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Abstract

To adapt to a constantly evolving landscape of cyber threats, organizations actively need to collect Indicators of Compromise
(I0Cs), i.e., forensic artifacts that signal that a host or network might have been compromised. IOCs can be collected through open-
source and commercial structured IOC feeds. But, they can also be extracted from a myriad of unstructured threat reports written
in natural language and distributed using a wide array of sources such as blogs and social media. There exist multiple indicator
extraction tools that can identify IOCs in natural language reports. But, it is hard to compare their accuracy due to the difficulty
of building large ground truth datasets. This work presents a novel majority vote methodology for comparing the accuracy of
indicator extraction tools, which does not require a manually-built ground truth. We implement our methodology into GoodFATR,
an automated platform for collecting threat reports from a wealth of sources, extracting IOCs from the collected reports using
multiple tools, and comparing their accuracy.

GoodFATR supports 6 threat report sources: RSS, Twitter, Telegram, Malpedia, APTnotes, and ChainSmith. GoodFATR con-
tinuously monitors the sources, downloads new threat reports, extracts 41 indicator types from the collected reports, and filters
non-malicious indicators to output the IOCs. We run GoodFATR over 15 months to collect 472,891 reports from the 6 sources;
extract 978,151 indicators from the reports; and identify 618,217 IOCs. We analyze the collected data to identify the top IOC
contributors and the IOC class distribution. We apply GoodFATR to compare the IOC extraction accuracy of 7 popular open-source

—t00ls with GoodFATR’s own indicator extraction module.

O\l Keywords: Indicators of Compromise, IOC, Cyber Threat Intelligence, RSS, Twitter, Telegram

1. Introduction
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Cyber Threat Intelligence (CTI) provides information on
- attacker behavior that allows gaining visibility into the fast-
evolving threat landscape; to understand the techniques, tactics,
and procedures (TTPs) attackers use; and to timely identify and
contain attacks. CTI is a multi-billion dollar industry, expected
= to keep growing to more than 16 billion USD by 2026 [1]. An
.— essential piece of CTI is extracting and sharing indicators of
>< compromise (I0Cs), forensic artifacts that when observed on a
a device or network indicate it may have been compromised, e.g.,
malicious IPs, domains, and file hashes. IOCs are an actionable
piece of CTI, as they can be fed to security systems (e.g., NIDS,
firewall, HIDS, blocklists) to detect and block attacks.

IOCs can be distributed through open and commercial
feeds [2, 3], which provide structured IOC data following stan-
dardized formats (e.g., STIX [4], OpenlOC [5]). However,
much CTI is distributed through unstructured threat reports,
written in natural language and published through a wealth of
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security blogs and social media platforms. For example, Twit-
ter has become widely used for exchanging and spreading cy-
bersecurity information, not only by cybersecurity companies
but also by experts that sometimes rush to share their discov-
eries [6, 7]. Natural language reports often contain IOCs and
typically provide more detailed contextual descriptions about
the IOCs compared to IOC feeds. In addition, while IOC feeds
usually focus on a small set of indicator types (i.e., IP ad-
dresses, domain names, file hashes), unstructured threat reports
frequently provide more varied indicator types such as vulner-
ability identifiers, email addresses, blockchain addresses, Tor
onion addresses, fuzzy hashes (e.g., SSDeep [8]), social han-
dles, and target countries.

There exist multiple indicator extraction tools that can iden-
tify IOCs from unstructured threat reports in natural language
using regular expressions [9, 10, 11, 12, 13, 14]. Even re-
cent works that apply natural language processing (NLP) tech-
niques to analyze threat reports still use regular expressions for
identifying indicators as part of their pipeline [15, 16, 17, 18].
Regular expressions for extracting indicators can easily be-
come complex, making it difficult to understand what they
match. Also, small differences between regular expressions
for the same indicator type may significantly affect the extrac-
tion results. Furthermore, regular expressions can be affected
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by catastrophic backtracking introducing ReDoS vulnerabili-
ties [19]. Despite the popularity of regular expression based in-
dicator extraction tools [9, 10, 11, 12, 13, 14] no previous work
has systematically evaluated them to understand which tool is
more accurate for each indicator type and how accurate their ex-
traction is. The main challenge to evaluate indicator extraction
accuracy is the difficulty of building large-scale ground truth
datasets from real threat reports. To address this challenge, this
work presents a novel majority vote methodology for compar-
ing the accuracy of indicator extraction tools, which does not
require a manually-built ground truth.

Another challenge is that in a large and fast-evolving land-
scape of threats, coverage is difficult to achieve by any single
entity, as shown by different sources having little IOC over-
lap [2, 3]. Thus, it is not sufficient to rely on a single source,
or a small set of sources, to build an accurate, comprehensive,
and up-to-date IOC list. To overcome this limitation, organiza-
tions and security analysts can resort to extracting IOCs from
the threat reports collected from multiple sources. However,
there exists a myriad of sources through which threat reports
are disseminated including hundreds of blogs, Twitter accounts,
and Telegram channels. To address this challenge, we present a
modular threat report collection pipeline that can collect reports
from a wealth of sources in a unified manner.

Our collection pipeline currently supports 6 diverse sources:
RSS, Twitter, Telegram, and three report datasets Malpe-
dia [20], APTnotes [21], and ChainSmith [17]. For RSS, Twit-
ter, and Telegram it takes as input a list of origins (RSS feeds,
Twitter accounts, Telegram channels) to monitor. It periodi-
cally visits those origins to identify new entries (blog posts,
tweets, messages). For entries that contain a URL to a report,
it downloads the report’s document. The selected sources are
complementary. RSS allows collecting reports from hundreds
of blogs from cybersecurity companies and individual experts,
while Twitter and Telegram cover social media distribution. In
addition, crowd-sourced datasets such as Malpedia and APT-
notes allow identifying previously unknown blogs and Twitter
accounts that should be monitored, as well as collecting reports
from blogs without an RSS feed.

We have implemented our novel methodology for compar-
ing indicator extraction tools and our collection pipeline into an
automated platform called GoodFATR. GoodFATR supports a
variety of open-source indicator extraction tools but also pro-
vides its own IOCSEARCHER tool, which takes as input a doc-
ument in HTML, PDF, or plain text format and applies regu-
lar expressions to extract 41 indicator types. When process-
ing reports, indicator extraction tools may identify malicious
indicators (e.g., C&C domains), as well as benign ones (e.g.,
URL references or contact emails for security companies). We
call malicious indicators IOCs and benign indicators generic.
GoodFATR provides a filtering module that removes generic in-
dicators extracted from the documents to output only the IOCs.
Its filtering module builds a dynamic blocklist from the mon-
itored sources and origins. This approach avoids hard-coded
blocklists used by prior tools, which cannot adapt to the differ-
ent sources and origins each user may monitor.

We use GoodFATR to compare the accuracy of 7 popular

open-source indicator extraction tools [9, 10, 11, 12,22, 13, 14],
as well as GoodFATR’s own IOCSEARCHER tool, on 4,420 re-
ports. The results show IOCSEARCHER being the most accurate
tool on 11 of the 13 indicator types supported by multiple tools.
We also identify ReDos vulnerabilities in two of the tools, one
new and one previously reported. We also evaluate the filter-
ing module provided by GoodFATR against the filtering rules
used in two prior tools. The filtering by GoodFATR achieves
an F1 score of 0.91 compared to 0.47 (I0C_PARSER) and 0.46
(CACADOR).

We have used GoodFATR to collect 472,891 reports over 15
months from 3,226 origins distributed through 6 sources; ex-
tract 978,151 indicators from the reports; and identify 618,217
IOCs. We analyze the collected data to identify the top I0C
contributors and the IOC class distribution.

This work provides the following contributions:

* We present a novel majority-vote methodology for evalu-
ating the accuracy of indicator extraction tools, which does
not require a manually-built ground truth. We apply our
methodology to compare the accuracy of 7 popular tools
and our own IOCSEARCHER over 4,420 reports. The re-
sults show ITOCSEARCHER is the most accurate tool on 11
of the 13 indicator types supported by multiple tools.

* We present GoodFATR, an automated platform to collect
threat reports from a variety of sources in a unified man-
ner, extract the indicators in the collected reports, and filter
generic indicators to output only the IOCs.

* We use GoodFATR to collect 472,891 reports over 15
months from the 6 sources; extract 978,151 indicators
from the reports; and identify 618,217 IOCs.

* We release the source code of the IOCSEARCHER tool at
https://github.com/malicialab/iocsearc
her

The remainder of this paper is organized as follows. Sec-
tion 2 presents prior related work. Section 3 provides an
overview of our platform. Section 4 details the sources and
approach used in the threat report collection. Section S5 per-
forms a systematization and comparative study of 8 indicator
extraction tools. Section 6 analyzes the reports collected over
15 months, the IOCs extracted from those reports, and the top
contributing sources and origins. Section 7 presents our novel
accuracy comparison methodology and applies it to compare
the 8 indicator extraction tools on 4,420 threat reports. Sec-
tion 8 discusses limitations and future improvements. Finally,
Section 9 concludes.

2. Related Work

Extracting IOCs from natural language documents is an im-
portant CTI task that comprises two problems: threat report col-
lection and IOC extraction. Prior work can be split into two
groups. First, there exist open source tools that focus on ex-
tracting IOCs from a given threat report using regular expres-
sions (e.g., [9, 10, 11, 12, 13, 14]). These tools do not address
the problem of threat report collection. We summarize the most
popular open-source IOC extraction tools in Table 3 and de-
tail how they work in Section 5. Second, prior academic works
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Table 1: Summary of prior academic works on threat report collection and IOC
extraction. Open-source IOC extraction tools are summarized in Table 3.

Collection Sources | Extraction

AF;

= E| L.
Work Year | B8 | B | = E &~ V4
Liao et al. [15] 2016 | vV | X | X | X | V v
TTPDrill [16] 2017 | X | X | X | X | V v
Malpedia [20] 2007 | vV | X | X | X |V X
ChainSmith [17] | 2018 | v X X X v v
IOCMiner [23] 2009 | X | X | X | vV | V X
TIMiner [24] 2020 | vV X X X v v
Alves et al. [7] 2020 | X | X | X | vV |V X
Twiti [25] 2021 | X | X | X | vV | V v
GoodFATR 2022 X\ v | Vv v v X

typically address both the threat report collection and the IOC
extraction problems. We detail prior academic work in the re-
mainder of this section.

Threat report collection. Table 1 shows that prior academic
work has collected reports from one source, either from cyber-
security blogs [17, 15, 24, 20] or from Twitter [23, 7, 25]. There
is also one work that does not address threat report collection,
focusing exclusively on IOC extraction [16]. In contrast, our
work proposes a modular threat report collection platform that
can collect reports from multiple sources, namely cybersecurity
blogs, Telegram, Twitter, and datasets provided by prior works
such as ChainSmith [17], Malpedia [20], and APTnotes [21].

Previous work that collected threat reports from cybersecu-
rity blogs built dedicated crawlers for each blog of interest
(e.g., [17, 15, 24]). The advantage of dedicated crawlers is
that they can be designed to collect the historical archive of
reports available on a blog’s website. One disadvantage is that
a crawler needs to be developed for each blog, which limits the
number of monitored blogs. For example, Liao et al. [15] col-
lected reports from 45 blogs, Zhu and Dumitras from 10 [17],
and Zhao et al. [24] from 75. Moreover, as websites evolve,
the crawlers may break and need to be updated. For example,
ChainSmith originally collected reports from 10 blogs in 2018,
but the supported blogs gradually decreased over time, possibly
due to crawlers breaking due to website updates. In mid-2020
only two blogs were still being crawled, and since mid-2021
ChainSmith does not collect any new blog posts.

Rather than building dedicated crawlers, GoodFATR collects
threat reports from cybersecurity blogs that offer an RSS feed.
The use of RSS feeds allows us to build a generic collection
module for cybersecurity blogs, enabling us to scale the collec-
tion to 300 blogs, 6 times larger than prior works. Furthermore,
our RSS module still collects entries from the same set of blogs
supported by ChainSmith, showing that those origins are still
active. It is important to note that our RSS feed collection may
also require updates (e.g., if a feed’s XML URL changes), but
updating a feed’s URL is significantly easier than building a
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Figure 1: The architecture of GoodFATR.

new dedicated crawler. Furthermore, if a blog does not offer an
RSS feed, it will still need a dedicated crawler.

IOC extraction. All open-source IOC extraction tools in Ta-
ble 3 and three academic works in Table 1 [20, 23, 7] ex-
tract IOCs from the collected reports using regular expres-
sions. Some academic papers have instead proposed natural
language processing (NLP) approaches to improve the extrac-
tion [15, 17, 16, 24]. However, NLP approaches also rely on
regular expressions to extract indicators in their pipelines. De-
spite the popularity of regular expression-based IOC extraction,
the large number of tools a user can choose for this task, and
the impact of regular expression differences in the extraction
results, we are not aware of any prior work that systematically
analyzes which tool works for each indicator type. Such a com-
parison should include the regular expression used for the ex-
traction, but also other important steps such as how to filter be-
nign indicators that are not IOCs. The main difficulty for such
evaluation is building large-scale datasets from real documents.
To address this challenge, in this work we propose a novel
methodology to compare indicator extraction tools, which does
not require a manually-built ground truth.

Also related are metrics to evaluate the quality of 10C
feeds [2]. We apply such metrics to compare different sources
and origins to identify the best and worst IOC contributors.

Extended version. This paper is an extended version of a
previous 4-page work-in-progress paper that appeared in JNIC
2022 [26]. Compared to that work, this paper provides four
new contributions. First, we double the number of sources from
which we collect reports by including three curated sources spe-
cialized in threat reports (Malpedia, APTnotes, ChainSmith).
We also expand the collection period to 15 months (Section 4).
Second, we provide an in-depth comparative analysis of 7 popu-
lar indicator extraction tools, as well as our own IOCSEARCHER
tool (Section 5). Third, we redo our analysis of the collected
data including the new sources and the extended observation pe-
riod, and add a new analysis of the distribution of IOCs and the
top IOC contributors (Section 6). Fourth, we develop a novel
majority-vote methodology to automatically compare the accu-
racy of indicator extraction tools. We apply this methodology
to the 8 indicator extraction tools (Section 7).



3. Overview

An indicator represents an artifact such as an IP address, a
domain name, a URL, a file, a registry key, or a blockchain ad-
dress. An indicator is typically represented as a pair of a type
(e.g., email) and a string value (e.g., contact@test.com).
An indicator of compromise (I0C) is a malicious indicator
whose presence on a device or network indicates the device
might have been compromised.

This paper presents GoodFATR, a platform for collecting
threat reports from a wealth of sources and extracting I0Cs
from the collected reports. Figure 1 depicts the architecture
of GoodFATR. It consists of four modules: Report Collection,
Downloader, IOCSEARCHER, and Filtering. The Report Col-
lection gathers documents from a wealth of sources including
RSS feeds, Telegram channels, Twitter accounts, and threat re-
port datasets like Malpedia [20], APTnotes [21], and Chain-
Smith [17]. The collection outputs a list of entries each corre-
sponding to the observation of a report in a source. Each en-
try contains the URL of the report or the content of a tweet or
Telegram message. In addition, it may contain optional meta-
data about the report (e.g., publication date, author, language)
and the source where it was observed (e.g., RSS feed, Twitter
account). The Downloader leverages an instrumented Chrome
browser (and Python’s requests library as backup) to fetch the
document pointed by an entry’s URL and store it to file together
with download metadata (e.g., download date, HTTP status
code, redirection chain followed). For Twitter and Telegram,
the Downloader is not used, as their entries already contain
the content of the posts. IOCSEARCHER takes as input a docu-
ment in HTML, PDF, or plain text format, extracts its text (for
HTML and PDF documents), and applies regular expressions
to identify 41 indicators. We choose regular expressions be-
cause they are an efficient technique for identifying, in a given
string, indicators with some intrinsic structure such as email ad-
dresses or URLs. To extract indicators, IOCSEARCHER applies
a match-and-validate approach. Matching applies each of the
regular expressions to identify candidate indicators in the in-
put string. Validation uses a function specific to each indicator
type to ensure the candidate is indeed an indicator. Separating
matching from validation allows the validation to perform com-
putations that are not possible within regular expressions such
as checking a checksum embedded in an indicator value (e.g.,
blockchain addresses, bank account numbers). It also prevents
regular expressions from becoming too complex. While valida-
tion minimizes the set of incorrect indicators output, it is pos-
sible that indicators present in the text are not IOCs, but rather
correspond to benign indicators (e.g., the email of the report’s
author). Thus, before generating the final list of IOCs, the Fil-
tering removes generic indicators that are not IOCs.

Throughout its pipeline, GoodFATR maintains traceability.
From an IOC an analyst can identify the documents that con-
tained it, from a document the entries from where it was col-
lected, and from an entry the sources where it was observed.

4. Threat Report Collection

Our threat report collection module has been designed to
support a variety of threat report sources. We collect informa-
tion from RSS, Twitter, Telegram, and publicly available report
datasets such as the Malpedia malware encyclopedia [20], the
APTnotes repository [21], and the ChainSmith database [17].
To handle diverse sources in a unified manner, the collection is
structured around three concepts: origin, entry, and document.

An origin captures the distribution vector through which a
report is disseminated, at a finer granularity than a source.
Each source typically has many origins; for RSS, an origin
corresponds to the feed from a specific blog, for Twitter to
a user account, and for Telegram to a channel. For report
datasets (Malpedia, APTnotes, ChainSmith) we use as origin
the organization that authored the report (e.g., Norton, Trend-
Micro). The same threat report might be distributed through
multiple origins within the same source (e.g., through differ-
ent blogs), as well as through different sources (e.g., a blog
and a Twitter account). We use the origins to produce fine-
grained statistics about the report distribution, e.g., to mea-
sure which Twitter accounts, Telegram channels, and RSS feeds
provide more threat reports. We format the origin to also
include the source in the form source:origin. For example,
rss:nakedsecurity and twitter:nakedsecurity correspond to the
RSS feed of the Naked Security blog by Sophos, and its Twitter
account @NakedSecurity, respectively.

An entry captures a specific mention of a threat report
through an origin. It corresponds to a post in a Twitter account,
Telegram channel, or RSS feed. For report datasets, an entry is
a record in the report metadata, namely a line in the report in-
dex file of APTnotes, a row in the database of ChainSmith, and
a BibTex entry in the Malpedia bibliography. Each entry has an
origin and contains either a download URL pointing to the re-
port or in the case of social media, a string with the post’s text.
An entry may also contain additional report metadata as pro-
vided by the source: the report author, its original publication
timestamp, and the last update timestamp.

A document is an HTML, PDF, or text file that has been
collected by GoodFATR. A document is identified by the file’s
SHA?256 hash. A document is generated every time the Down-
loader downloads a URL and also from the text content of each
Twitter and Telegram entry. A document corresponds to an in-
stance of a threat report. The distinction between threat re-
port and document is important to understand how GoodFATR
handles report distribution and changes to the report over time.
Multiple documents collected by GoodFATR may correspond
to the same report. There are three main reasons for this. First,
a threat report may be distributed in different formats. For ex-
ample, an APT report originally distributed as a webpage in a
blog will be stored by APTnotes as a PDF document. When
GoodFATR collects the report from the blog’s RSS feed it will
obtain an HTML document. When GoodFATR collects the re-
port from APTnotes, it will obtain a PDF document. Both docu-
ments are different instances of the same threat report. Second,
for reports distributed through URLs, if GoodFATR downloads
the URL at different points in time, it might collect a different
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HTML document (i.e., different SHA256) each time. This may
happen if the webpage contains dynamic content that changes
over time. Each of those HTML documents is an instance of the
same threat report. Third, a threat report may have multiple ver-
sions. For example, the original blog entry for the report may
be updated a day later to fix an errata. If GoodFATR downloads
the URL of the report on both days, it will collect two different
HTML documents, which correspond to different versions of
the same threat report.

Identifying which collected documents correspond to the
same threat report is not necessary for the operation of Good-
FATR. All collected documents go through IOC extraction and
the extracted IOCs are aggregated and deduplicated. If two doc-
uments are different versions of the same report, GoodFATR
will extract the same (or very similar) IOCs from those docu-
ments and will remove the duplicated IOCs. GoodFATR pro-
vides information that can help identify documents that corre-
spond to the same report, e.g., by querying for all documents
downloaded from the same URL or by searching for all docu-
ments with the same title (extracted from the PDF and HTML
document metadata). But, this problem is not addressed in this
paper. We further discuss this issue in Section 8.

4.1. Threat Report Sources

Table 2 summarizes the six report sources currently sup-
ported by GoodFATR. Each source has a dedicated collection
submodule. The RSS, Twitter, and Telegram submodules take
as input a file that specifies the origins (i.e., feeds, accounts,
channels) that should be monitored. The report datasets do not
require an input origin list as the whole dataset is downloaded.
We manually created our initial origin lists for RSS, Twitter,
and Telegram by including resources from prominent compa-
nies, cybersecurity news websites, and well-known security ex-
perts. We continuously add new origins as we identify interest-
ing RSS feeds, Twitter accounts, and Telegram channels. We
discuss the update process in Section 8. Table 5 captures the to-
tal number of origins in each source at the time of writing: 300
RSS feeds, 383 Twitter accounts, 9 Telegram channels, 2,368
organizations in Malpedia, 155 organizations in APTnotes, and
11 blogs in ChainSmith.

For each source, Table 2 shows how the origin is defined and
5 properties: whether it requires an input list of origins; whether

the reports are cumulative (i.e., old entries are always available)
or entries expire after some time; whether it provides a URL
for each entry from where the report needs to be downloaded;
whether it includes the actual report or only the URL to the
report; and whether it includes IOCs extracted from the report.

RSS. We use RSS feeds to collect reports from 300 security
blogs. Each RSS feed is uniquely identified by a URL pointing
to the feed’s XML file. The owner of an RSS feed configures
it to provide a maximum number of the latest entries, e.g., the
5, 10, or 100 most recent ones. To avoid missing entries, the
RSS module needs to visit a feed frequently enough that the
feed has not posted more entries than the maximum available
since the RSS module last visited it. For example, the Hexacorn
blog only provides the last 5 posts in its feed, but they only
post twice per month. Thus, visiting its feed every two months
would be enough to avoid missing entries. For each feed, the
RSS module monitors the maximum number of entries it has
obtained in a visit (i.e., the configured maximum unless the feed
has posted less than the maximum since its creation), as well as
the maximum daily rate at which posts are added. While we
could configure a different visit frequency for each feed, we
have empirically observed that no feed posts more than their
configured maximum in a single day. Thus, for simplicity, the
RSS module queries each feed on a daily basis. The module is
configured to throw a warning if any feed publishes more than
its maximum number of available entries in a single day. So
far, the warning has not been observed, so no entries have been
missed.

Since the RSS module is configured not to miss feed entries,
two consecutive visits to the same feed will provide some over-
lapping entries. The RSS module has an incremental approach
where feed entries that were already collected (i.e., older than
the last feed visit) are ignored. Only the new entries are passed
to the Downloader to collect their content. The incremental ap-
proach avoids downloading the same content multiple times.

Telegram & Twitter. The Telegram and Twitter modules lever-
age the official APIs to query each service. Using these APIs
they can fetch not just the most recent messages, but any mes-
sage that was ever posted on an account or channel. Each mod-
ule takes as input a list of origins that should be monitored, and
connects to each origin on a daily basis to fetch all new posts.
Using the API, our modules collect each post from an account,
or channel, only once. However, it is possible to obtain posts
with the same content from multiple origins, e.g., if different
users re-tweet the same original message.

Malpedia. Malpedia offers a manually-curated BibTex file
with reports related to malware. BibTex entries for new reports
are added on a nearly daily basis [20]. The BibTex file is gen-
erated dynamically upon request and includes all reports in the
database in a cumulative manner. Each bibliography entry con-
tains the following report fields: author, title, publication date,
organization (which we use as origin), URL, language, and the
date when the report was added to Malpedia. The reports’ doc-
uments are not provided, so the URLs are passed to the Down-
loader to collect them.

APTnotes. APTnotes is a GitHub repository with manually-



curated APT reports [21]. It provides an index file with report
metadata containing the report’s title, source (i.e., author orga-
nization which we use as origin), publication date, the filename
and file hash of the report document, and the URL where the
document can be obtained. Reports in webpages are converted
from HTML to PDF. All reports are stored in the box.com
service as PDF files.

ChainSmith. The ChainSmith project [17] makes available
an SQLite3 database with the reports it has downloaded, their
metadata, and the IOCs it has extracted from the reports. The
database has been updated on a weekly basis since 2018. It
contains one table where each row corresponds to an I0C ex-
tracted from a report including the report URL, the source (i.e.,
the blog identifier we use as the origin), the report title, and the
publication date. The reports’ documents are not provided, so
we extract the document URLs and pass them to Downloader.

4.2. Downloader

The Downloader takes as input an entry and tries to download
the content pointed to by the entry’s URL. It uses Selenium, a
popular framework used for testing Web applications [27]. We
instrument Selenium to render URLSs using a fully-fledged in-
stance of Google Chrome. The Downloader is able to follow
redirects, it supports dynamic content executed with JavaScript,
and, in addition to HTML pages, it can also download plain text
documents as well as other MIME types such as PDFs. In case
our instrumented browser did not succeed in retrieving the con-
tent, the Downloader makes an additional attempt with Python’s
requests library [28]. For each successfully downloaded URL,
the Downloader stores the document to a file and it updates the
entry with the download information including the download
timestamp, the document hash, the HTTP status code, and the
redirection chain followed. In the final step, the downloaded
documents are filtered to remove resources with HTTP status
code errors and HTML content where the title states the web-
page was not found.

5. Indicator Extraction: A Comparative Study

In this section, we perform a survey and functionality com-
parison of indicator extraction tools including our own. We fur-
ther quantitatively evaluate the tools in Section 7.

To identify the tools, we search for open-source projects for
extracting indicators. For this, we query GitHub for projects
related to the ioc keyword. Then, we manually examine each
matching project to select those that correspond to tools that
extract indicators. We keep only popular tools with at least 30
stars, which helps avoid the forks of more popular projects. If
an identified tool references any other indicator extraction tools,
we also include those in our search. This process identifies 7
popular open-source tools for extracting indicators. We also
include our own IOCSEARCHER tool, for a total of 8 tools in
Table 3.

The 8 tools follow the same model comprising three steps,
two of which are optional. The first optional step is fext ex-
traction, which given an HTML or PDF document, extracts its

text. The second step, present in all tools, is indicator extrac-
tion, which extracts the indicators present in an input string by
applying a number of regular expressions, grammars, and rules.
Finally, some tools apply an optional filtering step whose goal
is to remove indicators that are benign (e.g., domains of security
vendors), and thus cannot be considered IOCs. The dominant
language for implementing the tools is Python used by 6 tools
including the two most popular tools (IOC_PARSER and IOCEX-
TRACT) and our own IOCSEARCHER tool. CACADOR is written
in Go and TOC-EXTRACTOR in JavaScript.

In Table 3, a solid circle (@) indicates full support, and a
half-filled circle (©) partial or optional support, and an empty
circle (O) no support. Next, we detail each of the three steps.

5.1. Text Extraction

Since most threat reports are distributed as HTML and PDF
documents, text extraction is an important step in the complete
indicator extraction process. However, it can be performed as
a separate pre-processing step that takes as input an HTML or
PDF document and outputs its content as text. Content extrac-
tion is an independent process from identifying indicators, and
this is likely the reason why 5 of the tools do not support it and
assume that the input is a string, e.g., containing the full text of
a report. In summary, all 8 tools can take an input string, read
text from standard input or from a file, and extract indicators
in the string. In addition, three tools including our own, accept
directly input HTML and PDF files, including the text extracted
from the input document, before extracting indicators. This is
convenient for the user since it does not need to write its own
text extraction code and allows the tool developer to customize
the text extraction.

Text extraction is a common step in many Natural Language
Processing (NLP) pipelines such as those used to analyze pri-
vacy policies (e.g., [30, 31, 32, 33, 34]). Text extraction can
have a significant impact on the extracted indicators. For ex-
ample, the text extraction process may pre-pend or append text
to the indicator value, making the extraction miss the indicator
or output an incorrect indicator with extraneous characters. It
is also possible for the extracted text to split indicators across
multiple lines, causing them to be missed. For example, PDF
text extraction libraries oftentimes split long URLs appearing
in footnotes across multiple lines in the output text (e.g., URLs
that do not fit the length of a column).

The only three tools that support all three input types are
JAGER, IOC_PARSER, and IOCSEARCHER. These three tools
use the pdfminer.six [35] library for PDF text extraction. JAGER
and IOC_PARSER use the BeautifulSoup [36] library for HTML
text extraction, while our IOCSEARCHER tool supports both
BeautifulSoup and Readability.js [37]. Recently, Hosseini et
al. [38] analyzed 7 HTML text extraction approaches used
in privacy policy analysis showing wide variability among
the produced text. They concluded that the best-performing
HTML text extraction libraries for privacy policies were Boil-
erpipe [39] and Readability.js [37], while the worst-performing
one was BeatifulSoup [36]. BoilerPipe is written in Java and
Readability.js in JavaScript, but both have Python wrappers
available.
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Table 3: Comparison of indicator extraction tools.

Inputs Indicator Extraction
Tool Language Stars | Text HTML PDF | Rearm Validate Dedup. IOCs | Filtering
JAGER [9] Python 69 [ ] o [ ] O O [ ] 11 O
IOC_PARSER [10] Python 378 () ® [ ) © @) © 11 {
CACADOR [11] Go 119 () @) @] © @) ° 12 ©
CYOBSTRACT [12] Python 66| @ @) O [ ) © O 25 O
I0C-FINDER [22] Python 96 () O O ® @) © 25 O
IOCEXTRACT [13] Python 356 () O @] () @) O 8 O
IOC-EXTRACTOR [14]  JavaScript 35 [} @) O ) O [} 18 O
IOCSEARCHER [29] Python - ) ® () ° () () 41 [

5.2. Indicator Extraction

Given an input string, indicator extraction identifies indica-
tors present in the string. Seven of the tools use regular ex-
pressions for the extraction, while IOC-FINDER uses grammars
instead. The tools using regular expressions process the text
in a loop, each time applying one regular expression at a time
to the whole text. Each regular expression is associated with
one indicator type that is assigned to each of the regular ex-
pression matches. Most tools have one regular expression for
each supported indicator type, although some tools (e.g., 10-
CEXTRACT, IOCSEARCHER) support multiple regular expres-
sions for the same indicator.

The middle part of Table 3 captures four properties of the
indicator extraction step: whether defanged indicators are sup-
ported and rearmed, whether tools split the extraction process
into matching and validation, whether the indicators are dedu-
plicated, and the supported indicator types. We describe each
property next.

Defanged and rearmed indicators. It is common for threat re-
ports to defang malicious indicators, (i.e., IOCs) in case a user
inadvertently clicks on them in a navigation tool like a browser.
For example, IP address 9.9.9.9 may appear in a threat report
as 9[.19[.19[.19, while URL http://example.com/badf
ile may appear as hxxp://example (.) com/badfile.
Such indicators are often called defanged to indicate that they
have been converted into less harmful ones, and are not dan-
gerous anymore. These transformations are similar to the ones
applied to email addresses to limit automated collection by
spammers, e.g., “contact_at_somewhere[.]com”. Of the 8 tools,
only JAGER does not identify defanged indicators. The other
tools support a subset of the following defang transformations:
(D) replacing the dot in IPv4 addresses, domain names, URLs,
emails, and filenames, (II) replacing the @ sign in emails, (III)
replacing the scheme in URLs (e.g., using hxxp:// instead of
http://), and (IV) replacing the backslash in URLs. Two tools
are marked as having partial support: TOC_PARSER only sup-
ports the dot in URLs and domain names, while CACADOR
only supports the dot in IPv4 addresses. The other tools are
marked as full support. However, they may not exactly support
the same transformations, e.g., only IOC-EXTRACTOR supports
the replacement of the backslash in URLs. The space of de-
fang transformations that users can apply is very large and the
extraction tools only support the limited set presented above,
which is clearly incomplete. Intuitively, the defang transforma-

tions most important to support are those most often used by
threat report authors (or by users when analyzing other sources
like webpages). However, it is hard to know the most popular
transformations a priori, so it is typical to add support for new
defang transformations as they are observed in the wild.

The tools use two approaches to handle defanged indica-
tors. The most popular approach, used by six tools, is broad-
ening the regular expressions used to identify the indicators to
cover common defang operations. For example, the regular
expression should support that an IP address optionally con-
tains brackets or parenthesis around the dots. Once the de-
fanged indicators have been matched by the regular expression,
they can be rearmed (or refanged) to output the original indi-
cator values. Four tools rearm the defanged indicators by de-
fault, while another two (IOC_PARSER, IOCEXTRACT) allow
the user to choose if defanged or rearmed values should be
returned. The alternative approach used by IOC-FINDER and
IOC-EXTRACTOR is to first apply a rearm transformation to the
raw text before applying the regular expressions. This approach
does not require broadening the regular expressions to handle
different defang transformations. On the other hand, blindly
rearming the text before applying the regular expressions could
incorrectly modify the text (e.g., rearming some text that is not
part of an indicator). It also prevents returning the defanged
value as it appears in the text since it has been rewritten.

Match and validate. One goal of indicator extraction is to min-
imize false positives (FPs), i.e., avoid outputting indicators that
are not real indicators, such as two tokens concatenated with
a period, that is not a fully qualified domain name. This re-
quires making the regular expressions as narrow as possible,
without introducing false negatives. For example, it is typical
that a regular expression for domain names will check that the
top-level domain (TLD) is one of the [ANA-approved TLDs.
For this, it is common for tools to include a long list of valid
TLDs inside the regular expression. Unfortunately, the IANA
list already contains over 1,500 TLDs and may continue to grow
over time making the regular expression cumbersome. An al-
ternative approach is to split the indicator extraction process
into two steps: regular expression matching and validation. In
this model, the regular expression can be a bit wider (i.e., pro-
duce more matches) because the validation, which is specific to
each indicator type, will discard incorrect matches. This match
and validate process was first used by CYOBSTRACT, with basic
checks such as validating that ASN numbers are in hard-coded
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ranges or that the length of a domain name is below 160 char-
acters (which is not entirely correct as the maximum length is
255 octets).

Our IOCSEARCHER tool implements a more complete match-
and-validate process where each indicator type has an optional
validation function that checks the returned regular expression
matches. For example, in IOCSEARCHER the fgdn regular ex-
pression does not need to include the list of valid TLDs because
there is a fgdn validation function that ensures the matched
value indeed contains a valid TLD. The advantage is that the list
of IANA-approved TLDs can be kept in a separate file, which
can be updated without modifying the regular expression. More
importantly, the match and validate approach allows to perform
Turing-complete processing on the matches such as validating
an embedded checksum in a bank account number or a Bitcoin
address. Such validation is not possible using only a regular
expression, and it can significantly reduce FPs. For example,
it is common for MD5 hashes to match a Bitcoin regular ex-
pression, but it is highly unlikely those spurious matches will
pass the checksum validation. It is worth mentioning, that the
implementation in our IOCSEARCHER tool performs validation
after the indicator has been rearmed so that the validation does
not need to handle defang transformations.

Deduplication. It is possible for the same indicator to appear
multiple times in the same string at different locations. We
say that a tool deduplicates if it removes duplicated indicators
from its output. For example, if the same URL appears twice
in the input string, the output only contains the url indicator
once. Tools can be classified into those that always dedupli-
cate (@), those that do not deduplicate (O), and those where
deduplication is optional (©). None of the prior tools return
the position (i.e., start offset) at which the indicator is matched.
Thus, the main value of not deduplicating is to know how many
times an indicator appeared in the input string. The most flex-
ible approach is to make deduplication optional, as done by
IOC_PARSER and IOC-FINDER.

Our IOCSEARCHER tool offers two different APIs. The raw
API does not deduplicate. It returns all indicators identified,
with their indicator type, starting offset, raw value, and rearmed
value. In contrast, the deduplicated API first invokes the raw
API, and then it deduplicates the received values by removing
the starting offset and the raw values, i.e., returns only dedu-
plicated rearmed indicators. Providing all matches with their
starting offset allows the raw API to be used in additional sce-
narios. For example, Gao et al. [40] propose I0OC protection
to handle IOCs that contain dots (e.g., URLs, domains, IPs) in
NLP pipelines. Such indicators negatively impact sentence tok-
enization in NLP libraries that leverage dots to identify the end
of sentences. IOC protection first identifies the indicators (e.g.,
using regular expressions), replaces their value in the text with a
keyword that does not contain dots, tokenizes the text into sen-
tences, and finally replaces back the keyword with the original
indicator value. IOC protection requires the starting offset and
the raw value of the indicator in the input string, precisely what
our raw API provides.

Indicators. One key difference between indicator extraction

Table 4: Indicators extracted by different tools.
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tools is the set of indicator types they support, i.e., the set of in-
dicators for which they have regular expressions, grammars, or
extraction rules. Overall, we have identified 63 indicators that
the tools extract, as summarized in Table 4. We group indica-
tor types into 16 classes: network (13 indicators), social (12),
blockchain (9), cryptographic hashes (6), analytics (3), attack
(3), contact (2), file (2), intellectual property (2), organization
(2), payment (2), vulnerability (2), fuzzy hash (1), information
sharing (1), location (1), registry (1), and yara (1).

The largest class corresponds to network-related artifacts
such as domain names (fgdn), URLs (url), IP addresses (ip4,
ip6), IP subnets in CIDR form (ip4cidr, ip6cidr), IP address
ranges (ipv4range, ipvbrange), AS numbers (asn), MAC ad-
dresses (macaddress), Tor onion addresses used to access hid-



den services (onionAddress), Internet Content Provider num-
bers that uniquely identify the owner of a Chinese website
(icp), and HTTP User-Agent strings (userAgent). The social
category comprises of user handles for social networks (Face-
book, Instagram, LinkedIn, Pinterest, Twitter), open source
repositories (GitHub), Instant Messaging tools (Jabber, Tele-
gram, WhatsApp), as well as YouTube usernames and channel
identifiers. The blockchain category comprises addresses for
9 popular blockchains (Bitcoin, BitcoinCash, DashCoin, Do-
geCoin, Ethereum, LiteCoin, Monero, Tezos, ZCash). Crypto-
graphic hashes include MDS5, SHA1, SHA256, and SHAS12,
as well as their application on specific parts of a Windows ex-
ecutable such as the import table (importHash) and the whole
executable without Authenticode code-signing fields (authen-
tihash). There is also a fuzzy hash (ssdeep) used to identify
files with similar content [8]. The analytics category includes
three Google identifiers: Google Adsense, Google Analytics,
and Google Tag Manager. The attack category contains MITRE
ATT&CK techniques, tactics, and procedures, a list of attack-
related keywords (e.g., DoS, spam), and antivirus labels (avLa-
bel). The payment category includes IBAN bank account num-
bers and WebMoney addresses [41]. The vulnerability cat-
egory includes CVE identifiers and also a variety of identi-
fiers for other vulnerability sources (e.g., BugTrack, Microsoft
Bulletins) grouped into a generic incident indicator by CYOB-
STRACT. The information-sharing category comprises a single
indicator for the traffic light protocol (tlpLabel) that controls
the dissemination of information [42]. Indicators in the remain-
ing categories are straightforward and capture: contact (email,
phoneNumber), files (filename, filepath), intellectual property
(copyright, trademark), organization names (asnOwner, isp),
locations (country), Windows registry keys (registryKey), and
Yara rules (yara).

There are only 6 indicators that are extracted by all 8 tools:
IPv4 addresses (ip4), emails, hashes (md5, shal, sha256), and
URLs. Another two indicators are extracted by 7 tools: CVE
vulnerability identifiers (cve) and domain names (fgdn). Next
come two indicators extracted by 5 tools: IPv6 addresses (ip6)
and SSDeep fuzzy hashes. However, the majority corresponds
to 38 (61%) indicators extracted by a single tool.

Among the indicators in Table 4 there are some that deserve
discussion. There are three indicators (country, tlpLabel, at-
tackType) that are identified using regular expressions that are
a disjunction of keywords. For example, TLP labels can have
only four values: TLP:white, TLP:green, TLP:amber, TLP:red.
Since the set of possible TLP values is finite, the regular ex-
pression can identify all possible indicator values. Similarly,
there is only a finite number of recognized countries. However,
attackType includes a number of attack-related keywords that
CYOBSTRACT identifies. Such a list only includes attack top-
ics of interest for the tool authors and may not include attack
topics other users are interested in. The approach of building
a regular expression from a set of keywords can be applied to
any taxonomy of terms (e.g., family names, exploit kit names).
CYOBSTRACT provides support for building such regular ex-
pressions. The main limitation of this technique is that it can-
not identify new terms (e.g., new family names or exploit kits).

CYOBSTRACT extracts two indicators that aim to capture orga-
nization names (asnOwner, isp). However, organization names
do not have a clear structure save when using company-related
suffixes (e.g., Ltd., Inc.) and thus are typically extracted using
Named Entity Recognition (NER) techniques based on machine
learning classifiers. Furthermore, trying to separate whether an
organization name corresponds to an ISP or ASN owner is a
challenging problem that is better suited for NLP techniques.
There are also some indicators that one could argue should be
split into multiple indicators. For example, the regular expres-
sion for the incident indicator extracted by CYOBSTRACT cap-
tures a disjunction of regular expressions, each for a different
vulnerability report identifier (e.g., BugTrack, Microsoft Bul-
letins). Such disjunction is more efficient than having a separate
regular expression for each identifier but does not allow users
to extract only those identifiers they are interested in. Another
interesting case is cryptographic hashes like authentihash and
importHash which are really subtypes of other cryptographic
hashes. For example, importHash is the MD5 of the import ta-
ble of a PE executable [43], while authentihash is the SHA256
of a PE executable excluding Authenticode code signing fields.
Thus, it is not possible for a regular expression to differentiate
an importHash from a md5 or an authentihash from a sha256
except if the subtype indicators appear with some specific key-
words before or after. Such regular expressions are very spe-
cific, they rarely produce FPs but they will introduce FNs when
the expected keywords do not appear before or following the
hashes. On the other hand, regular expressions for the parent
types will also identify indicators subtypes (e.g., the md5 reg-
ular expression will also identify importHash indicators), but
classifying an MDS5 into what the MDS5 captures (e.g., a file
hash, a certificate hash, an import table hash) is a challenging
problem that is may be easier to tackle through NLP. There are
also two indicators that correspond to ranges of IP addresses
(ip4range, ip6brange). Similar range indicators could be defined
for any integer indicators, e.g., ASN numbers. The last inter-
esting case is Yara rules extracted by IOCEXTRACT. Yara rules
can be long and have an internal structure with mandatory and
optional fields. Thus, some readers may not consider them in-
dicators.

5.3. Filtering.

While most tools in Table 3 label themselves as IOC extrac-
tion tools, in reality, what they extract are indicators. Not all
indicators are IOCs; an indicator is an IOC only if it represents
a malicious artifact. For example, threat reports often contain
hyperlinks to prior reports by other security vendors. Those ref-
erences may be extracted as url indicators, but they can hardly
be considered IOCs. We use the term generic indicators to (em-
phatically) refer to indicators that are not IOCs, i.e., not mali-
cious.

Determining whether an indicator is benign or malicious,
i.e., whether it is an IOC, is challenging. Most tools in Ta-
ble 3 do not try to perform such determination and simply out-
put all indicators they find. But, three tools (IOC_PARSER, CA-
CADOR, and our IOCSEARCHER) implement a per-indicator fil-
tering step, whose goal is to remove generic indicators leaving



Table 5: Data collection summary.
Indicators

Source Orig. Start Date Entries  Extracted 10Cs
aptnotes 155 2022/07/18 629 44,540 41,031
chainsmith 11 2022/07/18 3,792 48,046 41,246
malpedia 2,368  2022/07/18 11,363 271,495 237,011
rss 300  2021/04/01 97,882 314,351 210,149
telegram 9  2021/09/09 61,892 44,534 31,445
twitter 383  2021/10/28 397,333 338,967 126,081
ALL 3,226 2021/04/01 472,891 978,151 618,217

only the IOCs. TOC_PARSER and CACADOR both make use of
hard-coded blocklists (or regular expressions) for benign indi-
cators. Overall, the blocklists capture domains (or emails and
URLSs that contain those domains) from cybersecurity compa-
nies, news outlets, law enforcement agencies, and a few other
trusted sites such as github.com. CACADOR uses a single
blocklist with 15 domains, 12 of them from cybersecurity com-
panies. IOC_PARSER uses 11 blocklists, one per each indicator
type it supports. However, only 4 of those blocklists (email,
fqdn, ip4, url) have entries. The email blocklist contains 6 do-
mains of cybersecurity companies. The fgdn blocklist contains
143 domains of cybersecurity companies, news outlets, and law
enforcement agencies. The url blocklist contains 79 root URLs
for popular cybersecurity blogs. Finally, the ip4 blocklist con-
tains 6 reserved IP address ranges.

The main difference in our filtering module is that its block-
list is dynamically generated, i.e., created from the collected
documents. Indicators are added to the blocklist if they sat-
isfy at least one of the following 5 rules: (i) the indicator is
a fqdn, url, or email, whose domain is in the list of domains
from where a document was collected; (ii) the indicator was
extracted from at least 20 documents from the same origin;
(iii) the indicator is a fgdn or url whose domain (excluding the
“www.” prefix if present) is in the top-100k of the Tranco do-
main popularity list [44]; (iv) the indicator appears in more than
90% of all the collected documents; or (v) the indicator is a
private IP address. The first two rules aim to filter indicators
that belong to the origins from where documents are collected,
e.g., email contact addresses for security companies such as
contact@trendmicro.com. Instead of hard-coding domains of
cybersecurity companies and blogs, we infer them from the ori-
gins of the collected documents. This allows each user to per-
sonalize the filtering to the list of origins he chooses to monitor.
The next two rules target popular indicators that appear in most
documents or in a list of popular domains. The frequently up-
dated Tranco list is supplemented with a dynamically generated
list of popular indicators appearing in the collected documents,
which again can be personalized for each user.

Section 6 provides an evaluation of our filtering module and
the filtering from CACADOR and IOC_PARSER on a manually
generated ground truth.

6. Evaluation

We have applied GoodFATR to collect reports from six
sources over the last 15 months. We started our collection with
RSS on April Ist, 2021. We then added Telegram on Septem-
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ber 9th 2021, and Twitter on October 10th, 2021. On July 18th,
2022, we added the three report datasets (APTnotes, Chain-
Smith, Malpedia), but these datasets are cumulative so Good-
FATR can also process their past entries.

Table 5 summarizes the data collection and IOC extraction
results for each source. It captures the number of origins in
the source at the end of the collection, the collection start date,
the number of collected entries, as well as the number of ex-
tracted indicators (before filtering) and IOCs (after filtering).
The most diverse source by the number of origins is Malpe-
dia with reports from 2,368 organizations, followed by Twitter
with 383 accounts, RSS with 300 feeds, and APTnotes with re-
ports from 155 organizations. In contrast, ChainSmith includes
reports from only 11 blogs, and GoodFATR tracks only 9 Tele-
gram channels.

Twitter is the source with the largest number of collected en-
tries despite being introduced later than RSS and Telegram, but
its entries are tweets and thus short compared to full reports
collected from RSS and the three datasets. RSS is the most
stable contributor with an average of 6.1K new report URLs
per month. Among the three report datasets, Malpedia provides
the most reports (11,363), with ChainSmith providing one-third
(3,792), and APTnotes only 629 reports. The relatively small
size of APTnotes is due to its more focused goal of only col-
lecting reports for APTs.

IOC extraction. The last two columns in Table 5 show the in-
dicators extracted by IOCSEARCHER (before filtering) and the
final IOCs (after filtering). Overall, GoodFATR extracted 978k
indicators of which 618K (63%) are IOCs. Thus, filtering is
extremely important for discarding over one-third of indicators
that are generic and thus are not IOCs. Filtering affects each
source differently. In the extreme case of Twitter, two-thirds of
the indicators are filtered. Across all sources, domain names
and IPv4 addresses account for 99% of the generic indicators.
Filtered domain names are those matching the domain from
where the report was collected and those included in the Tranco
top-100K list. Filtered IPv4 addresses are those of private and
local networks,

The average number of IOCs per report is highest for the re-
port datasets: APTnotes (66), Malpedia (22), and ChainSmith
(11). Of those, APTnotes and Malpedia are manually curated,
which prevents the collection of non-technical reports. The col-
lection in ChainSmith is automated, but it leverages a small
number of blogs from large security companies known for their
high-quality technical content. In contrast, reports from RSS
have a lower ratio of IOCs (2.2), likely due to the variety of
feeds and reports they disseminate. For example, some feeds
may focus on technology news for the wider public (and thus
provide fewer IOCs), while blogs from security companies may
mix technical reports with less technical reports that focus on
the virtues of their products. Still, the large number of RSS
feeds GoodFATR monitors compensates for the lower ratio,
making RSS a consistent IOC contributor. Finally, Telegram
(0.5) and Twitter (0.3) have the lowest ratios, which is expected
due to the limited content in each entry.

IOC class distribution. To understand what type of indica-
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Figure 2: Distribution of IOC classes grouped per source.

tors each source distributes, we group indicators using the cat-
egories introduced in Section 5.2. Figure 2 reports the filtered
1OC:s split by class and source. The plots include only the six
most popular classes, the rest are aggregated in the other cat-
egory. Across all sources, network indicators dominate. Mal-
pedia, Telegram, and Twitter are the biggest contributors to the
network category, with more than 110K IOCs of this category
per source. The hash category ranks second with most indi-
cators in this category coming from Malpedia (82K file hash
I0Cs). In third place we find contact and social indicators,
both having similar distributions with the vast majority coming
from RSS and Malpedia. These two sources are also the high-
est contributors of IOCs that survive the filtering and exhibit
the highest variety in terms of indicator types. For example,
RSS and Malpedia provide 94% of the blockchain 10Cs and
over 61K email addresses, phone numbers and social network
handles. Telegram and Twitter show a significantly smaller va-
riety of IOC types. For example, the union of the contact and
social classes represents only 1.6% of the IOCs in Telegram,
and they only account for 92 of the IOCs extracted from Twit-
ter. One possible reason is that Twitter accounts are more spe-
cialized with some accounts focusing only on certain indicator
types such as malicious file hashes or vulnerability identifiers.

Top origins. Table 6 shows the top-10 origins for each source,
ranked by the percentage of IOCs the origin contributes to the
source. Overall, we notice a long tail distribution, with the top-
10 origins generating 50% of all IOCs. This pattern is consis-
tent across all sources and IOC classes. All three report datasets
are dominated by large security companies, with the exception
of the Citizen Lab at the University of Toronto (rank 8 in APT-
notes) and three personal blogs (ranks 8—10 in ChainSmith). A
surprising contributor is Price Waterhouse Coopers (rank 10 in
APTnotes), one of the largest financial accounting companies,
but less known for their security services. In general, personal
blogs exhibit less activity compared to company blogs with 7%
of all IOCs coming from personal blogs. RSS has more vari-
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ety in the origins. Surprisingly, the top contributor is the per-
sonal blog from Dancho Danchev, followed by two Medium
blogs that aggregate blockchain and cybersecurity news. The
RSS top-10 is rounded by the research labs of three large com-
panies (Cisco, F5, Malwarebytes), two other personal blogs
(Bruce Schneier, contagiodump), and two magazines (Cointele-
graph.com and BleepingComputer). Interestingly, two of the
RSS top 10 origins focus on blockchain. We added blockchain-
specific sources motivated by recent work that requires tagged
Bitcoin addresses [45]. Telegram is largely dominated by the
cybsecurity channel, which provides 76% of all Tele-
gram IOCs. Similarly, Twitter also has one dominant account
@ecarlesi with more than 140K tweets, 76% of all Twit-
ter IOCs. Second, but far behind with 4.7% of 1I0Cs, comes
@threatmeter, an automated bot that publicizes vulnerabil-
ities and accounts for 90% of vulnerability I0OCs.

7. Evaluation of IOC Extraction Tools

To evaluate the indicator extraction tools, we design a
majority-vote methodology that runs the 8 tools in Table 3 on
the text of the same set of threat reports. Then, we compare
the indicators extracted by the different tools on the same re-
port, assuming that the correct indicators are those extracted by
a majority of tools. The advantage of such evaluation is that
it can be run on a large set of reports bypassing the challenge
of building a ground truth that is representative of the wealth
of indicators the tools extract. The disadvantage is that this ap-
proach works only when indicators are extracted by multiple
tools, and in some occasions it is possible that the minority of
tools is actually correct. We detail our methodology and the
obtained results next.

We first build a document dataset by extracting the text using
GoodFATR from all reports in APTnotes and ChainSmith. We
choose these two sources because they cover different report
file types (APTnotes has PDF reports and ChainSmith mostly
HTML reports) and because both sources have a high average
of IOCs per report, as shown in Section 6. In four PDF re-
ports the text extraction failed: two were Excel spreadsheets
that our text extraction does not support and the other two were
corrupted. We evaluate the tools using the 4,420 successfully
extracted text documents.

Methodology. Algorithm 1 details our accuracy comparison
methodology. We run all tools on each document, saving the
indicators each tool extracts to a separate file. To compare all
tools in a similar setting, we disable filtering for tools that sup-
port it (IOC_PARSER, CACADOR, IOCSEARCHER) and dedupli-
cate indicators. Since each tool may assign slightly different
names to indicator types (e.g. ipv4addr, ip, and ipv4 for IPv4
addresses), we normalize them to match the names in Table 4.
Additionally, some tools transform case-insensitive indicator
values (e.g., domain names, email addresses) to lowercase or
uppercase, while others output them as they appear in the text.
To address such differences, we also normalize indicator val-
ues. In particular, we lowercase the following indicator values:
hashes (md5, shal, sha256, sha512, ssdeep), regkey, ip6, fqdn,


cybsecurity
@ecarlesi
@threatmeter

Table 6: Top-10 origins that contribute with the highest number of IOCs, grouped per source. In brackets we report the percentage of IOCs associated to each origin.

Rank APTnotes ChainSmith Malpedia RSS Telegram Twitter
#1 Kaspersky (13.11%) Webroot (27.92%) Palo Alto Networks (4.16%) Dancho Danchev’s Blog (26.21%) cybsecurity (76.70%) ecarlesi (76.42%)
#2|Palo Alto Networks ( 7.18%) Sucuri (22.07%) Trend Micro (4.11%)  Blockchain on Medium ( 9.06%) VulnerabilityNews ( 8.28%) threatmeter ( 4.73%)
#3 Norman (6.11%)  Malwarebytes (15.01%) Kaspersky (2.92%) Cybersecurity on Medium ( 8.63%) Cyber_Security_Channel ( 7.33%) malwrhunterteam ( 2.54%)
#4 Symantec ( 5.24%)  Virus Bulletin (14.12%) ESET ( 2.82%) Cisco Talos ( 6.57%) cKure (4.01%) bgpstream ( 2.02%)
#5 ClearSky (4.74%) Sophos ( 4.88%) Proofpoint ( 1.68%) BleepingComputer News ( 2.44%) malwr ( 2.18%) YourAnonRiots ( 1.54%)
#6 FireEye (4.24%) Forcepoint ( 4.60%) Cisco Talos ( 1.66%) Cointelegraph.com News ( 2.33%) androidMalware ( 0.84%)  cryptolaemus! ( 1.44%)
#1 ESET (3.72%) ESET (4.34%) FireEye ( 1.65%) F5 Labs ( 1.28%) ckuRED ( 0.48%) ActorExpose ( 1.32%)
#8 Trend Micro ( 2.67%) TaoSecurity ( 4.15%) BitDefender ( 1.44%) Schneier on Security ( 1.26%) canyoupwnme ( 0.16%)  MalwarePatrol ( 0.98%)
#9 Citizen Lab ( 2.40%) Hexacorn ( 1.70%) 360netlab ( 1.39%) Malwarebytes Labs ( 1.12%) itsecalert ( 0.03%) 1zrrdh (0.97%)

#10 PwC UK Blogs ( 1.88%) Roger McClinton ( 0.90%) Microsoft ( 1.34%) contagiodump ( 1.08%) - dubstard ( 0.74%)

Table 7: Precision (P), recall (R), and F1 score achieved by each indicator extraction tool on the comparative evaluation over 4,420 documents. Only indicator types

extracted by at least two tools are included.

JAGER IOC_PARSER CACADOR CYOBSTRACT IOC-FINDER IOCEXTRACT | IOC-EXTRACTOR | IOCSEARCHER
Indicator Count| P | R |[F1| P | R |F1|P|[R|[F1|P|R|F1|P|R|FI|P|R|[FI|P]|R F1 P | R |F1
asn 202 - - - - - - - - - 10.93[0.95(0.94(0.99 [1.000.99| - - - 10.69[0.97| 0.81 - - -
bitcoin 2,698 | - - - - - - - - - - - - 1077 |1.00|0.87| - - - [1.00 [1.00 | 1.00 |1.00|0.01 |0.03
cve 2,135]0.96 10.99 [ 0.98 | 1.00 | 1.00 | 1.00 | - - - 10.98/0.97[0.97(0.98|1.00{0.99| - - - 10.96(1.00| 098 |1.00]|1.00|1.00
email 1,947 1 0.60 | 0.85 | 0.70 | 0.89 | 0.75 | 0.81 | 0.60 | 0.73 | 0.66 | 0.99 | 0.98 | 0.98 | 0.93 | 1.00 | 0.96 | 0.75]0.97 | 0.85 | 0.97 | 0.99 | 0.98 |0.99 | 1.00 | 1.00
filename 17,082 | 0.98 [ 0.97 | 0.98 | 0.97 | 0.71 | 0.82 | 0.87|0.97|0.92 | 0.78 | 0.87 | 0.82| - - - - - - - - - - - -
filepath 1,551 - - - 10.7310.66 |0.69 | - - - 10.29/0.97|0.45(025[0.76 | 0.37| - - - - - - - - -
fqdn 41,360 | 0.48 | 0.06 | 0.10 0.99 [ 0.91 | 0.94 | 0.56 | 0.39 | 0.46 | 0.97 | 0.96 | 0.97 | 0.95|0.99 | 0.97 | - - - 10.921099| 0.95 |0.98]|1.00 | 0.99
googleAdsense 4| - - - - - - - - - - - - [1.00(1.00 | 1.00| - - - [1.00]1.00| 1.00 |1.00|0.750.86
googleAnalytics 30 - - - - - - - - - - - - [1.00(1.00 | 1.00| - - - 10.75]1.00| 0.86 |1.00|1.00|1.00
ip4 9,47910.99 | 0.87 [ 0.920.98 |0.92]0.95|0.97 | 1.00 | 0.98 | 1.00 | 0.98 | 0.99 | 0.99 | 0.99 | 0.99 | 0.98 | 0.97 | 0.98 | 0.98 | 1.00 | 0.99 |1.00|1.00 | 1.00
ipdcidr 287 - - - - - - - - - 11.00(0.99(0.99|0.97|1.00|0.99| - - - - - - 1.00 | 0.99 | 0.99
ip6 967 | - - - - - - 10.50(0.91|0.65|0.87 | 0.66 | 0.75 | 0.91 | 0.12 | 0.21 | 0.15 | 0.80 | 0.25|0.51 [ 0.97 | 0.66 | - - -
macAddress 64| - - - - - - - - - - - - 11.001.00|1.00| - - - [1.00[1.00| 1.00 | - - -
md5 14,635 1.00 | 0.98 | 0.99 | 1.00 | 1.00 | 1.00 | 0.45 | 1.00 | 0.62 | 1.00 | 0.97 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |1.00 | 1.00 | 1.00
monero 2| - - - - - - - - - - - - [1.001.00|1.00| - - - [1.00|1.00 | 1.00 |1.00|1.00 | 1.00
regkey 608 | - - - 1096(0.72/0.82| - - - 10.80/0.90|0.85|0.69|0.73|0.71| - - - - - - - - -
shal 4,150 | 1.00 | 1.00 | 1.00 | 1.00 [ 0.99 | 0.99 | 0.41 | 1.00 | 0.58 | 1.00 | 0.99 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
sha256 5,336 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 | 1.00 | 0.99 | 1.00 | 0.94 | 0.97 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
sha512 1/1.00|1.00 | 1.00 | - - - 10.07|1.00|0.12| - - - 1.00|1.00|1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | - - -
ssdeep 74|1.00 |0.280.44 | - - - 10.16/0.30 | 0.21 | 0.81 | 0.88 | 0.84 | 0.55]|0.91 | 0.69 | - - - 1047[1.00| 0.64 | - - -
url 14,818 | 0.61 [ 0.56 | 0.59 | 0.53 | 0.56 | 0.54 | 0.51|0.52 | 0.52 | 0.76 | 0.96 | 0.85 | 0.62 | 0.83 | 0.71 | 0.60 | 0.99 | 0.75 | 0.70 | 0.80 | 0.74 |0.77 | 1.00 | 0.87
All 117,403 [0.87 [0.57]0.69 [ 0.91 [ 0.85[0.88]0.61[0.70 [ 0.65[0.92]0.96 [ 0.94 [ 0.87 [ 0.96]0.91]0.77 [ 0.99 [ 0.87]0.90 | 0.96 | 0.93 |0.95[0.97 | 0.96

and email. Finally, we normalize AS numbers to the format
AS1234 (e.g. from asn1234 to AS1234) and URLSs by prepend-
ing “http://” when no scheme is present.

For each tool, the evaluation keeps counters for true positives
(TPs), false positives (FPs), false negatives (FNs), and true neg-
atives (TNs). The evaluation processes one document at a time,
updating the counters with the document results. For each doc-
ument, it examines all indicators extracted from the document
by at least one tool. For each indicator, it generates three sets:
the found set captures the tools that identified the indicator in
the document, the missed set captures the tools that support the
indicator type but did not identify it, and the unsupported set
captures the tools that do not support the indicator type. If the
size of the found set is larger than the size of the missed set,
then the evaluation assumes the majority is correct and there-
fore the indicator was indeed present in the document. Thus,
it adds a TP for each tool in the found set and a FN for each
tool in the missed set. If the size of the missed set is larger
than the size of the found set, then the evaluation assumes the
majority is correct and therefore the indicator was not present
in the document. Thus, it adds a FP for each tool in the found
set and a TN for each tool in the missed set. If the size of the
found and missed sets is the same, then there is no majority. In
such cases, we skip the indicator and do not update the coun-
ters. In future work, we plan to investigate how to break such
ties. After processing all documents, we compute the precision,
recall, and F1 score for each tool across all indicators, as well

as separately for each indicator type.

Handling errors. When running all tools on the 4,420 docu-
ments we observed that IOCEXTRACT, the second most popu-
lar tool, needed hours to process some documents, compared
to seconds or a few minutes for other tools. We suspected
that one of their regular expressions had a ReDoS vulnerabil-
ity, which caused a worst case that got triggered only in some
documents [19]. We found an open issue in the IOCEXTRACT
repository regarding catastrophic backtracking in the regular
expression used to identify defanged URLs that modify the
backslash [46]. To be able to complete the evaluation in a rea-
sonable time, we configured IOCEXTRACT to avoid using the
problematic regular expression. This change does not affect the
accuracy results, as IOCEXTRACT is the only tool supporting
that defang transformation. Similarly, there are two documents
where I0C-EXTRACTOR does not terminate. We identify the
root of this issue in the regular expressions used to extract do-
main names. Of the four domain regular expressions used, only
one avoids the problem, while the others require hours to pro-
cess the document. For these two documents, we added 10C-
EXTRACTOR to the missed set for all indicators in the docu-
ment. These results show that ReDoS vulnerabilities are a seri-
ous problem for indicator extraction tools, but oftentimes these
worst cases appear only when examining a large number of doc-
uments. We examine whether ReDoS vulnerabilities exist in
the regular expressions used by IOCSEARCHER with the rar Re-
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Algorithm 1 Accuracy comparison methodology.

1: procedure COMPARE(tools, docs)
accuracy < {}

3 for tool in tools do

4: accuracy(tool] « (0,0,0,0)
5: end for
6.

7

8

for doc in docs do
extracted « {}
all « set()
9: for tool in tools do
iocs < Run(tool, doc)
iocs « Normalize(iocs)

all « all Uiocs
13: for ioc in iocs do
14: extracted[ioc).add(tool)
15: end for
16: end for
17: for ioc in all do
18: found « extracted|ioc]
19: supported «— canExtract(ioc.type)
20: missed «— supported — found
21: if len(found) > len(missed) then
22: for tool in found do
23: accuracy[tool].tp +=1
24: end for
25: for tool in missed do
26: accuracyltool].fn +=1
27: end for
28: end if
29: if len(missed) > len(found) then
30: for tool in found do
31: accuracyltool].fp +=1
32: end for
33: for tool in missed do
34: accuracy(tool].tn +=1
35: end for
36: end if
37: end for
38: end for
39: return accuracy

40: end procedure

DoS checker [47]. The tool implements a sound static analysis
(i.e., no false positives) that identifies regular expressions with
exponential time worst case [48]. Except for 3 regular expres-
sions the rat tool could not handle due to negative lookbehinds,
all other IOCSEARCHER regular expressions are free from ex-
ponential time worst case.

There are also a few documents where a tool throws an ex-
ception and thus extracts no indicators. This happens for CY-
OBSTRACT in 41 documents and for JAGER in 20. For CYOB-
STRACT, only the indicators of the type causing the exception
are missed. We included JAGER in the missed set for all indica-
tors in those documents.

Results. Table 7 summarizes the results for the 21 indicator
types that are extracted by more than one tool. The columns
show the indicator type, the number of indicators of that type
considered TPs, as well as the precision (P), recall (R), and F1
score for each tool. We do not include indicators extracted only
by a single tool, as there is no concept of majority for those.
Overall, IOCSEARCHER is the tool that achieves both the
best precision (0.95) and F1 score (0.96), while IOCEXTRACT
achieves the best recall (0.99). The highest overall F1 scores
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Table 8: Top-10 indicator types extracted by all tools.

Indicator Count  Tools
fqdn 41,360 7
attackType 26,109 1
country 17,654 1
filename 17,082 4
url 14,818 8
md5 14,635 8
ip4 9,479 8
sha256 5,336 8
avLabel 4,660 1
shal 4,150 8

are for IOCSEARCHER (0.96), CYOBSTRACT (0.94), 10C-
EXTRACTOR (0.93), and 10C-FINDER (0.91). The lowest F1
scores are for CACADOR (0.65) and JAGER (0.69). These re-
sults seem to indicate that recent tools (IOCSEARCHER, 10C-
EXTRACTOR, I0C-FINDER) perform better than those released
earlier (JAGER, CACADOR), possibly because newer tools could
use older ones for comparison.

The table also presents the accuracy results for each indica-
tor type. We observe perfect agreement for MAC address ex-
traction (although only 64 MAC addresses are found by two
tools) and nearly perfect agreement on the hashes, with the
exception of CACADOR which has low F1 scores for sha512
(0.12), shal (0.58), and md5 (0.62). TOCSEARCHER performs
best in 11 of the 13 (85%) indicator types it supports in the ta-
ble, IOC-EXTRACTOR in 8 out of 17 (47%), and 10C-FINDER in
9 out of 20 (45%). CYOBSTRACT is the best tool for extracting
registry keys (0.85) and SSDeep hashes (0.84); JAGER for ex-
tracting filenames (0.98), IOC_PARSER for filepaths (0.69), and
IOCSEARCHER for emails (1.0), domain names (0.99), IPv4 ad-
dresses (1.0), and URLs (0.87). These results are useful for
future work in this area, to identify which prior tool may have
the best regular expression for an indicator type. For example,
if we were to add registry key support to IOCSEARCHER we
would start by looking at CYOBSTRACT and for filenames to
JAGER.

The indicator types with the lowest agreement are IPv6 ad-
dresses with F1 score ranging 0.21-0.75; filepaths (0.37-0.69);
URLSs (0.52-0.87); and registry keys (0.71-0.85). These are
arguably the indicator types for which regular expressions are
harder to build. We observe that most IPv6 addresses extracted
are actually FPs caused by a regular expression that matches
serial numbers in certificates and certificate fingerprints.

One surprising result is that IOCSEARCHER has an F1 score
of 0.03 on Bitcoin addresses, while it achieves the best F1 score
on most other indicators it extracts. We manually checked the
extracted Bitcoin addresses and observed that IOCSEARCHER is
actually always correct in identifying Bitcoin addresses. Both
IOC-EXTRACTOR and IOC-FINDER return hashes that are erro-
neously included as Bitcoin addresses. IOCSEARCHER avoids
those FPs by examining the checksum in the regular expression
matches, which do not validate. This is an example of the mi-
nority of tools being correct and the majority being wrong. We
discuss this issue in Section 8.

Table 8 shows the Top 10 most popular indicator types across
the 4,420 documents. The count column represents the number
of TPs, and the last column reports the number of tools that ex-



Table 9: Post-hoc t-tests between groups summary.

A B p-unc p-corr eta-square
CACADOR CYOBSTRACT 7.6527¢-03 1.0203e-02 3.6639¢-04
CACADOR IOCEXTRACT 3.1698e-21 1.4792e-20 1.2091e-03
CACADOR I0C-EXTRACTOR 2.9591e-18 1.1836e-17 8.6447e-04
CACADOR IOC-FINDER 1.12366-17 3.9328e-17 8.48226-04
CACADOR IOC-PARSER 7.11888-05 1.4237e-04 4.7131e-05
CACADOR JAGER 1.0000e+00 1.0000e+00  0.0000e+00
CACADOR IOCSEARCHER 9.5401e-23 8.9041e-22 1.3045e-03
CYOBSTRACT IOCEXTRACT 1.0013e-02 1.2744e-02 2.4565e-04
CYOBSTRACT IOC-EXTRACTOR 1.1071e-01 1.2916e-01 1.0536e-04
CYOBSTRACT I0C-FINDER 1.1717e-01 1.3123e-01 9.9363e-05
CYOBSTRACT IOC-PARSER 4.2949¢-04 7.5162e-04 6.7494¢-04
CYOBSTRACT JAGER 2.1251e-02 2.5871e-02 3.6767e-04
CYOBSTRACT IOCSEARCHER 5.4571e-03 8.0421e-03 2.8976e-04
IOCEXTRACT I0C-EXTRACTOR 5.9633e-03 8.3486e-03 2.9454e-05
IOCEXTRACT I0C-FINDER 3.5693e-03 5.5523e-03 3.2923e-05
IOCEXTRACT IOC-PARSER 3.6201e-25 5.0681e-24 1.7284¢-03
IOCEXTRACT JAGER 2.647%-10 7.4141e-10 1.2132e-03
IOCEXTRACT IOCSEARCHER 2.4354e-08 5.2456e-08 1.8189¢-06
IOC-EXTRACTOR  IOC-FINDER 6.2505¢e-01 6.4820e-01 9.3784¢-08
IOC-EXTRACTOR  IOC_PARSER 3.8698e-22 2.708%¢-21 1.3122¢-03
IOC-EXTRACTOR  JAGER 1.1041e-08 2.8105e-08 8.6746e-04
IOC-EXTRACTOR ~ IOCSEARCHER 6.1777e-04 1.0175e-03 4.5934e-05
I0C-FINDER IOC_PARSER 1.4453e-21 8.0938e-21 1.2927e-03
I0C-FINDER JAGER 1.3778e-08 3.2149¢-08 8.5116e-04
I0C-FINDER IOCSEARCHER 3.6823e-04 6.8737e-04 5.0259¢-05
IOC_PARSER JAGER 1.3860e-01 1.4927e-01 4.7302e-05
IOC_PARSER IOCSEARCHER 1.0825e-26 3.0310e-25 1.8419¢-03
JAGER IOCSEARCHER 5.4592e-11 1.6984e-10 1.3090e-03

tract each indicator. Among those, 7 correspond to indicators
supported by most tools, namely domain names, file names,
URLs, IPv4 addresses, and hashes (md5, sha256, shal). On
the other hand, the other three indicators are extracted only by
CYOBSTRACT and correspond to attack-type keywords, coun-
tries, and AV labels. A total of 16 indicator types are not found
in the 4,420 reports. These include attribution, groupName,
authentihash, ip6range, useragent, iban, icp, 7 blockchain ad-
dresses (dashcoin, dogecoin, ethereum, litecoin, tezos, web-
money, zcash), and two social handles (telegramHandle, what-
sappHandle). These correspond to less popular indicators in
APTnotes and ChainSmith reports. However, other sources
may differ. For example, RSS collection includes blockchain-
related blogs, which leads to IOCSEARCHER extracting indi-
cators for all blockchain addresses in Section 6 (e.g., 726
ethereum addresses).

Statistical significance. We evaluate whether differences in the
extracted indicators across tools are statistically significant by
first performing an analysis of variance test and then measuring
the strength of the differences using pairwise t-tests between the
tools. The independent variable is the tool used to produce each
set of IOC detections. There are eight groups accounting for the
source of variability, one per tool. The dependent variable is the
number of detections (TPs) produced by each tool. We perform
a Repeated Measures One-Way ANOVA test because all tools
are evaluated on the same samples (i.e., documents). We focus
on the 6 indicator types extracted by all tools (email, ip4, mdS,
shal, sha256, url).

The test results indicate a significant statistical difference be-
tween the detections produced by the tools, with a p-value lower
than 1075. We apply pairwise t-tests among groups to iden-
tify which pairs of tools exhibit significant differences. We
use the Benjamini/Hochberg FDR correction method for the
p-values because of the multiple statistical tests produced. Ta-
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Figure 3: Eta-square values resulting from pairwise comparison of tools.

Table 10: Indicator extraction runtime (in seconds) across all APTnotes and
average by indicator type.

Tool Runtime (sec) Ind. Avg. per Ind. (sec)
CACADOR 489.23 12 40.76
IOCEXTRACT 1350.69 8 168.83
IOC_PARSER 1563.33 11 142.12
IOC-EXTRACTOR 1978.51 18 109.91
JAGER 2360.02 11 214.54
IOCSEARCHER 2847.98 41 69.46
CYOBSTRACT 6945.03 25 277.80
I0C-FINDER 96596.23 25 3863.84

ble 9 shows the results of this test. A statistically significant dif-
ference between detections is found among every pair of tools
(shown by the p-corr column), except for 5 pairs (CACADOR—
JAGER, CYOBSTRACT-IOC-EXTRACTOR, CYOBSTRACT-10C-
FINDER, IOC-EXTRACTOR-IOC-FINDER, and IOC_PARSER—
JAGER). Figure 3 shows the strength of the differences between
tools, measured by the eta-square value resulting from the tests.
The results show that detections produced by IOCSEARCHER
are statistically significant compared to all other tools.

Runtime. Table 10 shows the total time in seconds each tool
took to extract indicators on the 4,420 text documents, the num-
ber of indicator types supported, and the average time by indi-
cator type. In our tests, the fastest tool is CACADOR, likely due
to being implemented in Go and compiled to native code. The
slowest tool is IOC-FINDER, which is 14 times slower than the
second slowest tool (CYOBSTRACT). This is probably because
IOC-FINDER is the only tool that uses grammars for the extrac-
tion, highlighting the efficiency of using regular expressions to
extract indicators. All tools perform one pass on the text for
each regular expression and they typically use one regular ex-
pression for each indicator type. Thus, the runtime is highly
influenced by the number of indicator types extracted. When
normalizing the total runtime by the number of extracted indi-
cator types, CACADOR is still the fastest with 40.8 seconds, fol-
lowed by IOCSEARCHER (69.5), and IOC-EXTRACTOR (109.9).

Social handle validation. Our majority-based evaluation can-
not be applied to the 38 indicators only extracted by one tool.



Table 11: Social indicators validation.

Indicator Total  Validated
facebookHandle 150 124
gitHubHandle 258 242
instagramHandle 10 8
pinterestHandle 1 1
youTubeHandle 24 24
youTubeChannel 6 6
twitterHandle 516 431
All 965 836

Table 12: Accuracy of filtering approaches on a manually-built ground truth.

Tool TP FP FN TN Prec. Recall F1
CACADOR 29 69 0 8 0.30 1.00 | 0.46
IOC_PARSER 29 66 0 11 0.31 1.00 0.47
IOCSEARCHER 29 6 0 71 0.83 1.00 0.91

Among those, there are 11 social indicators only extracted by
IOCSEARCHER, of which 9 appear in APTnotes and Chain-
Smith reports (no Telegram and WhatsApp handles are found in
these sources). For social network handles we perform an alter-
native validation, which checks whether there currently exists
an account in the social network for that handle. For this, we use
the Blackbird [49] open-source tool, which given a username
checks if there currently exists an account with that handle on
143 different social networks. Blackbird supports 6 social net-
works IOCSEARCHER extracts handles for (Facebook, GitHub,
Instagram, Pinterest, Telegram, and YouTube). In addition, we
expanded Blackbird to also support youtubeChannel indicators.
For Twitter handles, we leverage the official Twitter API for the
same purpose [50]. LinkedIn does not allow searching for ac-
count names.

Table 11 summarizes the results. Our automated approach
successfully validated 87% of the social indicators. We manu-
ally inspect the 102 indicators that we could not validate with
Blackbird, using a web browser to search for a particular han-
dle on each social network. For Twitter, 15 of of the 85 user-
names that did not validate, were linked to suspended accounts
(e.g., @MalwareSigs). In all of the remaining cases, the so-
cial networks returned a page to inform us that the particular
account does not exist. For 75 of the 87 accounts for which
we could not find the user profile page, the identifier contained
a meaningful sequence of characters (e.g., “sucuri_security”,
“avast_antivirus”), suggesting that the identifier could belong
to an old account that was closed. Overall, this evaluation sug-
gests that over 90% of the social identifiers IOCSEARCHER ex-
tracted are likely true positives. For the rest, we are not able to
determine if they are false positives or correspond to accounts
that have been closed since they appeared in the sources.

Filtering. To evaluate the filtering, we manually built a ground
truth (GT) of 106 indicators. We randomly selected those in-
dicators among those extracted by IOCSEARCHER across all
datasets and prior to the filtering. Then, an analyst manually re-
viewed the documents from where the indicators were extracted
to determine whether each indicator was benign or malicious.
The analyst made a determination based on the indicator con-
text in the document, i.e., by reading the parts of the document
that mentioned the indicator.

To measure the filtering accuracy, we first apply the filtering
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approach of CACADOR, IOC_PARSER, and our platform to the
106 indicators. Then, for each approach, we compare the in-
dicators that survive the filtering with the GT. We consider a
true positive (TP) a malicious indicator in the GT that correctly
survives the filtering and a TN is a benign indicator in the GT
that was correctly filtered out. A false positive (FP) is a benign
indicator in the GT that incorrectly passes the filtering, while
a false negative (FN) is a malicious indicator in the GT incor-
rectly removed by the filtering. From those counts, we compute
the precision, recall, and F1 score. Note that it does not matter
that indicators in the GT were selected among those extracted
by IOCSEARCHER, as we do not extract indicators using CA-
CADOR and IOC_PARSER in this experiment. We only run their
filtering rules on the GT indicators.

Table 12 summarizes the results. All three filtering ap-
proaches have zero FNs and thus perfect recall, i.e., they
do not remove any truly malicious indicators. On the other
hand, precision significantly differs; our filtering achieves more
than twice higher precision (0.83) than the filtering used by
TIOC_PARSER (0.31) and CACADOR (0.30). The low precision
by CACADOR and IOC_PARSER is due to its filtering being fairly
incomplete, allowing many benign indicators to be output as
malicious I0Cs. The final F1 score is 0.91 for our filtering,
followed by T0C_PARSER (0.47) and CACADOR (0.46). The
results indicate that the static blocklists used by IOC_PARSER
and CACADOR fail to filter many of the benign indicators in the
documents. Furthermore, despite the IOC_PARSER blocklist be-
ing an order of magnitude larger than the CACADOR blocklist,
the recall improvement is marginal. This shows that it is hard
to predict the sources from where a user will collect reports,
making static blocklists largely incomplete. The use of a dy-
namic blocklist in our filtering module significantly improves
the recall by adjusting the filtering to the collected sources. For
example, it is very common for tweets to contain URLSs to exter-
nal references, including links to documents from other sources
(e.g, an already monitored blog or RSS feed). The blocklists
of CACADOR and IOC_PARSER would assume that such a URL
is an IOC, possibly because the tool developers did not con-
sider Twitter as a source. IOCSEARCHER correctly flags those
generic indicators as FPs, since it relies on a blocklist that is
dynamically expanded each time the user adds a new source
that will be monitored. In summary, the dynamic blocklist al-
lows filtering a larger amount of benign indicators than static
blocklists without losing any malicious IOCs.

8. Discussion

This section discusses limitations and future improvements.

Threats to validity. Our methodology for comparing indica-
tor extraction tools assumes that the majority of tools will be
correct. However, in some cases, a minority of tools may be
correct instead, as illustrated by the bitcoin results where 10C-
SEARCHER is wrongly assigned FNs due to FPs from two other
tools. In general, the more tools support an indicator, the higher
confidence we have in the majority of results. An alternative ap-
proach for evaluation tools is to use a ground truth (GT) dataset.
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However, the manual effort required to build a GT with thou-
sands of documents would be very large, and it would be diffi-
cult to cover different indicator types. For this reason, regular
expression evaluations tend to be built leveraging synthetic ex-
amples (e.g., [S1]). Unfortunately, synthetic examples may not
represent results on real documents.

Our evaluation could be biased due to document selection,
unknown normalizations, expired social accounts, and the size
of the ground truth used for evaluating the filtering. For exam-
ple, we evaluate tools exclusively on English documents. While
regular expressions should largely be language-agnostic, it is
possible that some language-specific feature (e.g., special char-
acters) affects the results. It is also possible for our comparison
methodology to negatively affect a tool if we miss some nor-
malization it performs on its outputs. The validation of social
handles may underestimate the IOCSEARCHER accuracy since
extracted handles may correspond to accounts since deleted.
And, our filtering evaluation is performed on a small ground
truth of 106 indicators. A larger ground truth may uncover
harder cases where accuracy drops.

Adding origins. Adding new origins is currently the only step
where GoodFATR requires human involvement. GoodFATR
can automatically identify new origins to be considered for in-
clusion. For this, it examines the report URLs in the crowd-
sourced datasets (Malpedia, APTnotes) ranking domains in the
report URLs by the number of report URLs where they appear.
Then, it filters domains already in the list of RSS origins. Fi-
nally, the top-ranked domains are flagged as potential cyberse-
curity blogs, so that an analyst can examine them and identify
their RSS URL. To identify candidate new Twitter accounts to
monitor, GoodFATR examines the re-tweets in the monitored
accounts, building a ranking from the original tweeting account
to the number of collected re-tweets from the account. The top
re-tweeted accounts, not yet monitored, are output so that a hu-
man can analyze them for inclusion. In future work, we would
like to explore integrating techniques to identify valuable Twit-
ter accounts by analyzing their posts [23].

Report variants. If the same document (i.e., same SHA256
hash) is collected from different origins, GoodFATR dedupli-
cates it to store only one copy of the document and updates the
document’s traceability information to capture all origins from
where the document was collected. As introduced in Section 4,
it is possible that GoodFATR collects multiple documents cor-
responding to different instances of the same threat report. This
may happen if a report is distributed in different formats, in
case GoodFATR downloads multiple times the URL of a report
that points to a webpage with dynamic content, and if a report
generates multiple versions over time (e.g., by fixing some er-
rata). Currently, the user can identify multiple instances of the
same report by querying for all documents downloaded from
the same URL or for all documents with the same title. How-
ever, this may miss some cases, e.g., when the title has changed.
To address this issue, GoodFATR could store a similarity hash
of the text content (extracted from the PDF or HTML docu-
ment), which could be used to identify small variations of the
same content.

16

In this work, GoodFATR was configured to download a URL
only once (unless an error happened). This configuration re-
duces the number of needed downloads and removes some of
the above cases. On the other hand, it may fail to collect dif-
ferent versions of the same report that appear over time. If the
user wants to collect multiple versions of a report, he can eas-
ily change this configuration, at the cost of increased network
bandwidth and runtime. In future work, we would like to ex-
plore leveraging the ETag header to keep track of the document
pointed by a URL and use an HTTP HEAD request to check
if the document was updated since the last time we retrieved
it. With this approach, the report would only be re-downloaded
if a new version exists. However, not all websites provide the
ETag header or support HTTP HEAD requests.

9. Conclusions

This paper presents GoodFATR, an automated platform for
collecting threat reports from 6 sources (RSS, Twitter, Tele-
gram, Malpedia, APTnotes, ChainSmith) and comparing the
accuracy of indicator extraction tools on the collected reports.
GoodFATR implements a novel majority vote methodology for
comparing the accuracy of indicator extraction tools, which
does not require a manually-built ground truth. GoodFATR
continuously monitors the sources, downloads new threat re-
ports, extracts indicators from the reports, and filters generic in-
dicators to produce a list of IOCs. GoodFATR includes the 10C-
SEARCHER tool for extracting 41 indicator types from HTML,
PDF, and text files using regular expressions. We run Good-
FATR for over 15 months to collect 472,891 reports from the 6
sources; extract 978,151 indicators from the reports using 10C-
SEARCHER; and identify 618,217 IOCs. We analyze the col-
lected data to identify the top IOC contributors and the I0C
class distribution. Then, we applied GoodFATR for comparing
7 popular indicator extraction tools with IOCSEARCHER and as-
sess their accuracy using our novel majority-vote methodology.
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