by wavy lines, as depicted in Extended Data Fig. 1d – 1f, respectively. In the 

above 3 cases with different orders of truncation, the introduced weak interactions 

are accordingly different as well (see the wavy lines indicated in the different grey 

levels in Extended Data Fig. 1d – 1f). Once a final cut-off is made, we obtain the total 

Hamiltonian, whose off-diagonal elements determine the final interactions among the 

elements of the various clusters. In our specific case, the diagonalization of the final 

Hamiltonian in Extended Data Fig. 1c allows the determination of all the states of the 

2e2h 4B system, or of all the possible 2e2h entities.  

 

If we truncate the Hamiltonian up to cluster △2 △2  (Extended Data Fig. 1a), cluster 

△2 △2  would produce the entities such as non-interacting (1s-X)(1s-X), (1s-X)(2s-X), … 

(1s-X)(plasma) and so on (△2 △2  without the wavy line, see the △2 △2  entities in 

Extended Data Fig. 1d). Once we introduce one more cluster of higher order, i.e. △4 , 

into the Hamiltonian, cluster △2 △2   would produce the entities such as weak-

interacting (1s-X)~(1s-X), (1s-X)~(2s-X), … (1s-X)~(plasma) and so on (△2 ~△2  with the 

wavy line, see the △2 ~△2  entities in Extended Data Fig. 1f), or namely, bi-excitons 

and excited-state bi-excitons. Similarly, cluster △3 △1  would produce the entities of 

△3 ~△1  (see the △3 ~△1  entities in Extended Data Fig. 1f). Last but not least, we are 

more interested in cluster △4 , and the resulting 4B irreducible entities, quadruplons. 

Based on the above model, it is clear that the quadruplons are completely new and 

different entities beyond those conventional bi-excitons.  
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We point out that the simplified model is only presented here as an intuitive picture 

for the understanding of the essence of the 4B physics involved, but not employed for 

any specific calculation in this paper. Instead, our numerical results in this paper are 

obtained completely using the microscopic many-body Hamiltonian, as will be 

discussed in Methods S12.2 – S13.2.  

 

 

Extended Data Fig. 1 | a – c, A simplified model with the Hamiltonian truncated up to cluster △2

△2  (a), △3 △1  (b) and △4  (c). The full basis on the right side in c correspond to the clusters of 

different orders, while the basis in a & b are incomplete due to the corresponding truncation. d – 

f, Representative 2e2h 4B entities solved from the eigen-energy equations with the Hamiltonian 

truncated up to cluster △2 △2  (d), △3 △1  (e) and △4  (f). The wavy lines in the different grey 

levels in d – f indicate the different weak interactions introduced by the joining of the different 

clusters of higher orders.  

 

S2. Device fabrication  

To fabricate an electrically-gated device (Fig. 2b in the main text), the metal electrodes 

were predefined by photolithography on the SiO2/Si substrate and then 50/30 nm 



6 
 

Au/Ti were deposited through electron beam evaporation. The monolayer of MoTe2 

and the films of hexagonal boron nitride (h-BN) and graphite were mechanically 

exfoliated from those commercial bulk crystals (2D semiconductors or HQ graphene 

Inc.) and then transferred onto the polydimethylsiloxanes (PDMS). The ML-MoTe2 

samples were first identified through the contrast of the optical microscope images, 

with their layer thickness finally identified by the photoluminescence (PL) emission. 

More importantly, we screen the samples to select the best ones for the following 

optical experiments. The screening methods include the measurements of 

continuous-wave (CW) reflection contrast spectra (RCS) and PL spectra (such methods 

will be discussed in more details in Methods S3.2), by which one can know the crystal 

quality of a sample or the level of defects that the sample contains. All the transfer 

processes were performed using a home-build transfer stage integrated with an 

optical microscope at a moderate heating temperature. The h-BN film (~ 50 nm) and 

ML-MoTe2 were transferred subsequently onto one of the electrodes. The graphite 

stripe (~ 10 nm) was transferred as a top contact bridging between the ML-MoTe2 

and one of the other metal electrodes. Another h-BN film (~ 10 nm) was transferred 

on top of the device for a protection. Finally, the device was annealed at ~ 200 ℃ 

for 3 hours to reduce the bubbles between the layers. Similar device structure and 

the fabrication method can be seen in Ref. 1,2.  

 

S3. Optical spectroscopy  

The fabricated ML-MoTe2 devices were characterized in a home-build micro-PL system 

at a liquid helium temperature of ~ 4K. For the measurement of the CW RCS, a 

tungsten halogen lamp (Thorlabs SLS201L) was used as the white light source to detect 

the sample through a 100x NIR-optimized objective (Mitutoyo NA = 0.7) with the spot 

diameter of ~ 3 µm. The reflection signals were collected by the same objective and 

finally delivered to a Princeton Instruments spectrometer (SpectraPro HRS-550) 

equipped with a LN-cooled InGaAs CCD (PyLoN-IR). The gate-dependent measurement 

was carried out by using a semiconductor parameter analyzer (Keysight B1500A).  

 



7 
 

S3.1. Identification of the spectral energies of T and X in the CW optical spectroscopy  

As mentioned in the main text, the RCS is defined as (R – R’) / R’, where R and R’ are 

the reflectance spectra from the regions with and without the ML-MoTe2 sample. Here, 

we take the results of Fig. 3a in the main text (for Device #2 at 4K) as an example to 

explain the data processing. The results of other devices were obtained in the same 

way. First, the unprocessed signals of R and R’ are shown in Extended Data Fig. 2a & 

2e for the charge-neutral case (Extended Data Fig. 2a) and for the doping case 

(Extended Data Fig. 2e). The corresponding results of (R – R’) / R’ are given in Extended 

Data Fig. 2b & 2f. Then, we utilized the approach of adjacent-averaging smoothing to 

obtain the baselines (see the red lines in Extended Data Fig. 2b & 2f), with the results 

of subtracting the baselines shown in Extended Data Fig. 2c & 2g, respectively. Similar 

data processing can be seen typically in Ref. 3 and etc. In addition, we also performed 

the second derivatives (SD) for (R – R’) / R’ (the black lines in Extended Data Fig. 2b & 

2f) with respect to the spectral energy. The corresponding results are shown in 

Extended Data Fig. 2d & 2h. As we see in Extended Data Fig. 2a – 2h, the obtained 

spectral energies of T and X are less dependent on the methods of the data processing, 

thus can be well identified. All these results can well describe the CW absorption 

features of the ML-MoTe2 sample. A simplified effective dielectric multi-layer system 

(air/MoTe2/h-BN/metal) was modelled in Ref. 1 to determine the absorption and to 

discuss the influences of the substrates (see SI text S1 & S2 in Ref. 1).  

 

The gate-dependent CW PL results are shown in Extended Data Fig. 2i & 2j. The peaks 

of T and X are spectrally located at ~ 1.146 – 1.148 eV and ~ 1.168 – 1.170 eV, 

respectively, which are consistent with the CW absorption results in Extended Data 

Fig. 2a – 2h.  
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Extended Data Fig. 2 | a, e, Reflectance spectra from the regions with (R) and without (R’) the ML-

MoTe2 sample (Device #2 at 4K) for the charge-neutral case at Vg = –3 V (a) and for the doping case 

at Vg = –7 V (e). b, f, (R – R’) / R’ and the corresponding baselines for the cases of Vg = –3 V (b) and 

Vg = –7 V (f). c, g, (R – R’) / R’ with the baselines subtracted for the cases of Vg = –3 V (c) and Vg = –

7 V (g). d, h, SD performed versus photon energy for (R – R’) / R’ shown in b & f, respectively. i, CW 

PL contour in the plane of photon energy and gate voltage. j, CW PL spectra selected from i at Vg = 

–3 V and Vg = –7 V.  

 

S3.2. Representative CW RCS and PL spectra for ML-MoTe2 samples with or without 

visible defect features  

Typically for ML-TMDC samples, the defect-related PL peaks (or so-called localized 

states) can be observed below T with CW laser excitation4-8. Extended Data Fig. 3 & 4 

show representative CW RCS and PL spectra for ML-MoTe2 samples with or without 

such visible defect features. In our PL tests, we used a 633-nm CW laser (weak 

excitation), and additionally a 650-nm femtosecond (fs) pulsed laser (strong 

excitation), to excite ML-MoTe2 samples. The PL results under these two excitation 
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conditions are shown in Extended Data Fig. 4. The levels of the weak- and strong-

excitation densities were estimated to be ~ 108 – 9 and ~ 1013 cm–2, respectively. We 

note that the strong-excitation condition was similar to that used in our pump-probe 

experiments, and our weak excitation conditions (e.g. 200 μW 633-nm CW laser 

excitation, used for Extended Data Fig. 3) are the typical ones that were similarly used 

in Ref. 4-8 to observe defect PL as well in other ML-TMDCs. For a good sample we 

selected, we do not see any defect emission under both of the strong- and weak-

excitation conditions (e.g. Extended Data Fig. 2i, 2j, 3b, and the red and black lines in 

Extended Data Fig. 4), or any defect absorption (e.g. Extended Data Fig. 3a). Typically 

for a bad sample, we expect to see defect emission at even a low pump level (e.g. 

Extended Data Fig. 3d, or the blue lines in Extended Data Fig. 4). Sometimes, one can 

also see the defect-related absorption feature below the T peak (e.g. Extended Data 

Fig. 3c) for a bad sample in the CW RCS.  

 

In addition, we notice the emission peaks of exciton (or trion) phonon replicas were 

also observed spectrally below T for W-based materials in recent reports9-12. However, 

it is clear that for our high-quality ML-MoTe2 samples, there are no such additional 

emission or absorption features existing below T, or in the same spectral range as P1 

– P6 (e.g. Extended Data Fig. 3a, 3b, and the red and black lines in Extended Data Fig. 

4).  
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Extended Data Fig. 3 | Representative CW RCS (a & c) and PL (b & d) spectra for ML-MoTe2 samples 

with (c & d) or without (a & b) visible defect features. All of these spectra were measured at 4K 

under the charge-neutral condition.  
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Extended Data Fig. 4 | Representative PL spectra for ML-MoTe2 good samples for strong- (red) and 

weak-excitation (black) cases, as plotted in Log (upper panel) and linear scales (lower panel). All of 

these spectra were measured at 4K under the charge-neutral condition. For better comparison, we 

also showed the PL spectra for those ML-MoTe2 bad samples (blue) with visible defect features 

below T, which were not used in the pump-probe experiments.  

 

 

 



12 
 

S3.3. Helicity-resolved TDAS (or TDRS)  

For the helicity-resolved transient differential absorption (or reflection) spectroscopy 

(TDAS or TDRS) (Extended Data Fig. 5), a 1040 nm femtosecond laser (Spirit from 

Spectra Physics with the pulse width of ~ 500 fs, and the repetition rate of 400 kHz) 

was divided into two beams: pump and probe. The pump beam was sent to an OPA 

system (Light Conversion TOPAS) to achieve the tunability of its central wavelength 

and then modulated by a mechanical chopper. The typical pump-excited e-h pair 

density (np) was estimated to be at np ~ 1012 /cm2 (see Methods S3.4). The probe pulse 

was spectrally broadened by a sapphire crystal and then filtered by a grating-based 

pulse shaper to achieve the narrow FWHM of ~ 1 – 2 meV. The intensity of the probe 

pulse was typically one order smaller than that of the pump pulse. A combination of a 

λ/2 waveplate, two linear polarizers, and a λ/4 waveplate was used to control the 

circular polarizations. Both the pump and probe beams were first polarized by the λ/2 

waveplate and the linear polarizers (LP), then combined by a non-polarized beam 

splitter, then delivered to the λ/4 waveplate, and finally delivered to a 50x NIR-

optimized objective (Mitutoyo NA = 0.4). The strong pump signal was greatly filtered 

out via setting the band-pass center of the grating in the spectrometer to the desired 

probe energies, which are always off-resonant to the central energy of the pump pulse. 

The TDR signals at a series of discrete probe wavelengths were detected by a high-

gain InGaAs detector using a lock-in technique. As mentioned in the main text, the 

TDR (ΔR) is defined as the variance between the transient reflection (TR) signals with 

(Rp) and without (R0) the pump: ΔR = Rp – R0. The TDR (ΔR) is proportional to –Δα, the 

negative value of the TDA (Δα), thus can well describe the transient absorption (TA) 

features. Their relation can be also written as –Δα = –(αp – α0) ∝ ΔR = Rp – R0. The 

similar data processing for the TDAS and TDRS in the pump-probe experiments were 

described in Ref. 2.  
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Extended Data Fig. 5 | Schematic of the time-resolved pump-probe setup.  

 

S3.4. Estimates of the e-h pair density  

The optically generated total e-h pair density (np) is estimated via 
eff

2 2

2
pn P

d cf



=  , 

where P is the pump power, λ is the central wavelength of the pump photon, αeff is the 

effective absorption coefficient of the sample, d is the diameter of the pump spot, and  

f  is the pulse repetition frequency. In our specific case, λ ≈ 1050 nm, αeff ≈ 1% (Ref. 

1), d ≈ 4 μm, f = 400 kHz.  

 

S4. The reasons and advantages for choosing to study MoTe2 among TMDCs  

1) Among the family of ML-TMDCs (i.e. WS2, WSe2, MoS2, MoSe2, and MoTe2), MoTe2 

is the only one system that the optical emission (or absorption) is located in the spectra 

range of near-infrared wavelength1,13-15. Such spectral range is transparent for the 

Silicon absorption, thus providing great opportunities for Silicon-based opto-electronic 

integration, such as the on-Silicon MoTe2 nanolaser15. MoTe2 is also known for the 

relatively high carrier mobility, which will be of benefit to nano electronic applications, 

such as MoTe2-based field effect transistors16,17. Recently, longer valley polarization 
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lifetime2 was discovered for ML-MoTe2 than other ML-TMDCs, which enables it to be 

an ideal platform for potential quantum information applications. Therefore, one of 

the reasons that we choose to study MoTe2 is the advantages for the potential 

development of the ever new opto-electronic devices.  

 

2) We believe that the existence of quadruplon is a more generic phenomenon for 

semiconductors. The question is which system is more favorable for experimental 

observation. In W-based TMDCs, there are more complicated features in the similar 

spectral range due to the lower energy of dark excitons and the related excitonic 

species4-12,18-23. These features include fine structures due to different spin-valley 

configurations (including bright/dark states)5-7,18-22, phonon replicas9-12, etc. The poor 

spectral resolution and linewidth broadening add to the difficulty for a unique 

identification. In the Mo-based TMDCs, there is much less spectral complexity in the 

spectral range of interest due to the lower energy of the bright exciton than the dark 

exciton. Among the three Mo-based TMDCs, MoS2 has two conduction bands 

separated by only ~6 meV, making the situation more similar to the W-based materials. 

The conduction band splitting in the MoSe2 and MoTe2 is around 30 – 60 meV. 

Therefore the quadruplon features are well separated from those of other excitonic 

complexes mentioned above. Therefore, we believe that one should be able to observe 

similar quadruplon effects in MoSe2 as well.  

 

For the above reasons, as we concerned, possible quadruplon signals would highly 

overlap with those of fine structures (bright/dark state), etc, if we chose to study WS2, 

WSe2, or MoS2, which would make the quadruplon signals difficult to extract. To avoid 

such potential confusion for the quadruplon features, therefore, we consider MoTe2 

and MoSe2 are more favorable for the type of studies of the present paper than other 

TMDCs.  

 

3) In fact, there have been growing number of papers on MoTe2. For various 

experiments, ML-MoTe2 samples have been fabricated with high quality and 
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demonstrated to be a stable system1,2,13-15,24 with excellent device performance15. 

There are many papers in the literature that reported the optical characterization1,2,13-

15,24 or low-temperature tests1,2,14,15,24 or ever advanced condensed-matter 

experiments25-27 for MoTe2. From theoretical side, different ab-initio approaches28,29 

produced consistent parameters about band structure, Keldysh potential, etc for ML-

MoTe2. Those values of parameters were also verified by our theoretical calculation 

(see Methods S11).  

 

S5. Helicity-resolved TDAS with a finer spectral resolution of 0.1 meV (Device #1)  

Extended Data Fig. 6a shows the helicity-resolved TDAS for Device #1 at 4K under the 

charge-neutral condition with a finer spectral resolution of 0.1 meV (see Fig. 2e in the 

main text for the reproducible results with the resolution of 0.2 meV). For both of the 

(σ– σ+) and (σ+ σ+) cases, the spectral lines were fitted by the similar six peaks of P1 – 

P6 to those in Fig. 2e in the main text. The absorption increase with pump (negative 

signals, –Δα＜0) for the (σ– σ+) case is stronger than for the (σ+ σ+) case. The contrast 

between the cross- and co-polarized cases can be seen as well in Fig. 3d & 3i in the 

main text for Device #2. Such a polarization contrast is also reflected in the theoretical 

results (see Methods S13.1, Extended Data Fig. 15). As we mentioned in Methods S3.3, 

the wavelength of the probe beam was tuned to a series of discrete values and swept 

over a wide spectral range. During the test, we monitored the laser powers of both 

the pump (modulated) and probe pulses. The real-time values of the laser powers are 

shown in Extended Data Fig. 6b. The laser power of the pump (modulated) and probe 

pulses are controlled to be 3.0 ± 0.1 μW and 0.15 ± 0.01 μW, respectively.  

 

The power fluctuations of the pump and probe would lead to the corresponding 

fluctuations in the TDAS. According to the pump-dependent results shown in Fig. 4c in 

the main text and Extended Data Fig. 11 in Methods S8, such data fluctuations are less 

than 1.3%. For example, the signal intensity of P6 in Extended Data Fig. 6a is ~ 6000, 

with the fluctuation evaluated to be ± 80. It is clear that such fluctuations cannot 
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produce the spectral features of P1 – P6. Therefore, the laser-power fluctuation can be 

excluded as the possible source of the spectral peaks of P1 – P6.  
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Extended Data Fig. 6 | a, TDAS for the cross- (σ– σ+) and co- (σ+ σ+) circularly polarized pump-

probe configurations (Device #1, at 4K, under the charge-neutral condition). The fitted Gaussian 

peaks are marked by P1 – P6. b, Laser powers of the pump (modulated) and probe pulses monitored 

during the test.  
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S6. Additional experimental results (Device #4)  

The gate-dependent CW RC map of Device #4 at 4K is shown in Extended Data Fig. 7c. 

The strongest X peak (~ 1.170 eV) marks the gate-compensated charge-neutral voltage, 

Vg = –12 V. Both T– and T+ appear at ~ 1.145 eV in the e- and h-doped regimes, 

respectively. We can see clearly there are no additional absorption features below X in 

the charge-neutral regime (white dashed box) without pump.  

 

 
Extended Data Fig. 7 | a, b, TDA contours in the plane of probe energy and delay time for the cross- 

(σ– σ+) (a) and co- (σ+ σ+) (b) circularly polarized pump-probe configurations (Device #4, at 4K, 

under the charge-neutral condition, Vg = –12 V). c, CW RC contour in the plane of photon energy 

and gate voltage. d, Gaussian fittings of the TDAS measured at the different delay times extracted 

from a. The spectrum for each given time delay is fitted with six Gaussian peaks marked by P1 – P6, 

together with the other two Gaussians related to X (X0: without pump; Xp: with pump). The points 

are experimental values from a, while the solid lines are the results of the Gaussian fittings. The 

spectral locations of X0, Xp, and T marked with the blue and green dashed lines in a, b, & d were 

obtained from the CW RC result in c.  

 

Extended Data Fig. 7a, 7b, & 7d show the results of the helicity-resolved pump-probe 

experiment. The pump energy of 1.182 eV is ~ 10 meV above X with a fluence of ~ 80 

μJ·cm–2 (corresponding to the e-h pair density np estimated to be ~ 4 × 1012 cm–2, see 
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Methods S3.4 for the estimate), while the probe energy was tuned from 1.130 to 1.175 

eV. The gate voltage was switched to –12 V to maintain charge neutrality. The TDAS of 

Device #4 at 4K are shown in Extended Data Fig. 7a & 7b for the cross- (σ– σ+) and co- 

(σ+ σ+) circularly polarized pump-probe configurations, respectively. Compared to the 

spectrum for the case of (σ+ σ+) (Extended Data Fig. 7b), we observe rich spectral 

features for the case of (σ– σ+) (Extended Data Fig. 7a), as marked with P1 – P6. Based 

on their relative positions to T and X, these features and the associated fitted peaks in 

Extended Data Fig. 7d can be similarly divided into the three energy intervals: P1, P2 

(below T), P3, P4 (near T), and P5 & P6 (above T or between T and X). In addition to the 

spectral features well below X, we see also a change of the TDA around X, as marked 

by the negative (–Δα＜0, red regions) and positive (–Δα＞0, blue regions) bands in 

both Extended Data Fig. 7a & 7b. These bands are related to the pump-induced 

bandgap renormalization (BGR), as illustrated in Fig. 3l – 3n in the main text and Ref. 

30.  

 

To obtain more quantitative information about the TA features, we performed the 

multi-peak Gaussian fittings on the TDAS selected from Extended Data Fig. 7a at seven 

representative delay times. The results are plotted in Extended Data Fig. 7d. Such 

multi-peak fittings for other devices were performed in the similar way. Here, we take 

the results of Device #4 at 4K (Extended Data Fig. 7d) as an example to describe the 

fitting methods.  

 

➢ Fitting method for the TDAS  

The multi-Gaussian function (used for Extended Data Fig. 7d) is written explicitly as 

follows,  

( ) ( ) ( ) ( )0 0 0

6

1
; , , ; , , ; , ,

i i i p p pP P P X X X X X X b
i

F G A G A G A            

=

 = − − + + 
   

. (S1) 
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Here, the Gaussian function G(ε*; A, ε, γ) in eq. (S1) is defined via  

( )
2

; , , : exp ln 2G A A  
  






  −
=  −  

   

,               (S2) 

where, ε* is the argument (probe energy), A, ε, and γ denote the oscillator strength, 

the energy position and the line width of the Gaussian peak, respectively. As is shown 

in eq. (S1), up to six negative Gaussian peaks (the 1st term) are used to fit features P1 

– P6 (excited-state absorption, ESA, e.g. the quadruplon effect in this paper, the 

conventional bi-exciton effect31-34, etc). The additional negative (the 2nd term) and 

positive (the 3rd term) peaks are designated to account for the exciton resonances with 

(Xp) and without (X0) pump, which result in the antisymmetric line-shape of the pump-

induced BGR (see Extended Data Fig. 7a, 7b, & 7d in connection with Fig. 3l – 3n in the 

main text; See Ref. 32-34 for the illustration of the absorption increase with pump below 

X (ESA, –Δα＜0) caused by the bi-exciton effect; See also Ref. 30 for the illustration of 

the antisymmetric line-shape around X caused by BGR). Since the spectral range of 

sweeping the probe energies did not cover the vicinity of X when we tested Device #1 

& #3, peaks Xp and X0 were not included in the multi-Gaussian fitting function. 

However, such BGR signals were well recorded around X for Device #2 & #4 (see Fig. 3 

in the main text for Device #2 and see Extended Data Fig. 7 for Device #4). The last 

term Δ b is used to account for an overall (frequency independent) ground-state 

bleaching (GSB). In contrast to the ESA effect leading to the absorption increase with 

pump (–Δα＜0), the GSB effect leads to the absorption decrease with pump (–Δα＞0).  

 

The fitted values of the parameters in eq. (S1) are listed in Extended Data Tab. 1. The 

central energies of obtained Gaussian peaks P1 – P6 (as marked in Extended Data Fig. 

7a & 7d) are largely independent of the delay time and given by 1.1325 eV, 1.1369 eV, 

1.1411 eV, 1.1448 eV, 1.1516 eV, 1.1588 eV, respectively. The variations of the fitted 

peak positions in the same columns (for the same oscillators) are all within 0.2 meV. 

The intervals between these peaks are in the range of 4 – 7 meV, while the total spread 
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of these peaks is around 26 meV. The lowest peak (1.1325 eV) is about 40 meV below 

the original position of X and ~ 13 meV below the position of T. The fitted line widths 

(≤ 3 meV) are all smaller than the typical values of T and X extracted from the CW 

absorption spectra (5 – 10 meV). It is also evident from Extended Data Fig. 7a & 7d 

that the first three peaks P1 – P3 decay faster than the other peaks. This phenomenon 

is explained when we discuss Fig. 5 in the main text.  

 

Extended Data Tab. 1. Fitted values of the parameters for the different pump-probe delays  

 

 

We note that in Extended Data Fig. 7b the spectra for Device #4 are almost featureless 

below X, while in Fig. 3i in the main text for Device #2 features P1 – P6 are visible. There 

are several possible reasons for this. First, the co-polarized signal is typically weaker 

than the cross-polarized one due to the more favorable many-body configuration of 

the cross-polarized case; Second, there are always unavoidable quality variations from 

sample to sample; Third, those two spectra were measured at different pumping levels: 

For example, Extended Data Fig. 7b was for pumping level of ~ 80 μJ·cm–2, while Fig. 

3i in the main text was for ~ 160 μJ·cm–2. The pump pulse with different pumping levels 
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might produce different 2B and 4B states, thus lead to different 2B-4B transition 

spectra (the relevant discussion can be seen in Methods S13 & S13.1, in connect with 

the theoretical results).  

 

S7. Additional experimental results (Device #5)  

We performed the similar gate-dependent CW RCS and pump-probe tests on another 

device (Device #5) at 4K with the same gate-tunable structure. For the gate-dependent 

CW RCS tests, the results are shown in Extended Data Fig. 8. For the pump-probe 

experiments, the pump energy was fixed at 1.180 eV (near-resonant to X). The typical 

signal evolutions with time in the charge-neutral regime (Vg = –4 V referring to 

Extended Data Fig. 8) are shown in Extended Data Fig. 9. As has been described in the 

preceding text, the negative signals around the zero delay (–Δα＜0, the red curve in 

Extended Data Fig. 9a) signify the TA enhancements at the specific probe energies (e.g. 

1.145 eV), which are relevant to the ultrafast generations of the high order correlated 

entities. At the other probe energies (e.g. 1.153 eV), there are no such negative signals 

as shown in Extended Data Fig. 9b. These two representative probe energies are 

correspondingly marked with the white arrows in Extended Data Fig. 8. According to 

the gate-dependent CW RCS tests, three voltages (the cyan dashed lines in Extended 

Data Fig. 8) were selected to perform the pump-probe tests, with the results shown in 

Extended Data Fig. 10.  
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Extended Data Fig. 8 | CW RC contour in the plane of photon energy and gate voltage for Device 

#5 at 4K. The white arrows of 1.145 eV and 1.153 eV correspond to the probe energies that are 

used for the pump-probe tests in Extended Data Fig. 9a & 9b, respectively. The cyan dashed lines 

of –4 V (charge-neutral), –10 V, and –16 V correspond to the gate voltages at which the TDAS were 

measured and shown in Extended Data Fig. 10.  

 

 
Extended Data Fig. 9 | a, b, Time evolutions of the TDA signals (Device #5, at 4K, under the charge-

neutral condition) around the pump-probe delay t ≈ 0 ps with the cross- (σ+ σ+) and co- (σ+ σ+) 

circularly polarized pump-probe configurations at the different probe energies of 1.145 eV (a) and 

1.153 eV (b).  
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Extended Data Fig. 10 | a – f, TDA contours in the plane of probe energy and delay time at the 

three gate voltages (as given in the middle one of the three panels at the same row) with the cross- 

(σ– σ+) (a – c) and co- (σ+ σ+) (d – f) circularly polarized pump-probe configurations. g – i, Second-

order TDA (defined as: cross – co) contours in the plane of probe energy and delay time at the 

corresponding gate voltages. Features P1 – P6 are marked in the charge-neutral cases (Vg = –4 V) in 

both c & i. The vertical green dashed lines (at 1.153 eV) mark the spectral position of T as seen 

from the CW RC results in Extended Data Fig. 8.  

 

For Device #5, the features corresponding to P4 and P6 are not visible even in the 

charge-neutral regime, as shown in Extended Data Fig. 10c. The expected features are 

likely buried in the absorption reduction bands caused by other nonlinear effects such 

as GSB (see Methods S6). For a more defined demonstration of those many-body 

signals, we deducted the inessential contributions from these unconcerned nonlinear 

effects (e.g. GSB) by analyzing the second-order TDAS (defined as: Δ(Δα) = Δαcross – 

Δαco) for Device #5 (Extended Data Fig. 10g – 10i). The similar data processing was 

performed in Ref. 31 to extract the bi-exciton signals. In this way, all the features of P1 
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– P6 become visible, especially in the charge-neutral regime, as shown in Extended 

Data Fig. 10i. The gate-dependent behavior of Δ(Δα) around the zero delay is 

consistent with that of –Δα as we see in Fig. 3b – 3k in the main text for Device #2. All 

these features show the dependency on the charge-neutrality, which provides the 

evidence for the charge-neutral entities.  

 

S8. Linear plot of the absorption of P1 – P6 and X vs. pump density  

 

 

Extended Data Fig. 11 | TDA with respect to the pump densities (Device #3). The signal of –Δα for 

X were obtained at ~ 1.171 eV (near X). The same results for the 6 fitted peaks were shown in a 

logarithmic scale in Fig. 4c in the main text. Here, all of these results are plotted in a linear scale.  
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S9. Possible reasons for the absence of P1 – P6 features for other ML-TMDCs  

1) In many of the papers for studying ML-TMDCs through ultrafast spectroscopy (e.g. 

TDAS or TDRS31,32, 2D coherent Fourier-transform spectroscopy35, etc), their samples 

were not gated and the samples are most likely not charge neutral. As can be seen in 

Fig. 3b – 3k in the main text, our features of P1 – P6 are the strongest at the charge-

neutral point, and become weaker with gate-induced doping.  

 

2) The second reason might be the spectral resolution. In our experiment, the spectral 

resolution is fine enough to identify the narrow peaks. While in other relevant papers32, 

their spectral resolution is 1 – 2 orders coarser than ours.  

 

S10. Two-band tight-binding k·p model  

The 2H-phase ML-TMDC is a direct-bandgap semiconductor with the valence band 

maxima (VBM) and the conduction band minima (CBM) located at the two groups of 

inequivalent corners of the hexagonal first Brillouin zone (FBZ). The gapped massive 

Dirac model proposed by Xiao et al36 has been proven successful in describing the band 

structures in the vicinity of the 3Ĉ  high-symmetry points K and K’. This model was 

also extensively used by many of previous theories, e.g. the spin-valley dynamics 

accounting for the inter- and intra-valley e-h exchange effects37 and the exciton-trion 

quantum coherent beating38. For the same k-mesh density, the dimension of a 2e2h 

4B Hilbert space is estimated to be four orders of magnitude larger than that of a 

conventional e-h 2B case. To avoid such an expensive computation, we adopted the 

low-budget tight-binding k·p model instead of a fully first-principle calculation.  

 

The two-band Hamiltonian including the SOC term can be expressed as  

( )
( ) ( )

( ) ( )
0

2

2

g v z x y

x y g c z

S at q iq
H

at q iq S

   

   

 − + +
 =
 − +
 

k k

k k

k .           (S3) 
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Here, k is the wavevector relative to the closest K or K’ point, εg is given by defined as 

( ) ( )( )1
2 CBM, CBM, VBM, VBM,g    

   
= + − +  , λv and λc correspond to the spin-orbit 

splittings of the valence and conduction bands, τk represents the valley pseudo-spin 

index equal to 1 (for K valley) or –1 (for K’ valley), Sz stands for the electronic spin index 

equal to 1 (for spin up) or –1 (for spin down). Accordingly, the product of τk and Sz can 

well describe the spin-valley locking effect. a is the in-plane lattice constant, and t is 

the effective nearest neighbor hopping integral.  

 

The electronic dispersions around the K or K’ point at the single-particle level can be 

written as  

( ) ( ) ( )
2

21 1 1 2
2 2 2v v c z g v c zS S atk       
 

 
 = + − − − + 
  
 

k k k ,      (S4) 

( ) ( ) ( )
2

21 1 1 2
2 2 2c v c z g v c zS S atk       
 

 
 = + + − − + 
  
 

k k k .      (S5) 

The corresponding wavefunction envelopes v k   and c k   are the linear 

combinations of the Mo-d orbitals, which read,  

 ( ) ( ) ( )exp cos 2 sin 2v v ci        = −
k kk k k k k ,           (S6) 

 ( ) ( ) ( )sin 2 exp cos 2c v ci       = + −
k kk k k k k ,          (S7) 

where the spinor basis is made up of 2 2:v
xyx y

d i d 
−

= +
k k  and 2:c

z
d =

k
, 

and k   and k   are defined as ( )
( )

2tan
2g v c z

atk
S


   

=
− −

k
k

  and 

( )tan y xq q =k . To further study the light-matter interactions, first it is important to 

calculate the inter-band transition matrix elements within the independent particle 

approximation (IPA). Here, we use the generalized Feynman-Hellman theorem to write 

the matrix elements,  

( ),
, 0
v c v cm H =k k k k kp k ,                  (S8) 
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where ( )0Hk k  explicitly expressed in the kx-ky coordinate as follows,  

( )
( )

( )
0

at i
H

at i





 +
 =
 −
 

k x y

k

k x y

0 e e
k

e e 0
 ,             (S9) 

with ex and ey denoting the unit vector of the kx- and ky-axis, respectively.  

 

S11. Ab-initio calculation for the electronic structure of the ML-MoTe2  

The ab-initio calculations for the electronic structure of the ML-MoTe2 were performed 

using the density functional theory (DFT) within the local density approximation (LDA), 

as implemented in the Quantum ESPRESSO package39. In addition, the effect of non-

collinear SOC was included with the spinor wavefunctions using fully relativistic norm-

conserving pseudopotentials. The pseudopotentials were generated with the 

ONCVPSP code40, explicitly including the Mo 4s and 4p semicore states. We assumed 

the in-plane lattice constant of 3.53 Å for the ML-MoTe2 as the starting point of our 

calculations. A slab model with a vacuum layer thickness of ~ 30 Å along the out-of-

plane direction was adopted to avoid the adjacent interactions between the periodic 

images. The geometric structure was fully relaxed in a non-spin polarized case with a 

uniform k-grid of 15 × 15 × 1, until the force on each atom was less than 0.002 eV·Å–1. 

The electronic density converged in a non-collinear SOC case with an energy cutoff of 

120 Ry and a k-grid of 30 × 30 × 1.  

 

Part of the parameters obtained from the DFT calculations are shown in Extended Data 

Fig. 12, with a ≈ 3.53 Å, εg ≈ 1.1 eV (converted from the DFT bandgap ~ 0.95 eV), λv ≈ 

222 meV, and λc ≈ 36 meV. t is evaluated to be ~ 0.66 eV under the parabolic 

approximation. These results are consistent with the previous studies29, which have 

been proven numerically reliable as the starting point of a many-body perturbation 

calculation.  
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Extended Data Fig. 12 | a, Side (top) and top (bottom) view of the lattice structure of the 2H-phase 

ML-MoTe2. b, Calculated electronic dispersions near the K point accounting for the effect of SOC.  

 

S12. Many-body perturbation theory  

S12.1. Two-body (2B) perturbation theory  

The correlated 2B wavefunctions ( 3 3e h , see eq. (2) in the main text) can be expanded 

by using the above-discussed single-particle basis (eq. (S6) & (S7)), written explicitly 

within the Tamm-Dancoff approximation (TDA) as  

( ) ( )
( )

3 3 3 3

3 3

,
3 3 ,

, ,

*v c v c

v c
e h A  =  3 3 3 3 3 3

3

k Q k k Q k
k

r r− − h e ,              (S10) 

where 3
re  and 3

rh  are the real-space coordinates of electron e3 and hole h3, 3 3,
,

v cA
3 3k Q k−  

is the coefficient of the 2B wavefunction expanded to the corresponding microscopic 

basis, and the vk and ck-like labels stand for the single-particle states associating the 

band indices of VB (v) and CB (c) with momentum k. 3 3,
,

v cA
3 3k Q k−   can be obtained by 

solving the standard 2-body Bethe-Salpeter equation (2B-BSE),  
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To correct the underestimated bandgap obtained from the DFT calculations, we use 

the G0W0 quasi-particle bandgap of the ML-MoTe2 of 1.77 eV29 and then applied a ~ 

0.82 eV scissor operator to our result. Unlike the GW calculation, the scissor operator 

leads to a simple shift of the bands without changing the band curvature. This could 

in principle be an additional source of error. It is noteworthy that 
QP
c k  and 

QP
v k Q−  in 

eq. (S11) stand for the electronic energies after the artificial alignment rather than 

restricted to the mean-field level. Additionally, a homogeneous broadening factor,  , 

is used to mimic the finite excited-state lifetime. 
, , ,
, , ,
v c v cW  

 k k k k  and 
, , ,
, , ,
v c c vV  

 k k k k  represent the 

screened and unscreened (bare) Coulomb interaction kernels and are written, 

respectively, as  

( ) ( ) ( ) ( ) ( ), , ,
, , ,

* * ,v c v c v c v c d dW w d d      

  
   =  k kk k k k k kr r r r r r r r ,       (S12) 

( ) ( ) ( ) ( ) ( ), , ,
, , ,

* * ,v c c v v c c v d dV v d d      

  
   =  k kk k k k k kr r r r r r r r ,       (S13) 

with ( ) 2,v e =r r r r−   being the unscreened Coulomb potential, and ( ),w r r  , 

the screened one defined in terms of the inverse dielectric function via 

( ) ( ) ( )1, , , dw v d−    = r r r r r r r   (for generality, d denotes the dimension of the 

system). The e-h exchange interactions are determined by the unscreened interaction 

kernel.  

 

The screened Coulomb potential in a 2D case is the standard Rytova-Keldysh 

expression41,42, i.e.  

( )
2

0 0
2 2 24 2 2D D D

ew H Y  


  

    
= − −    
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,            (S14) 

where ρ denotes the inter-particle distance, H0 and Y0 are the Struve function and the 

Bessel function of the second kind, and χ2D is the 2D polarizability ( χ2D = 11.715 for 

the MoTe2
28). It should be noted that the standard Keldysh potential is approximated 

at the zero-frequency (long-wavelength, or static) limit and thus cannot account for 

the dynamical screening effects. To simplify the following calculations, both of the 
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interaction kernels and the corresponding Coulomb potentials are transformed to the 

reciprocal space. Within the zero differential overlap approximation proposed by 

Berkelbach et al43, interaction kernels 
, , ,
, , ,
v c v cW  

 k k k k  and 
, , ,
, , ,
v c c vV  

 k k k k  can be rewritten as  

, , ,
, , ,

1v c v c v v c c
qW W   

   

  
 − k kk k k k k k ,               (S15) 

, , ,
, , ,

1v c c v v c c v
qV V   

   

  
 − k kk k k k k k ,                (S16) 

where  denotes the crystal area, q is the momentum transfer (including the Umklapp 

process), Wq and Vq can be explicitly expressed as 
( )

2

2

2
1 2q

D

eW
q q




= −

+
  and 

22qV e q= −  through the radial Fourier transform in a cylindrical coordinate. Both 

eq. (S15) & (S16) or the related approximations have been widely used to perform 

many-body perturbation calculations for excitons38,43,44 and trions38,44, which could 

give reasonably accurate results that agree well with those obtained from the fully 

first-principle GW-BSE calculations18,22.  

 

A fully first-principle GW-BSE approach could give more accurate results, where the 

precise bare Coulomb matrix elements and the dielectric function within the random 

phase approximation (RPA) can be quantitatively calculated. However, it would be too 

expensive to perform the four-body calculations in this paper. Therefore, we used a 

combination of the tight-binding k·p model and the approximate potential expression 

to reduce the computations. The validity of such a reduction scheme has been checked 

in Ref. 38 for the two- and three-body perturbation calculations.  

 

The final solution of eq. (S11) is the well-known excitonic Rydberg series. Using a 36×

36×1 Monkhorst-Pack k-grid and a Brillouin zone truncation scheme (the numerical 

techniques will be described in Methods S14), we obtained the full 2B spectrum, and 

then applied a scissor operator by aligning the 1s-X energy of the ML-MoTe2 to ~ 1.167 
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eV according to the experimental results. With the same scissor, the energies of the 

2p-X, 2s-X, … plasma (continuum band edge) were shifted to 1.296 eV, 1.325 eV and 

1.432 eV, respectively. These 2B states will be used to construct the dipole matrix 

elements with those of 4B states to obtain the possible spectral features and then to 

compare with the experimental measurements. It should be noted that here the 1s-X 

binding energy of 0.265 eV for the ML-MoTe2 was evaluated to be smaller than the 

previous theoretical result of 0.375 eV28. We attribute the margin to the relatively 

sparse k-grids for the Brillouin-zone sampling (~ 36×36×1 in our calculations. But 

generally, up to ~ 100×100×1 or even ~ 1000×1000×1 in Ref. 38). In fact, diagonalizing 

the many-body Hamiltonian matrix with a large number of k-grid points seems 

relatively easy for the 2B case, but it would become an exceedingly large 

computational challenge for the 4B case. Fortunately, the binding energies of high-

order correlated entities such as trions in TMDC systems are one order of magnitude 

smaller than that of excitons and are found to be much less dependent on the k-grid 

density38. We have also tested out a rapid convergence with a k-grid size of ~ 36×36×

1 (see Methods S14 for the results of the convergence tests), and we found the similar 

k-grid sizes were be used as well for the calculations of the trions and bi-excitons in 

Ref. 32,38,45. For these reasons, we adopted the k-grid of ~ 36×36×1 for all the many-

body perturbation calculations in this paper.  

 

S12.2. Four-body (4B) perturbation theory  

The 2B-BSE discussed above is used to study the e-h 2B excitations from the ground 

state (vacuum) of those charge-neutral systems. Beyond the conventional 2B 

formalism, the 3-body Bethe-Salpeter equation (3B-BSE)18,38,44 has been developed to 

describe the trions and their fine structures in doped systems. Our results by solving 

such 3B-BSE are shown in Fig. 5a in the main text. However, dealing with 4B states 

along the same line of the approach involves much more challenges in both of 

theoretical description and numerical simulation. We have seen so far only two 
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published papers deriving the 4B perturbation equations, both of which are devoted 

to the bi-exciton fine structures that are spectrally located between T and X as the 

results of the e-h exchange interactions32,45. To account for the new rich features seen 

both below and above T (between T and X) in our pump-probe experiments, 

developing a more general 4B perturbation theory, by studying the 4-body Bethe-

Salpeter equation (4B-BSE), is quite necessary, which has been less understood ever 

before to the best of our knowledge.  

 

Similarly to the 2B case (see Methods S12.1), we express the 4B state ( 1 1 2 2e h e h , see 

eq. (1) in the main text) explicitly by including the real-space amplitudes46,  
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Here, 
1
re  , 

1
rh  , 

2
re   and 

2
rh   are the real-space coordinates of electrons e1, e2 and 

holes h1, h2, 1 1 2 2, , ,
, , ,

v c v cB + − −1 1 2 2k q Q k k q k  is the amplitude of the component in “e1h1e2h2” many-

body Hilbert space corresponding to a doubly excited-state manifold whereby e1 is 

created at the single-particle state (c1, k1), h1 is created at (v1, k1 + q – Q), e2 is created 

at (c2, k2), and h2 is created at (v2, k2 – q), with the total momentum of Q. As can be 

seen, the microscopic basis is constructed as the direct product of the e1e2 and h1h2 

determinants. Therefore, eq. (S17) fully exhibits the exchange symmetries between 

the two electrons or two holes. 1 1 2 2, , ,
, , ,

v c v cB
1 1 2 2k q Q k k q k+ − −  are determined by the following 4B-

BSE,  
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In both the 2B- and 4B-BSEs discussed above, we implicitly assumed the interaction 

kernels conserve the spins and total momenta for all the many-body states. The total 

momenta of the 2B and 4B states (defined as the sum of the momenta of all the 

electrons minus that of all the holes) in eq. (S10), (S11), (S17), & (S18) are limited to 

Q. To simulate our pump-probe experiments, Q was restricted to zero due to the 

negligible momenta carried by the pump and probe photons. To avoid double counting 

during the calculations, we used a similar counting method for our 4B states to that 

for the 3B states in the previous studies18,38,44.  

 

S12.3. Relationship between the 4B-BSE and the cluster expansion model  

To systematically categorize the interaction kernels and better understand the essence 

of the 4B perturbation equation, we translate eq. (S18) into the Feynman 

diagrammatic representation. Equation (S18) is schematically illustrated in Extended 

Data Fig. 13a. Extended Data Fig. 13b depicts all the e-h, e-e, and h-h screened 

interaction kernels (the correlation terms in the self-energy). Here, it should be 

pointed out that the e-e and h-h exchange interactions are screened, while the e-h 

exchange interactions (the exchange terms in the self-energy) are unscreened. These 

unscreened interaction kernels are not listed for brevity. In fact, their absence will not 

affect the later understanding of the 4B perturbation picture. Historically, the 2B-BSE 

was diagrammed by using the ladder approximation. Here, by converting the self-

consistent equation in Extended Data Fig. 13 into the infinite series expansion in 

Extended Data Fig. 14, the complicated 4B interaction can be also understood as the 

infinite summation of the quadrupled ladders (virtual scatterings) from order-1, 2, … 

up to ∞. The above-mentioned interaction kernels in Extended Data Fig. 13b are 

exactly the 1st-order virtual scatterings, which are regarded as the most elementary 

constituent of the higher-order virtual scatterings shown in Extended Data Fig. 14. 

These stacking ladders can be divided into several different partial summations. For 

the diagrams in each of the partial summations, it is exactly the same several 

propagators that are fully linked. Consequently, each partial summation can be 

considered equivalent to the corresponding term in the cluster expansion model (see 
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also Fig. 1 in the main text). Finally, the many-body Hamiltonian is constructed by 

summing up all of them (the clusters of different orders). From the viewpoint of a 

unitary transformation, the final 4B eigen states obtained by diagonalizing the many-

body Hamiltonian above are explicitly the linear combinations (eq. (S17)) of those 4B 

microscopic basis, but not the strict linear superpositions of the base vectors in the 

simplified model in Methods S1.  

 

Additionally, there is a fairly good consistency between our theory of the 4B-BSE and 

the dynamics-controlled truncation scheme within the coherent χ(3) limit32,47-49. So, our 

theory is more suited for describing the initial generations of the correlated 4B entities 

around the zero pump-probe delay (t ≈ 0 ps), rather than the incoherent cases where 

the 2B states are formed by those of hot carriers (e.g. PL of the bright-dark bi-exciton 

in ML-WSe2 or ML-WS2).  
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Extended Data Fig. 13 | a, Schematic of the self-consistent equation for the correlated 4B system. 

b, Feynman diagrammatic representations of the screened interaction kernels (labelled as (ⅰ) - 

(ⅵ)) included in the off-diagonal elements of the microscopic many-body Hamiltonian (eq. (S18)). 

The unscreened interaction kernels are skipped here for brevity. The dashed-line box in a is further 

detailed by the diagrams in b. For all the diagrams in b, their signs (positive or negative) derived 

from the fermionic permutations are not illustrated but given in details in eq. (S18).  
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Extended Data Fig. 14 | Schematic of the infinite series expansion for the correlated 4B system 

and its correspondence to the cluster expansion model in Fig. 1 in the main text. We only include 

the inter-valley cases for brevity, with the K- (spin-up) and K’- (spin-down) valley electrons colored 

in blue and red, respectively. The summations of the high-order virtual scatterings are classified 

according to their correspondences to the terms of different orders in the cluster expansion model. 

Also for the sake of brevity, the diagrams involving the unscreened interactions are not shown.  

 

S13. Theoretical calculation for the absorption spectra  

The absorption spectra of the 2e2h 4B system are determined by all the possible 2B-

4B polarizations, which are given by the dipole matrix elements between the various 

2B states and the corresponding 4B states. As illustrated in Fig. 2a in the main text, the 

pump pulse produces a mixture of 2B states (maybe including 1s-X, 2p-X, 2s-X, … 

plasma) as initial states for the probe process. Absorption of a probe photon leads to 

a transition from one of those 2B states (the initial states) to one of the 4B states (the 

final states). Or in other words, the formation of the 4B states intimately relates to 
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those of 2B states. Therefore, first we need to consider among all the 2B states which 

ones should be included in the theory.  

 

With increase in the pumping density, the 2B states gradually deviate from the pure 

1s-exciton gases, and therewith possibly undergoes other processes: e.g. the 1s-

plasma Mott transition50-52, the 1s-ns upconversions24, or the 1s-np intra-excitonic 

transitions53. According to the recent experiments, the time scales are reported to be 

about 0.1 – 1.0 ps for the ultrafast Mott transition52, and 0.7 ps to reach the quasi-

equilibrium among the 1s-np transitions53. The time scales of their occurrences are 

within the life span (~ 1 ps) of the possible many-body features observed in our 

experiments. That’s say, besides the 1s excitons, these of other e-h 2B states (i.e. 2p-

X, 2s-X, … plasma) should be also considered in the theory.  

 

We note that the processes of the 1s A exciton scattering to the dark exciton or the B 

exciton would take relatively longer time (estimated to be more than 1 ps for MoS2 in 

Ref. 54). Moreover, the CB splitting is much larger for MoTe2 than for MoS2, thus the 

above scattering time would be longer for MoTe2 than for MoS2. Therefore, the dark 

exciton and the B exciton with higher single-particle energies are considered not to 

contribute considerable proportions to the 2B-state mixture in the “soup” around the 

zero delay. This will be extensively discussed later in Methods S14.  

 

Based on the above understanding, we concern all the single-particle basis only from 

VBM and CBM (see Methods S14). The 2B states, 3 3e h , including the 1s-X, 2p-X, 2s-

X, … plasma with the corresponding energies 
3 3e h  are solved from the conventional 

2B-BSE (eq. (S11)), and the 4B states ( 1 1 2 2e h e h


) with the αth energies 
1 1 2 2e h e h
  are 

calculated from the 4B-BSE (eq. (S18)) (see Methods S14 for the numerical techniques). 

The polarization operator is written as 
( )

, ?
,

, , ,

ˆ ˆ ˆv c
c v

v c

a a=  kk k k
k k

p p  , where 
,
,
v c
k kp   is the 

dipole matrix element as defined in eq. (S8) & (S9). The 2B-4B polarization (eq. (4) in 
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the main text) is then given as  
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where factors ijk   ( 123 312 231 1  = = =  , or –1 otherwise) are derived from the 

canonical relations of the creation-annihilation operators. The absorption spectrum is 

finally given by the Fermi’s Golden Rule,  

( )1 1 2 2 3 3

2

2 3 3 1 1 2 2
2

ˆ e h e h e he h e h e h i





       − − −

k
e p .   (S20) 

Here, e denotes the unit vector of the in-plane electric field component for the normal 

incident field,   stands for the photon energy, and Γ represents the broadening 

function, where the artificial broadening constant, , is also introduced here. In the 

calculations, we assume the 2B states are only located at the K’ valley (e.g. locked with 

σ– circularly polarized photon). In this way, the spectra of the transitions between 

these 2B states to the inter- or intra-valley 4B states can be obtained by configuring 

the probe photons (e) to be σ+ or σ– circularly polarized, respectively (see Extended 

Data Fig. 15 for the calculated helicity-resolved spectra).  

 

S13.1. Calculation for the absorption spectra from different 2B states  

Extended Data Fig. 15 shows the calculated absorption spectra for the 2B-4B 

transitions between the different 2B states (1s-X, 2s-X, and plasma) and the 

corresponding inter- (σ– σ+) and intra-valley (σ+ σ+) 4B states. The convergence 

behaviors of the similar spectra are shown in Methods S14, Extended Data Fig. 19. 

Extended Data Fig. 15c & 15f also shows the experiment-theory comparison. It is 
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important to point out that the actual absorption spectrum (or the experimental 

observation) should be determined by an appropriately weighted summation over all 

the spectra such as those in Extended Data Fig. 15a – 15c (more specifically, all the 

spectra in Extended Data Fig. 17c) or 15d – 15f. The intuitive illustrations can be seen 

in Fig. 5g – 5j in the main text and also Extended Data Fig. 18. In other words, it is 

insufficient to compare the experimental measurement to only one of these 

theoretical spectra (e.g. a direct comparison between the experimental measurement 

and the theoretical spectra in Extended Data Fig. 15c or 15f is not strictly true).  

 

A 1s-X spectral peak will be obtained if the 2B initial state is a 1s-X, 2s-X, … or plasma 

and the 4B final state is a non-interacting (1s-X)(1s-X), (1s-X)(2s-X), … or (1s-X)(plasma), 

respectively, i.e. correspondingly those of △2 △2   clusters without wavy lines (see 

Methods S1). Specifically for Fig. 5d & 5e in the main text, peak 2 (in Fig. 5d) and peak 

7 (in Fig. 5e) correspond to a (1s-X)(1s-X) and (1s-X)(plasma) without interactions, 

respectively. Such a similar sequence of 2B-4B transitions all mark the 1s-X line, as 

shown in Extended Data Fig. 17a & 18a. Besides the 1s-X spectral peak, some 

additional features will be obtained if the final states are related to other clusters such 

as △4 , etc, beyond △2 △2 .  

 



42 
 

 
Extended Data Fig. 15 | a – f, Calculated absorption spectra for the 2B-4B transitions between the 

different 2B states (1s-X (a & d), 2s-X (b & e), plasma (c & f)) and the inter- (σ– σ+) (a – c) and intra- 

(σ+ σ+) (d – f) valley 4B states. The transition spectra with the same 2B states are shown in the 

same row to compare the cross- (σ– σ+) (left) and co- (σ+ σ+) (right) circularly polarized 

configurations. To show the broadening effects, two values, 0.5 and 2.0 meV, are used in the 

Gaussian broadening function (eq. (S20)) for comparison, corresponding to the unfilled and filled 

spectral profiles, respectively. The same T line with that in Fig. 5a – 5f in the main text, and the X 

line are marked with the green and blue dashed lines, respectively. The experimental differential 

absorption shown in Fig. 3d & 3i in the main text is reproduced in c & f and horizontally aligned 

well with the calibrated energy axis.  

 

There are several points that can be directly concluded from Extended Data Fig. 15:  

1) As can be seen for the same 2B states (the same rows), the spectral features below 

X are much richer for the (σ– σ+) case (Extended Data Fig. 15a – 15c) than for the (σ+ 

σ+) case (Extended Data Fig. 15d – 15f). The similar polarization contrast has been 

observed as well in our experiments for Device #1 (Extended Data Fig. 6a), #2 (Fig. 3d 
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& 3i in the main text), #4 (Extended Data Fig. 7a & 7b), & #5 (Extended Data Fig. 10c & 

10f).  

2) If the 2B initial state is a 1s-X, there is a spectral peak between T and X (Extended 

Data Fig. 15a, see also Fig. 5d in the main text), corresponding to the inter-valley 4B 

state. While no peak exists below X for the intra-valley configuration (Extended Data 

Fig. 15d).  

3) If the 2B initial state is a 2s-X or a plasma and the 4B final states are the inter-valley 

ones, there are quite a few peaks below X. Besides the ones emerging between T and 

X, some peaks also newly occur below the T peak (Extended Data Fig. 15b & 15c, see 

also Fig. 5e in the main text).  

4) If the 2B initial state is a 2s-X and the 4B final states are the intra-valley ones, the 

spectrum is featureless below X (Extended Data Fig. 15e), similarly to the case of the 

1s-X (Extended Data Fig. 15d); While if the 2B state is a plasma, quite a few peaks exist 

below X: some between T and X, and the others below T, corresponding to those of 

intra-valley 4B states (Extended Data Fig. 15f).  

To intuitively display the 2B-4B transitions, the spectra in Extended Data Fig. 15a – 15c 

are also shown in Extended Data Fig. 16 at the total energy level.  

 

We observed the features that are spectrally below T (P1 – P4) and also between T and 

X (P5 – P6). According to the theoretical results we described above, the observation 

of P1 – P4 means that the e-h “soup” excited by the pump pulse included those of the 

highly excited 2B (e.g. 2s-X and plasma) and 4B states. Or in other words, the e-h “soup” 

included not alone the most ground state of the 2B and 4B manifolds, e.g. was not a 

pure 1s-X gas. The occurrences of P1 – P4 reveal the continuous Mott transition at that 

time the system was undergoing. Combined with the later discussions in Methods 

S13.2, the polarization contrasts shown in Extended Data Fig. 15c & 15f appear to be 

sharper for △4   and △3  ~△1   than for △2  ~△2  . It is not difficult to draw another 

conclusion that the polarization contrasts for all of △4  , △3  ~△1  , and △2  ~△2   are 

sharper than for the △2 △2   and △2 △1 △1   continuums, i.e. there are almost no 
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such polarization contrasts for those spectral peaks in the very vicinity of X. Therefore, 

the 4B physics add information and complexity to the highly excited e-h system and 

thus provide new aspects one can further look into.  

 

So far, the coexistence of these e-h 2B states and other possible high order excitonic 

complexes in a continuous Mott transition is less understood. In the e-h “soup” (Fig. 

2a in the main text), the 4B entities such as a 1s-X binding to another 1s-X, 2p-X, 2s-

X, … plasma have not been studied before beyond those of conventional bi-excitons 

and excited-state bi-excitons. What we have done in the experiments is to find new 4B 

entities or new 2B-4B transitions by using the 1s-X as a probe. We explored the exotic 

few-body entities beyond the well-defined excitons, trions, and bi-excitons, and thus 

we newly saw some details in a continuous Mott transition. This will be extensively 

discussed in the next Section (Methods S13.2).  

 

 

Extended Data Fig. 16 | Energy positions of some typical 2B and 4B states calculated from the 

theory. The 2B-4B transition spectra in Extended Data Fig. 15a, 15b, & 15c are marked at both of 

the total energy level (right side of ←) and the spectral energy level (left side of ←). Notation ■ 

and □ mark the 2B initial states and 4B final states, respectively.  
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S13.2. Absorption spectra with the Hamiltonian truncated up to different orders  

As has been discussed in the main text, the full 4B interaction can be expanded in 

terms of clusters △1 △1 △1 △1 , △2 △1 △1 , △2 △2 , △3 △1  and △4 . It is important 

to show that cluster △4  is indispensable for the spectral features observed in our 

experiments. To show the necessity of cluster △4   in producing those low-energy 

spectral features, we truncated the Hamiltonian up to different orders of clusters and 

compared the corresponding spectral features for each of the 15 2B states (1s-X, 2p-X, 

2s-X, … plasma) solved from eq. (S11). All the results are demonstrated in Extended 

Data Fig. 17. The convergence behaviors of the similar spectra are shown in Methods 

S14, Extended Data Fig. 19. The changes from each time one more cluster of higher 

order introduced (see Methods S1), are demonstrated both in the total energy scales 

and the optical spectra, as shown in Extended Data Fig. 18 (the 6 examples, selected 

out of all the 15 cases).  
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Extended Data Fig. 17 | Calculated 2B-4B transition spectra with the Hamiltonian truncated up to 

different orders of clusters △2 △2   (a), △3 △1   (b) and △4   (c) from the 15 2B states to the 

corresponding inter-valley 4B states.  
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Extended Data Fig. 18 | Schematic of the changes that occur both in the total energy spectra and 

the optical transition spectra, from each time one more cluster of higher order introduced. The full 

Hamiltonian is truncated up to different orders of clusters △2 △2  (a), △3 △1  (b) and △4  (c) (see 

also Fig. 5g – 5j in the main text). As examples, 6 typical cases are selected out of all the 15 2B 

states in Extended Data Fig. 17, and used to demonstrate the 2B-4B transitions (transitions ① – 

⑥), the corresponding total energy spectra (left side of each figure), the optical spectra (bottom 

side), and the “collapsed” spectra (bottom left corner). The calculations for T–h (shown in b) and 

its counterpart, T+e, gave the identical results. So we only illustrated the former in b for brevity.  

 

The details of our procedure are described as follows:  

Case 1: Truncation up to △2 △2 : We set to zero the kernels marked by (ⅰ), (ⅱ), (ⅳ), 

and (ⅴ) in Extended Data Fig. 13, together with all the associated unscreened ones. 

After diagonalizing the truncated Hamiltonian, we calculated the absorption spectra 

for the 2B-4B transitions from each of the 2B states, with the results shown in 

Extended Data Fig. 17a & 18a (see also Fig. 5b in the main text). Within this level, there 

are no other spectral features below X. We noticed that the same method was adopted 

in Ref. 32 to extract the total 4B energy of the independent exciton-exciton pair, i.e. (1s-

X)(1s-X).  
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Case 2: Truncation up to △3 △1 : In this case, we set to zero the kernels (ⅳ) and (ⅴ) 

in Extended Data Fig. 13, together with all the associated unscreened ones. In this way, 

h2 is intentionally left fully independent from e1 and h1, and also ionized together with 

e2 due to the 2B wavefunction given the plasma state, although here they are still 

considered linked with each other. The results are shown in Extended Data Fig. 17b & 

18b (see also Fig. 5c in the main text). We see in this special case, the 2B-4B transition 

spectra from the 12 2B states with lower energies are left blank in Extended Data Fig. 

17b. The reason is that clusters △3 △1  have the total 4B energies much higher than 

many of △2 △2  (In 2D TMDCs, the binding energies of X are always one magnitude 

larger than T). So it is impossible for the 2B states with relatively lower energies (e.g. 

1s-X, 2p-X, 2s-X) binding to another 1s-X to form the high-energy 4B entities such as 

clusters △3 △1 , unless these 2B states are given around the plasma (e.g. 13 – 15 in 

Extended Data Fig. 17b, see also Extended Data Fig. 18b). For the 3 cases with number 

13 – 15, there are new spectral features emerging between T and X, but no obvious 

features below T.  

Case 3: The full Hamiltonian up to △4 : The results are shown in Extended Data Fig. 

17c & 18c (see also Fig. 5d & 5e in the main text). We see clearly in this case there are 

new spectral features emerging below and near the T resonance. The fully correlated 

quadruplet term △4 , as the highest-order cluster in the 4B cluster expansion, has two 

prominent effects. First, this term leads to the appearance of new spectral features 

well below the T resonance, corresponding to the 4B irreducible entities: quadruplons. 

Second, this term results in the coupling between the clusters of different orders, i.e. 

△3 △1  and △2 △2  (without the wavy lines), or in other words, the generation of △3

~△1  , △2  ~△2   and other lower-order clusters (with the wavy lines). For reference, 

both of the two effects described above are well generalized by the simplified model 

in Methods S1.  
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Based on above content, we can extend the definition of the 4B “bound” states. For 

example, the features below X in Extended Data Fig. 15b & 15c correspond to the 4B 

entities that are energetically lower than the (1s-X)(2s-X) (or △2 △2  ) and (1s-

X)(plasma) (or △2 △1 △1  ) continuums, respectively (see transitions ③ & ⑥ in 

Extended Data Fig. 18, respectively). Thus, it is true that these entities are the bound 

states when compared with the (1s-X)(2s-X) and (1s-X)(plasma) continuums, 

respectively. However, they can be also regarded as the highly excited states when 

compared with the (1s-X)(1s-X) continuum. The 4B irreducible cluster can always lead 

to new “bound” states at the very different total-energy scales (energetically extending 

from the most ground state up to the highly excited state of the 4B manifold).  

 

From Extended Data Fig. 17 & 18, the conclusion can be drawn that the 4B irreducible 

cluster, △4  , or the quadruplon is necessary and sufficient in producing all the 

experimental spectral features. For each of the same 2B states, the corresponding 4B 

irreducible entities (cluster △4  ) has lower energies and are thus more stable than 

those of △2  ~△2  (BX) and △3  ~△1   (T+~e and T–~h), indicating the most stable 

existence of the quadruplon. It is also important to point out that for each of the 2B 

states with very different energies, the 4B spectrum can be always identified as a 

sequence of the “bound” states, i.e. △4  , △3  ~△1  , △2  ~△2  , and △2  ~△1  ~△1   (for 

the high-energy excited states), or △4   and △2  ~△2   (for the low-energy excited 

states. The description of “bound” states means that the states have lower total 4B 

energies than the corresponding △2 △2   or △2 △1 △1   continuums. We see 

surprisingly the 4B cluster expansion physics can occur at the total energy scales with 

large disparities (several hundred meV), but finally were captured by the dressed 

excitonic spectroscopy with the spectral range of ~ 40 meV.  
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S14. Numerical techniques and the convergence tests  

First of all, we point out again the difference between the band structures of Mo- and 

W-based monolayers and the related consequence. For the zero-momentum 

excitations, it is the bright 2B states that occupy the energetically lowest bands for the 

Mo-based monolayers, while is the spin-forbidden dark 2B states for the W-based 

monolayers. Thus for the W-based monolayers, the well-defined bi-exciton states, such 

as the bright-dark bi-excitons6,7,20,21,55 and the brightened dark-dark bi-excitons19, are 

energetically lower than the bright-bright ones. Such property is easy to cause the 

rapid scattering (relaxing from the bright-bright states to the bright-dark or dark-dark 

ones) and lead to the low-energy spectral features for the W-based materials. While 

for the Mo-based materials, the bright-dark and dark-dark bi-excitons are energetically 

higher than the bright-bright ones. So the scattering process described above for the 

W-based systems becomes quite difficult for the Mo-based systems (see also Methods 

S4 & S13). We observed the low-energy spectral features (P1 – P4) for the ML-MoTe2, 

the possibility can be greatly avoided that they are caused by the bright-dark and dark-

dark bi-excitons. And also for the purpose of reducing the computations, we 

concerned all the single-particle states in the theoretical model to be restricted to CBM 

and VBM.  

 

As we know, the 1s excitons and the related trions and bi-excitons are wannier-type 

excitations and well localized in the vicinity of K and K’. Therefore, a Brillouin zone 

truncation scheme32,38,45 was applied to further reduce the computational load. The 

reduced single-particle basis was determined by a circle around the K and K’ points 

with the radius of kmax. We used the Monkhorst-Pack mesh to perform the 

discretization for the Brillouin zone. The diagonalization of the extremely large many-

body Hamiltonian matrices were performed by utilizing an iterative Krylov space 

method as complemented in the SLEPc package56 for the PETSc toolkit57.  

 

To show the robustness of the results against kmax, we performed the convergence test 

of the results with the same k-grid of 33 × 33 × 1 over different kmax = 0.199, 0.227, & 
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0.255 Å–1 (Extended Data Fig. 19a – 19c). The results show reasonably good 

convergence with a linewidth-broadening larger than 0.5 meV at kmax = 0.227 Å–1. Here, 

we discuss the applicability and the reliability of the k-space truncation scheme to 

describe the higher Rydberg states of excitons (2p-X, 2s-X, … plasma). These highly 

excited 2B states were calculated in Ref. 43 by using the 2- and 3-band model with the 

full FBZ included. Despite calculating without the k-space truncations, the k-space plot 

of the product 𝐴𝑣𝑐
𝑋 (𝒌)𝑃𝑣𝑐(𝑘) showed that the polarizations for those of 2p-X, 2s-X, 

and 3d-X are also in the vicinity of K and K’ similarly to the case of 1s-X43. The spectrum 

containing such a series of 1s-X, … plasma in Ref. 43 was well reproduced in Ref. 38 by 

using the k-space truncation. Therefore, we believed the reduced model could give the 

reasonably reliable results for those of higher excitonic Rydberg states and the related 

3B and 4B entities. To consider the accurate influences of the side valleys (e.g. Q, Γ, 

M, etc), a fully fist-principle calculation should be further performed with the entire 

FBZ included.  

 

Extended Data Fig. 19d – 19f show the convergence tests of the 2B-4B transition 

spectra with respect to the k-mesh densities. For brevity, only three cases are 

demonstrated as representations, i.e. for the energetically lowest one (Extended Data 

Fig. 19d) and for the energetically highest one (Extended Data Fig. 19e & 19f) among 

the 15 cases in Extended Data Fig. 17. Extended Data Fig. 19g – 19i show the 

comparisons of the spectra with the Monkhorst-Pack mesh shifted 1/2 grid (K(K’) 

included) or not (K(K’) excluded). As can be seen, the results have a reasonable 

convergence behavior with the k-grid of ~ 36 × 36 × 1, and the calculated spectral 

features are not sensitive to the different schemes of the Monkhorst-Pack k-grids. The 

similar k-grid density (e.g. ~ 39 × 39 × 1), typically used in Ref. 45, proved sufficient for 

the many-body perturbation calculation for BX. In fact, such a level of k-grid density 

has nearly reached the upper limit of our current computation ability.  
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Extended Data Fig. 19 | a – c, Convergences of the 2B-4B transition spectra for the ML-MoTe2 

testing over various k-space truncation radius. d – f, Convergences of the spectra testing over 

various k-mesh densities. g – i, Comparisons of the spectra calculated with the Monkhorst-Pack k-
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mesh shifted 1/2 grid or not. In cases of a, d, & g, the 2B states are the 1s-X and the 4B states are 

solved from the full 4B-BSE. In cases of b, c, e, f, h, & i the 2B states are identically the plasma, but 

the 4B states are solved from the 4B-BSE truncated up to △3 △1  (b, e, & h) and △4  (c, f, & i). 

The green and blue dashed lines mark the calculated energies of the trion (T) and exciton (X). The 

Gaussian broadening parameter, γ (eq. (3) in the main text), is chosen to be 0.5, 1.0, 2.0, & 3.0 

meV for comparisons.  

 

 

Extended Data Fig. 20 | Numerical convergence of the energy difference between peak  and  in 

Fig. 5d in the main text testing over various k-mesh densities with (red) or without (black) 

accounting for the e-h exchange. For better comparisons, the calculated binding energy of T (EbT) 

is marked with the green dashed line.  

 

Extended Data Fig. 20 shows the convergence test of the energy difference between 

peak  and  in Fig. 5d in the main text with respect to the k-mesh densities for the 

two cases, with or without the e-h exchange interactions. Both the values converge to 

10 – 15 meV (within 2 meV accuracies), thus are smaller than the converged binding 

energy of T (Ebt: ~ 21 meV, as marked by the green dashed line). The result shows a 

good consistency with the previous Monte-Carlo calculation28. The convergence 

trends versus the k-mesh densities can be seen with the similar accuracies in Ref. 32,45 

for the many-body perturbation calculation for BX.  
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Extended Data Fig. 21 | a, b, c, Numerical convergence of the 2B and 4B total energies and 

corresponding exponential fittings versus k-mesh density, with zoom-in figures shown in b & c. The 

horizontal lines mark the asymptotic line (converged values) of the exponential fittings. d, 

Numerical convergence of the energy difference (same to Extended Data Fig. 20), shown together 

with the difference between the two fitting lines (blue and black lines in a – c). The green band 

marks the accuracy of ± 2 meV around the converged value.  

 

We performed the calculation of the 2B states using a much grid size, up to 100 × 100 

× 1. As shown in Extended Data Fig. 21a, the 2B total energy converges at the grid size 

of ~200 × 200 × 1. Since performing calculation for the 4B states using such a large grid 

is not feasible with our computational resources, we assumed that the 4B total 

energies converge similarly to that of 2B states with the increase of k-grid size. The 

limited 4B calculation results are then fitted using similar grid-size dependence to that 

of the 2B states. Such fittings are shown in Extended Data Fig. 21a, with a zoom-in 

figure shown in Extended Data Fig. 21b. Extended Data Fig. 21c shows the fitting to 

large grid-size. As one can see there, the 4B total energies converge at quite large grid 

size, similarly to the 2B case. However, the energy difference between the two total 
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energies converge much more quickly, as shown in Extended Data Fig. 21d. For the grid 

size used in our paper, 39 × 39 × 1, the energy difference is within 2 meV of the 

converged value, as shown in Extended Data Fig. 21d. Therefore, we believe that the 

grid size that we used is sufficient for the energy difference that is the key quantities 

of the concern of our paper. We note that the grid sizes that we used are at the similar 

level to those in the literature32,45. We also would like to mention that similar 

conclusion about the quicker convergence of the energy differences than the total 

energies was also confirmed and discussed in Ref. 38 for the calculation of the 3B states.  

 

S15. Other possible origins of new spectral features  

1) Defects and phonon replicas:  

ⅰ) Spectral features from defects4,6-8,55,58 and phonon replicas9-12 were found for other 

ML-TMDCs in the similar spectral range to our P1 – P6 as emission peaks in PL spectra, 

or through theoretical calculation for defect absorption23. However, we have not seen 

report of the observation of exciton phonon replicas in TDAS or TDRS in pump-probe 

spectroscopy, even though defect-related effects were identified on carrier scattering 

or cooling time in pump-probe spectroscopy59-63. However, it seems that pump-

induced peaks from defects or phonon replicas have not been seen in TDAS. In addition, 

none of the defect- or phonon-assisted processes in those papers4,6-12,23,55,58-63 could 

explain the polarization contrast of P1 – P6 seen in our experiments in, e.g. Fig. 3d and 

Fig. 3i in the main text.  

ⅱ) Even if we suppose defects or exciton phonon replicas could contribute to GSA peaks 

in the TDAS, the GSA processes, e.g. 0B-2B transitions (the 2B state is possibly trapped 

by defects or dressed by phonons), would decrease with pump, similar to exciton 

bleaching, known as Pauli blocking or GSB. While the key features of P1 – P6 we 

observed show increasing absorption with pump (for the reverse trends of the 

absorptions of P1 – P6 and X with increase in pumping, see Extended Data Fig. 11, 

Methods S8) in contrast to the typical GSA trend, thus the GSA related to defects or 

exciton phonon replicas can be excluded.  

ⅲ) Very few closely-related papers (e.g. Ref. 61) that we searched in literature reported 
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the study of influence of possible defect ESA process but not discussing about possible 

spectral peaks. In this paper, the ESA effect was evaluated for MoS2 to occur likely at 

E1s-X – Eprobe ≈ 1.83 – 1.31 = 0.52 eV = 520 meV below 1s-X, corresponding to a possible 

ESA transition from defect exciton state to continuous-absorption edge. If such an ESA 

occurred to MoTe2, they would be spectrally located at Eg – Edefect ≈ 1.80 – 1.14 = 0.66 

eV, or ~660 meV below 1s-X, similarly so much to the case of MoS2. However, we point 

out that the measured spectral range of interest here is ~40 meV below 1s-X, such that 

the above ESA effect is not expected in this spectral range. As only our own speculation, 

possible ESA processes related to defects or exciton phonon replicas could correspond 

to 2B-4B transitions, where the 2B and 4B states are possibly trapped by defects or 

dressed by phonons. Such ESA processes and associated spectral peaks have not been 

studied or even discussed in the literature. Even if we suppose defects could contribute 

in this way to ESA peaks in the TDAS, since the defect density of ML-TMDCs varies from 

5 × 1010 cm–2 (Ref. 7) to 1011 – 1012 cm–2 (Ref. 23,64), below the highest pumping level of 

ours up to 1.6 × 1013 cm–2, it is reasonable to expect that those ESA peaks would 

increase first and saturates eventually for samples with low to moderate levels of 

defects (such as our best samples). However, such deduction about defect ESA trend 

versus pump density is contradict to the results shown in Fig. 4 in the main text, where 

most of P1 – P6 is still growing with increase in pumping at the level of 1.6 × 1013 cm–2. 

Thus, the ESA related to defects can be excluded. In addition, our theory does not 

include any defects while producing good agreements with our experiments without 

adjusting any material parameters.  

ⅳ) We performed similar PL (to Ref. 4,6-8,55,58) and absorption spectra measurements 

to assess the quality of our ML-MoTe2 samples. Specifically in PL experiments, we used 

a CW laser and a femtosecond pulsed laser to excite the materials, corresponding to 

weak- and strong-excitation densities, i.e. 108 – 9 and 1013 (similar to the pump density 

used in the pump-probe experiments) cm–2, respectively. As can be seen in Extended 

Data Fig. 2i, 2j, 3a, 3b, & 4, we did not observe any emission or absorption peaks of 

defects or phonon replicas for those pre-screened ML-MoTe2 samples with high quality. 

We did not either observe emission peaks from defects showing up under the strong-
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excitation density in Extended Data Fig. 4.  

ⅴ) In connection with ⅲ) & ⅳ), since we did not observe phonons assisting those of 

0B-2B transitions (GSA) or any excitons dressed by phonons, it would be ever more 

difficult to observe phonon effects in those of weaker 2B-4B processes (ESA). Thus, the 

ESA related to exciton phonon replicas can be excluded.  

For the above reasons, we exclude defects and phonon replicas as potential origins of 

the spectral features of P1 – P6.  

 

2) Emission signals:  

Since our observed signals show increased absorption (–Δα＜0) with pump, those 

emission processes can be excluded. In principle, none of emission signals can be 

recorded as time-resolved signals by the standard pump-probe setup based on the 

lock-in technique (see Extended Data Fig. 5, where the possible PL signals do not pass 

through the delay line and thus the delay time associated with PL cannot be obtained), 

usually such time-resolved emission processes have to be measured by a time-

correlated single photon counting (TCSPC) setup, which was not used in our 

experiments.  

 

3) Fluctuations of laser powers:  

As discussed in more detail in Methods S5, the data fluctuations caused by the laser-

power jitters were evaluated to be two orders smaller than the actual features.  

 

4) Non-linear effects:  

ⅰ) Absorption increase caused by, e.g. BGR:  

The non-linear effects such as BGR were discussed in the main text (Fig. 3l – 3n) and 

Methods S6 (Extended Data Fig. 7). BGR always causes a redshift for X with pump and 

thus leads to an asymmetric line-shape (negative and positive bands) around X in TDAS. 

As a significant distinction, the signals of BGR near X do not show such an obvious 

polarization contrast as P1 – P6 (ESA).  
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ⅱ) Second-harmonic generation (SHG):  

Possible SHG signals are in the spectral range of ~ 2.3 – 2.4 eV (our laser energy is ~ 

1.17 eV), which is far away out of the spectral range of P1 – P6, i.e. ~ 1.1 – 1.2 eV. Our 

detector was equipped with low-pass grating such that all the high-frequency signals 

are filtered out.  

ⅲ) Other non-linear mixing effects:  

Since our experiments were performed with both the pump and probe beams normal 

to the sample surfaces and the small thickness of the samples of ~ 60 nm (for the value 

of thickness in more detail see Methods S2), the phase-matching conditions cannot be 

met and the non-linear mixing effects can also be excluded. Normally, four-wave 

mixing or any χ(3), χ(5), … contributions typically require much more sophisticated 

techniques such as 2D coherent Fourier-transform spectroscopy65 or quantum-optical 

spectroscopy66, which cannot be obtained through standard pump-probe 

spectroscopy.  

 

5) Bi-exciton (BX) and bi-exciton fine structure (BXFS):  

First, the 4B-BSE truncated up to cluster △2 △2   and △3 △1   cannot explain the 

observed peaks of P1 – P6, especially P1 – P4 that are below the feature of T.  

 

Second, the BX-related spectral features have been calculated theoretically28,32-34,45 to 

be between T and X. Specifically, the BX resonance of 14.4 meV below X for ML-MoTe2 

was calculated to be between T and X28. Using a simplified configuration-interaction 

model, BXFS was described in Ref. 32 by a 6×6 Hamiltonian. The model could only yield 

three peaks for BXFS, all distributing between T and X as well. Therefore, the bi-exciton 

fine structure does not explain our observed features as rich as six peaks.  

 

6) Charged entities, i.e. trion, charged bi-exciton (or trion-exction), etc:  

The optical signals of charged entities were the weakest under the charge-neutral 

conditions6,7,20,21. However, we found P1 – P6 were the strongest under the charge-
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neutral condition, whose signals clearly dropped when the extra carriers were injected 

into the sample. Therefore, we exclude charged entities as potential origins of P1 – P6.  

 

7) Charge-neutral N-body entities (N is an even integer＞4): tri-exciton △2 ~△2 ~△2  

(N = 6), quad-exciton △2 ~△2 ~△2 ~△2  (N = 8), and dropleton △2 ~△2 ~△2 ~ … ~△2  

(with larger N):  

The series of tri-excitons, quad-excitons, and much bigger dropletons are only 

observable in non-classical quantum-optical spectroscopy66 or multi-dimensional 

coherent Fourier transform spectroscopy based on non-linear four-wave mixing65. In 

other words, these multi-exciton complexes have no contributions to the TDAS 

obtained from the classical pump-probe experiments, despite the fact that we cannot 

deny the possibilities of their existence in our highly excited sample.  
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