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ON RESTRICTED PROJECTIONS TO PLANES IN R?

SHENGWEN GAN, SHAOMING GUO, LARRY GUTH, TERENCE L. J. HARRIS,
DOMINIQUE MALDAGUE, AND HONG WANG

ABSTRACT. Let 7 : [0,1] — S2? be a non-degenerate curve in R3, that is to
say, det (v(6),7(6),7"(0)) # 0. For each 6 € [0,1], let V5 = v(6)L and let
mo : R3 — Vj be the orthogonal projections. We prove that if A C R? is a
Borel set, then for a.e. 6 € [0,1] we have dim(mg(A)) = min{2, dimA}.

More generally, we prove an exceptional set estimate. For A C R? and 0 <
s < 2, define E5(A) := {6 € [0,1] : dim(mg(A)) < s}. We have dim(Es(A)) <
max{l + s — dim(A),0}. We also prove that if dim(A) > 2, then for a.e.
6 € [0,1] we have H2(mg(A)) > 0.
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1. INTRODUCTION

Let S? C R? denote the unit sphere. Let v : [0,1] — S? be a C? curve. We say
that v is non-degenerate if

(1) det(v(0),7'(6),7"(0)) # O,
for every 6 € [0,1]. A model example for the non-degenerate curve is v, : 6 —

(3,520, 1) (0 € [0, 1)
For a given 0 € [0, 1], let Vy = v(0)* denote the orthogonal complement of ()
in R?, and let 7y : R® — ~(#)* denote the orthogonal projection onto v(6)+. For

a > 0 and a Borel set E C R3, we will use H%(E) to denote the a-dimensional
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Hausdorff measure of E. Moreover, we use dim X to denote the Hausdorff dimension
of a set X.

Theorem 1. Suppose A C R3 is a Borel set of Hausdorff dimension o. For
0 < s < 2, define the exceptional set

Es ={0€0,1] : dim(mp(A)) < s}.

Then we have
dim(Es) < max{1+ s — «a,0}.

As an immediate corollary, we have:

Corollary 1. Suppose A C R? is a Borel set of Hausdorff dimension «. Then we
have
dim(mp(A)) = min{2, o}, for a.e. 6 € [0, 1].

Theorem 2. Suppose A C R? is a Borel set of Hausdorff dimension greater than
2. Then

(2) (o (A)) >0,
for almost every 0 € [0,1].

1.1. Background of the problems.

The projection theory dates back to Marstrand [18], who showed that if A is a Borel
set in R2, then the projection of A onto almost every line through the origin has
Hausdorff dimension min{1,dimA}. This was generalized to higher dimensions by
Mattila [I9], who showed that if A is a Borel set in R™, then the projection of A onto
almost every k-plane through the origin has Hausdorff dimension min{k,dimA}.
It is more general to consider the projection problem when the direction set is re-
stricted to some submanifold of the Grassmannian. To have a better understanding
of this restricted projection problem, the first step is to study the problem in R3.
Fassler and Orponen made a conjecture about restricted projections to lines and
planes (see Conjecture 1.6 in [5]), and there has been much related research (see
for example [5], [2], [16], [15], [I7], [21], [22], [23], [13], [I4]). For more of an intro-
duction to this problem, we refer to [13]. Recently, Kdenméki-Orponen-Venieri [17]
and Pramanik-Yang-Zahl [25] proved one half of the conjecture: restricted projec-
tions to lines. In this paper, we resolve another half of the conjecture: restricted
projections to planes.

1.2. An overview of the high-low method. The high-low method is a powerful
tool developed recently in Fourier analysis. There are many applications of the
high-low method, see for example [I1], [3], [12], [LI0], [6], [7].

In this subsection, we briefly discuss how the high-low method can be used to
study projection theory. As a warm-up, we study Marstrand’s projection theorem
from another point of view, using the high-low method.

Theorem 3 (Marstrand’s projection theorem). For each § € [0, 7], define Ly :=
{z € R? : arg(z) = 0} and let pg : R? — Lg be the projection. Suppose A C R? is a
Borel set, then we have dim(pg(A)) = min{1,dimA} for a.e. 6 € [0,7].

We will frequently use the following definition.

Definition 1. For a number 6 > 0 and any set X, we use |X|5 to denote the
maximal number of §-separated points in X .
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Marstrand’s projection theorem can be reduced to the following discretized ver-
sion. We do not show how reduction works in this section, but we will give the full
details in the later section when we prove our main theorems.

Proposition 1. Fiz 0 < s < 1. Fiz a small scale § > 0 and set © = 6Z N [0, 7).
For each 0 € ©, define Ly := {x € R? : arg(x) = 0} and let pg : R?> — Ly be
the projection. Suppose A C B2(0,1) is a union of disjoint §-balls with measure
|A| = 6272, or equivalently |Als ~ §=%. We also assume there is a subset ©' C ©
with #0" > 671, such that for any 0 € ©', py(A) (which is a union of line segments
of length 6 in Lg) satisfies the s-dimensional condition: For each v > § and line
segment I, C Lg of length r, we have

3) lpe(A) N In|s < (r/6)°.
Then,
(4) 074 <Ss 7%

Proof. For each § € ©', let Ty be a set of § x 1 tubes that cover p, ' (pg(A))NB2(0,1)
and hence cover A. We can also assume that Ty satisfies a similar s-dimensional
condition that is inherited from pg(A). For each 6, let Sy be a §~1 x 1-tube centered
at the origin whose longest direction forms an angle 6 with x-axis. We see that Sy
is dual to the tubes in Ty. Now, for each Ty € Ty, we choose a bump function
satisfying the following properties: 7, > 1 on Ty, ¢r, decays rapidly outside Tp,

and suppyr, C Sp.
Define functions

for="> tn, and f=Y_ fo
To€To e’

By definition, f(x) 2 #0©’ for any x € A, so we simply have
Ak 5 [ 1P

We can do better by performing a high-low decomposition for f.

Let K be a large number that will be determined later. Let 15, (£) be a smooth
bump function adapted to B*(0, K~'§71) and let npign = 1 — Miow. We have the
following high-low decomposition for f:

f = flow +fhigh;

where flow = mowf and ﬁ”-gh = nhighf. We will show that the high part dominates
on A. Actually, for z € A, we have

(5) 071 S S (@) < U fnigh (@)] + | frow ().

By definition, fiow(x) = 0, * f(2) = 0y * (Xgcor Zomyer, ¥10) (). Note
that |n,,| is morally an L'-normalized bump function at B*(0, K4). By the s-
dimensional condition of Ty, we have

Mo * (Y ¥m,) (@) S K '#{Ty € Ty : Ty B*(w, CKS) # 0} S K.
ToeTy

In the last step, we use the condition [@]) in Proposition[Il As a result, we have

| frow(@)| < #O' K51 < s K
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Since s < 1, by choosing K large enough (depending on s) and plugging into (&),
we see that

| frigh(@)] > C7167" = | fiow(x)] 2 67"
We obtain that

©) A5 5 [ 1fionl.
A

Next, we will use a strong separation property for the high part. Note that fhigh =
> ocer Mhighfo, and {supp(nnign fo) }o is at most O(K')-overlapped. We have

/|fhigh|2:/|fhigh|2§K2 Z /|77highfe|2§K2 Z /|f9|2§K25*5.

0ce’ 0ce’

In the last inequality, we used the s-dimensional condition of pg(A).
As a result, we have

|14|572 SS 6755
which implies 67 <g 077, O

Notation.

(1) For two positive real numbers R; and Ra, we say that Ry < Ry if there
exists a large constant C, depending on relevant parameters, such that
Ry < CRy; we say that Ry < Ro if Ry < RQ/C.

(2) We use dim(F) for the Hausdorff dimension of E.

(3) For a given Borel measure p supported on R? and the projection my, the

pushforward measure w4, supported on v(#)*, is defined by

(moh)(E) = p((mo) ™" (E)),

for every Borel E C v(0)*.
(4) Let u be a compactly supported Borel measure on R3. Take o > 0. Define

cols) = sup M(B(?T))v
z€R3,r>0 r
where B(z,r) is the ball of radius r centered at x € R3.

(5) For 7 > 1 and a rectangular box 7' C R?, we use rT’ to mean the dilation of
T by r with respect to the center of T', unless otherwise stated. For r > 0
and E C R3, we use r - E to mean {rz : z € E}.

(6) We often use m(E) the Lebesgue measure of the set E C R?; that is,

m(E) = H3(E).
(7) By a measure we always assume that it is non-negative, unless stated oth-
erwise.

Acknowledgement. S. Guo is partly supported by NSF-1800274 and NSF-
2044828. L. Guth is supported by a Simons Investigator Award. H. Wang is
supported by NSF Grant DMS-2055544. D. Maldague is supported by the NSF
under Award No. 2103249.
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2. PrROOF oF THEOREM [I]

In this section we prove Theorem [I} First, we make some remarks on . We can
cut v into several small pieces and work on each of them. From now on, we assume
that 7 : [0,a] — S? is C? and non-degenerate, and satisfies

(7) ’7(0) = (0707 1)7 '7/(0) = (17070)7 |’7I(9)| =1,V0 € [0,@].

Here a > 0 is sufficiently small depending on 7. Since the parameter a does not
play any role here, we may pretend a = 1. We need some notation.

Definition 2 ((d,s)-set). Let P C R™ be a bounded set. Let § > 0 be a dyadic
number, and let 0 < s < d. We say that P is a (0, s)-set if

[P0 Brls S (r/6)°
for any B, being a ball of radius r with § <r < 1.

Let H!_ denote the t-dimensional Hausdorff content which is defined as

M. (B) :=inf{) r(B:)": B C U;B;}.

Here, each B; in the covering is a cube and 7(B;) is the length of the cube. We
recall the following result (see [5] Lemma 3.13).

Lemma 1. Let §,s > 0, and B C R™ with H3 (B) := k > 0. Then there exists a
d-separated (0, s)-set P C B with cardinality #P 2 kd~*.

Our main effort will be devoted to the proof of the following theorem.

Theorem 4. Fiz 0 < s < 2. For each € > 0, there exists Cs . so that the following
holds. Let 6 > 0. Let H C B3(0,1) be a union of disjoint 6-balls and we use #H
to denote the number of §-balls in H. Let © be a d-separated subset of [0,1] such
that © is a (5,t)-set and #O© = (logd=1)=25" for some t > 0. Assume for each
6 € ©, we have a collection of 6 x & X 1-tubes Ty pointing in direction v(0). Each
Ty satisfies the s-dimensional condition:

(1) #Tog S 677,

(2) #{T €Ty : TNB,} S (%)%, for any B, being a ball of radius r (6 <r < 1).
We also assume that each §-ball contained in H intersects > (logd~—1)~2#0 many
tubes from UgceTy. Then

H#OH#H < Cy 5717575,

2.1. é-discretization of the projection problem. In this subsection we show
how Theorem [ implies Theorem[Il Before starting the proof, we state a very useful
lemma. We use the following notation. For any § = 27% (k € N*), let Ds denote
the lattice of d-squares in [0, 1]2. For technical reasons, we remove the top edge and
the right edge of each §-square so that they are disjoint.

Lemma 2. Suppose X C [0,1]? with dimX < s. Then for any ¢ > 0, there eist
dyadic squares Co—x C D1 (k > 0) so that

(1) X CUks0Upee, , D

(2) Xks02pec, , T(D)° <,

(8) Co-r satisfies the s-dimensional condition: For | < k and any D € Dy,
we have #{D' € Cy- : D' C D} < 2(k=0s,
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Proof of the lemma. Consider all the covering C of X by dyadic lattice squares
that satisfy condition (1), (2) in Lemma[2 i.e., C C J,so D2+, X CUpee D and
Y pecT(D)? <e. We also assume all the dyadic squares in C are disjoint. We will
define an order “<” between any two of such coverings C,C’. First, we define the
k-th covering number of C by

e(C) == #(C N Dy ),

which is the number of 2~ *-squares in the covering C.

We say C < C’, if they satisfy: (1) There is a maximal kg > 0 such that CNDy-1 =
C'NDy-i (k < ko), and C N Dy-r, C C' N Dy-1o; (2) For any = € X, the square in
C’ that covers x contains the square in C that covers z. It is not hard to check the
transitivity: If C < €’ and C' < C”, then C < C".

Suppose C is a covering that is maximal with respect to the order <. Then we
can show that C satisfies condition (3) in Lemmal[2l Suppose by contradiction, there
exist [ < k and D € Dy—: so that

(8) #{D' € CNDy_r : D' C D} > 20k D5,

We define another covering C’ by adding D to C and deleting {D’ € C\ {D}: D’ C
D} from C. It is easy to check that C’ is still a covering of X. By (8], we can also
check > peoi m(D)° < Y pee (D) < g, so C’ satisfies (2) in Lemma 2l However,
C < C' which contradicts the maximality of C.

Now, it suffices to find a maximal element among all the coverings that satisfy
condition (1), (2) in Lemma [l First of all, such covering exists by the definition of
Hausdorff dimension and dimX < s. By Zorn’s lemma, it suffices to find an upper
bound for any ascending chain.

Let {C;};jes be an infinite chain of coverings of X. Define

We show that C is an upper bound of the chain. First, we show that C covers X.
For x € X and j, let D;J) be the largest dyadic square in |J ;e; C; containing z.
Ci>C;

By the definition of the partial order and the fact that chainslzmrje totally ordered,
Dgf ) = D, is independent of j, and thus D, € C. This shows that C is a covering
of X. It also shows that the squares in C are disjoint. Let K € N. Choose j € J
such that C; N Dy—r = C; N Dy—r for all 0 <k < K and all C; > C;. Then

K K
SO orsy Y aorse
k=0 DeCND,_, k=0 DeC;ND,_
Letting K — oo gives
Z r(D)* <e

So, C satisfies condition (2). By definition, it is easy to check C; < C for every C; in
the initial chain. This proves that C is an upper bound of the chain. ]

Remark 1. Besides [0, 1]?, this lemma holds for other compact metric spaces, for
example [0, 1]™ or S?. The proof is exactly the same.
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Proof that Theorem [J] implies Theorem [ Suppose A C R3 is a Borel set of Haus-
dorff dimension o. We may assume A C B3(0,1). Recall the definition of the
exceptional set

E;:={0€0,1] : dimmp(4) < s}.

Recall the definition of the ¢-dimensional Hausdorff content is given by

HZO(B) = 1Df{z T(Bi)t :BC UiBi}.

A property for the Hausdorff content is that
dim(B) = sup{t : H. (B) > 0}.

We choose a < dim(A),t < dim(E;). Then H. (Es) > 0, and by Frostman’s lemma
there exists a probability measure v4 supported on A satisfying v4(B,) < r® for
any B, being a ball of radius . We may assume ¢ > 0, otherwise dim(E;) = 0. We
only need to prove

a<l+s—t,
since then we can send a — dim(A) and ¢t — dim(E;). As a and ¢ are fixed, we
may assume H!_(Fs) ~ 1 is a constant.

Fix a 0 € E;. By definition, we have dimmg(A) < s. We also fix a small number
€, which we will later send to 0. By Lemma 2] we can find a covering of my(A) by
disks Dy = {D}, each of which has radius 277 for some integer j > |log, €5|. We
define Dy ; := {D € Dy : r(D) = 277}. Lemma [ yields the following properties:

(9) S HD) <1

DeDy
For each j and r-ball B, C Vp with 277 < r < 1, we have
(10) #{(DeDy;:DCBYS(55)

2—7
For each 6 € E,, we can find such a Dy. We also define the tube sets Ty ; :=
{mg (D) : D € Dy;} N B*0,1), Ty = |J;Ts;. Each tube in Ty ; has dimen-
sions 277 x 277 x 1 and direction 7(f). One easily sees that A C Upep, T- By
pigeonholing, there exists j(f) such that

1 1
11 AN (U o T)) > ———va(A) = ——.
( ) VA( ( T€Ty,j(0) )) = 10](9)21/14( ) 10](9)2
For each j > |log, €|, define E,; := {6 € Es : j(f) = j}. Then we obtain a
partition of Fj:

E,=| | Es;.
J
By pigeonholing again, there exists j such that
1
12 L (Bsj) > —=HL(Es) ~ —.
( ) Hoo( J) = 10]27-[00( ) 10]2

In the rest of the poof, we fix this j. We also set § = 277(< ¢,). By Lemmalll there
exists a d-separated (8, )-set © C E, ; with cardinality #6 > (logé—!)=267".

Next, we consider the set S := {(z,0) € A x © : x € Urer, , T}. We also use
to denote the counting measure on ©. Define the section of S:

Se=A{0:(x,0) €S}, Sp:={x:(x,0) €S}
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By () and Fubini, we have

(13) (va x 1)(S) > ﬁu(@)-
This implies
1) axw({@o esius) z o)) z g

15) ({00 €50 u(0) < gzu@)}) < oM AuCO)

By (I4)), we have

(16) VA({:E € A:p(S,) > %}.M@)}) e

We are ready to apply Theorem @l Recall § = 277 and #0 > (logd—1)=2571.
By ([I6), we can find a d-separated subset of {x € A : #S, > ﬁ#@} with
cardinality > (logd~1)7257%. We denote the d-neighborhood of this set by H,
which is a union of §-balls. For each §-ball Bs contained in H, we see that there
are 2> (log6—1)72#0 many tubes from Upeco Ty, ; that intersect Bs. We can now
apply Theorem [ to obtain

(logd™ 1) ™67 S H#OH#H < Cy 671 757¢,

Letting ¢, — 0 (and hence § — 0) and then ¢ — 0, we obtain a +t < 1+ s.

O

2.2. Proof of Theorem @ The proof of Theorem [ is base on the L® decoupling
inequality for cone which is well-understood. For convenience, we will prove the
following version of Theorem @ after rescaling = — 6 'x.

Theorem 5. Fiz 0 < s < 2. For each € > 0, there exists Cs . so that the following
holds. Let § > 0. Let H C B3(0,671) be a union of 5% many disjoint unit balls so
that H has measure |H| ~ 0~*. Let © be a 0-separated subset of [0,1] so that © is
a (8,t)-set and #0O 2 (logd~1)=26~t. Assume for each 6 € ©, we have a collection
of 1 x 1 x 6~ t-tubes Ty pointing in direction v(0). Ty satisfies the s-dimensional
condition:

(1) #Tog S 677,

(2) #{T € Ty : TNB,} < r*, for any B, being a ball of radiusr (1 <r < §71).
We also assume that each unit ball contained in H intersects = |logd~!|2#O
many tubes from UgTy. Then

5—t—a < 08756—1—5—8'
We first discuss the geometry of 7. Let v be the non-degenerate curve as dis-

cussed in the beginning of this section. We have |y/(8)| = 1. For convenience, we
define

(17) e1(0) :==~(0), exh) :=~'(0), es(0) :=~(0) x~'(6).

We see that {e1(6),e2(0),e3(0)} form a Frenet coordinate along . Define the
corresponding conical surface I' := {res(f) : 1/2 <r < 1,0 € [0,1]}.
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We first show that I' satisfies the same non-degenerate condition as the standard
cone. Note that we have the following formulae for the Frenet coordinate:

(18) e1(0) = ex(0),
(19) e5(6) = —e1(0) + k(0)es(0),
(20) e3(6) = —r(0)ex(0),

where x(6) = (e5(0), e3(0)) > 0.
First, we show that I is a C? surface. We will do this by finding a reparametriza-
tion s = s(f) so that e3(f(s)) is a C? function of s. Choose

0
5(9)2/0 k(t)dt,

and then %¢ = x(9)~!. We have

ds
d do d
58 T g e = e
Since § = 6(s) is C?, we have “Les = —e3((s)) is C! with respect to s, and therefore
e3(6(s)) is C% with respect to s. Moreover, det (e3(9(s)), L es(6(s)), j—;eg(H(s))> =

0’ (s) det(ez(0(s)), —e2(0(s)),e1(0(s))) by the above, which is nonvanishing since
6’ (s) is nonvanishing.

For any large scale R, there is a standard partition of Nz-1I" into planks o of
dimensions R~ x R~1/2 x 1:

Np-T =|Jo.

~

For any Schwartz function f, we define f, := (1, f)" as usual. We have the following
LS-decoupling inequality for these planks.

Theorem 6 (Bourgain-Demeter [I]). For any Schwartz f with f C NgT, we
have

1/2
(21) Iflle << R=( > I1fo118) "
o:R-1xR-1/2x1
Remark 2. We will actually apply Theorem [l to a slightly different cone
(22) T ={res(d): K~' <r<1,0€][0,1]},

for some K ~ (log 571)0(1). Compared with T', we see that U'i-1 is at distance
K=t from the origin, but we still have a similar decoupling inequality. Instead of

€1, we have
1/2
(23) Iflls S KOOR( ST 1502
o:R-1xR-1/2x1

The idea is to partition T'g—1 into ~ O(K) many parts, each of which is roughly a
cone for which we can apply Theorem[@. By triangle inequality, this results in an
additional factor KO . It turns out that this factor is not harmful, since we will
set K ~ (log R)°M) which can be absorbed into RF.

We are ready to prove Theorem
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Pgﬁ)\ fg"(jl 2

P(),h'igh POA,low

63(9)

62(9)
61((9)

F1GUurE 1. High-low decomposition for P

Proof of Theorem [ Recall that Ty is a collection of 1 x 1 x §~'-tubes pointing to
direction v(0) = e1(f). We consider the dual of each Ty in the frequency space.
For each 6, we define Py to be a slab centered at the origin that has dimensions
1 x 1 x4, and its shortest direction is parallel to e;(#). We see that Py is the dual
rectangle of each Ty € Ty. Now, for each Ty € Ty, we choose a bump function ¢,
satisfying the following properties: ¢, > 1 on Ty, ¥, decays rapidly outside Tp,

and suppyr, C P.
Define functions

fo= > Wn, and  f=)_fo
Ty€eTy 6cO

From our definitions, we see that for any € H, we have f(z) 2 #{T € UgTy :
x €T} 2 (logd—1)~2#0. Therefore, we obtain

(24) H|Gogs ) (g0 <2 [ |1,
H

for any p. For our purpose, we just choose p = 6, so we have

(25) Hltoga™) 20 <2° [ |1
H

Our goal is to find an upper bound for the right hand side of ([25). We will decom-
pose Py into pieces and estimate the contribution of ﬁ; from each piece.

Let us discuss the decomposition for Py. Recall that Py is a 1 x 1 x §-slab
centered at the origin with normal direction e;(6). Recall ([IT), we can write Py =

{300 Gei(0)  |€1] < 6,16] < 1,1€] < 1}
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Definition 3. See Figure[ll. Let K be a large number which we will choose later.
(Actually, we will choose K ~ (log6—')°M)) Define the high part of Py as

3
Pynign = {Y_ &ies(0) : [&1] < 6, K7 < |&] <1,]6] <1}

i=1
Define the low part of Py as

Py 1ow = {23351'61'(9) D] <618 < KT &) < K
i=1
For dyadic numbers \ € (62, K~1], define
Py = {ifieiw) H&) < 5,%/\ <& <ANKTP <& <1
In particular, we de;;lle
P g1/2 = {i&‘ei(e) e <616 <62 KT < &l <13
i=1

Remark 3. We obtain a partition of Py as
Py = Py nigh |_| Py 10w |_| Py .
A

We see that Py » consists of four planks of dimensions ~ 6 X A x 1 whose longest
side is along direction e3(0). Here X plays a role of angular parameter in the sense
that Py x are roughly those points in Py \ Py iow S0 that the lines connecting them
with the origin form an angle ~ \ with es(0).

We choose a smooth partition of unity adapted to this covering which we denote
by 16,nighs M6,10ws 9,1, SO that

(26) 19,high + 110,low + Z nox = 1
S1/2<A<K 1

on Py. Since suppfg C Py, we also obtain a decomposition of fy

(27) fo = fo,nigh + fo,100w + Z fox

51/2§ASK—1

where fo high = 16,nighfo, fo,100 = Mo 10wfo, fox = Mo xfe. Similarly, we have a
decomposition of f

(28) f = fuigh + frow+ D fx
51/2S)\§K—1
where frigh = g fo,highs fiow = 2 f0,10ws f = D_g fox-
Recalling (28) and using triangle inequality, we have
(29) [HI(o5™) 2(#0)° S [ ioul®+ [ 1ianl® + 10x5 920 S [ 15[
A

We will discuss three cases depending on which term on the right hand side of (29)
dominates.

Case 1: Low case
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If the first term on the right hand side of (29) dominates, we say we are in the
low case. Actually, we will see that we are never in the low case by showing

(30) /H Frowl® < CYH|(log 5~1)~12(40)°,

for some large constant C'. This means the low term on the right hand side of (29)
will not dominate. By properly choosing K, we can show a pointwise bound for

flow:
(31) | frow(@)] < C™ (log 6~ 2#6.

This will immediately imply (B0). Let us focus on (3I)).
Recall that fiow = Y fo,l0w = Do fo * 775/,low' Since 19 10w is @ bump function
at Py 10w, We see that n(;f low 18 @ bump function essentially supported in the dual of

Pp 10w Denote the dual of Py 0., by Tp x which is a K x K X 5~ '-tube parallel to
e1(0). One has

|77$/,low| |T |¢T9 K*

Here 17, ,, is a bump function =1 on Ty x and decays rapidly outside Tp k.
By definition, fy = ZTB 1, is the sum of bump function of tubes. We have

(32> |flow| ~ Z Z 1/}T9 1/)T9 K*

0 TyeTy

If we ignore the rapidly decaying tails, we have

(33) iow(@)| S 3 2 #{T0 € To + To 1 Buoorc(a) # 0}

0

Recalling the condition (2) in Theorem [ we have

#{Ty € Ty : Ty N Broox () # 0} < (100K)°.
This implies
(34) | frow(x)] S K*7?#6.

Since s < 2, by choosing K ~ (log 6‘1)%, we obtain (BI).
In the rest of the proof, we may pretend K is a large constant, since any
(log 6= 1)9(M-loss is allowable (see Remark [2).

‘ Case 2: High case‘

If the second term on the right hand side of (29) dominates, we say we are in
the high case.

Since for any z € R? there is at most 1 tube in Ty pass through z, we have
[fo(x)] < 1 (here we use < 1 instead of < 1 to take care of the rapidly decaying
tail). Recalling the definition frign = >, ngfhigh * fp and noting that each ng/),u-gh
is L' bounded, we have

| frign ()] < Z | fo(x

We see that

(35) [ 1inl® 00" [ i = #0)* [ 15 i
0
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Next we will show that {suppﬁ,yhigh}ge@ are finitely overlapping, i.e., {Ps nign }oco
are finitely overlapping. (Actually they are O(K)-overlapping. But since the K©(1)-
loss are acceptable, we may just pretend K < 1. See also Remark[l) If this is true,
then we have

(30) [ Vinl® < 400 [ S onianl®
0

Since [ Y2 | fo.nigh|® = [ 2g M5 nign* fol* < [ 2og1fol* ~ >g(#Te)d . We obtain
(37)

|H|(10g6_1)_12(#9)6 S /|fhigh|6 S (#@)4 Z(#T0)5_1 < (#@)45—5—15—17

6
which implies
(38) 67(1715 S 6757176'

Now we prove that { Py pign}oco are finitely overlapping. First, recall that

3
Ponign = {Y_ &ies(0) : [&1] < 6, K" < |&] <1, 6] <1}
i=1

We see that Py pign is contained in the §-neighborhood of the plane

o nigh = {£ae2(0) + &e3(0) : K1 < |&] < 1,&] < 1}
To show the finitely overlapping property, we just need to show: For any 0 € [0, 1]
and 0’ = 0+ A € [0,1] with C6 < A < C~! (for some bounded C' to be determined
later), if & € Ilg pign, then

dist(&, o4 A, hign) > 100.

Write £ = aeq(0) +bez(0) = ay'(0) +by(0) x v'(6), where |a| € [K~1,1] and |b| < 1.
Since the normal direction of g4 A nign is ¥(6 + A), it suffices to prove
(39) [7(0 + A) - (a'(8) + by(0) x 7'(0))| = 104
By Taylor’s expansion, we have v(0 + A) = ~(0) + Avy/(0) + O(A?). We see the
left hand side of @3) is [aA]y/(0)]* + O(A?)| > |(a — O(A))A| > 106, if C is large
enough (depending on K).

Case 3: A-middle case (6'/2 < X < K~1)|If the term (log6~1)9W S\ [ |f|® on

the right hand side of ([29) dominates, we say we are in the A-middle case. We
remark that when X is close to K1, [,; [fA|° can be estimated in a similar way as
in the High case. We will be interested in the cone

I ={res(d): K~' <r<1,0€[0,1]}.

Recall Remark [2] that we still have the decoupling inequality for this cone.

We first discuss the case that A\ = §'/2.
Case 3.1: A = §'/2 ‘

When A = /2, we have fs1/2 = > fg.51/2, Where each f“g)él/2 is supported in
Py s51/2. Note that Py 51/2 consists of two pieces: One is

3
Pfoye =) Geil0) 1] < 6,6| <62 KT < g <1}
=1
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the other is
Py sije = Z&el 6] <816 <8V -1< & < ~K71,

We note that P0+61/2
in the J-neighborhood of ', _,,

origin. We can write fj 512 = f(;rél/z + fy 512> SO that suppf;rél/2 c Pf 9 5172 and

suppf(;(sl/2 C Py 51/>- We also write f;/z =>y f;(;l/z and fs1,2 = D g f9,51/27 and
then fsi1/2 = f51/2 + f51/2- We have

(10) Jigsats [1aga0+ [15500

By symmetry, we only estimate [ | f;{ 1%

Note that Pe 512 and P 172 are essentially the same when 0—0'| <52 P;rél/Q

and P , 51/» are essentially distinct when |0 —60'| > §'/2. We can choose a partition

lies in the d-neighborhood of I'c-1. Symmetrically, P, , , lies

which is the reflection of I'x—1 with respect to the

of N(;(l" x—1) by finitely overlapplng planks of dimensions 108 x 106'/2 x 1, denoted

by {R}. We attach each Pe 5172 to one of the R and denote by 0§ < R, if Pe si2 C IR

We see that for each R, there are < §~/2 many Py 512 attached to it. We define
R= Y o<n f;L(;l/g- The Fourier support of fg is contained in R, by Theorem [6,

we have
/|f;/2|6:/|ZfR|6 (LR 0% 0 3 7l

By pigeonholing, we may pass to a subset of {R} so that #{9 : 0 < R} are all
comparable. For simplicity, we write #{6 : § < R} as #{0 < R}, and write
the number of {R} after pigeonholing as #{R}. For each R, we have by triangle
inequality:

IR S #40 < RY D 1S 50el6 S #O< R D ol

O<R <R
We obtain that

/ i nl® S 67 (R0 < R Y ol
0

Note that #{R}#{6 < R} < #0, #{0 < R} < §~*/2 (by the (5, t)-spacing of ©),
and Y, [[foll§ < #0517, We obtain

/|f;/2|6 <. 67 (#0)36 321,
Similarly, we have

/|f{;/2|6 <o 0 (#0)3e 321,
As a result, we obtain
o [H|(#60) e 6% (#0)%6 /271,

Combined with #0 > (logd—2)"26~*, we have §—*3/2 < §~¢=1=5 which is even
better than what we aimed.



ON RESTRICTED PROJECTIONS TO PLANES IN R3 15

Case 3.2: A € (6Y/2, K~1]

For \ being a dyadic scale in (6%/2, K~!], we see that ﬁw\ is supported in Py »
which consists of four separated planks (Fp 51,2 only consists of two planks). As in

the proof of case A\ = /2, we will write fs » as the sum of four functions each of
which has Fourier support in one of the planks of Py 5. We will estimate for one of
the planks. We define

3
(42) Qo := {;&%(9) D& <6, %)\ <HSANKTT<G <1

Roughly speaking, Qg is the top-right plank of Py » and the distance between Qg
and the line Res(0) is > %)\. For simplicity, we may assume fy » has Fourier support
in Qg.

We discuss some geometric properties for the planks {Qp}gco. First of all, there
is a canonical finitely overlapping covering of Ny2(T'g-1) by planks of dimensions
A2 x X x 1. More precisely, we choose ¥ = AZ N [0, 1] to be a set of M\-lattice points.
For each o € %, define

3
Ry :={)_ &ei(0) : [&1] < OO [&] < O CTIR ! < g < O
i=1

where C] is a large constant. We see that { R, } form a finitely overlapping covering
of Nyz(T'g-1). We have the following three properties:

Lemma 3. For Qg, R, defined above, we have
(1) If |6 — o] S A, then Qg is contained in R, .
(2) If |0 — 0| S X715, then Qg and Qg are essentially the same.
(3) If |0 — 0’| Z X715, then Qg and Qg are disjoint.

Before proving the lemma, we see how it can be used to finish the proof of
Theorem[El Motivated by Property () and (B)), we define 7 = (A~1§)ZN[0, 1], and
for each 7 € T define

3
Sr = {Z Giei(1) 1 |&] < 0,]&| < Co\, Cy K™ < &5 < O},
im1

where C5 is a large constant but much smaller than C;. Note that S, has the same
dimensions as Qg up to a Cs-dilation.
Now we have three subsets of [0, 1]:

0 =02ZNn[0,1, T=M\19)Zn[0,1], ¥ =AZNJ0,1].

We will define a relationship between their elements. For any 6 € O, we attach it
to a 7 € T such that |§ — 7| < A7, which we denote by # < 7. For any 7 € T,
we attach it to a o € ¥ such that |7 — o] < A, which we denote by 7 < 0. We also
write 0 < o if there is a 7 such that § < 7 and 7 < 0.

By property (), if # < o, then Qp C R,. By property (@), for a given 7 € T,
all the planks in {Qp : & < T} are essentially the same and contained in S.. By
property @), if Qa, Qo lie in different S, then Qg, Qg are disjoint.

Before estimating [ |f1|®, we may apply a pigeonhole argument to pass to subsets
of ©,T,% (still denoted by O, T,X), so that #{0 € © : § < 7} are comparable for
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7€ T,and #{r € T : 7 < o} are comparable for ¢ € ¥. For convinience, we write
#{0€©:0<1}as #{0 <7}, and write #{r € T : 7 < o} as #{7 < o}.

We define
fri=>" for
<1
for = for=>_ It
<o T<0

By decoupling for Ny2(I'k-1) = ||, R,, we have

(43) [ine=] DIARTRICDY e

By the trivial decoupling for R, = | |___S;, we have

T<0

(44) J1s0= IS s s #r <ot Y [ 181

T<0 T<0

By Holder’s inequality, we have

(45) /|fr|6=/|Zf9,A|65#{947}5Z/|f9,x|6'

<1 o<1
Combining the three inequalities, we obtain

(46) [ saiorstr <oy o <n* Y [ Il
[

Note that #{o}#{T < o}#{0 < 7} S #O, #{r < o}#{0 < 7} < (A6~ 1)! (by the
(8,t)-spacing of ©), and #{0 < 7} < A~* (by the (4, ¢)-spacing of ©). We also note
that >y [ [for|® S (#T)571 < #0571 We obtain

(47) /|fA|6 ST (#O)2NTHHEATHHAT)S ! < 6 (#0512,

Plugging into ([29) and noting §~¢ > #6 > (logd~1)~26~*, we obtain
57a4¢ < 5725At57571

which is better than we aimed because of the factor Al
O

It remains to prove Lemma[Bl Before proving the lemma, we give some intuition
on why the lemma should be true. See Figure ([2). We first cover Ny2I'j—1 by
gray planks R, of dimensions ~ A? x A x 1. Fix a R,, we draw all the black slabs
Py of dimensions § x 1 x 1 whose corresponding Qy is contained in R,. Morally
speaking, PyN R, ~ Qp which is a § x A x 1-plank. One tricky thing is that different
Py may have essentially same Qg, which is the reason to introduce S; (the thick-
black planks in the Figure of dimensions § x A x 1). Suppose we have a partition
R, = U7-<a S-. We see that each Py N R, is contained in one of the S,. If so,
then we define # < 7. We can talk about the intuition on the numerology of these
planks.

(1) #{Rs} =271,

(2) #{Qo: Qo C Ry} ~#{0 <o} =571\,
(3) #{Ss: 8- C Ry} ~ Igef = 67102,
(4)

5]
4) #{Qo: Qo C Sy} ~ BGeeTial — 31,
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s —1
R,
S,
/J P, es(0)
\K;;% i es(6)
o e1(0)

F1GURE 2. Relation between planks

By (@), we see Property (] in Lemma [B] should be true. By (@), we see Property
@) and (@) in Lemma [3 should be true.

Proof of Lemmal[3 Recall e1(0) = ~v(0),e2(0) = ~+'(0),e3(0) = v(0) x v'(6). Defin-
ing

K(0) = (e5(0), es(6))(Z 1),

we have

(48) e\ (0) = e2(0),

(49) ey(0) = —e1(0) + r(0)es (),
(50) e3(0) = —r(0)e2(0).

To prove Property (), write § = o+ A with |A| < X, Any € € Qp can be written
as & = aeq(0) + bea(0) + ce3(0) with |a| < 6, |b] < A, |¢| < 1. By Taylor’s expansion,
we have

(51) & =a(e1(o) + Aex(o)) + b(ex(o) — Aey (o) + Ak(o)esz(o))
+c(es(0) — Ar(0)ex(0)) + O(A?)
=(a — bA)ei (o) + (aA + b — cAk(0))ex(c) + (bAr(0) + c)es(o) + O(A?).

One can easily check £ € R,. The Property () can also be proved by using (&)).
For the Property (B]), we have proved a special case A ~ 1 in the High case, but
here we need to do more work. We may assume A << 1. Consider the plane

Iy = {&2e2(0) + E3e3(h) - %)\ <&H<SANKTT<g <)

We see @y is the d-neighborhood of ITy. We just need to show: For any 8 € [0, 1] and
0 =0+A€0,1] with CA716 < A < C~! (for some bounded C to be determined
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later), if £ € TIy, then
diSt(f,Ha.;,.A) > 109.

Write { = aex(0) + bes(6), where a € [$A,A] and b € [K~1,1].

We consider two scenarios: (1) CA™16 <A < CA, (2) OAX< A < C7 L If we are
in the first scenario, since the normal direction of Iy A is e1(6 + A), it suffices to
prove

(52) le1(0 + A) - (aez(6) + bes(6))| > 106.

By Taylor’s expansion, we have ei(0 + A) = ei(0) + Aez(d) + A72(—e1(t9) +
k(0)e3(0)) + o(A?). We see the left hand side of (52)) is |aA + %n(ﬁ)b +0(A?%)]| >
al —o(A?) = (a—o(A))A > LaA = 105, when A < CX and A << 1. If we are

in the second scenario, we show that
(53) ex(f+ A) - (aez(0) + beg(6)) > 10A.

By Taylor’s expansion, we have e2(6+A) = ey (0)+A(—e1(0)+k(0)es3(0))+O(A?).
We see the left hand side of (B3)) is |a+Ax(0)b+0(A?%)| > Ax(6)b—a—O(A?) > 10\
if the constant C' is big enough. O

3. PROOF OF THEOREM

For a small positive number § and E C [0, 1], we use As(E) to denote a maximal
d-separated subset of E. By definition, #As(E) ~ |Els. If E = [0,1], then we
abbreviate A;(E) as As and just choose it to be the d-lattice points in [0,1]. A
rectangular box of dimensions § x § x 1 will be referred to as a d-tube. For each
6 € As, there is a set of finitely overlapping collection of d-tubes that cover R?
whose long sides are parallel to ().

In order to prove Theorem 2] we need the following result about incidence esti-
mate.

3.1. An incidence estimate.

Theorem 7. Let As be a d-net of [0,1] for some § > 0. Given a small constant
e>0and 0 < a <2, let u be a finite nonzero Borel measure supported in the unit
ball in R® with co(p) = SUD,cgs puo W < o0. Suppose that W is a set of
d-tubes, with directions in {y(0) : 6 € As}, such that each Wy is disjoint, where we
use Wy to denote the subset of tubes in W that points to direction v(0). Suppose

also that

(54) Z xr(z) 2 6671, V2 € supp(p).
TeW

Then

(55) W| > C: o ',LL(Rg)co[(,u)*15*(14“3‘*0(\/5))7

where the constant Ce o is allowed to depend on « and & but not on §, and O(1/¢)
can be taken to be 10'°\/z. We also remark that Cor o < Cen o for e’ <e”.

Proof of Theorem[7 The main argument of the proof is similar to that of Theorem
M, except for the “low case”.
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For a given d-tube Ty € Wy, we denote the dual slab of Ty by Py which is of
dimensions 7! x 7! x 1 and centered at the origin. Recalling (7)), we can write

{Z@ez el <Ll <06l <6 }

Remark 4. The slab Py here is just the §~!-dilation of that in the proof of Theorem
[ So are the tubes Ty and Py nigh, Ps,iow, Px,¢ that we will define right now.

Let ¢7 : R® — R be a non-negative function with (E; supported on Py and
¢r(z) 21 for every x € T. Set

(56) folx):= Y ¢r(a), flx):= ér(x)
TEW, Tew

The assumption (B4)) implies that

(57) flx) z o7t

for every x € supp(u).
Next we will do the frequency decomposition for fg. Similar to Definition [B] we
make the following definitions.

Definition 4. (See Figure[) Let K = 6~V=. Define the high part of Py as

=1
Define the low part of Py as

Pehzgh _{Zglel |§1|<1 K~ 16 1<|§2|<5 1 |§3|<5 }

P9 low = {Zgzez |€1| <1 |§2| < K™ 15 ! |§3| < K™ 15 }

For dyadic numbers X € (62, K1), define

P“_{Z@el Jal <1507 <J6l < A5, -16-1s|53|s(5—1}.

In particular, we define
Py 5172 = {Zfzez el <106l <5V KT < [gg| <0 }

Similarly to (27) and (28]), we have

(58) fo = fonigh + fotow+ D fox,
51/2§)\SK—1
and
(59) = frigh + flow + Z -
61/2S>\§K—1

Since f(z) = 051, there are two cases:

‘ Case 1: High case ‘ We can find a Borel set F' satisfying

u(F) Z u(R?),
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and

(60) 51 S | fhign(z) + Z (@)

A

, VYxeF.

| Case 2: Low case | We can find a Borel set F' satistying
W(F) 2 u(R?),

and
(61) 7 <\ fiow(x)|, VzeF.

Assume first that we are in the high case. We raise both sides of (60) to the
sixth power, integrate with respect to du, and obtain

(62) H(R?)550-9) < (logs~1)OW) / Frign® + 3 1l
A

Since the functions on the right hand side are locally constant on d-balls, together
with the upper density condition on u, we obtain

(63)  W(R®)cq(p) 160087 < (logg—1)OW) / | Frign (2 |+Z|fA )| da.

We can just use (37) and [@T7) with t = 1 and #© ~ !, noting there is a scaling
difference, so that the right hand side above is bounded by

6 OWVE 52w
It follows that
W] 2 u(R?)ea(p)~Ho~AHamOWED,
This finishes the proof if we are in the high case (60).

Now we assume that we are in the low case (GI]). For each T' € W, the support
of ¢ * Moy 18 essentially a thickened tube of T' with dimensions 1 x K 0 X K0 where
K = 6V5. We use T to denote this thickened tube. Let W be the collection of
these thickened tubes obtained from W, and we only keep those essentially distinct
tubes (each tube intersects < 1 other tubes of those whose angle is within < K§ of

its own, and every T' € W is contained in some T from W)
Write W as a disjoint union

(64) W = thavy U Wlight

where Wlight is the collection of thickened tubes T that contain < C~1K3~VZ tubes
from W. Here C'is a large universal constant which is much larger than the implicit
(universal) constant in (GI). Note that

..

@ | X X e < XY [er e
(66) SCYET'KTH)KTK3TVE = o te e

TeWign, T eW:T'CT TeWign, T'€W:T'CT

As a consequence, we see that (61]) can be upgraded to

(67) s Y Y )| e e R

TEWheavy T'€W:T'CT
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Next, by (67) and the fact that if z € T then #{T e W:z € T Cc T} < K, we
conclude that

(68) > xpl@) 2K Vo e F
TEthavy

Write

69 ST Rl = (K)HE, g &

(69) (6K) , € =2

The tubes in tha\,y satisfy the induction hypothesis at the scale K with the new
parameter £. Hence

W a+1—1010
W] > [Wheawy | K5V > p(®3)eq (1) Caq (67 K1) 107V go-ve

Elementary computation shows that

= _ E-¢ € 3e
i eVt T At T

Therefore,
W) > Csa - j(RP)ea ()~ 6~ (@110 VO 51004 3 (1401010 VE) - v
(71) > 0= -M(R?’)c (M)—lé—(a-‘rl—lom\/E)KQ—aélOmaf6—10108+a
— Ve« o .
Since a < 2, the induction closes. (|

We have the following corollary of Theorem [7

Corollary 2. Let a € (0,3) and a1 € (0,min{2,a}). Let p be a finite non-zero
Borel measure supported on the unit ball in R® with co(pu) < 1. Let § > 0 be a
small number. Let As be a 6-net of [0,1]. For each 6 € As, let Dy be a disjoint
collection of at most p(R3)5~1 balls of radius & in ma(R3). Then there exists e > 0,
depending only on o and o, such that

(72) 6 Y (mowm)( |J D) < Cla, an)u(®)s,
0€As DeDy
where the constant C(«, ) depends on a, a1, but not on §.
Proof of Corollary[d We argue by contradiction. Suppose that for every ¢ > 0,
there exist 6 > 0 and Dy, a disjoint collection of at most p(R*)§~*1 balls of radius

§ in m(R3) for each 6 € As, such that (72) fails. Note that for each Dy € Dy,
7, '(Dg) N B3(0,1) is a §-tube. We denote these tubes by

(73) W := {m, ' (Dg) N B*(0,1) : Dy € Dy},

and write W := UgWy. Define

(74) F = {x € supp(u) : 6 Z Z xr(z) > C(a,a1)55/2}
0eNs TeWy

Note that by our contradiction assumption, we have

Cla, ar)u(R¥)6% < § Z (mg#u)( U D)

0cAs DeDg

. / S @)

0 TEW,

(75)
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This further implies
(76) w(F) 2 Cla, ar)u(R?)5°.
Note that by definition, for every x € F', it holds that

(77) Z xr(z) = 6 e,

TEW
We apply Theorem [[ to the measure y restricted to F' and obtain

(78) |W| Z 555717min{2,a}+0(\ﬁ)’u(R3)'

By pigeonholing, this further implies that there exists 6 such that

(79) |W9| 2 55— min{2,a}+0(\/§)M(R3)'

This is a contradiction to the assumption that |Dg| < 6~ u(R?) when ¢ is chosen
to be small enough. (|

The corollary below is a special case of Corollary 2l It is recorded below for a
later application.

Corollary 3. Let a € [2,3] and o* € [0,2). Let pu be a finite non-zero Borel
measure supported on the unit ball in R® with co(u) < 1. Let 6 > 0 be a small
number. Let A /5 be a Vé-net of [0,1]. For each 6 € A5, let Dy be a disjoint

collection of at most 6~ a*;l,u(Rg) rectangles of dimension § x /8 in mo(R?) whose
long sides point in the v'(0) direction. Then there exists € > 0, depending only on

a and o, such that

(30) Vo - (magm)( |J D) < Cla, )5 u(®?),

0EA /5 DeDy

where the constant C(a, o) depends on 7, a, a*, but not on 0.

Proof of Corollary[3 For each 6 € A s and recalling (7)), define
3
(81) Uy := {inei(ﬁ): |1 §1,|.’L'2|§\/5, |$3|§5},
i=1

which is a § x V& x 1-plank. By a simple geometric observation, we have that
(82) 7T9/(W9) C C7T(-)(W9),

for every 6,60 € [0,1] with |¢' — 0] < /6, where C is a constant depending only on
7. For each 6 € A /5 we have a set of § x V8 x 1-planks

Up = {We_l(D9) n BB(Oa 1)}D9€]D)9,
which are essentially the translates of Uy. For each 6’ € As, we choose a § € A V3
with |6 — '] < v/6. We partition each plank in Uy into & x & x 1-tubes with direction
~(¢') and denote all these tubes by Wy.. We also define D), = my(Wy,) which is a
collection of at most p(R3)§~%F ~! balls of radius § in 7g(R3).
Now we can apply Corollary 2] to the sets {Dj, }orca, with a1 = 0‘7 + 1. We
obtain

VY o) ( U D)~ > (magm)( | D) < Clana)u(®)ee.
0 0eAs

0EA /5 DeD DeD;,
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By Frostman’s Lemma (see for instance [20, page 112]), Theorem 2lis an imme-
diate consequence of the following theorem.

Theorem 8. Let v : [0,1] — S? be C? and non-degenerate. If ju is a compactly
supported Borel measure on R3 such that co(p) < oo for some o > 2, then Toupu is
absolutely continuous with respect to H?, for a.e. 6 € [0,1].

To prove Theorem [, we will cut v into finitely many pieces with a number
depending only on v, and work on one piece. From now on, we assume that - :
[0,a] — S? is C? and non-degenerate, and satisfy

(83) ’7(0) = (0707 1)7 '7/(0) = (17070)7 |’7I(9)| =1,V0 e [0,@].

Here a > 0 is sufficiently small depending on +.

3.2. Decomposition of the frequency space. In this subsection, we discuss the
decomposition of the frequency space Rg. Recall the cone that we are considering;:

F'={r(yxv)(0) :reR,0€[0,a]}.

For any & = r(y x ¥')(0) € T, there are three directions that we would like to
specify: the normal direction 7(6); the tangent direction ~'(6); and the flat (or
radial) direction v x 7/(#). We want to decompose Rg’ into regions according to the
distance from the origin, the distance from the cone I', and the angular parameter.
We give the precise definition below.

For a given integer k, define
(84) Oy == (27%/2N) N[0, .

Fix k < j. If k < j and O € {+,—}, then we define the plank in the for-
ward/backward light cone
(85) 7(6,3,k,0) = { X1 (7 x 1) (6) + A7/ (6) + A (6)
Al ~ 27, [ do| < CTT2TRPH g ~ 27FH sgnhy = O = —sgn)\3}.

Here C, > 0 is some large constant that depends only on «. It is chosen such that
the distance from 7(0, 4, k) to cone {(y x 7/)(6) : 6 € [0,a]} is comparable to 27~*.
Let us digest a little bit about the plank 7(6,j,k): Ay ~ 27 is the distance from
the origin; |A\3| ~ 27517 is the distance from the cone T'; and |\g| < 27%/217 is the
angular parameter of the plank.

If k = j, then for O € {+, —} we define

(86) 7(0,4,7,0) =

{16 %7 027 O+2070) : M ~ 2, Pl S272, hal S 1sgudy = 0.
Let

(87) Aje:=A{7(0,5,k,0): 0 € Ok, 0 € {—, +}},

and

(88) Aj=J Ak A=A

k<j jJEN
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Roughly speaking, for k < j, A;j forms a canonical covering of the part of {{ €
R3 : [¢] ~ 27;dist(¢,T) ~ 2747} outside the cone I by 27 x 27 /247 x 2=F+i_planks.
Each A; forms a covering of the ~ 1-neighbourhood of {£ € T : |¢] ~ 27}.

For each 7 € A, we define T to be a set of planks of dual dimensions to 7 (but
scaled by 2% in each direction where § > 0 and 7 € A; ;) and forming a finitely
overlapping covering of R3. We will refer to T, as the wave packets determined
by the plank 7. Now, we discuss the wave packet decomposition. For each 7 € A,
we can choose a smooth bump function v, supported in 27 and choose a smooth
bump function ¥y supported in the unit ball, so that we have the partition of the
unity

Yo(€) + D ¢ (&) =1,
TEA
on the union of the 7’s. For each T' € T,, we can choose a smooth function 7y
which is essentially supported in T' (with rapidly decaying tail outside of T'), such
that suppfr C 7 and
Z nr(z) = 1.

TET,
For any T' € T, we define the wave packet
Moy = nr (1 * U ).
Lemma 4. For 7 € Aj and T € T,, we have
I Mrp sy S 222 0(2T) + Cn27*V i (R?)
for every N > 1.

Proof of Lemma[f Note that |z\/1:(:c)| < ¢« (x), where ¢,«(x) is an L' normalized

function essentially supported in 7* (the dual plank of 7). So, we have |nr| * |@:| <
|nr|. Therefore,

[t < [ (el 571) S [ lulbi] S 290002) + Oz (),

Lemma 5. For 7 € Aj;, and 6 € [0,a] with

(89) |0 — 0, > 27k(1/2=9)
it holds that
(90) H770#MTJCHL1(H2) SeN 27kN|7'|||f||L1(]R3)-

for every N > 1, T € T, and f € L*(R?).

Proof of Lemmald. We start by writing

o1) Mrf (@) = (o) [ Fleon @9
R‘

By identifying the complex measure mgx M7 f with its Radon-Nikodym derivative
with respect to H2, we obtain

(92)  mopMrf(z) = / Tew)| / (@ + £y(0)) 000 gy it O g
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for every x € y(6)*. Tt therefore suffices to show that

nr(z + ty(0))e &V gl < 27RN - ve e Ve RS
R

Integration by parts will finish the proof. For more details, we refer to Lemma 2.6
n [13]. O

3.3. Proof of Theorem 8t good part and bad part. The main idea is to divide
the wave packets into two parts, called the good part and the bad part. We will
prove an L' estimate for the bad part and an L? estimate for the good part.

Let a > 2 be as in Theorem [8 Let € > 0 be a small number (note € is different
from €) and let ap > 0 be determined later (we will later let ag ,* 2). For j > k
and 7 € Aj i, define

TT,b = {T c TT . ILL(4T) Z 027]6(040+1)/270¢(j7k)+103j€} , TT,g — TT \T‘r,b-

Define

(93) =3 > > Mrp, pg=p— .

JENk€E[je,j] TEN; kx TET

We remark that the wave packets of u are those that have heavy p-mass and not
too far away from the cone I'. We have

= phg T+ b

We remark that pg = ftg.a.c,00 a0d [ty = [p a.e,0, depends on parameters a, €, ag,
but for simplicity we just omit them.
Theorem [{] follows from Lemma [6] and Lemma [7 below.

Lemma 6. Let o > 2 and e < 1. Fix ag < 2. For all Borel measures p supported
on the unit ball in R® with c, (1) < 1, it holds that

//|7r9#m,| dH?do < 1,

where py is defined by (Q3), and the implicit constant depends on a, ag, € and p.

Lemma 7. Let a > 2. Then for ay < 2 sufficiently close to 2, and € > 0 small
enough depending on a and ag, and 6 <K €,

(94) [ [ mosnl arzas <1,

where the implicit constant depends on «, ag, € and .

Proof of Lemmal@l By definition, we first write

(95) //|7r9#ub|d7-[ d9</z Y% /|7r9#MTM|dH2d9.

JjeEN k€lje,jl T€A; x TET
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By the triangle inequality, this is

90 <3 3 / / 3 S° [ My dH2d6

J k€lje,j] TEN; k- TeT,
|6, —0|<2k(=1/2+9)

(97) 153 DIl B SEED SN EIT)

J k€lje,j] TEA; k: TET
|6, ,9‘2216( 1/2+96)

By Lemma [5] the contribution from (@) is
Soen D D TN RY) S50 Y 279 (RP) S (R,
J ke€led,d] J ke€led,d]
By choosing N > 100e~!
To estimate (@6]), we discretize the integration in 6 and bound it by

(98) DX D 2 W‘/ > > ImosMop| dH?

J k€[je,j] 0€O TEN; k: TET,
|97—0|<2’“< 1/248)

By Lemma [] the contribution from (@) is

Su®)+> > Zz k/2 > > 2%0,(2T)

J k€lje,j] TEN kit TET,
16, —6]<2R(~1/249)

(99) R3 +Z Z 22 k/22100]5 k(@)%

J kelje]

B () = U U 27

TEAj’kJ TeT,
|6, —6| <2F(=1/2+8)

For fixed j and k, let {B;}; be a finitely overlapping cover of the unit ball in R? by
balls of radius 2=U=%). For each 6 and [ let

Bjri(0) = U U ot

TEA  k: TeET, b:
|6, —0|<2F(~1/2+8) 2N B, #0

Let 115, be the pushforward of g under z +— 297%=2k33 Denote

(100) B, (0) :=277"F"2K0 . B, 1(0), By = {272y 4y |y <1yeR3},
with b; the centre of B;, and define

(101) ks =2°07F2R0) X,

Then
(102)

> uBik(0) <D (B ka(0) < 27 TN L (B 10(0).
[ [ l l [

Note that for each 0, the set B, () is contained in a union of planks of dimensions
1 x 27%/2 % 2=F: the number of planks is

(103) < 2ka0+ +C5k~ (RS)
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for some large constant C, and each plank overlaps < 2'9%9 of the others. Moreover
Ca (Fjk1) < 1 and [k, is supported in a ball of radius 1. Therefore, by applying
the triangle inequality and Corollary Bl we can find ¢’, depending only on « and
«g, such that

2~k/2 Z T ke (B 11 (0)) S 2 COkHCR L (R?)
0
5 270,5,k+cl5k2a(j7k72k5) ,uj,k(él);

for some large constant C’, whose precise value is not important. Putting this into
(I02) yields
(104) (m) S 2k/2270’6'k+0'5klu(R3).
Substituting this into ([@9) and then (@3] gives
(105) (m) 5 Z Z 21005j270’5’k+c,5k'u(R3)
J ke€lejnjl
Recall that ¢’ depends only on a and «p. We just need to pick § to be sufficiently
small, and will finish the proof. O

Proof of Lemma[7 Take e < min{ar — 2,2 — ap}. Given x € m(R?), note that

(106) Togis(a) = [ i+ 02(0))de.

Fix the coordinate (e, ez, e3) = (v'(0),v(8) x v'(0),7(0)). Any z € m(R?) can be
written in this coordinate as = (21, z2,0). We can also rewrite (I06]) as

Towtg(T1, T2) = /Ng(l’l,l’z,t)dt-

Doing the Fourier transfom in the (e;, e3)-plane, we have

(7-‘—9#”9)/\(7717772) = //Lg(,'El,;U27t)e*i(901771+x2772) dt

= Jig (11,12, 0) = Tig(m~/(8) + n2(y x 7)(0)).

By Plancherel’s theorem,

1) [ [ ol ar s = [ [ 17 ' @)+ m ) 0 dna.

Roughly speaking,

g = Ho + fg1 + g2,
where p is roughly u(R*)1ps 0,1y with rapidly decaying tail outside B3(0,1), 11g1
is the sum of good wave packets which have controlled mass, and (42 is the sum
of wave packets which are far away from the cone I'. A formula for pg ; is

mor= Y. DL D M
JEN k€[je,j] TENj x TET, 4

The above used that T,y is empty when 7 € Aj i, k < je and j is sufficiently large,
which follows from the Frostman condition on .
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Claim 1. Let 7 € A, with k < j. If there exist 6 € [0,a] and (n1,n2) satisfying
(108) my'(6) +n2 (v x ) (0) € supp(¢r),
then it holds that |na| ~ 27 and || ~ 277F/2,
Proof of Claim[d. Recalling [83]), we may assume

T=7(0",].k)
= {0y O+ 22 (7 x ) O) + 209 (8') 5 ] S 2742 2~ 27, N 27K
If my'(0) +n2(yxv')(0) € 7(0',4,k), we discuss some geometric observations.
Noting that |[Az| ~ 2757 in the definition of 7(#',7, k), we see that 1y (0) +
ma (y x ) (0) ¢ 7(0,4,k) if @ = 0; we also note that if [#/ — 0] > 27%/2 are
too far apart, then m~/(0) +n2 (v x v') (8) ¢ 7(6',4,k). Therefore we must have

0" — 0] ~ 27%/2. In this case, in order for 97 (0) + 12 (v x 7') (8) € 7(¢', j, k), we
must have |12| ~ 27 and |n;| ~ 277%/2, which finishes the proof. O

By Claim [ we see that (I07) is bounded by

09) s [ RGO x ) @) s

(110) +f i (17 (0) + 12 (7 % 7') (6))* iy .
{Iml<nz2[*= 6}
For the first term, the change of variables
(111) §=¢€(0,0) =m~'(0) +n2 (v x ') (0)
has Jacobian
8(51752753) _ / ’ "
(112) 8(771777279) (771777279) - |771| |det ((7 Xy ) (9)7’7 (9)7’7 (9))|

= [m[[(v(0),7"(0))] = |ml,

where in the last step we used

(113) (v(#),7() =0 = (v(t),7"(t)) = -L.
Applying this change of variables to (I09) gives
O S+ [ T ROF S ) S
>1

Here In—c(p) = [ |€]*7=73|(€)|* d¢ is the (a — €)-energy of p and we used the fact
that o > 2 and e is sufficiently small. The last step is because ¢, (1) < oo.

It remains to bound the contribution from gy 1, in (II0). By frequency disjoint-
ness,

// 3 (A (6) + 12 (v % +') (6))]7 diydf

(114) 2
S= Mrp(my' (0) + m2 (v x 7) (9)) | dndb.
TET, ,

J k€lej,jl TEA &

Consider the case k < j and k = j separately. In the former case, we apply the
change of variables as in (IT]) and obtain
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ws) 3 [ [ | 5 Hrtny @)+ m %) )| dnas

TEA; & TeT, 4

<> 2—j+k/2/Ra‘ S @(5)‘2(15

TeAj,k TETT,Q
S YYD 2 utk200k / ’ M)
TEA]‘,k TETT,Q R?

When k = j, we show that (IIH) holds as well. To see this, we first observe that
for each fixed T', in order for

(116) Mg (m~' (0) +n2 (v x 7) (6))

not to vanish, 6 has to take values on an interval of length 277/2; next, we apply

the two dimensional Plancherel’s theorem in the n; and 7, variables for every fixed
6, and (II5) follows from the uncertainty principle.

2
’ dx.

We continue to estimate (II5) and do not distinguish k < j and k& = j anymore.
We have

(117) @m < D, Y, 277h/200k / }Mw(w)fdw
R3

TGAj,k TETT,Q
(118) - 2*j+k/220<“>’“/ S>> frdu
TEN; 1 TET, 4

where

(119) fr = (nrMrp) O,

and from (II7) to (II8]) we applied Fubini and expanded the square. We cut the
unit ball into small balls B, of radius 2777* and let v, be the restriction of W to
2109k B By Cauchy-Schwarz,

, 2 1/2
(1200  (OR) < 2—J+k/220(6)kZu(210kéBL)1/2(/’ % fT’ dm)
L TeAj,k TETT,Q

Let ¢; be a non-negative bump function such that ¢;(€) = 1 for €| < 2910, By the
Fourier support information of fr, we have

(121) /} D fTrdVL:/} D fT’2d(VL*cj)
TEAj ) TET 4 TEN; K TET g

By pigeonholing, we can find a subset

(122) W.c |J {TeTy:TNB #0}

TEAj,k
such that H fTH2 is constant up to a factor of 2 as T varies over W,, and

(123) @ £ 2000 [| 3 gl v+ )

TEW,
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By pigeonholing again and by Holder’s inequality, there is a disjoint union Y of
balls Q of radius 277, such that

2
P

(124) /‘ Z fT‘ d(v, * ;) <20(6)JH Z fTHLP(Y </ VL*Cj)ﬁ>1 |

TeEW,

and such that each Q C Y intersects ~ M planks 37T as T varies over W,, for
some dyadic number M. By rescaling and then applying the refined decoupling
inequality in Theorem [d from the Appendix A, the first term in (I24]) satisfies

11 1/2
. 27 p
(125) H ‘ < 9Bi=F)(3-1)+0(e); ,
E fT Lo(yy S 20z |W| > llfrlls

Tew,
For the second term in (I24]), the assumption that c,(p) is finite implies that

(126) v * Gilloo S 27679

Hence by Hoélder’s inequality and the definition of T, 4, we have

MY (14G) (8T)

(127) /Y (v % ;)72

TewW,
(128) < 95 p-1 W, | 2 k(@0 D) 2-al-k),
Combining ([I25]) and ([I28)), we obtain
(129) (m) S 2O(e)j2j(3fa)+k(%7%)(*4+2a7a0) Z ”fTHg
TEW,
Note that
(130) [frll2 S [[Mrpl2

for every T. Substituting into (EIZQI) and then into (II7) yields

wy Y Y [ M|

TGAJ r TET,, g

(132) 5ZM(Qlokfst)l/?20(€)j2%j(3*a)+%k(%*% —4+2a—ao ( Z I1£7112 )
L Tew,

By Cauchy-Schwarz in the sum over ¢, we obtain
(133) >y / ‘MT,U d:z; < 90()jgi(3-a)+k(§—§) (—4+2a—a0)
TGA k TGT.,. g

By substituting back into (II7), we obtain

(134) m <> Y 9—i+k/290(€)j9i(3—a)+k(5—1)(~4+2a—a0)

J ej<k<j

In the end, we pick p = 4 and finish the proof. O
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APPENDIX A. REFINED DECOUPLING INEQUALITY

The refined decoupling inequality stated here is a natural analogue of the refined
decoupling inequality for the paraboloid from [9]. The shortest length of a plank
dual to an R™/2-cap in the cone is ~ 1, rather than ~ R'/2 in the case of the
paraboloid, so the setup uses unit cubes instead of R'/?-cubes. The argument is
similar to the paraboloid case, using induction and with Lorentz rescaling in place
of parabolic rescaling, but the use of unit cubes requires the induction to be carried
out over a finer sequence of scales (similarly to the induction setup in [4]). The
refined decoupling inequalities in [I3] 14] used tubes rather than planks, and the
use of planks here is a significant reason for the improved result on the projection
problem (at least in Theorem [2). Much of the proof is similar to [I3], [14], with only
the differences outlined above.

For each R > 1let Zg = {jR™Y/%:j € Z} N[0, a]. For each § € =g, let
(135)

Tr(0) = {x17(9)+x2”y'(9)+173(’yx*y’)(@) (1< @ <2 |mg] <RV |as] < R_l}.
If it is clear from the context which R is used, then we often abbreviate Tr(0) to

7(0). Let Pr—1r ={7(0) : 0 € Eg}. For 7 = 7() € Pr-1, denote 0, := 0. Let
(136)

T30 = {01 (%7 02) 4 a2 (00) 4 9 (02) slonl < R o] < B2, ol < 1),
Moreover, we will use T? to denote the collection of translates of 77, that cover

B(0, R). For a fixed small constant § > 0, denote T} g := R°T¢, and T, := {R°T :
TeT}. ForT € T, set 7(T) = 7.

Definition 5. Fiz T € T,. We say that a function fr : R® — C is a T-function if
fr is supported on 7(T) and

(137) HfTHLoo(B(o,R)\T) Se R710000|‘fT||2-

Theorem 9. Let v : [a,b] — S? be a C? curve with det(vy,~',~") nonvanishing.
Let B > 1 be such that

(138) |det (v,7,7")| = B,
and
(139) V20 < B-

Let R > 1 and suppose that

F=> fr,

Tew
where each fr is a T-function and
we |J T
TEPR71

Assume that for all T, T' € W,
(140) [ fr{ly ~ | £z

9
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Let Y be a disjoint union of unit balls in B(0, R), each of which intersects at most
M sets 2T with T € W. Then for 2 < p <6,

M\2® 12
€ 2
1 llrcry Ses R <—|W|) <§ : |fT|p> .

TeW
Proof. Assume that [a,b] = [-1,1]. Fix € € (0,1/2), dp = €'°°, § € (0, &),
R > min {3103/57 2105/6} 7

and assume inductively that a (superficially) stronger version of the theorem holds
with K2-cubes instead of unit cubes, where K = R52, for all scales smaller than
R := R/K2, for all curves v satisfying (I38) and (I39), and for all B > 1.

For each 7 € Pr-12(T'(7)), let kK = k(1) € Pg-1(T'(y)) be the element of
Px-1(C(y)) which minimises |0, — 6,|. For each &, let

O = { |(7 e 70) z37y(05) :

T + 2
(v x79) (0x)] ACH]
fo1] < RIS, fua] < RU/K, [aa] < RYFO/K),

and

7' (6x)
ACHI
ac (1/10)R™K2)Z, be (1/10)RMIK1) Z}.

P, = {D = CW(HN) +b + DH,O :

Let P = UHE'PK—I(F(’Y)) P,.. Given any 7 and corresponding k = k(7),

(141) (v % ¥")(0:),7'(0:))| < BTTK ™,
and
(142) (7 % 7)), 7(6,))] < BTTE 2.

It follows that for each T' € T, there are ~ 1 sets O € P,y with 7’0100 # (), and
moreover T' C 1000 whenever 7'N 100 # ). For each such T' let O = O(T') € Py, be
some choice such that TN 100 # @), and let Wg be the set of T’s associated to O.

For each xk and O € Py, let {QD}Q‘j be a finitely overlapping cover of 1000 by
translates of the ellipsoid

' (6x) oo (v x ') (0x) .
1V ()] [(y x4") (0:)]

/2
(I + (jealic =) + (sl 2)?) " < K}

{xw(@n) + 22

Using Poisson summation, let {n¢g. }gseo, be a smooth partition of unity such

that on 1030,
Z NQs = 1,
Qo€Qo
and such that each ng, satisfies

HnQD oo S 1, ||’I7QD ||L°°(R3\QD) < R—IOOOO7
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and
InQe (x)] < dist(z, Qo) ' Va e R?,

with 7o, supported in

V' (0x)

{517(9 )+§2| /( )l ( X’Y’) (9/{)

[(v x7") (0)]
e <K, |6] < KK, |§3|gfa<2}.

+&3

By dyadic pigeonholing,

Z Z NYo fT

0O TeWg

”f”[,p(y) SlogR

Tew

1/2
+ R (z ||fT|f,> |
Lr(Y)

where, for each O, Yg is a union over a subset of the sets Qn, and 7y, is the
corresponding sum over ng,, such that each Qo C Yo intersects a number # €
[M’'(O),2M'(0)) different sets (1.5)T with T € Wg, up to a factor of 2. By
pigeonholing again,

Z Z Nys fr

O TeWg

< (log R

Z Z nys fr

0eBTeWg

)

Lr(Y)

Lr(Y)
where [Wg| and M’ = M’(0) are constant over O € B, up to a factor of 2. By one
final pigeonholing step,

Z Z nys f1

0eB T eWg

)

<logR

Z Z nys fr

0eB T eWg

Le(Y) Le(Y")
where Y” is a union over K2-balls Q C Y such that each ball 2() intersects a number
# € [M",2M") of the sets Yz in a set of strictly positive Lebesgue measure, as O
varies over B. Fix Q C Y’. By the decoupling theorem for generalised C? cones,

followed by Holder’s inequality,

Z Z nys fr

nepTet 17(Q)
P 1/p
<cmoo i (] 5 e
oeB || Tews L 20)
1/2
4+ R900 <Z |le|§> .
TeW
Summing over Q gives
||f||LT’(Y) S C€ (log R)H)O BIOOKE/IOO (M//)%—%
1/p

> Jr

TeWe e (vs)

>

0oeB

1/2
R (z |an§) |

Tew

This will be bounded using the inductive assumption, following a Lorentz rescaling.
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For each 0 € [—1, 1], define the Lorentz rescaling map L = Ly at 6 by

7 (6) (v x7') (6)
L@+ m g + s 1oy @)
_, 0 O g, (09 (0)
=m0+ Kea gy + Koea s @r
e ((6))
oy = Lo _
O Lo et
Then for any ¢ € [—1,1],
o Tyt (L(Y(9)))
VO =T ne
and
gy T LO"@))  (LOO), L0 ) T (LG (@)
IL((9))] IL(v(o))I* '
Hence
det(3,7,7") = gdet (Loy,Lor/,Loy")
|L ol
K3 ! 1"
= mdet(%v ).
Let e = (10°B'%)~1, and for fixed § € [-1 +¢,1 —¢], let
(143) o) =30+ K1), ¢€l-cel.

The assumption that [|7v|[c2_; ) < B yields
1< |L(v(¢))| <1+10Be, Voe[d—eK ' 0+eK 1.
Similarly,
IL(¥'(¢)) — L(¥'(0))| <10eBK, V¢e[§—cK ' 0+eK .
It follows that
|det (7,7",7")| > (2B)~"
on [—¢,¢], and that
Fllezp-c.q < 2B
For each O € B, given T' € Wq, let gr = fro L, where L = Ly, . Then

ZfT ZQT

TeWg TeWn

(144) <K»

LP(YD) LP(L71Y\])

The inequalities (I41) and ([Z2) imply that for each T € Wg, the set L=1(T) is a
equivalent (up to a factor 1.01) to a plank of length R in its longest direction
parallel to L™*(y x 7")(0-(r)), of length RY/23 in its medium direction, and of
length RY in its shortest direction. The ellipsoids Qo are rescaled to K2 balls

L=1(Qn). Moreover, it will be shown that
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. L A0:) (¥ x7") (6-)
(145) L(T)Q{ 17(0-) + 270 Tz 3|(”Y><7)(97)|

1< @y <201, |zo| < (LODR™YV2, |zg] < Rl}.

To prove this, let

x = x17(0;) + x2 7 (0r)

v'(6-)]

+ 25 (v x v
vy X
where
Ty € [152]5 |I2| < R_1/2a |I3| < R_l'
The vector (5 x 7') (,) is parallel to L=1((y x 7/)(6,)), since L=((y x 7/)(05)) is
orthogonal to ¥(0;) and 7'(6,). The inequality

L7 (v x v)(6:))] = K2 (v x ')(65)]

gives

o L x4)(6-) =1
(146) (2 g < 7
Moreover,

<L$ T (L 0(6:)) >’
}WL'y(é) L( (v (0 )))}
~'(6,)

[ () o2
(147)

< (1L.O1)R™Y/2.
For the direction L(y(6;)),

L) \ 2 o1/
(148) <L ,|L(7(97))|> L (8:))] + O(K2R172).

Combining (I46]), (I47) and (I48) gives (I45).

Inductively applying the theorem at scale R gives

1_1 1/2
M \ETE
< 10'% /e pe - —2e 2
m <GB () (}: |fT||p>

TeWg

for each O € B. Hence

Il ey
1/p

|

1_ p/2
M M\ 2
< 067631010/6K76 (W) Z ( Z ”fT”ZQ,)

OeB \TeWg

By the dyadically constant property of || fr|p, this is

11 1/2
M'M’'"\2"7» (|B||W
< 067631010/61{*6 ( |W| > p <| ||‘|/V|D > (Z |fT||2> .

TeWw
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The second bracketed term is < 1, since

wi=>1>3 S 1~3 S 1> (Bl[wyl.

Tew OeB TeWw: OeB TeW:
0=0(T) 0=0(T)

It remains to show that M'M” < M. Let Q C Y’ be any R'/?-ball. By definition

of M,
M > Z Z 1

TeW: oeB:
2TNQR#D 0=0(T)

Y >

0B TEW:
o=0(T)
2TNQR#D

S5 3

0eB TeWq:
2TNQR#D

By definition of M’ and M",
M M" ~ Z M’

0eB:
m(YoN2Q)>0

m(Qo N2Q)
< > XM
OeB:  QuCYs m(Yo N 2Q)
m(YaN2Q)>0

m(Qo N2Q)
~ Z Z Z m(Ya N2Q)

oeB: QuCYn TeWg:
m(YoN2Q)>0 QuN(1.5)T#0
- Y ¥ % m(Qo N2Q)
OeB: TeWg Qo CYa: m(YD n 2Q)
m(YaN2Q)>0 QuN(1.5)T#0
m(Qo N2Q)
(149) < Z > X -
TEWs: QoCYa m(Yan2Q)
(Yg m2Q)>O 2TNQ#D
0eB: TeWg:
2TNQ#D
< M.

The inequality ([I49) above follows from the observation that if Qo N 2Q # 0, and
if T'€ Wq is such that Qo N (1.5)T # 0, then 27N Q # 0. O

APPENDIX B. DECOUPLING FOR C? CONES

We have been using the decoupling inequality for C2 cones in R? in a few places
above, but it may have not been written down in the literature. In the appendix,
we state it and sketch its proof. We start with the decoupling for C? curves on R2.
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Theorem 10. Let v : [-1,1] — R with v(0) = ~'(0) = 0 be C? and satisfy
~¥'(t) # 0 for every t € [-1,1]. Then

e 2 1/2

LS (R2) Sv,ﬁ 0 ( Z HEIfHLG(]R2)> ?

IC[0,1],|I|=6

(150) | B

for every e >0 and ¢ € (0,1). Here
(151) Erf(z,y) = /f(t)ei(wt—kyv(t))dt’
I

for an interval I C [—1,1].

One can follow the same argument as in [8] to prove Theorem We leave out
the proof. Via the bootstrapping argument as in Bourgain and Demeter [I] and
Pramanik and Seeger [24], one can prove the following decoupling for C? cones.

Theorem 11. Let v : [—1,1] — R with v(0) = ~'(0) = 0 be C? and satisfy
~"'(t) # 0 for every t € [-1,1]. Then

. ) 1/2
i 5T fertle)”

I1C[0,1],|I|=6

(152) 17

for every e >0 and 6 € (0,1). Here
(153) Euf(opz)im [ fls et O sy,
[1,2]xT

for an interval I C [—1,1].

We give a sketch of the proof of Theorem [[1l By the triangle inequality, we can
assume that f is supported on [1,1+ 6] x [0,¢]. The key observation in [I] is that
the cone

(154) {s(1,t,7(t)): 1 <s<1+6°0<t <"}
is in the §2#*+€-neighborhood of the cylinder
(155) {(8,8,7(t) : 1 < s <1460 <t <}

for every 1 > €. To see this, let us take one point s(1,¢,7(t)) from ([I54), and we
will show that its distance to (s, st,y(st)), which lies in (5], is < §2#T¢. This
amounts to proving

(156) [y (st) — sy(t)] < 62+,
Note that
(157) [v(st) = sy(®) S 1 = sllv(@)] + [v(st) = ().

The desired bound ([I56) follows from Taylor’s expansion and mean value theorems.
After proving ([I50), one can then apply Theorem [0l iteratively, in the same way
as in [1], and finish the proof of Theorem [[1l We leave out the iteration step.
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