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The RangL project hosted by The Alan Turing Institute aims to encourage the wider uptake
of reinforcement learning by supporting competitions relating to real-world dynamic decision
problems. This article describes the reusable code repository developed by the RangL team
and deployed for the 2022 Pathways to Net Zero Challenge, supported by the UK Net Zero
Technology Centre. The winning solutions to this particular Challenge seek to optimize the
UK’s energy transition policy to net zero carbon emissions by 2050. The RangL repository
includes an OpenAl Gym reinforcement learning environment and code that supports both
submission to, and evaluation in, a remote instance of the open source EvalAl platform as well
as all winning learning agent strategies. The repository is an illustrative example of Rangls
capability to provide a reusable structure for future challenges.

1 Introduction

The use of open competition platforms has motivated rapid development in machine learn-
ing. Historically, these competitions targeted classification problems, often solved using super-
vised (discriminatory) learning methods relying on expertly labeled classes. In many real-world
problems, including sequential decision-making problems under uncertainty, correct classifi-
cations are not available. Therefore these problems are not solvable by classical supervised
learning techniques. Stochastic dynamic programming (SDP) methods provide classical solu-
tions for sequential decision-making problems; see [1], [2]. Where SDP fails, e.g., in complex
computer games, reinforcement learning (RL) methods have produced impressive results; see
[3].

The aim of the RangL project [4], hosted by The Alan Turing Institute, is to facilitate collab-
oration between academia and industry, in order to drive progress in the real-world applica-
tion of reinforcement learning to decision-making problems and to provide industrially relevant
benchmark comparisons between solutions — whether based on RL or otherwise.

The specific 2022 Pathways to Net Zero (PTNZ) Challenge RL environment was devel-
oped with support from the UK Net Zero Technology Centre (NZTC) in collaboration with the
UK Offshore Renewable Energy Catapult (OREC). It is the third challenge implemented by the
RangL team, the previous two being power generation scheduling and electric vehicle grid inte-
gration. The PTNZ RL environment relies on the NZTC/OREC Integrated Energy Vision (IEV)
model [5]. This model explores a range of possible UK energy transition pathways, leading to
a net zero energy future by the year 2050, in line with the UK’s current official policy [6]. The
NZTC suggested studying and extending the IEV model because of its relevance to multiple



industrial stakeholders; its complexity, with uncertain costs and revenues extending over sev-
eral decades; and its interwoven economic, environmental and employment objectives. This
hard-to-capture interplay between multiple objectives makes RL a firm candidate for providing
assistance in policy-making based on the IEV model.

2 RanglL Repository

The RangL public project repository (https://github.com/rangl-labs) is provided with the aim of
encouraging others to reuse the objects described by creating (or ‘forking’) new or related RL
environments and competitions.
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Figure 1: RL agent-environment loop. The agent selects actions and the environment responds
and presents new observations and rewards to the agent again. The aim is for the agent to learn
to maximize rewards through repeated interaction.

This is achieved through provision of a modular reference RL environment in the OpenAl
Gym standard (https://github.com/openai/gym), together with helper scripts which support the
local development of both environments and agents, the remote deployment of an instance
of the web-based EvalAl evaluation platform (https://eval.ai/) with a long-running environment
server for the ranking and comparison of agents, and the submission of agents to this instance
of EvalAl.

A GitHub repository for both the environment and winning solutions for the specific PTNZ
Challenge can be found at https://github.com/rangl-labs/netzerotc, which contains the following
folders as well as other materials:

e rangl/ OpenAl Gym environments used in the competition, and scripts which run logical
tests to validate that each environment is correctly specified. It illustrates useful con-
cepts such as random seeding and tests random and rule-based agents. For the PTNZ
Challenge, this folder also contains the compiled version of the IEV model spreadsheet
described below.

e meaningful_agent_submission/ supports both the test evaluation of an agent in a con-
tainerised local instance of EvalAl, and submission of the agent to the remote instance
of EvalAl.

e meaningful_agent_training/ enables training of RL agents using any RL library com-
patible with OpenAl Gym. The RL library Stable Baselines 3 [7] https://github.com/DLR-
RM/stable-baselines3/ is used by default. The util.py helper contains the Trainer
class, whose train_rl method is an easy way to train an RL agent and save trained
models. The folder also contains various scripts which evaluate the average perfor-
mance of both trained and random agents across multiple episodes; plot their actions in
a single episode; verify that the result of evaluation on the same fixed set of seeds is re-
producible; and create multiple agents that can be used for rapid testing of the challenge
submission process in the case when there are multiple competition phases.
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e evaluation/ holds challenge-specific content used to populate the remote instance of
EvalAl, including its web front end and its evaluation back end.

e winning_teams/ solutions from the three winning teams.

The PTNZ environment is written in the modular RangL environment structure, which aims
to offer a clear logic for the handling of common issues. Beyond the standard initialise,
reset, step and score methods required by OpenAl Gym, its Environment class provides
methods which allow the random seed to be specified; generate plots; load an external model
into memory that has been previously compiled from a spreadsheet; and verify that reset
works correctly. The modular environment also contains several helper classes and functions,
including a State class intended to hold all state information. Since in some environments the
state may be partially observed, this class has its own methods for both initialization and gen-
eration of observations. Helper functions are provided to specify the observation and action
spaces; apply an action to the state and calculate the reward; check whether the action has
violated any pre-specified constraints; add random noise to the state (representing uncertainty
over the future); reset the randomized variables; record data for graphing and debugging; plot
the recorded data; and return the score for the full episode. An illustrative example environ-
ment built with an earlier version of this modular structure is the previous RangL challenge
on the topic of generation scheduling, available at https://gitlab.com/rangl-public/generation-
scheduling-challenge-january-2021.

3 RanglL PTNZ Environment

Use of the RangL repository is illustrated by outlining the PTNZ Challenge. This Challenge
aims to understand how the UK might help to meet its stated aim of net zero carbon emissions
by 2050 by looking specifically at the rate of deployment of three zero/net-zero carbon tech-
nologies: offshore wind, blue hydrogen (that is, hydrogen produced from natural gas combined
with carbon capture), and green hydrogen (produced from water and renewable electricity by
electrolysis). The intention is to provide sufficient detail to motivate reuse of the GitHub repos-
itory described previously for the development of further challenges.

Each run or episode of the challenge has 20 time steps representing the years 2031 to
2050. At step ¢t = 0,..., 19, challenge participants choose the deployment (additional amount
of each technology to be built) during the year 2031 + ¢, and receive the reward specified by
Equation (2). (See Figure 1 for a general description of the agent-environment interaction in
RL.)

The challenge is based on the NZTC/OREC IEV model, described in [5], which illustrates
three plausible pathways to a zero carbon UK energy industry, named Breeze, Gale and Storm:

Table 1: Description of IEV baseline scenarios in comparison with current efforts (Today) in
terms of economic impact; direct and indirect jobs; and investment (capital expenditure) —
Breeze: offshore wind, plus natural gas and carbon capture, utilization and storage (CCUS);
Gale: higher offshore wind, blue and green hydrogen, lower CCUS; and Storm: highest offshore
wind, green hydrogen, lowest CCUS in comparison with Today.

Today  Breeze Gale Storm
Economy £40bn  £80bn  £100bn  £125bn
Jobs 140,000 113,000 158,000 232,000
Investment  £10bn  £6.5bn  £9.4bn  £13.4bn

Each IEV pathway is a specific sequence of year-by-year deployments for the three zero-
carbon generation technologies from the present day to 2050. The annual carbon capture,
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utilization and storage (CCUS) deployment is a slack variable that enables reaching zero net
carbon emissions in that year. In this context Breeze, Gale and Storm represent baseline
sequences of actions which were constructed by expert judgement during the IEV study [5].
Notably the original IEV model, which takes spreadsheet form, is deterministic and does not
address the extent to which costs, revenues and employment might vary between now and
2050, or how fluctuations in groups of these factors (for example, the prices of natural gas and
blue hydrogen, which takes natural gas as an input) might be correlated. Nevertheless, uncer-
tainty may be directly incorporated within the RL framework, making it particularly suitable for
policy making under uncertainty incorporating structured models of randomness. Whilst de-
veloping the RL environment, the RangL team were able to discuss such considerations with
the creators of the IEV model, facilitating the choice of uncertainty model in an informed way.

The PTNZ environment elaborates upon the IEV model by adding a reward function and
suitable action and observation spaces. Translation of the static IEV model to an RL environ-
ment requires updating of the underlying IEV spreadsheet with each iteration of the agent-
environment loop in Figure 1, to account for to both the agent’s actions and the environment’s
random evolution of costs and revenues. In the PTNZ environment this is achieved by first
compiling the IEV spreadsheet model using the pycel Python library [8], with which the en-
vironment then interacts during each step of the agent-environment loop. This procedure
converts the IEV model into a directed acyclic graph (DAG), whose vertices correspond to
spreadsheet cells and whose edges correspond to the dependencies between cells. As se-
quences of actions are taken in the agent-environment loop, this DAG can be updated and
re-evaluated with efficiency sufficient for the practical application of RL algorithms. Overall, in
contrast to the hand-picked and fixed yearly deployments in Breeze, Gale and Storm, this RL
approach enables the exploration of optimal pathways given the sequence of observations. In
this way the PTNZ environment enables a wider range of pathways to be examined within the
IEV model.

In general, the goal of RL is to find an optimal policy mapping observations to actions
m: O — A maximizing the expected sum of rewards

ZRt|7T
t

overtheyearst =0,...,19. An agent interacts with the PTNZ environment by choosing yearly
investments in a mixture of three technologies, which are subject to both annual and total limits.
Hence, the action space «; is continuous consisting of triples a; := (w, b, g) € [0,27] x [0, 25] x
[0, 24], representing construction of capacity of offshore wind (w), blue hydrogen (b), and green
hydrogen (g) in any given year ¢ with the entire action space A = (aq, ..., a19). It is worth noting
that earlier deployment reduces lifetime emissions but generally implies higher capital costs.
Solutions also need to meet some non-monetary constraints, e.g. balancing job creation in
new energy technologies against the loss of jobs in decommissioned energy infrastructure.
Other factors such as lifetime emissions and their social cost might also be considered and
included in the objective (reward) function, which an agent will learn to maximize. Let

E (1)

R, = Revenue(ay,...,a1) — {CAPEXt(at) + OPEX,(ay,...,a1)
+ DECOMt(CLt) + COQt(CLt, e 7a1)} (2)
+tx Jt(at, at_l)

where for year t, R, is the reward, Revenue, is energy revenue, CAPEX, is the capital cost,
OPEX; is the operating cost, DECOM; is the decommissioning cost, CO2; is the emissions
cost and J; is the increment in jobs. While the shift to zero-carbon technologies can lead to
increased employment in the long term under the IEV model, it is important to ensure that job
numbers are also managed appropriately. The reward function (2) therefore incentivizes job
creation through the term ¢ x J;(a¢, a;—1). The PTNZ environment introduces an unobserved
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Figure 2: An example episode in the PTNZ environment over ¢ = 0,...,19 steps. The top
plot (a) gives cumulative reward, CO2 emissions and jobs in relation to blue hydrogen, green
hydrogen and wind deployments. The middle plot (b) shows random actions for blue hydrogen,
green hydrogen and wind at each step. The bottom plot (c) gives cost forecasts for carbon
price, carbon capture and storage (CCS) capital expenditure (CAPEX); and wind CAPEX and
development expenditure (DEVEX).

realization of randomness in the input prices CO2, CAPEX, DECOM, OPEX, see panel (c) of
Figure 2.

The PTNZ Challenge posed two problems, namely open loop and closed loop. In the
open loop problem, the observation space was two-dimensional and contained only the step
count and the reward, with all randomized costs and revenues unavailable to the agent. In
contrast, the closed loop problem presented a high-dimensional observation space containing
forecasts for future technology costs and prices; see [9] for a detailed discussion of models
for the inclusion of forecasts into linear state space models such as that used in the PTNZ
environment.



3.1 Competition outcomes

The competition was won by the teams Epsilon-Greedy, VUIltures and Lanterne Rouge jointly,
who achieved very similar scores. The winning strategies in the open-loop relied strongly on
blue hydrogen, while deploying the other technologies to a significantly lesser extent. They
were essentially of so-called bang-bang type [12], either investing fully or not at all in each
time period. The closed loop problem proved to be much more difficult and no solutions other
than copies of open loop solutions were submitted by the winning teams.

The form of objective function (2) suggests a global maximium in terms of CAPEX, OPEX
and CO2 costs. The reliance on blue hydrogen made sense given the cost and CO, assump-
tions but deviated strongly from IEV model scenarios. While the incorporation of randomness
in the RL environment reflects real-world uncertainty, makes the challenge more realistic and
allows the agent to learn to adapt under a variety of situations, the recent volatility in energy
market prices from summer 2021 to early 2022 in the Northern hemisphere makes a good
case for the addition of more drastic noise provided it can be added in a realistic manner.

The only exception to the emphasis on blue hydrogen was a last-round-effect. Here, all
three winning teams invested fully in all technologies in the last time step. Two teams obtained
almost identical solutions, while the third obtained slightly different results. The closeness of
the three solutions suggested the presence of a global maximum. Nevertheless, the winning
teams may all have found the same local maximum.

4 Epsilon-Greedy’s Solution

Epsilon-Greedy’s (EG) focus was the open loop challenge. EG opted to use a simple optimiza-
tion algorithm, where learning is done via sequential reward maximization one parameter at a
time, while keeping the other parameters fixed. The team suspected that this approach might
be sufficient, and more sophisticated methods (e.g. based on Q-function estimation) would not
yield a significant advantage, since the learning agent lacked sufficient observations to infer
an estimate on the state it found itself in. EG also submitted the same algorithm to the closed
loop challenge and managed to achieve a top score without using any additional observations.

4.1 Design choices

The only available state information is the year. Therefore, policies can be represented in
the form of a mapping from year, to actions = : 7" — A. Such policies are unambiguously
determined by a sequence of tuples {(wy, b, g:) : t € T}, spanning the 60-dimensional policy
search space A := AT,

In order to find the optimal policy representation =* € A, EG first initialized all 60 pa-
rameters to zero, and performed a parameter-by-parameter maximization of (1), starting from
parameters of the 3-tuple representing investment in the year 2050, and then iterating to the
initial year 2031 in a backwards-recursive manner.

It is worth noting that EG’s original competition submission initialized the parameters ran-
domly, and performed multiple forward and backward maximization passes. It was later found
that one sequence of backward iterations with all-zero parameter initialization was sufficient to
achieve a very good solution.

EG’s approach allowed the complex 60-dimensional search problem to be reduced to a
sequence of 60 one-dimensional reward maximization problems. For each of these sub-
problems, EG employed the golden section search algorithm[10, 11], a one-dimensional search
method with efficiency and optimality guarantees for unimodal functions. At each iteration of
golden section search, the expected reward for tested policy was sampled from the 100 in-
stances of the environment. The search yielded good results, i.e. a total sampled sum of
rewards =~ 3,047,227 in the evaluation, despite no prior information about the shape of the
reward curve.



4.2 Replicability

The well-known sequential golden section search algorithm is easily implemented; see
https://github.com/rangl-labs/netzerotc/tree/main/winning_teams/Epsilon-greedy for details.

5 VUlture’s Solution

VUIltures approach began by analyzing the results of repeatedly running a fully random agent
in the closed-loop environment. The team attempted to train a variety of machine learning
algorithms in order to predict both the direct as well as the cumulative rewards at each state,
given a certain action would be performed. As features, VUltures used direct observations
about the noise, as well as constructed features containing information on all previously en-
countered observations, visited states and performed actions leading up to the current state.

It soon became clear that the best policies found in this way, tended to be very similar
regardless of the random noise. This is why VUItures switched to an approach where a policy
was found using local search on a single deterministic environment using only average pos-
sible noise. This led to a static policy that, upon evaluation over a large number of seeds, on
average seemed to beat the attempted dynamic policies.

5.1 Design choices

As explained above, the approach of VUIltures can be divided into a method yielding a dynamic
policy as well as a method yielding a static policy.

VUIltures tried a number of different attempts to develop a dynamic policy that could adapt
based on the feedback it would get during execution. The team tried to train functions that
would predict the total discounted future reward based on the current and previous actions.
For the closed-loop environment the current and previous observations were also used. Linear
models with lasso and ridge regularization were found to perform best. Several more complex
non-linear models were tried. These did not yield better predictions and made the objective
function significantly harder to maximize.

VUIltures’ approach to finding the best static policy consisted of several steps. First, the
stochastic noise in the reward function was removed from the environment. Second, a fixed
base policy was chosen. Steps of policy improvement were then undertaken, wherein each
step, a small investment was added or removed to only one energy type in only one time
period. Thus, there are 60 possibilities (3 energy types multiplied by 20 time periods) in each
step to add a small investment, and of course 60 possibilities to remove a small investment.
Out of these 120 possibilities, the policy that led to the biggest improvement in each step was
selected. lteration in this manner continued, respecting the bounds of the investments, until
the policy did not change anymore.

After discovering that the fixed policy with removed noise worked best, VUItures tried to
find a policy in the same way for a best-case and worst-case seed as well. This gave a
different policy for both cases with slightly better performance, although this policy difference
was negligible.

5.2 Replicability

VUltures then changed the environment to a deterministic variant in which the noise is removed
from the reward function. The algorithm, therefore, does not depend on a specific seed. Ev-
ery evaluation of a fixed policy leads deterministically and replicably to the same value; see
https://github.com/rangl-labs/netzerotc/tree/main/winning_teams/Vultures for details.
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6 Lanterne Rouge’s Solution

Lanterne Rouge chose a model-free reinforcement learning approach, as opposed to policy
gradient methods for example. A neural network approach was selected, which allows con-
tinuous state-action spaces without any discretization (as opposed to, e.g. Q-learning). In
particular, the team employed the deep deterministic policy gradient (DDPG) method [13, 14].
Lanterne opted for DDPG since the team had already analyzed its suitability to find Nash equi-
Ibria in uniform price auctions and validated DDPG intensely against classical game theoretic
predictions [15].

6.1 Design choices

Lanterne focused on the open-loop phase. The reason being that processing the larger state
space of the closed-loop phase would necessitate longer training times and longer hyper-
parameter tuning. DDPG belongs to the so-called Actor-Critic methods. Hence, it employs two
distinct neural networks. Executed actions are picked by a learned behaviour policy ("Actor")
and a stochastic noise ("Exploration"). State-values are estimated by a learned deterministic
neuronal network ("Critic"). As the open-loop phase does not provide state-information, the
critic network does not provide any advantage. Consequently, a trivial critic with constant
inputs was used. When training a learning algorithm the choice of objective function is probably
the most fundamental design decision. Sequential decision making problems can include
thousands of rounds. In such cases, the planing horizon needs to be shorter than the entire
game and it is therefore common practice to use a discounted cut-off reward as a proxy for the
entire reward during such a problem. In the PTNZ Challenge the planning horizon consisted of
3 x 20 yearly investment decisions. This is a relatively short planning horizon. Therefore, the
team chose to use the cumulative reward as training objective directly without any distortions
introduced by a discount factor. Moreover, as the open-loop phase did not provide state-
information between rounds, the game was effectively Markovian. Hence, Lanterne did not
train the game iteratively. Instead, the game was transformed into a single round where the
algorithm initially picks all 60 possible decisions at once and then evaluates the outcome.
Thus, DDPG only had to learn one overall distribution for the entire simulation period.

6.2 Replicability

Lanterne Rouge implemented DDPG within PyTorch. The source-code is available freely in
the original [16] and the competition version can be found at
https://github.com/rangl-labs/netzerotc/tree/main/winning_teams/Lanterne-Rouge-BOKU-AIT.

7 Conclusion

The RangL repository aims to facilitate the creation of reinforcement learning competitions
for the solution of dynamic sequential decision-making problems in a wide range of domains
relevant to real-world policy making. The 2022 PTNZ Challenge applied the repository to
‘gamify’, or translate to the RL framework, the IEV model of the UK’s transition to net zero
carbon emissions in 2050, endowing it with dynamic costs and revenues to reflect uncertainty.
The Challenge stimulated significant research interest with a diverse collection of solutions
submitted. Competition was most active in the open loop phase (i.e. without turn-wise state-
space information) and so future challenges might encourage closed-loop problem solving
specifically.
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