2208.00047v1 [cs.SE] 29 Jul 2022

arXiv

Noname manuscript No.
(will be inserted by the editor)

What to Share, When, and Where: Balancing
the Objectives and Complexities of Open Source
Software Contributions

Johan Linaker - Bjorn Regnell

Received: date / Accepted: date

Abstract Context: Software-intensive organizations’ rationale for sharing
Open Source Software (OSS) may be driven by both idealistic, strategic and
commercial objectives, and include both monetary as well as non-monetary
benefits. To gain the potential benefits, an organization may need to consider
what they share and how, while taking into account risks, costs and other com-
plexities. Objective: This study aims to empirically investigate objectives and
complexities organizations need to consider and balance between when decid-
ing on what software to share as OSS, when to share it, and whether to create
a new or contribute to an existing community. Method: A multiple-case study
of three case organizations was conducted in two research cycles, with data
gathered from interviews with 20 practitioners from these organizations. The
data was analyzed qualitatively in an inductive and iterative coding process.
Results: 12 contribution objectives and 15 contribution complexities were
found. Objectives include opportunities for improving reputation, managing
suppliers, managing partners and competitors, and exploiting externally avail-
able knowledge and resources. Complexities include risk of loosing control, risk
of giving away competitive advantage, risk of creating negative exposure, costs
of contributing, and the possibility and need to contribute to an existing or
new community. Conclusions: Cross-case analysis and interview validation
show that the identified objectives and complexities offer organizations a pos-
sibility to reflect on and adapt their contribution strategies based on their
specific contexts and business goals.

J. Linaker

Box 118, SE-221 00 Lund
Tel.: +46 46 222 49 27

Fax: 446 46 13 10 21

E-mail: johan.linaker@cs.1th.se

B. Regnell
E-mail: bjorn.regnell@cs.Ith.se

2 Johan Linaker, Bjorn Regnell

Keywords Open Source Software - Software Product Management -
Requirements Engineering - Contribution Strategy - Community Strategy

1 Introduction

Sharing, or contributing, software artifacts (e.g., features, projects, and frame-
works) as Open Source Software (OSS) is a common practice among software-
intensive organizations today [50]. By ”opening up” [9], an organization can
exploit the external workforce residing in the OSS communities that develops
and maintains the OSS. Improved product innovation, accelerated develop-
ment, lower maintenance cost, as well as improved branding and reputation,
are some of the potential benefits that may motivate |23}42,/48,50,66]. The
motive may also be driven by pure idealism and being a good OSS citizen [30].
For some organizations, OSS may have a more direct connection to the busi-
ness model or strategy, e.g., as a basis for complementary products and ser-
vices [3,|62,|64], or as a means to create a new standard or compete with
existing ones [23,/30,142,|72]. Objectives for why an organization would choose
to contribute software artifacts as OSS does, however, not have to be limited
to one or the other [3].

In this paper, we present the results from an empirical study on organiza-
tions’ rationale for sharing software artifacts as open source. In the context of
this study, we introduce the term Contribution Objective (CO), which we
define as a purpose for contributing a software artifact, motivated by a mon-
etary or non-monetary benefit that is enabled or resulted directly or indirectly
as a consequence of the contribution.

To gain potential benefits by acting in line with contribution objectives,
an organization needs to access the external workforce, either by contribut-
ing its software artifacts to an existing OSS community or by creating a new
community, each with its respective costs and risks [11]. In either case, the
organization then needs to work actively to align its internal strategy with
the community where they are a stakeholder among many, potentially includ-
ing competitors with conflicting agendas [10,{12]. An organization, therefore,
may have to consider not just where, but also what it contributes, and when.
Risks include giving away differentiating functionality [23}24}[29]|68l(74L[78], or
contributing too late and having to choose between adopting the alternative
solution or maintaining an internal solution alone [38}78]. Hence, there are
several potential costs and risks tied to a contribution.

In the context of this study, we refer to these potential costs and risks as
Contribution Complexities (CCs) and define them as aspects related to a
software artifact that may complicate the contribution of the artifact, or imply
a cost or risk as a result thereof, either directly or indirectly. As with contribu-
tion objectives, not all complexities may be relevant for all organizations [38].

By not considering relevant contribution objectives or complexities, an or-
ganization may risk making a contribution that could be damaging, or inad-
vertently block a contribution that could have been beneficial for the orga-

What to Share, When, and Where 3

nization and its business goals [78]. To gain the expected benefits, organiza-
tions therefore need to link their business goals with their decisions on what
they contribute as OSS. Despite the problematic context, research on how
organizations can develop and use such strategies is limited [50|, with some
exceptions [38,/71,/78]. This leads us to define the following research questions:

RQ1 What contribution objectives should a software-intensive organization
consider when assessing if, where and when a software artifact should be
shared as OSS?

RQ2 What contribution complezities should a software-intensive organization
consider when assessing if, where and when a software artifact should be
shared as OSS?

We addressed these research questions by conducting a multiple-case study
at three software-intensive organizations with an iterative approach span-
ning over two research cycles. Based on an inductive coding of twenty semi-
structured interviews divided among the three organizations, 12 contribution
objectives and 15 contribution complexities were identified.

An organization may, based on the contribution objectives and complexi-
ties that they find relevant for their context and business goals, make informed
decisions on what software artifacts that should be released as OSS, when and
where. For a specific artifact, the question “what?” regards if the artifact
should be contributed in full or kept closed, or if certain parts can be con-
tributed under certain conditions. The question “when?” refers to when in time
an artifact should be contributed. Finally, the question “where?” asks whether
the artifact should be contributed to one of many existing OSS communities
or if a new community should be established. Answers to these questions are
input to a contribution strategy for the software artifact under consideration.
The overall objective of the work presented in this paper is to elicit such
answers from real-world example cases, and start building a relevant list of
considerations that can help when developing a contribution strategy.

The rest of this paper is structured as follows. Sections 2 presents related
and previous work to this study. Section 3 presents the research design and
background information to the three case organizations. Section 4 presents the
identified contribution objectives and complexities, and section 5 provides a
discussion on the objectives and complexities in regards to related work. Sec-
tion 6 presents a discussion on threats to validity, while section 7 concludes
the paper. Appendices [AHD] provide detailed information about interview in-
struments and findings.

2 Related and Previous Work

This section provides an overview of related work to the two concepts of Con-
tribution Objectives and Contribution Complexities. This is followed by an
overview of contribution strategy research after which we present a summary
of the related and previous work.

4 Johan Linaker, Bjorn Regnell

2.1 Benefits of Sharing Software as OSS

Several studies have systematically surveyed the literature and to different
extents covered the benefits for why software should be shared as OSS [22}28]
50,/62]. We categorize the benefits into four different themes.

A common theme is the cost-saving aspects [3,[49,/50]. By extending the
resource-base |11] and agreeing on a common standard [74], organizations can
share the maintenance and quality assurance, accelerate the development and
potentially decrease their time-to-release and market [23|[27,|42] |44 |48]|66].
By freeing up internal resources, they can focus on more value-adding activ-
ities [42,/48,|68]. On the opposite, by adopting a less symbiotic relationship
to the OSS community [10], an organization will have to maintain an inter-
nal branch of the OSS project, which may become costly depending on the
number of modifications that need to be applied to new releases of the OSS
project [69}78]. Hence, to attain these potential benefits, active engagement
and a symbiotic relationship may be needed with the OSS community [7,{12].

Another common theme is the innovation aspects [3,50], which can be both
product and process-oriented [49]. By opening up the innovation process [3]
and ”pooling” the R&D /product development [74], organizations get access to
an external workforce [43], which may bring increased knowledge sharing [44,
51] and innovation at a lower cost |66}/80]. However, this external workforce
should be seen as a complement rather than a substitute for internal knowledge
and development [11)65]. Munir et al. [50] describe it as a catalyst for ideas that
may help organizations in broadening their offerings. Hence, an organization
may question how much of its internal R&D and innovation process it should
outsource to a community [1].

A third theme can be tied to improved reputation [50|69]. By creating
a community or contributing to an existing community, an organization can
create a marketing channel both towards (potential) customers, as well as
future employees and have a positive effect on internal developers’ satisfac-
tion [11}23}43,[55/66]. The improved reputation can turn into a competitive
advantage [25] and legitimize the use of the OSS from a public perspective [12].
An organization’s customers are offered an opportunity to avoid vendor-lockin,
and the ability to customize the software to internal needs [44}48].

A fourth theme concerns control aspects [38]. If an OSS community has a
meritocratic coordination process in place [63], influence on the development
direction of the community may be gained by participating in the development
and maintaining a symbiotic relationship [5,10}(12}/39}/53,60,(67]. This may
help steer the community including competitors and to manage potentially
conflicting agendas [39}45}50}/60}76].

Influence may also come implicitly when an organization’s project or a
feature is released and accepted as a standard solution, either within an ex-
isting community or as a new community [48]. If contributed to an existing
community, other organizations will either have to accept and adapt, main-
tain internal forks of their solutions, or attempt to contribute their solutions
in competition with the solution already established within a community [38].

What to Share, When, and Where 5

If released as a new community and traction is gained, it can potentially be-
come a new standard or compete with existing [23]/30,42,/72], and create a
surrounding ecosystem with complements from other organizations [204(73].

Some of these themes may be more or less important depending on the type
of organization. Munir et al. [49] present a theory of openness that categorizes
organizations using OSS in their tools and infrastructure setups based on why
and when they adopt and share software as OSS. The "why” is either focused
on reducing product development costs or building a symbiotic relationship
with the OSS communities [10]. The "when” concerns whether a reactive or
proactive strategy is adopted. In the former, an organization adapts to ex-
isting and upcoming OSS communities without taking any initiatives. In the
latter, an organization has a long-term agenda and adapts its OSS community
engagements or create new communities accordingly.

2.2 Costs and Risks of Sharing Software as OSS

Deciding what should be contributed is a complex matter [50]. Even though the
amount of a software that may be considered differentiating is often limited [42,
68], the risk of sharing differentiating functionality and sensitive Intellectual
Property Rights (IPR), and as a consequence losing a competitive edge, is
a recognized challenge in literature (e.g., [23,/24,|29}|68)74,78]). Instead of
disqualifying a complete software artifact however, one approach may be to
selectively reveal commodity or enabling parts while keeping differentiating
parts closed [23}|66}(72]. An alternative approach may be to ”spinout” [74]
disclose the software artifact under a restrictive copy-left license |72], e.g., the
General Public Licence version 2 and 3, or the Affero GPLB This is a common
approach for commercial OSS organizations |56] using a dual-license approach
to appropriate and capture value from customers [8]. Combinations can be
found, e.g., where a core OSS project is permissively licensed, while certain
extensions or improvements are licensed with more restrictive licenses [14], or
kept proprietary [71].

A related challenge is determining when software should be contributed [78].
Several studies have attempted to model and identify an optimal timing [6,21}
35]. Caulkins et al. [6] for example, identify costs related to the development
and adapting the business model, along with the software quality as factors
affecting when software should be released as OSS. Quality is in this case not
just referred to the number of errors, but to the software’s features and func-
tionality. The shift in how quality changes can be compared to where in the
commoditization process a software artifact is. L.e., the “software artifact’s
value depreciation and how it moves between a differential to a commodity
state, i.e., to what extent the artifact is considered to help distinguish the focal
organization’s product offering relative to its competitors” [38]. As suggested
by van der Linden et al. [68], a first step may be to open up the software in

1 https://opensource.org/licenses/alphabetical

6 Johan Linaker, Bjorn Regnell

joint ventures or closed strategic alliances [38], while a third step may be to
release it as OSS. Wnuk et al. [78] describe the challenge as a balance between
losing a competitive edge and increased maintenance costs.

Where to contribute is a third challenge. When contributing the software
artifact to an existing OSS community not governed by the organization it-
self [54], the organization needs to consider the requirements engineering pro-
cess of the community [59]. In this context, the organization is a stakeholder
among many and needs to consider potentially conflicting agendas from other
stakeholders [40}/45.50,(60]. If there is a misalignment between the organiza-
tion’s and the community’s Requirements Engineering (RE) process |2}/16136],
the organization may need to influence the development direction of the com-
munity [48]. If the organization lacks the influence needed, they need to con-
sider the cost of gaining it [39]. An option is to release the software as an
independent OSS project and build a new community around it, which may
require significant investment as well [111|33}75].

2.3 Contribution Strategies

Wnut et al. [78] highlighted the importance of contribution strategies early on.
Research on the topic has however been limited [50] with some exceptions |38,
71.(78].

In previous work [38], the first author of this study conducted a case study
on the contribution strategy decision process at Sony Mobile. Through the case
study, a Contribution Acceptance Process (CAP) model was designed with the
purpose to help organizations decide if a software artifact should be shared
as OSS. A software artifact (e.g., features or projects) is valued according to
its business impact (how much you profit from the component) and control
complezity (how hard the technology and knowledge behind the artifact is
to acquire and control). With the help of a series of questions provided, the
software artifact could be ranked qualitatively and placed in a two-by-two
matrix (see Fig. , with each cell representing a certain type of generic
artifact with its own contribution strategy that is proposed for the artifact.

As an example, one of the four artifact types concerned strategic artifacts
(upper right quadrant in Fig. [38]. These artifacts have a high business
impact and a high control complexity. They contain differentiating value and
provides a competitive edge to the organization. Differentiating parts should
be kept closed while enabling parts, should be contributed. The contribution
is recommended to be made to a community where the organization has a high
level of influence. If not possible, a new community may be created.

The contribution strategy could then be fine-tuned based on a series of
objectives |38]. The more strategic an artifact is (higher business impact and
control complexity) the faster the artifact (or enabling parts of it) should be
contributed to establishing the artifact as the standard solution. The organiza-
tion could thereby avoid having to adapt to competing solutions and instead
strive towards steering its competitors. For this reason, these kinds of arti-

What to Share, When, and Where 7

High Strategic

Alliances
& Investments

Control focus
Platform /
Leverage Strategic

TTM focus

Cost focus \

Product / Bottieneck

Business Impact

Standard

Low " H'_h
Control Complexity '8

Fig. 1 The Contribution Acceptance Process (CAP) model as presented in Linaker et
al. [38]. Based on how a software artifact is valued in regards to its business impact and
control complexity, a contribution strategy is elicited pending the artifact’s placement on
the grid.

facts should be prioritized before standard artifacts, which may be considered
as standard knowledge.

An example of a strategic artifact included a multimedia framework that
enabled differentiating camera functionality [38]. The framework was con-
tributed, while the camera functionality could be kept closed. This gave Sony
Mobile the advantage of not having to refactor or adapt to competing frame-
works and still keep differentiating functionality closed.

The CAP model can be used both in a proactive and reactive approach [38].
In the proactive, it is used to map a series of software artifacts, e.g., features in
the product planning process [34]. A cross-functional team may be assembled,
including e.g., representatives from marketing, legal and product development.
The team can iterate the mapping process comparing features against each
other through consensus-seeking discussions. In the reactive approach, the
CAP model is used in a similar manner but for making decisions in regard to
incoming contribution requests from the organization’s development teams.

The validation of the CAP model showed that the CAP model provided a
good foundation for discussion. Feedback pointed out that the questions and
scale used to value a software artifact in terms of business impact and control
complexity, was found useful but in need of being tailored to the context where
the CAP model is applied. A highlighted concern for future work was to avoid
making the following versions of the CAP model more complex.

8 Johan Linaker, Bjorn Regnell

A contribution process starts with an individual filing a contribution re-
quest, requesting to be allowed to contribute a certain software artifact to a
certain community or create a new community. The request is then managed
by an entity within the organization that has the mandate to decide on a
contribution strategy.

In the case of Sony Mobile [38,/46,/48|, an individual from the develop-
ment organization fills in a contribution request answering a set of pre-defined
questions. One of these questions concerns the size and complexity of the con-
tribution [38].

— Trivial contributions include small changes such as bug fixes and minor
improvements to existing OSS communities.

— Medium contributions include new features and larger architectural changes
to existing communities.

— Major contributions include projects where a new community is to be es-
tablished or software artifacts containing important IPR such as patents.

Trivial contribution requests are decided on by the closest manager, while
medium and major contribution requests are processed by an Open Source
Governance board [38]. The board has a cross-functional constellation with
competencies covering aspects such as legal, user experience, product devel-
opment, and product ownership [4§]. Each medium and major contribution
request is investigated further, which includes an IPR review rendering in a
decision from the board on a relevant contribution strategy [38]. To ease bu-
reaucracy, the board can develop general contribution strategies for specific
communities allowing developers to, e.g., contribute minor and medium con-
tributions to an OSS community without having to submit a request. This ap-
proach was applied to OSS communities where the OSS project was considered
not providing a competitive edge to Sony Mobile, e.g, the two development-
tools Jenkins and Gerrit [48].

Creating awareness and maintaining the contribution process can be a chal-
lenge in large organizations [78]. In Sony Mobile, the contribution process and
Open Source Governance board are led and supervised by the Open Source
Program Officer, a role that connects management, legal, IPR and software
development functions around Sony Mobile’s OSS operations [46]. Similar or-
ganizational and process setups have been reported on in the documents and
guidelines published by the TODO—grouﬂ a foundation for organizations that
has an established Open Source Programs Office. The program’s office can be
viewed as an organizational entity including the Open Source Program Officer
and any further roles tied to an organization’s OSS operations, e.g., concern-
ing compliance and community management. In his more compliance-focused
overview of OSS governance within an organization, Kemp [32] proposes the
creation of an ”OSS working party” and an ”OSS compliance officer”, which
to some extent can be compared to an Open Source Programs Office and an
Open Source Program Officer.

2 https://todogroup.org/

What to Share, When, and Where 9

2.4 Summary

The benefits that may incentivize an organization to contribute its software
as OSS are many [22,|28][50,62], as are the potential costs and risks that
may remove or outweigh the benefits [41,[50]. To gain the expected benefits,
an organization, therefore, needs to consider the contribution objectives and
complexities relevant to their context, and make an informed decision on what
they contribute, where, and when, in alignment with their business goals. Re-
lated work on how organizations can develop such strategies is limited [50],
with some exceptions [711|78], including our previous work with Sony Mobile
and the CAP-model [38]. The validation of the CAP-model pointed to a need
for more general and less complex approaches for creating contribution strate-
gies. This study, therefore, aims to identify and define a set of contribution
objectives and complexities from which organizations can choose those rele-
vant and thereby create contribution strategies based on their specific contexts
and business goals.

3 Research Design

To answer the research questions RQ1 and RQ2 as defined in section [I} we
employed a multiple-case study [58] in an iterative approach with two research
cycles. The method offers a way for generating in-depth knowledge and un-
derstanding of a phenomena in how and why it occurs [15]. In our study, this
regards an exploratory investigation of what Contribution Objectives (COs)
and Contribution Complexities (CCs) that the case organizations consider in
decisions on whether a software artifact should be released as OSS, when in
time, and if it should be contributed to an existing community or if a new
community should be created. Answers to these questions together form the
contribution strategy for the software artifact. The decision of arriving at such
strategies makes up our unit of analysis [5§].

In total three case organizations were studied, one in the first research cycle
and two in the second. Through this approach, we could develop the first set
of contribution objectives and complexities which could then be used as a
foundation when entering the second research cycle. Below we first describe
the case organizations. We then describe how the research was carried out
through the two research cycles.

3.1 Case Organizations

Below we describe and provide context to each of the three case organizations
studied, denoted CaseOrgl-3. Per organization, we present a general descrip-
tion, along with a more in-depth overview of their contribution process as well
as examples of OSS projects, which they have released, or are active contrib-
utors to.

10 Johan Linaker, Bjérn Regnell

3.1.1 CaseOrgl

General description: CaseOrgl is a US-based media and technology com-
pany providing video, high-speed internet, smart home and voice services.
They have 1000+ employees and develop their own software to enable and
deliver their services to the customers. Having been passive consumers of OSS
before 2006, they became active contributors starting in 2006. Since then,
they have released several OSS projects and are active contributors in several
others, as well as members of a number of OSS foundations.

Contribution process: Internally, they have an Open Source Programs
Office set up to develop and manage e.g., contribution and compliance pro-
cesses, and community management. Their contribution process starts with a
developer filling out a contribution request form concerning a software artifact
(e.g., feature or project). If the artifact regards a smaller contribution (e.g., a
bug fix, or documentation), or a contribution to an OSS community deemed
generally as non-competitive, approval can be gained online by the manager
and the Open Source program office. For more significant components, the
contribution request is managed by an OSS advisory board, which has rep-
resentatives from legal, IPR, development and business functions within the
organization. The board then gives a final decision on how to proceed. Case-
Org2 also has what they refer to as sandbozr approval, which allows a project
and identified contributors to be approved to contribute to a project without
coming back for each patch. This governance set-up and contribution process
is similar to that of Sony Mobile [38].

Example OSS projects: One example concerns an internally developed
Linux distribution that is embedded in hardware devices shipped to customers,
which enables the delivery of CaseOrgl’s consumer-oriented services. The soft-
ware was initially developed to replace a proprietary option and was later re-
leased as OSS under the governance of an industry consortium. Another exam-
ple concerns an infrastructure project, which enables the delivery of services
related to secure and reliant internet-traffic to business-oriented customers.
The project was released under the governance of a neutral community with an
existing OSS foundation. A third example regards a DNS-as-a-Service project
originally developed to increase internal operational efficiency. The decision
process is thoroughly reported on in previous work [38].

3.1.2 CaseOrg2

General description: CaseOrg2 is a European-based hardware electronics
manufacturer serving both business and private customers. They have 1000+
employees and develop their own software and orchestrate a software ecosys-
tem [31] to enable and deliver their services to the customers. This study has
focused on its Tools department which develops and maintains development
tools and infrastructure projects used by the organization’s product develop-
ment teams. A majority of the tools and infrastructure projects are OSS-based
with active engagement from the Tools department in their respective com-

What to Share, When, and Where 11

munities. The active engagement includes continuous contributions of features
and plugins to existing OSS communities as well as the release of new OSS
projects.

Contribution process: CaseOrg2 does not have a dedicated Open Source
Programs Office. The organization has two contribution processes set up, one
for their product development teams, and one for the Tools department. The
latter is less strict than the former as CaseOrg2 generally considers the projects
developed within the Tools department to provide a limited competitive edge
to the organization. The contribution process used within the Tools depart-
ment is initialized by a developer filling out a contribution request form con-
cerning a software artifact (e.g., feature or project). If the contribution request
is intended for an existing community, the request is managed by the depart-
ment manager. If the contribution request concerns the creation of a new OSS
community, the request is managed by the business unit manager. If deemed
necessary the concerned manager will consult relevant functions within the
organization such as Legal and IPR departments.

Example OSS projects: The Tools department has contributed and
maintains several plugins to the Jenkin&ﬂ and Gerritﬂ OSS projects. Jenkins is
a build-server and Gerrit is a code-review tool, both used in CaseOrg2’s con-
tinuous integration tool-chain. The Tools department has recently also started
to create new OSS projects that fall outside existing communities. One such
project was developed internally to allow for the creation and use of shorter
URLs to internal resources. These are maintained as standalone projects on
CaseOrg2’s Githulﬂ page.

3.1.3 CaseOrg3

General description: The Swedish Public Employment Serviceﬁ makes up
the third case organization. They are non-anonymous but are referenced to as
CaseOrg3 for consistency. CaseOrg3 is a public sector agency in Sweden with
the main goal to facilitate and enable matching between job-seekers and em-
ployers on the Swedish labor market. The organization has 10 000+ employees
of which 600 are employed within their IT division. The focus of this study
is on a department within the IT division which aims to create a platform{’]
on which private actors can build complementary products and services for
matching job-seekers and employers. The platform, consisting of OSS projects
and Open Data sources, is intended to help CaseOrg3 to move from the role of
being a service provider to become a service enabler and help the platform’s
ecosystem members to collaborate and co-create, potentially resulting in ac-
celerated innovation and a more efficient job-matching on the Swedish labor
market.

https://jenkins.io/
https://www.gerritcodereview.com/
https://github.com/
https://arbetsformedlingen.se/
https://jobtechdev.se/

N O Uk W

12 Johan Linaker, Bjorn Regnell

Contribution process: CaseOrg3 does not have a dedicated Open Source
Programs Office or contribution process in place. The studied department
prioritize the release of internal projects based on what they believe is of most
value to the platform’s ecosystem of private actors.

Example OSS projects: The studied department has released a number
of OSS projects consisting of small components that can integrate into ex-
isting applications, stand-alone end-user applications, and developer-focused
tools and utilitiesﬂ One project is a video-conference-tool used internally at
CaseOrg3 to facilitate remote interviews for employers and job-seekers. An-
other example concerns a search engine that can be used to access and search
among job listings in CaseOrg3’s Open Data sources with job ads.

3.2 Research Cycle 1

In the first research cycle, we investigated the problem context through a
first case study of CaseOrgl. Data was gathered through six semi-structured
interviews with employees from different areas of the organization, see Table[T]
A questionnaire (see Appendix was created based on findings from an
earlier reported case study of the contribution strategy decision process at
Sony Mobile 38| conducted by the authors of this study.

Interviewees were selected in order to gain different and complementary
perspectives on CaseOrgl’s contribution strategy decision process. Each of the

8 https://jobtechdev.se/doc/samples/

Table 1 List of interviewees from CaseOrgl-3.

ID Case organization Title Employment
11 CaseOrgl Open Source Program Officer 3 years
12 CaseOrgl Community Manager 9 years
13 CaseOrgl Director of Software Development 9 years
14 CaseOrgl Director of Software Architecture 14 years
15 CaseOrgl Vice President - Standards 16 years
16 CaseOrgl Chief Software Architect 13 years
17 CaseOrg2 Project Manager 1 year
18 CaseOrg2 Senior Developer 4 years
19 CaseOrg2 Junior Developer 1 year
110 CaseOrg2 Department Manager 5 years
111 CaseOrg2 Business Unit Manager 1 year
112 CaseOrg3 External Consultant 3 years
113 CaseOrg3 Chief Digital Officer 6 years
114 CaseOrg3 Department Manager 6 years
115 CaseOrg3 Product Owner 9 years
116 CaseOrg3 Project Manager 2 years
117 CaseOrg3 Community Manager 1 year
118 CaseOrg3 Security Engineer 1 year
119 CaseOrg3 Senior Developer 6 years

120 CaseOrg3 Senior Developer 5 years

What to Share, When, and Where 13

interviews was audio-recorded and transcribed. An anonymized interview sum-
mary was presented to I1 and I2 to verify interpretations and clarify any mis-
understanding. The transcripts were then coded with an inductive approach
and audit trails maintained [58]. Using an iterative and refining coding pro-
cess [57,[58], sentences and paragraphs from the interviews were given descrip-
tive topic sentences which then merged together in common codes and sorted
under the two categories contribution objectives and complexities, mapping
to RQ1 and RQ2 respectively. This rendered in a first set with a total of 16
objectives and 12 complexities (see table [3]).

Below we provide an example coding from CaseOrgl, which later was con-
ceptualized as Contribution Objective CO3 after the updated coding from the
second research cycle:

— Code: Developer satisfaction
— Quote by I5: “ .. 1 think a real reason goes to staffing engagements and
retention. It is important to people and I think a positive employment
characterization that you get to engage with open source communities
and that the company does release something as open source projects. I
think that’s a big selling point that people are looking for in whom they
want to work for as an engineer.”.

3.3 Research Cycle 2

In the second research cycle, our goal was to validate the contribution objec-
tives and complexities identified in the previous cycle while continuing to ex-
plore the problem context and identify new ones. The interview questionnaire
was therefore updated based on previous findings. To validate the question-
naire and gain further input into its revision, we studied contribution request
forms collected from seven different software-intensive organizations (see Ta-
ble. A contribution request form contains questions about software artifacts,
and often guidelines for, and examples of what types of contributions the or-
ganization generally accepts. The form is often submitted by the engineer or
team behind the concerned software artifact. The contribution request forms
give an indication of what the organizations consider when deciding whether
the software artifact should be contributed.

Table 2 List of organizations from where contribution request forms has been gathered.

ID Business Market Employees Use of OSS

O1 Consumer electronics ~ Worldwide 4 000+ Infrastructure & Products
02 Consumer electronics ~ Worldwide 100 000+ Infrastructure & Products
03 Software products Worldwide 30 000+ Infrastructure & Products
04 Software products Worldwide 100 000+ Infrastructure & Products
05 Telecom North America 1 000+ Infrastructure & Products
O6 Consumer electronics ~ Worldwide 1 000+ Infrastructure & Products

O7 Industry organization North America - -

14 Johan Linaker, Bjorn Regnell

The revised questionnaire (see AppendiX was then used in semi-structured
interviews with five employees from CaseOrg2 and nine employees from Case-
Org3. As in the former cycle, interviewees were selected in order to gain
different and complementary perspectives on two organizations’ contribution
strategy decision process. All interviews were audio-recorded and transcribed.
Anonymized interview summaries were presented to 17 and I8 from CaseOrg2
and I15 from CaseOrg3.

Using the coding schema from the first cycle, transcripts from CaseOrg2
were first coded, which resulted in three new COs and one CC being added. In
the following step, the new coding schema covering CaseOrgl-2 was applied
to transcripts from CaseOrg3, resulting in one new CO being added, six COs
merged into three. Three new CCs were added, of which two were former
COs. Transcripts from all case organizations were then reiterated, and a final
coding scheme assembled. This resulted in two COs being merged into one, two
COs converted to CCs, and six CCs being merged into three. In table [3] the
evolution, and saturation of the COs and CCs throughout the coding process
are presented.

Table 3 Evolution and saturation of COs and CCs throughout the coding process consisting
of four steps. The first coding schema was based on transcripts from CaseOrgl. This was
then applied and revised based on transcripts from CaseOrg2, and then CaseOrg3. The
coding schema was then reiterated, resulting in the final set of COs and CCs.

1. CaseOrgl 2. CaseOrg2 3. CaseOrg3 4. Final coding

COs (New) 16 3 1 0

COs (Merged) 0 0 6 —3 2 —1
COs (Removed) 0 0 2 »CC 2 »CC
COs (Total) 16 19 15 12
CCs (New) 12 1 3 2

CCs (Merged) 0 0 0 6 —3
CCs (Removed) 0 0 0 0

CCs (Total) 12 13 16 15

Below we present a continuation of the example code Developer satisfaction
provided in Section [3.2] After coding the transcripts from CaseOrg2-3, further
support was identified for Developer satisfaction. This code was then consoli-
dated with the new code Hire talent, which was also identified in transcripts
from CaseOrgl in the reiteration, finally rendering in contribution objective

CO3.

— Contribution Objective CO3: Improve employer branding
— Code: Developer satisfaction
e Quote by I5: “..I think a real reason goes to staffing engage-
ments and retention. It is important to people and I think a posi-
tive employment characterization that you get to engage with open
source communities and that the company does release something

What to Share, When, and Where 15

as open source projects. I think that’s a big selling point that people
are looking for in whom they want to work for as an engineer.”.

e Quote by I19: “We think it is fun and it is positive for our per-
sonal satisfaction to contribute back”.

— Code: Hire talent

e Quote by I8: “And then as a result of that, we already see it in
some areas, because of our involvement in open standards or open
source communities, we’re able to attract a different type of engi-
neer, or a different higher level engineer or value-add that they can
bring to the company as a result of our openness and engagement.
And so it’s sort of a natural reinforcing cycle.”.

e Quote by I7: “Show that we are a modern firm with a presence
in open source and that we contribute and not just consume, which
attracts a lot of great developers and becomes a channel for us to
attract new employees.”.

The revised set of COs and CCs were presented and discussed with I1
from CaseOrgl, 17 and I8 from CaseOrg2 and 115 from CaseOrg3. All inter-
views were audio-recorded and transcribed. The interviewees were first asked
about the correctness of the COs and CCs that had been mapped to their
organization. Interviewees were then asked if any COs or CCs not mapped to
them were found relevant for the organization. Lastly, the interviewees were
asked about the general completeness, applicability, and usability of the set
of COs and CCs, and whether something was redundant, missing, or could
potentially be modified. Existing COs and CCs were then refined based on
interview findings, while none were added nor removed.

4 Results

In this section, we summarize the identified contribution considerations, grouped
into Contribution Objectives (COs) and Contribution Complexities (CCs),
which an organization may analyze and weigh against each other when de-
ciding on a contribution strategy for a certain software artifact. In total, we
present 12 COs and 15 CCs divided over four and five categories respectively
(see Fig. [2)).

All contribution considerations are maybe not relevant to all organizations
and all software artifacts. To help guide decision-makers and those making
contribution requests, the presented contribution considerations can help as
input when forming an organization-specific contribution strategy. COs and
CCs can then be described in the context of the focal organization and relevant
questions asked in a contribution request form when setting up a contribution
process within the organization. An individual intending to file a request is
then enabled to beforehand understand the rationale used by the decision-
makers when deciding on a contribution strategy, and thereby to provide mo-
tivated arguments why the request should be accepted. For further discussion,
see Section [l

16 Johan Linaker, Bjérn Regnell

Control-centric
Complexities [CC1-2]

" Reputation-centric | Contribution
Objectives [CO1-4] | Strategy for

IPR-centric

software artifact ™
S : Complexities [CC3-7
Supplier-centric - What, When & P []
Objectives [CO5-6] Where? .
Contribution T Contribution | Exposure-centric
TG Objectives Complexities | Complexities [CC8-9]
Strategy-centric ‘

Objectives [CO7-10] Cost-centric

Complexities [CC10-12]

. Engineering-centric
Objectives [CO11-12]

Community-centric
Complexities [CC13-15]

Fig. 2 This study presents 27 considerations (12 Contribution Objectives (CO) and 15
Contribution Complexities (CC)) that may need to be considered by an organization when
deciding on a contribution strategy for a software artifact. The COs and CCs are divided
into four and five categories respectively and are listed in Tables [4| and

The COs are presented, each with a number of (potential) key benefits,
in Table [@ while the CCs are presented, each with a number of key con-
cerns, in Table [5| and are further explained below. A detailed description of
each consideration, together with example quotes from interviews, are given

in Appendices [C] and

4.1 Contribution Objectives

In total, 12 COs were identified in the analysis process divided over four
categories: reputation-centric objectives, supplier-centric objectives, strategy-
centric objectives, and engineering-centric objectives. Below an overview is
given to the COs in each category. A more detailed overview is presented in
Appendix [C] where the COs are described separately with examples per iden-
tified benefit. Quotes from interviewees of the case organizations are given in
Appendix [C] to provide context for each of the examples.

4.1.1 Reputation-centric Objectives

The reputation-centric objectives highlight the value in creating and main-
taining a good reputation towards different stakeholders, including customers,
partners, community, as well as existing and potential employees. By con-
tributing to a specific community, an organization can improve the trust of
customers and partners. The organization can demonstrate relevant technical
knowledge about the OSS, and gain the influence needed in order to steer
the development in a way that aligns with expectations and wishes from the
customers and partners. Both retention and attraction of new customers and
partners are further mentioned as potential results (CO1).

Increasing transparency is an aligning objective (CO2) in order to build
trust among customers, or even the public. Being transparent about how the

What to Share, When, and Where 17

Table 4 Overview of the contribution objectives, related key benefits, in which case orga-
nization they were identified, and examples of similar findings in literature.

ID Contribution Key benefits

objective

Case Lit.
Org. ref.

Reputation-centric Objectives

CO1 Prove skill
and influence

e Improved trust towards customers.
e Improved trust towards partners.

CO2 Increase

e Improved trust among customers. (CaseOrgl)

12 [11Es
3966
12,39}
|

o

transparency e Improved trust among the public. (CaseOrg3)

CO3 Improve e Attraction of talented employees. 1,2,3 \,
employer e Retention of existing employees. @\
branding

CO4 Be a good e Idealistic satisfaction among employees. 1,2,3 [23l[30}
open source 39
citizen

Supplier-centric Objectives

CO5 Create price e Lower subscription costs of procured products 1,3
pressure and services.
e Lower prices on tenders.
CO6 Outsource e Internal focus on activities related to core busi- 1
infras- ness.
tructure
operation
Strategy-centric Objectives
CO7 Collect data e Improved machine learning and artificial intel- 1,3

ligence algorithms.
e Creation of solutions based on Open Data
sources.

CO8 Standardize
solution

e Force competitors to adapt and steer mar-
ket or community according to internal agenda.
(CaseOrgl-2)

e Improve competition and enable more value-
adding development on market. (CaseOrg3)

1,23 (2330,
39,

CO9 Build a soft-
ware ecosys-

e Enable and stimulate creation third party ap-
plications and services.

23 RO

tem

CO10 Improve o Increased value of software ecosystem. 2
partner col-
laboration

Engineering Objectives

CO11 Open up e Accelerated innovation process. (CaseOrgl-3) 1,2,3
innovation e Creation of more and better market-oriented
process solutions. (CaseOrg3)

CO12 Extend de- e Focus on more value-adding development. 1,2,3 [23
velopment e Accelerated development. (38 [42]
resources e Lower maintenance cost.

18 Johan Linaker, Bjérn Regnell

quality of a service is measured or what is produced based on public funding
are two examples that are highlighted in interviews.

Allowing and enabling engineers to contribute to OSS can benefit the or-
ganization both in terms of retention and attraction of new talent (CO3).
Reported examples include the ability to build a public CV, having an impact
and collaborating with people outside the organization. Idealistic satisfaction
of ”doing the right thing” by contributing back and not just consuming OSS is
also viewed as an important aspect among an organization’s employees (CO4).

4.1.2 Supplier-centric

Supplier-centric objectives focus on how an OSS software artifact can be lever-
aged to better extract value from supplier-relations. For example, releasing
projects as OSS can be a way to put price pressure on those providing corre-
sponding products, as well as a means of inviting more potential suppliers to
bid on tenders and thereby make the price more competitive (CO5). However,
price pressure does not have to be the main incentive in terms of suppliers.
By making a project available as OSS it becomes possible for cloud providers
to run and maintain the project at scale and thereby lower the cost, while
enabling internal resources to focus on more value-adding activities (COG6).

4.1.8 Strategy-centric Objectives

The strategy-centric objectives consider contributions that can have a larger
impact on the organization’s ability to stay competitive in the business envi-
ronment where it operates [13]. Releasing a software artifact as OSS may, for
example, enable generation and collection of data that can be used to improve
machine learning and artificial intelligence algorithms, while also enabling the
potential development of new products or services based on the data (COT7).

A more control-focused objective (CO8) concerns the creation of a standard
solution, either within an industry or within a specific community. If a solution
gains traction and acceptance, it could provide a first-mover advantage as other
actors would have to adapt. It may also provide the organization with some
level of influence on the development of the artifact, with the potential to steer
the direction of either a community or industry.

A related and potentially overlapping objective (CO9) may be to cre-
ate a software ecosystem [31] with the rationale of attracting and enabling
third-party developers to create complementary products and services, and
potentially also contribute to the platform constituted by the OSS project re-
leased by the platform provider. For example, releasing tools and infrastructure
projects related to the platform, could further help to improve collaboration
with partners and third-party developers, and thereby help increase the value
of the software ecosystem (CO10).

What to Share, When, and Where 19

4.1.4 Engineering-centric Objectives

The engineering-centric objectives concerns contributions where the rationale
is to explicitly exploit the knowledge and resources of a community to one’s
advantage. One such objective (CO11) is to open up the innovation process
by using the concerned community as a source of e.g., new and innovative
requirements and feature implementations. An overlapping objective (CO12)
is to use the development resources of the community as a force multiplier
in order to share maintenance and quality assurance, while also accelerating
development and enabling a value-adding focus for engineers internally of the
organization.

4.2 Contribution Complexities

In total, 15 CCs were identified in the analysis process divided over five cate-
gories: control-centric complexities, IPR-centric complexities, exposure-centric
complexities, cost-centric complexities, and community-centric complexities.
Below, an overview is given to the CCs in each category. A more detailed
overview is presented in Appendix [D] where the CCs are described separately
with examples per identified concern, along with identified mitigation strate-
gies for managing the complexities. Quotes from interviewees of the case orga-
nizations are given in Appendix[D]to provide context for each of the examples.

4.2.1 Control-centric Complexities

Control-centric complexities highlight the risk of the development of the soft-
ware artifact (if released as OSS) heading in another direction than expected
by the focal organization and what impact this would have. This is a risk
that may be expected as the stakeholder population in a community is het-
erogeneous with agendas that not always align [39)]. Also if one wants to grow
a community, the organization to some extent have to consider the wills and
opinions of the community [37]. One complexity (CC1) considers the case when
the artifact has a close relationship to the organization’s value proposition, for
example by enabling the organization to sell and deliver its products and ser-
vices. Another complexity (CC2) considers the case where the artifact may
have a more distant relationship to the value proposition but still being of
importance in terms of internal operations. Examples highlight OSS projects
integrated into the continuous integration tool-chain and used heavily by the
product development departments. To address this complexity and the risk of
deviating agendas in a community, and organisation can try to build influence
in the concerned community through active engagement and contributions.

4.2.2 IPR-centric Complexities

Complexities centered around Intellectual Property Rights (IPR) considers
what impact it would have on the focal organization’s rights if the software

20 Johan Linaker, Bjérn Regnell

Table 5 Overview of the contribution complexities, related key concerns, in which case
organization they were identified, and examples of similar findings in literature.

ID Contribution Key concerns Case Lit.
complexity Org. ref.

Control-centric Complexities

CC1 Impact e Risk for misalignment between internal and 1,2
on value external agendas on OSS with high impact on
proposition value proposition.

CC2 Impact on e Risk for misalignment between internal and 1,2 138,139
internal external agendas on OSS with high impact on \
operations internal operations.

IPR-centric Complexities

CC3 Differentiating e Risk of loosing product-based competitive 1,2,3 [23,/24,
functionality edge. (CaseOrgl-2) [38, 68,

e Risk of loosing process-based competitive \
edge. (CaseOrgl-2)

e Risk of damaging the business models of ex-

isting actors on market. (CaseOrg3)

CC4 Commoditi- e Risk for giving away competitive edge or dif- 1,2,3 [4

zation ferentiating functionality too early or an alter- @\
native solution being accepted before ones’ own.
(CaseOrgl-2)
e Risk of damaging the business models of ex-
isting actors on market. (CaseOrg3)

CC5 Sensitive e Risk of giving away patented, patentable or in 1,2 \
IPRs other ways sensitive IPR.

CC6 Substitutes e Unnecessary cost of contributing if existing al- 1,2,3 \

ternatives are considered as good or better.

CC7 License com- e Risk of violating license conditions if software 1,2,3 \,
pliance artifact is not contributed.

Exposure-centric Complexities

CC8 Ethical use e Risk of creating negative exposure, hurting 3

brand and public trust.

CC9 Security e Risk of exposing security-related vulnerabili- 1,2,3 \
threats ties.

Cost-centric Complexities

CC10 Budget and e Cost for preparing, contributing and maintain- 1,2,3 [11}|33,
resource con- ing software artifact. \
straints

CC11 Modularity e Technical feasibility to modularize and ab- 1,2,3 \
and architec- stract software artifact.
ture

CC12 Code alig- e Cost of maintaining internal fork. Misalign- 1,2 \,
ment ment between internal and external develop-

ment may prevent or complicate future contri-
butions.

Community-centric Complexities

CC13 External in- e Risk of contribution not being accepted or 1,2,3
terest community not being established.

CC14 Influence in e Low level of influence in the community may 1,2,3 [40L/45]
community prevent or complicate the contribution of a soft- , @

ware artifact.
e Target foundation may require a governance
model too open which may render in too large
scope and loss of control.
CC15 Community e Not contributing may have a negative impact 1,2,3 [30L39}

health

on the health of the OSS project.

79)

What to Share, When, and Where 21

artifact is released as OSS. One complexity (CC3) highlights the potential
presence of differentiating functionality which could lead to a loss of competi-
tive edge. A recommended practice is to separate between what is commodity
and differentiating functionality, for example, through a modular architecture,
and contribute underlying parts such as frameworks and libraries. Another
complexity (CC4) considers the timing aspect of when the artifact should
be released as OSS. It refers to the commoditization cycle where technology
moves from an innovative and differentiating state to becoming commodity
and general knowledge. One interviewee described it as a “a trade-off between
a competitive edge and burdon” (I1) implying that by keeping it closed, an or-
ganization may guard what it considers differentiating, but as a consequence
needs to maintain it by themselves, and at the same time risks that a compet-
ing solution gets released and adopted. It is, therefore, important to keep an
awareness of potential alternative solutions.

From a public sector perspective, the intention may be the opposite in
terms of CC3-4, for example to enable companies to create value based on
public assets. This may also help concerned organizations to shift focus from
commodity to more value-adding development. However, a risk is that it may
damage the business and be viewed as the agency is intending to compete on
the market. It may therefore be good to inform concerned organizations in
advance and provide them with an opportunity to adapt and enter a dialogue
when needed.

Another complexity (CC5) highlights sensitive IPRs in general, which may
include patents used in a defensive patent portfolio, as a source of license
revenue, or patents belonging to third-party. Hence, a critical review process
for the need of the patents and their origin may be motivated in order to
weigh these aspects against the potential value that the artifact may produce,
if released as OSS.

A frequent scenario reported is that engineers request to release an arti-
fact as OSS when there is already an acceptable alternative available as OSS
(CC6). Actively encouraging engineers to research available options is there-
fore recommended. Education is also seen as a key approach to managing the
risk of violating license conditions as these may demand that certain artifacts
are contributed or made available as OSS under a certain license (CCT).

4.2.3 Ezxposure-centric Complexities

Exposure-centric complexities highlight ways in how the software artifact may
be used that could have a negative exposure of the organization. The artifact
may, for example, be used in contexts or for certain purposes that may be
considered unethical and not originally intended by the organization (CC8).

Another risk is that security vulnerabilities are identified before they are
fixed which could be used to damage the focal organization and other users
of the artifact when available as OSS (CC9). It may therefore be good to pro-
actively investigate potential unethical use cases and perform security audits,
before releasing any artifact as OSS.

22 Johan Linaker, Bjorn Regnell

4.2.4 Cost-centric Complexities

Constraints in terms of budget and available resources can be an issue as
preparing an artifact to be contributed, pushing it through a contribution
process, as well as potentially maintaining it once released as OSS has at-
tached costs (CC11). In certain cases the technical feasibility of releasing the
artifact may be questioned, as it may be too integrated into an organization’s
internal software stack, which in turn leads to that the cost may outweigh
the potential benefits of releasing it as OSS (CC12). A mitigation can be to,
early on, consider the potential of releasing the artifact as OSS and develop
the artifact with that in mind, e.g., by using modular architecture and keeping
code comments general.

When an artifact relates to an existing OSS project, there is an alternative
cost of maintaining the artifact internally and a risk of growing a technical
debt by not contributing (CC12). One way to minimize such costs and risks
is to keep the internal fork as close as possible to the up-stream OSS project.

4.2.5 Community-centric Complezities

One risk is that the external interest is limited for a software artifact intended
to be released as OSS (CC13). For existing communities, this would prevent
it from being accepted. If creating a new community is considered, but none
interested in joining, some of the expected benefits may be missed (e.g., shared
maintenance costs). It may therefore be recommended to investigate whether
there actually exists external interest, and if the use cases that the software
artifact addresses are general enough.

Limited interest from a community may be due to misaligned agendas
among its members (CC14). In these cases, it may be important for the focal
organization to build up a level of influence through active engagement and
contributions, in order to be able to contribute its artifacts.

When an organization is dependent on an OSS project and the commu-
nity’s health may be considered as a risk, it is important to contribute to that
community (CC15). Hence, the level of health of the related community should
be weighed against other complexities, when deciding if an artifact should be
released as OSS.

5 Discussion

In this section we discuss the identified contribution considerations, in relation
to literature, and with respect to the contexts they were observed.

5.1 Contribution Objectives

The expected benefits from sharing a software artifact as OSS is reflected by
the identified COs and related key benefits (see Table . Objectives can be

What to Share, When, and Where 23

considered to cover both the idealistic, survival and commercial motivators
highlighted by Jansen et al. [30]. Supportive findings can to a large extent also
be found in literature if compared to Section|2.1] For example, the idealistically
motivated objective CO4 - Be a good open source citizen, implying that an
organization should respect and understand the needs, governance and culture
of the community [1}/5,[10,|12/52]. Further, the commercially motivated cost-
saving objectives implied by the extended development workforce (CO12), and
related benefits, has also been observed in a number of other studies (e.g., [23,
271/42/481/66})68]). Support was also found for the survival, or more strategically,
motivated objectives such as CO9 - Build a software ecosystem [74}/76]. Some
objectives, however, were not reflected among the reviewed literature, e.g.,
CO5 - Create price pressure on third-party vendors and suppliers.

A challenge with the intangible [62], or non-monetary benefits [47] is that
they may be less obvious and harder to measure and track in financial spread-
sheets [47], compared to the tangible revenues and monetary benefits. In this
study, an attempt is made by presenting key benefits to each objective. Future
research could strive to identify and derive suitable and actionable metrics for
the different types of benefits, or ob jectivesﬂ With such metrics in place, con-
tribution requests and strategies can potentially become easier to motivate,
execute, follow-up and learn from. Morgan and Finnegan [47] highlight how
organizations “ ...need to put structures and incentives in place to convert
intangible asset capture into something tangible for the [organization]”.

Objectives further align with the propositions proposed by Munir et al. [49]
which states that organizations adopting OSS in their tools and infrastructure
setups may benefit through reduced product development costs and time-to-
market, as well as increased product and process innovation. Considering Mu-
nir et al’s |49] classification of why and when organizations adopt and share
software as OSS, all three case organizations can be classified as having a
proactive approach with the main focus on building symbiotic relationships
through their OSS engagements. Similar to Sony Mobile [49], these organiza-
tions can hence be seen as mature players where the use and sharing of OSS
are motivated by business rationale.

When comparing the two private case organizations, CaseOrgl and 2,
against the public case organization CaseOrg3, many of the objectives over-
lapped, although the expected key benefits may differ. For example, regarding
CO8, which is focused on creating or replacing an existing industry or commu-
nity standard, CaseOrg 1 and 2 see value in being able to steer the direction of
a community or industry, and potentially disrupting competitors by commodi-
tizing a certain technology [68]. CaseOrg3, on the other hand, views the key
benefit as improving competition in the industry or market and potentially
forcing the private actors to adapt. Hence, both private and public actors may
view the release of OSS and commoditization of the underlying technology as
a strategic tool, but in some cases for the opposite reasons.

9 See e.g., https://chaoss.community/ Accessed: August 2, 2022

24 Johan Linaker, Bjorn Regnell

5.2 Contribution Complexities

The contribution complexities presented in Table [5| can be viewed from the
different perspectives of a contribution strategy. With respect to whether a
software artifact or parts of it should be shared as OSS or not, a common
concern in literature regards the risk of sharing differentiating or in other
ways sensitive IPR ((e.g., |23}/24129,/68}/74.|78]). This risk was also explicitly
recognized in the complexities CC3 and CC5. Selective revealing, as labeled
by Henkel [23], was a recognized practice in both CaseOrgl and 2, as well as
in Sony Mobile [38].

In contrast, this was not an issue for CaseOrg3. As a public sector organi-
zation, they aim to release what they find most “differentiating” in their view,
and what can provide the biggest value to their ecosystem, and in the end,
the citizens. Their motivation lies in their goals as defined by the government:
“to facilitate and enable matching between job-seekers and employers on the
Swedish labor market’m However, they do see a balance between raising the
bar for private actors in their ecosystem and not hurting their business model.
Although not explicitly found in the coding, this introduces a timing factor,
i.e., that the contribution or release of the software artifact is stalled until the
private actors have had time to adapt. This addresses the question of when a
software artifact should be shared as OSS.

A related complexity is that of the commoditization process and the con-
cerned software artifact (CC4), which is also brought up in literature 621,
35,138,168,/78]. By being early, an organization can get a first-mover advan-
tage, gain bigger influence, and potentially steer the development, e.g., within
a community through a new feature [39/48], or within an industry through a
new standard or platform [74] (see e.g., contribution objective CO8 and CO9).
By being too late, an organization can risk having to adapt to competing solu-
tions or maintain the internal solution [38/69]. Among the case organizations,
both CaseOrgl and 2 experienced this complexity. I1 from CaseOrgl described
it as a “..trade-off between competitive edge and burdon”, aligning with other
reported observations [78].

Lastly, the question of where, i.e., if the software artifact should be con-
tributed to an existing community, or if a new community should be estab-
lished, touches on several of the complexities, many of which are found across
all three case organizations. A common concern among many of the complex-
ities is the need for, or risk of losing, control (e.g., CC1-2, 14). In these cases,
if an organization requires a certain level of control on the development di-
rection of the software artifact, the artifact may preferably be released in a
community where the organization has a high level of influence on the RE
process [39,/60], or as a new community [38]. A decisive factor is the external
interest for the software artifact (CC13), i.e., whether or not it be accepted
within a specific community, or if there is an interest for a new community. In
the former case of an existing community, having an existing influence within

10 https://arbetsformedlingen.se/om-oss Accessed: August 2, 2022

What to Share, When, and Where 25

the community could help to create the interest (CC14) |48]. The health of the
OSS community is another complexity as a community requires active contri-
butions from its members to stay alive. These factors may be considered in
a specific community strategy as seen from the perspective of the focal firm,
which outlines the importance of that community, and what engagement and
level of influence that the focal firm wants with respect to the community’s
requirements engineering process [39].

When weighing the options of contributing to an existing community or
creating a new one, the earlier may be preferred if possible. As highlighted by
CC10, creating a new community may be related to a higher cost, and comes
with a number of extra challenges |33}/75]. How this is best done is, however,
beyond the scope of this paper, and an interesting topic of further research.

6 Threats to Validity

The identified contribution objectives and complexities are the result of a
multiple-case study of three case organization over the lapse of two research
cycles. To determine the external validity [58] of the objectives and complex-
ities, the characteristics of these organizations need to be considered as they
define the problem context [77] on which the COs and CCs are based.

The three case organizations investigated in this study both have overlap-
ping and distinct characteristics. To some extent, they provide extremes [17]
to each other, while still having resembling characteristics. Considering the
way they use and leverage OSS, all three organizations use it for their internal
tool and infrastructure setups. In CaseOrg2, the department developing these
tools are explicitly studied. CaseOrgl uses OSS to enable and add value to
their hardware devices and as a basis for certain services sold to business-
oriented customers. As a public agency, CaseOrg3 differs from CaseOrgl and
CaseOrg?2 in that they are not driven by commercial business incentives. In-
stead, they wish to help private actors focus on more value-adding activities
and thereby improve job-matching capabilities for employers and job-seekers.
CaseOrg2 however, does not consider themselves as having any product dif-
ferentiation, compared to CaseOrgl. Following the categorization by Munir et
al. [49], the organizations provide a suitable sample as they all have an aware-
ness for why they share software as OSS and may reflect on the complexities
that are present, even in the case of CaseOrg3 who does not have an explicit
contribution process in place.

We acknowledge the limitations of case studies and do not claim any sta-
tistical generalization [58]. However, we do believe they provide a means to
gather deep knowledge of industry practice and rationale in the problem con-
text. By considering the case organizations’ characteristics, the reader can put
the presented contribution objectives and complexities as well as the orga-
nizations’ rationale and concerns for sharing software as OSS into context.
Through analytical generalization (cf. analogical inference [77]), results from
this study can then be extended to cases with similar characteristics within

26 Johan Linaker, Bjérn Regnell

a similar context [58]. Both similarities and dissimilarities between the source
and target cases should be thoroughly analyzed [18]. In Section we pro-
vide a general description of each of the case organizations, as well as of their
specific contribution processes and examples of OSS projects that they are
contributing to or have released as OSS. Quotes from interviewees (see exam-
ples in Appendices [C| and @) are used to describe the contribution objectives
and complexities, and to provide further contextual factors that may otherwise
risk being lost in the reporting of the research if abstracted by the researcher.

A threat in regards to reliability relates to that only the first author was
involved in the data gathering and analysis process of the study. To mini-
mize the risk of misinterpretations, member-checking [15] was performed by
presenting interview summaries to key interviewees at the case organizations.
During the coding process, the inductive approach infused a constant com-
parison between new data and existing codes, enabled by audit-trails being
kept [58]. Cross-case analysis |61] was also performed as codes identified in
one case were reiterated in the transcripts from the other cases, after which
a final coding scheme assembled. As can be noticed in table [3] there was sat-
uration in the number of emerging contribution objectives and complexities.
Triangulation [58] with archival data was also performed by cross-checking
coding schema and basing interview questionnaires on contribution request
forms from seven organizations.

After the final coding was performed in the second research cycle, the
contribution objectives and complexities were presented and discussed with I1
from CaseOrgl, I7 and I8 from CaseOrg2 and 115 from CaseOrg3. This kind
of static [19] or descriptive validation [26] is a useful approach in the artifact
validation phase to gain feedback and refine a research artifact before it is
transferred or implemented in a real-world problem context [19}77].

I1 from CaseOrgl confirmed identified contribution objectives and com-
plexities. 11 added further facets to e.g. CC6, that patents may also provide
a source of license revenues in other cases which should also be considered.
I1 found the objectives and complexities useful and that “/they] really fit into
[CaseOrgl’s] strategy which is, we are trying to streamline the entire [contri-
bution] process so that we are asking the right questions and we want to get to
a point where we are able to approve everything online and don’t need to have
a meeting. Because if these questions are answered correctly then we should be
able to even have an AI/ML-based algorithm which says, the risk is 10% so it
is OK to approve it”. 11 also adds that a contribution may be “more things
than just code”, exemplifying evangelizing, technical writing, writing bug re-
ports, sharing of knowledge and experience, as well as test cases and design
documentation. We agree with I1 that a contribution may be many things,
but choose to limit the scope to the sharing of software artifacts as OSS. We
view these artifacts as internally developed software functionality of different
size and complexity, e.g., bug-fixes and features to frameworks, projects, and
products, including e.g., related test cases and documentation. Other activities
we believe should be covered by a community strategy that specifies how an
organization should engage with a specific OSS community [39].

What to Share, When, and Where 27

17 and I8 from CaseOrg2 found the contribution objectives and complexi-
ties valuable and saw value in comparing with other organizations. They be-
lieved that the objectives and complexities can be used as an eye-opener to
those within the organization that are skeptic to OSS. Both interviewees agreed
with and verified the relevance of all of the identified objectives and complex-
ities. They also added support for CC5 and CC15 and refined the description
of CO7.

I15 from CaseOrg3 confirmed the identified objectives and complexities,
while also adding support for CC4 and CC5. In regards to the latter complex-
ity, 115 highlights how it also connects to CC4 and how they strive to share
software artifacts that are differentiating in order to help businesses focus on
more value-adding activities.

In conclusion, we believe that the identified contribution considerations are
relevant to the studied case organizations, but we also believe that the findings
have relevance beyond these organisation, while that of course depends on
problem context to which these findings are transferred. The validation of the
completeness of the set of contribution considerations, is a matter for continued
research, but our investigation of existing literature has not indicated any
significant omissions.

7 Conclusion

In this study, we aim to help organizations in deciding if a software artifact
(e.g., feature, framework or project) should be released as OSS, and, if so,
when and where. For a specific artifact, the ” what”-question regards if the
artifact should be contributed in full or kept closed, or if certain parts can be
contributed under certain conditions. The ”when”-question regards the tim-
ing of the release. Finally, the ” where”-question regards whether the artifact
should be contributed to one of many existing OSS communities or if a new
community should be established. Answers to these questions may be valuable
input to the development of a contribution strategy for the concerned software
artifact.

To support organizations in creating effective contribution strategies, we
conducted a multiple-case study at three software-intensive organizations using
an iterative approach spanning over two research cycles. A set of 27 contri-
bution considerations, divided into 12 objectives and 15 complexities, were
identified based on an inductive and iterative coding of 20 interviews across
the three case organizations.

Contribution objectives highlight opportunities for 1) improving reputation
towards community, customers, partners, and current and future employees,
2) managing suppliers through price pressure and outsourcing, 3) managing
partners and competitors through standardization efforts and ecosystems, and
4) exploiting externally available knowledge and resources through open inno-
vation and extended development resources.

28 Johan Linaker, Bjérn Regnell

Contribution complexities focus on 1) risk of losing control of the develop-
ment of business-critical software in concerned communities, 2) risk of giving
away differentiating IPR that provides a competitive advantage, 3) risk of un-
intentionally exposing unethical use-cases and security vulnerabilities, 4) costs
of abstracting and generalizing software artifact, pushing through contribution
process and potentially maintaining once contributed, and 5) difficulties in de-
ciding where the artifact should be contributed based on external interest,
potential need for influence, and community health.

Future work should look to generalize these identified contribution consid-
erations beyond the problem context of the three investigated case organiza-
tions. In order to arrive at a framework that can be used by software-intensive
organizations when setting up their contribution strategy decision process,
further validation and generalization is need. Specific research focus is also
needed to investigate possible relationships between contribution objectives
and contribution complexities. In addition, research attention could be given
to identifying and formalizing metrics that may be used for quantifying the
potential benefits proposed in the objectives, as well as the risks and costs
implied by the complexities. Such metrics could help organizations arrive at
key performance indicators, such as a Return-on-Contribution, which may
help to make decisions comparable, measurable, and easier to motivate. This
could further help organizations in automating their contribution processes
and thereby potentially lowering the threshold for developers to contribute,
and also, hopefully, help the organization to more effectively reach their con-
tribution objectives.

Acknowledgements We would like to thank the anonymous reviewers for their construc-
tive feedback from which the paper has benefited greatly. Also, we would like to thank the
interviewees and case organizations for participating in this study. Without their participa-
tion the study would not have been made possible.

Appendix A Questionnaire - First Research Cycle

Demographics:

— What is your job title?

— How many years of experience do you have in your current and similar

roles?

Could you, in short, describe your daily work and responsibilities?

— Could you, in short, describe your experience in working with OSS com-
munities?

Contribution strategy:

— Do you, in any way, consider what you contribute and reveal as open
source? If yes, how? Is it formalized in any way? How could this be im-
proved /otherwise done? What connections do you see to a company’s ROI
and competitive edge?

What to Share, When, and Where 29

How would commoditization affect what you contribute and not? How
would it affect the timing of when you contribute?
How would a feature’s profit for the company affect what is contributed
and not? How would it affect the timing of when you contribute? How
could this aspect be judged or quantified?
How would it affect if the feature or the knowledge and technology behind it
is hard to acquire or control? How could this aspect be judged or quantified?
How would you reason in regard to if and when to contribute, given that
a feature results in a:
— high profit for your company, and is critical to maintain control over?
— low profit for your company, and is critical to maintain control over?
— high profit for your company, and not critical to maintain control over?
— low profit for your company, and is not critical to maintain control over?
What other aspects would affect your decisions?
How would your decisions affect how you engage and invest in the commu-
nity where the feature is to be contributed to?
How are policies or decisions regarding what to contribute communicated
today? How could this be improved/otherwise done?
Is there anything I have missed that you would like to pick up on? Or
anything else that you would like to talk about?

Appendix B Questionnaire - Second Research Cycle

Demographics:

What is your job title?

How many years of experience do you have in your current and similar
roles?

Could you, in short, describe your daily work and responsibilities?

Could you, in short, describe your experience in working with OSS com-
munities?

Contribution Objectives:

What reasons do you see to share your internally developed software as
0OSS? What can your organization gain out of this? How can you measure
it?

What reasons do you see in relation to competition and collaboration with
external parties? Who would it benefit or hurt?

What effect can you have on a third party by releasing software as OSS?
For example, competitors or suppliers of similar proprietary products?
Do you consider if there is a potential to create a new standard? How can
such potential be measured?

Are there any type of software that should be shared for different reasons?
How would these types be characterized?

Contribution Complexities:

30

Johan Linaker, Bjérn Regnell

— What aspects should you take into consideration in the decision of sharing

software as open source or not?

What consideration should be taken to how software relates to your value
proposition and how it affects your revenues? For example, if the software
is shipped with your product or if it is used to build or deliver your prod-
uct/service?

How is a decision affected if the software contains differentiating parts?
How is a decision affected if the software contains patents or parts that
could be patented?

Is there any type of sensitive information within the software that could
complicate a contribution?

How should any competitive advantages be taken into consideration?
How do timing and commoditization affect such aspects and any future de-
cisions? How do you consider the risk of competing solutions being released
before yours?

How do you consider internal restrictions in terms of budget and resources?
What costs do you see related to releasing software as OSS? How do these
costs affect the decision?

Do you see any other business related aspects, impediments or risks that
should be taken into consideration?

What consideration should be taken in regards to how the software is used
and integrated into your organization and your product/services?

What consideration should be taken to security-related aspects?

How do you consider the software’s generalizability and potential to ex-
tend?

Do you see any other technical aspects, impediments or risks that should
be taken into consideration?

How is a decision affected in terms of the need to control the development
of the software?

How do you consider existing alternatives (OSS and proprietary)?

What alternatives to you see if there is a shallow external interest from a
community?

What factors affect your decision when choosing to contribute to an existing
community or creating a new community?

How do you consider the health and sustainability of a community?

Appendix C Findings on Contribution Objectives

C.1 Reputation-centric Objectives

C.1.1 CO1 - Prove skill and influence:

Description: Being an active contributor in a community can help to build

a reputation of an organization as technically skilled and influential in the
community [504(69].

What to Share, When, and Where 31

Benefit: Improved trust towards customers.

Example (CaseOrgl): “We basically realized that we were so dependent on
[OSS project] and that it was the selling point of our product, so we needed
to demonstrate for customers that we were one of the core contributors. It
was a selling point in the marketing brochure” (11).

Benefit: Improved trust towards partners.

Example (CaseOrg2): I7 reports how being an active contributor in a com-
munity can help to promote CaseOrg2 in new channels and build up new
partnerships.

C.1.2 CO2 - Increase transparency:

Description: By being transparent in how an organization performs certain
actions, they can build trust among customers and potentially avoid alle-
gations of wrongful doing.

Benefit: Improved trust among customers.

Example (CaseOrgl): A tool was developed and open sourced to measure
the speed of their services. By keeping the project open, the organization
could be transparent in how they performed the measurement.

Benefit: Improved trust among the public.

Example (CaseOrg3): From a public sector perspective, CaseOrg3’s aim is
in a similar manner to create transparency towards the public and thereby
earn their trust, “this is what you get for your tax money” as put by I113.

C.1.83 COS8 - Improve employer branding:

Description: Working with OSS projects can help an organization to both
retain existing and attract new engineers [50].

Benefit: Attraction of talented employees.

Example (CaseOrgl): “It is important to people and I think a positive em-
ployment characterization that you get to engage with open source commu-
nities and that the company does release something as open source projects.
I think that is a big selling point that people are looking for in whom they
want to work for as an engineer”.

Benefit: Retention of existing employees.

Example (CaseOrgl&3): Besides being allowed to engage with an external
community with the intrinsic rewards that follow, highlighted by I19 as
“the fun parts”, working with OSS offers engineers the opportunity build
their own transparent portfolios. As stated by 16, “/the engineers] view it
as a core part of their career development and in a way, they can kind of
be recognized for that in a very different way than they could if they were
simply working on internal or commercial software”.

32 Johan Linaker, Bjérn Regnell

C.1.4 CO4 - Be a good open source citizen:

Description: Contributing to an OSS project may for some be ideologically
motivated [30].

Benefit: Idealistic satisfaction among employees.

Example (CaseOrgl): “I think it is from one point of view the right thing
to do, because you are taking advantage of this set of code, and so you
should, while you are taking advantage of it, you should also be contributing
back [from] a good citizen point of view”. I5 further adds that a reason
“may be that the developers are pro-OSS and so they are just like, this isn’t
secret sauce, so just sort philosophically we want to contribute this to the
commons because maybe someone will take advantage of it. There’s a good
citizen aspect to it”.

C.2 Supplier-centric Objectives

C.2.1 CO5 - Create price pressure:

Description: Releasing a project as OSS can be a way to put price pressure
on third-party vendors and suppliers of proprietary solutions.

Benefit: Lower subscription costs of produced products and services.

Example (CaseOrgl): As a reaction to an expensive proprietary infras-
tructure solution, CaseOrgl developed an internal replacement and open
sourced it as “a competitive advantage in the negotiations against [the sup-
plier of the proprietary solution]” (14) in order to “drive the cost of doing
business down” (15).

Benefit: Lower prices on tenders.

Example (CaseOrg3): From a public sector perspective, by releasing soft-
ware as OSS, and requiring tenders to build on it, competition in the tender
process is improved as smaller actors enabled to participate in a process
“otherwise set-up to benefit large firms” (112).

C.2.2 CO6 - Outsource infrastructure operation:

Description: Sharing software as OSS can be seen as a way to not just out-
source the development of a software project [1], but also the operation of
it.

Benefit: Internal focus on activities related to core business.

Example (CaseOrgl): As explained by 15, “We can get to a point where
we can actually outsource the operations of this [software] ... via an open
source path, which then frees up this team to do other stuff”.

What to Share, When, and Where 33

C.3 Strategy-centric Objectives
C.3.1 CO7- Collect data:

Description: By sharing e.g., algorithms as OSS, others can generate data
which can then be used to improve artificial intelligence and machine learn-
ing initiatives.

Benefit: Improved machine learning and artificial intelligence algorithms.

Example (CaseOrgl): I1 explains “The Machine learning team has often
come to us saying, I want to open source this algorithm because I wanna
learn how it grows, and we alone don’t have enough data to feed and we
need the world to feed it data”.

Benefit: Creation of solutions based on Open Data sources.

Example (CaseOrg3): 115 exemplifies how the gathering of job-ads can help
create an automated review-function which could classify if an add is dis-
criminatory or not.

C.3.2 CO8 - Standardize a solution:

Description: By having an OSS project or contribution adopted and ac-
cepted as a standard solution, an organization can potentially replace ex-
isting proprietary and community solutions [23.301/42.(72].

Benefit: Force competitors to adapt and steer market or community accord-
ing to internal agenda.

Example (CaseOrgl): A project was developed and open sourced in order
to replace proprietary solution as “a way to get away from a commercial
vendor and open up the access to the data collected by the vendor, but also
to be able to influence and control [the project’s] direction” (16). As further
explained by I1, “by putting it out there you can influence it and thereby
where the market is heading”, potentially steering the competition in the
direction most beneficial to the firm.

Benefit: Improve competition and enable more value-adding development on
market.

Example (CaseOrg3): From a public sector perspective, CaseOrg3 views
the benefit as “improving competition” (I13) and “allowing more to join
the market” (I15). I15 continues, “I think we are raising the bar for the
entire market, allowing everyone to level up and stop focus on base infras-
tructure”.

C.3.3 CO9 - Build a software ecosystem:

Description: Software released as OSS can serve as a technological platform
around which a software ecosystem may form with firms who can start to
collaborate and interact through a shared market of software and services.

Benefit: Enable and stimulate creation third party applications and services.

34 Johan Linaker, Bjérn Regnell

Example (CaseOrg3): From a public sector perspective, CaseOrg3 is aim-
ing to create a software ecosystem by contributing internal software arti-
facts as new OSS projects along with Open Data sources. Based on the
platform, constituted by the OSS projects and Open Data sources, private
organizations and firms on the labor market can create new and “hope-
fully better market-adapted solutions” (113). 117 adds “I think there is an
interest and a need for everybody within the sector to collaborate and to
help each other and to make sure that the right individuals land the right
opportunities. So what we are trying to gain is literally a collaboration |[...]
with others to provide better services to society”.

C.3.4 CO10 - Improve partner collaboration:

Description: Sharing e.g., tools and infrastructure projects as OSS could po-
tentially act as a complement and improve collaboration between CaseOrg2
and other actors within CaseOrg2’s software ecosystem that is connected
to its core-business of embedded devices.

Benefit: Increased value of software ecosystem.

Example (CaseOrg2): Asput by I7, “It would be easier to collaborate around
the same stack... Also, by offering boilerplates to our partners we help them
to do the right thing from start”. 18 adds, “I think, would [CaseOrg2] be
more open with its tools and libraries, this would be appreciated by, and a
way to come closer to our third-party developers”.

C.4 Engineering-centric Objectives

C.4.1 CO11 - Open up innovation process:

Description: Collaboration with OSS communities can be seen as a case of
Open Innovation [50], allowing an organization to extend its R&D and in-
novation capabilities and initiate new collaborations in an open and trans-
parent way.

Benefit: Accelerated innovation process.

Example (CaseOrgl): 16 describes it as “Open source is in many cases
about doing external RED in a way. You are leveraging external groups to
do things, and it is often the case that many companies don’t really fund
medium to longer term RED in-house anymore... You get the network effect
of so many more participants”.

Benefit: Creation of more and better market-oriented solutions

Example (CaseOrg3): Open collaboration may also be seen as an oppor-
tunity to “open up the requirement engineering process” (I15) and create
“faster feedback-loops, and to become more reactive and compatible to the
needs of the market” (112).

What to Share, When, and Where 35

C.4.2 CO12 - Extend development resources:

Description: Using and combining the development resources of an OSS
community with an organization’s internal, software development may po-
tentially be accelerated and extended as e.g., features are implemented and
bugs corrected [48].

Benefit: Focus on more value-adding development.

Example (CaseOrgl): 16 describes it as “the more that you can push things
down to commodity, the easier it becomes, and cheaper, and then you can
keep focusing more up the stack. Keep focusing on the next new feature”.

Benefit: Accelerated development.

Example (CaseOrgl): “/YJou almost get this acceleration of innovation on
that platform. It supercharges [the platform] in a way and you are getting,
maybe it is us and five other actors, maybe even competitors, and we are
all contributing back to things that we are finding. It is a better product for
everybody. So I think that accelerates the development process” (16).

Benefit: Lower maintenance cost.

Example (CaseOrg3): “The code is actually a cost and when you realize
that, you will see that it is better to share that cost than keeping it to
yourself” (112).

Appendix D Findings on Contribution Complexities
D.1 Control-centric Complexities
D.1.1 CC1 - Impact on the value proposition:

Description: Software artifacts that have a close connection to an organiza-
tion’s value proposition and its revenue stream may warrant special atten-
tion in order to determine any potential costs or negative risks that may
be implied by contributing the artifact.

Concern [CaseOrgl&2]: Risk for misalignment between internal and ex-
ternal agendas on OSS with high impact on value proposition.

Example [CaseOrg2]: In the case of CaseOrg2, the department studied
in this paper focuses on infrastructure and tools-projects which is used
by CaseOrgs2’s product development teams. The software developed and
maintained by the department can hence be considered to have an indirect
connection to CaseOrg2’s value proposition and revenue streams, or as put
by 17, “not even close to core business”. This provides the department with
a “much less restrictive process than what applies for core business” (IT).

Example [CaseOrgl]: CaseOrgl develops and maintains similar types of
projects, but also those that have a stronger connection to the organiza-
tion’s value proposition and revenue streams. For example, one project that
they have released is a Linux-based operating system embedded in hard-
ware devices which enables the organization the deliver its service offerings

36 Johan Linaker, Bjérn Regnell

to its customers. Another project released by the organization makes up a
pivotal part of their infrastructure, also enabling the delivery of its service
offerings, but also the possibility to offer the infrastructure as a service to
business customers, including competitors. In both examples, the projects
are considered as commodity but of strategic importance why the organi-
zation needs to be “actively involved and be able to steer the direction and
make sure that as that project evolves that it continues to meet our needs
and to evolve in a certain way” (I5).

Mitigation strategy: Build influence on OSS community’s RE process to
enforce internal agenda.

CC2 - Impact on internal operations:

Description: Even though a software artifact may have a loose connection
to a organization’s value proposition and revenue stream, it may still be of
strategic importance internally. By releasing the artifact as OSS there is a
risk of control being too diluted due to other stakeholders’ interests.

Concern [CaseOrgl&2]: Risk for misalignment between internal and ex-
ternal agendas on OSS with high impact on internal operations.

Example [CaseOrg2]: “We are extremely dependent on [OSS project] as we
have built our whole continuous integration tool-chain on it, same goes for
[OSS project]. Hence, we need to be active so that we can affect the direction
on the projects, otherwise, it could become extremely costly for us. Better
tools enable us to make better products” (I8).

Example [CaseOrgl]: I1 phrases it as, “Which projects are we actively us-
ing as a company that we are so dependent upon for our success that we
need to be at the table? You can do a survey on the company and ask,
what open source infrastructure are you using, and how critical is it to
your success? And how are you engaging today? And what is missing in
your engagement?”. 14 adds, “We do need to influence [the OSS project’s]
roadmap because as the project continues to evolve, and we are such a huge
user of it, we still need to drive its roadmap quite a bit to be able to get
mazimum value from it”.

Mitigation strategy: Build influence on OSS community’s RE process to
enforce internal agenda.

D.2 TIPR-centric Complexities
D.2.1 CC38 - Differentiating functionality:

Description: Giving away software artifacts that provide product differen-
tiation or other types of competitive edge is a common fear among firms,
but also an opportunity and a balancing act for public organizations.

Concern [CaseOrgl&2]: Risk of loosing product-based competitive edge.

Example [CaseOrgl]: I3 explains, “when I look at what we’ve approved so
far, practically 93 percent of what’s coming in front of the committee we

What to Share, When, and Where 37

approve. The 7 percent has been the things that are core to our business, or
something that is a competitive advantage”. This may be a consequence of
CaseOrgl’s work to actively encourage its developers to separate between
differentiating and commodity functionality as explained by 16, “These
things are really basic functionality, that is ok, we are going to share that,
that is part of the core platform. But there are maybe some parts where you
can on a modular basis extend it or do integrations with internal systems
i order to not give away the secret sauce, the differentiation”.

Mitigation strategy: Identify and separate between differentiating and com-
modity functionality when possible.

Concern [CaseOrgl&2]: Risk of loosing process-based competitive edge.

Example [CaseOrg2]: For the department studied in CaseOrg2, a bigger
concern relates to the risk of giving away process-based competitive edge,
as explained by I7 “Of course we have tools that can provide us with a
competitive edge”. Faster development pace and better quality assurance
are two areas highlighted by I9.

Mitigation strategy: Identify and separate between differentiating and com-
modity functionality when possible.

Concern [CaseOrg3]: Risk of damaging the business models of existing ac-
tors on market.

Example [CaseOrg3]: Concerning CaseOrg3, they prioritize releasing soft-
ware artifacts that have the potentially highest differentiating value for
actors on the market. However, as expressed by 115, “It is a balancing act.
There will be cases where we will open up stuff that some make a living on.
Actors will have to innovate their business models and adapt. Our aim is
to improve competition, not hurt it”.

Mitigation strategy: Inform actors and provide possibility to adapt in ad-
vance.

D.2.2 (CC4 - Commoditization:

Description: The timing of when to release something as OSS can be a com-
plex issue. As I1 highlights, “There is a trade-off between a competitive
edge and burdon”. l.e., while keeping the software closed may provide a
competitive advantage, it may cost in terms of maintenance and support.

Concern [CaseOrgl&2]: Risk for giving away competitive edge or differ-
entiating functionality too early or an alternative solution being accepted
before ones’ own.

Example [CaseOrgl]: I1 describes as a “waiting game... [Some] may want
to say - I want to hold on to this feature longer - because they don’t want to
make it a level playing field for everybody, or they may take certain features
and say, - I think we need to get it out there as fast as possible, because
we heard that competitor X is working on putting this into the pipeline...
So I think it could be both ways, there could be some features where we
say, No, let us hold on to this until we get a first-mover advantage on the

38 Johan Linaker, Bjérn Regnell

market using it, then once we have a significant advantage, then it is ok to
commoditize it and put it out there”.

Mitigation strategy: Maintain awareness in community and industry about
potential alternative solutions.

Concern [CaseOrg3]: Risk of damaging the business models of existing ac-
tors on market.

Example [CaseOrg3]: CaseOrg3 also considers the commoditization pro-
cess as an important aspect, but as highlighted in CC4 they strive to share
software artifacts that are differentiating in order to help businesses focus
on more value-adding activities.

Mitigation strategy: Inform actors and provide possibility to adapt in ad-
vance.

D.2.3 (CC5 - Sensitive IPRs:

Description: Sensitive IPs or patents is not limited to functionality that
provides a competitive edge in terms of a product or process (see CO4).
They can also constitute pieces in a defensive patent portfolio, serve as a
revenue source of license subscriptions, or belong to a third-party.

Concern [CaseOrgl&2]: Risk of giving away patented, patentable or in
other ways sensitive IPR.

Example [CaseOrgl]: For CaseOrgl, patents can be viewed as a competi-
tive edge even in cases where they do not cover functionality that is actively
used. As 11 explains, “We live in a very litigious environment, which means,
as a company we are in an industry where there are lots of lawsuits against
each other, so we use our patent portfolio in a defensive way. So there is a
drive to build a patent portfolio which is why the patent office encourages
people to seek patents, because the bigger and better the patent portfolio, the
more we can defend ourselves”. Hence, a common question that is asked
in CaseOrgl is “can and should we patent this?” (I1). I1 also adds that
in other organizations certain patents may provide license revenue, which
should also be weighed against the potential value of sharing the patent as
0OSS.

Example [CaseOrgl]: In the case of CaseOrg2, as they are orchestrating
a larger software ecosystem around its products, a question they ask is if
there are any patents or IPRs that belong to one of their partners.

Mitigation strategy: Critically review need and origin of patents.

D.2.4 CC6 - Substitutes:

Description: If there are existing alternatives to the software artifact avail-
able, it may be questioned why the artifact should even be considered.
Concern [CaseOrgl,2&3]: Unnecessary cost of contributing if existing al-

ternatives are considered as good or better.
Example [CaseOrgl]: according to I3, “One of the questions we ask in the
open source contribution form is, is there an existing project that does the

What to Share, When, and Where 39

same thing or is this one something unique and new? We’ve had people
that, say, I wrote an HTTP client, and I want to open source it, that
question goes to that, hey, there are plenty HTTP clients, why are you
writing another one?”. However, sometimes it may be motivated if there
is a strategic intent to replace an existing solution in a community or an
industry standard.

Mitigation strategy: Educate developers to research substitutes and moti-
vate why artifact still should be released as OSS.

D.2.5 CC7 - License compliance:

Description: In cases where the software extends or integrates with an OSS
project, the OSS license of that project needs to be reviewed and re-
spected. Copyleft and restrictive licenses may require that the artifact is
contributed.

Concern [CaseOrgl,2&3]: Risk of violating license conditions if software
artifact is not contributed.

Example [CaseOrg2]: I7 highlights, “we must be compliant with the licenses
we have in our source code”.

Mitigation strategy: Implement compliance programs, educate engineers
and automated license-checking.

D.3 Exposure-centric Complexities
D.3.1 CC8 - Ethical use:

Description: By releasing a software artifact as OSS, anyone is allowed to
use it under the same conditions provided by the OSS license. Hence, a
risk is that the software may be used for purposes not originally intended.

Concern [CaseOrg3]: Risk of creating negative exposure, hurting brand and
public trust.

Example [CaseOrg3]: 118 sees a a risk of “cases where we would not be very
proud of as a public agency” and asks “how far does the responsibility of
CaseOrg3 as a public agency stretch?”

Mitigation strategy: Investigate potential alternative use cases of software
artifact.

D.3.2 (CC9 - Security threats:

Description: Releasing a software artifact as OSS may pose a security threat
by exposing unknown vulnerabilities present in its source code.

Concern [CaseOrgl,2&3]: Risk of exposing security-related vulnerabilities.

Example [CaseOrg2]: At CaseOrg2, “the security department has a positive
view on open source as you get more eyes on the code” (I111). However, they
still have a careful review process in place as they do not wish to expose any

40 Johan Linaker, Bjérn Regnell

potential back-doors that could lead to the organization’s hardware-based
products.

Example [CaseOrg3]: At CaseOrg3, 118 highlights that “it is the data that
18 considered valuable and needs protection” which is rather done by “proper
key management” than keeping any related software closed.

Mitigation strategy: Include security audits in contribution process.

D.4 Cost-centric Complexities

D.4.1 CC10 - Budget and resource constraints:

Description: Contributing a software artifact always comes with a cost, both
in terms of preparing, contributing and potentially maintaining the soft-
ware artifact as OSS.

Concern [CaseOrgl,2&3]: Cost for preparing, contributing and maintain-
ing software artifact.

Example [CaseOrg2]: Abstracting, modularizing and generalizing an arti-
fact may prove an expensive effort compared to projects that are developed
with the intention from the start. As put by I8, “if we build something that
1s tailored to and dependent on internal infrastructure, it is most often no
idea to contribute it. In most cases, we can modularize and generalize it, but
the cost can get really high, so it is a matter of if it is worth it or not”. 19
further mentions that there “is a lot of hidden costs” that are connected
to the contribution process, such as “scrubbing” or cleaning the source
code and its version history of sensitive or unnecessary comments and in-
formation. Other costs include going through the contribution process of
the related community, or creating a community if the software artifact is
released independently of any existing community. In the latter case, much
more resources are required long-term both in terms of managing the com-
munity, but also maintaining and leading the software development within
the community. As highlighted by 110, “we prefer contributing to existing
communities because it is expensive taking on the role of a maintainer in
a larger project”.

Example [CaseOrg3]: CaseOrg3 recognizes the costs implied by sharing a
software artifact as OSS as a concern, but sees it from a long-term perspec-
tive. 115 asks, “What is the need of the labor market? If there is a potentially
positive outcome, then I think we are prepared to spend the money needed”.

Mitigation strategy: Develop software artifacts as if they were intended to
be released as OSS from start, separating commodity and differentiating
functionality. Also, ask “who is going to be the owner of this repo, and have
you allocated the time to maintain it, and has your boss approved your time
budget?” (I1).

What to Share, When, and Where 41

D.4.2 (CC11 - Modularity and architecture:

Description: In certain cases, it may be that the software artifact is too em-
bedded in internal infrastructure, which makes it infeasible to modularize
the artifact.

Concern [CaseOrgl,2&3]: Technical feasibility to modularize and abstract
software artifact.

Example [CaseOrg]|: I1 stresses that “companies should start projects with
the goal that it will be open one day, then they could architect it right from
the start with generality and modules that can be contributed”.

Mitigation strategy: Develop software artifacts as if they were intended to
be released as OSS from start, separating commodity and differentiating
functionality. An option may be to contribute the “design document or
the blueprint of the project itself so someone else can create it”, i.e., docu-
mentation that in some way captures the knowledge from the underlying
software artifact.

D.4.8 CC12 - Code alignment:

Description: By not contributing internally developed code that relates to
a project, a misalignment between the internally and externally developed
software may arise. A negative consequence may be that the organization
unintentionally ends up on a fork that grows with time and creates unnec-
essary maintenance and patch-work.

Concern [CaseOrgl,2&3]: Cost of maintaining internal fork. Misalignment
between internal and external development may prevent or complicate fu-
ture contributions.

Example [CaseOrg2]: I8 explains it as, “If you don’t share, the community
may take off in another direction. Then you will stagnate and come to a
place that will be very hard to get back from”.

Mitigation strategy: Keep internal fork of concerned OSS as close as pos-
sible to the community’s.

D.5 Community-centric Complexities
D.5.1 CC18 - External interest:

Description: To contribute a software artifact to an existing OSS community,
or to create a new community around it, there needs to be an external
interest for the artifact.

Concern [CaseOrgl,2&3]: Risk of contribution not being accepted or com-
munity not being established.

Example [CaseOrgl]: I3 describes it as “filling in a gap”. I5 asks the ques-
tion, “Is there a general purpose part of this that I can see multiple teams

42 Johan Linaker, Bjorn Regnell

inside my company taking advantage of ?”. External interest should, there-
fore, be investigated before proceeding with any contribution. In one ex-
ample where CaseOrgl ended up creating a new community, 16 explained,
“everyone needs to do it, and it is not really great agreement over what the
right methodologies are”.

Example [CaseOrg2]: For “existing communities that have been around for
long you know, or at least get an indication, if it is going to be an uptake
or not [of the contribution]” (I7). Analyzing stakeholders’ agendas within
a community can further help. “What’s their strategy, whom do they have
playing, what are they trying to get done, what chess moves are they mak-
ing, and if so, which then informs what we contribute, when we contribute,
and how strongly we need to be present” (I1).

Mitigation strategy: Investigate external interest and needs within con-
cerned communities and industries, and consider the generality of the use-
case that the software artifact solves.

D.5.2 (CC14 - Influence in community:

Description: If the external interest within a community is weak, or if the
community is heading in a different direction, it may be important to have
influence on the concerned community’s RE process in order to create
traction and approval for the contribution, but also to be able to steer its
development if it is accepted [39].

Concern [CaseOrgl,2&3]: Low level of influence in the community may
prevent or complicate the contribution of a software artifact.

Example [CaseOrg2]: I7 highlights that “It is important for [CaseOrg2] to
pick up a leading role in certain communities that we value as strategically
important and as a potential way to get an edge against competitors in
those communities”.

Concern [CaseOrgl,2&3]: Target foundation may require a governance model
too open which may render in too large scope and loss of control.

Example [CaseOrgl]: I1 explains how CaseOrgl reasoned about the cre-
ation of a separate community behind an internally developed Linux dis-
tribution, “We could have contributed that code to the Linux Foundation or
the Apache Software Foundation and have them make it a broader project.
But we ended up creating our own foundation and collected all the [relevant
stakeholders] together to contribute towards this platform that we created.
In a way, it is the right way because we wanted to make sure that it served
the need of our [main customers] and it didn’t get too broad and become an
embedded system that everyone uses... So we want to maintain influence
and be in a controlling position, so we are one of three members of the
steering committee”.

Mitigation strategy: Build influence needed on concerned community’s RE
process. If e.g., the current level of influence is deemed not high enough
to be able to contribute and steer the software artifact, one option is to

What to Share, When, and Where 43

create a new community where the community’s governance structure can
be tailored based on the focal organization’s needs.

D.5.3 (CC15 - Community health:

Description: Contributing to and engaging actively with a community is
one way to support its health, i.e., ability to survive throughout time [70],
which is an important aspect if an organization is dependent on a specific
OSS project [39].

Concern [CaseOrgl,2&3]: Not contributing may have a negative impact
on the health of the OSS project.

Example [CaseOrgl]: I1 explain CaseOrgl’s approach as “We care about
the health of the project, will it die because there are not enough contributors
maintaining it? We cannot let that project die because we are using it and
we would have to swap out the code and go to something else”. 11 continues,
“We prefer to use something that is already there, and not reinvents the
wheel, but if it is not going to be healthy, then we would want to be there
just to create a vibrant community, not for influence, but for health”.

Mitigation strategy: Monitor and analyze the health of concerned OSS
communities.

References

1. Pér J. Agerfalk and Brian Fitzgerald. Outsourcing to an Unknown Workforce: Exploring
Opensurcing as a Global Sourcing Strategy. MIS Quarterly, 32(2):385-409, 2008.

2. Thomas A. Alspaugh and Walt Scacchi. Ongoing software development without clas-
sical requirements. In 21st IEEE International Requirements Engineering Conference,
RE’13, pages 165-174, Rio de Janeiro, Brazil, July 2013. IEEE.

3. Morten Andersen-Gott, Gheorghita Ghinea, and Bendik Bygstad. Why do commercial
companies contribute to open source software? International Journal of Information
Management, 32(2):106-117, 2012.

4. Jan Bosch. Achieving Simplicity with the Three-Layer Product Model. Computer,
46(11):34-39, Nov 2013.

5. Simon Butler, Jonas Gamalielsson, Bjorn Lundell, Per Jonsson, Johan Sjoberg, Anders
Mattsson, Niklas Ricko, Tomas Gustavsson, Jonas Feist, and Stefan Landemoo. An
investigation of work practices used by companies making contributions to established
OSS projects. In 40th International Conference on Software Engineering: Software En-
gineering in Practice, ICSE’18, pages 201-210, Gothenburg, Sweden, May 2018. IEEE.

6. Jonathan P. Caulkins, Gustav Feichtinger, Dieter Grass, Richard F. Hartl, Peter M.
Kort, and Andrea Seidl. When to make proprietary software open source. Journal of
Economic Dynamics and Control, 37(6):1182 — 1194, 2013.

7. InduShobha Chengalur-Smith, Saggi Nevo, and Pindaro Demertzoglou. An empirical
analysis of the business value of open source infrastructure technologies. Journal of the
Association for Information Systems, 11(11):708, 2010.

8. Henry Chesbrough and Melissa M. Appleyard. Open Innovation and Strategy. Califor-
nia Management Review, 50(1):57-76, 2007.

9. Henry Chesbrough, Wim Vanhaverbeke, and Joel West, editors. New Frontiers in Open
Innovation. Oxford University Press, November 2014.

10. Linus Dahlander and Mats G. Magnusson. Relationships between open source soft-
ware companies and communities: Observations from Nordic firms. Research Policy,
34(4):481 — 493, 2005.

44

Johan Linaker, Bjérn Regnell

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Linus Dahlander and Mats G. Magnusson. How do firms make use of open source
communities? Long Range Planning, 41(6):629-649, 2008.

Linus Dahlander and Martin W. Wallin. A man on the inside: Unlocking communities
as complementary assets. Research Policy, 35(8):1243 — 1259, 2006.

Carlos M. DaSilva and Peter Trkman. Business model: What it is and what it is not.
Long Range Planning, 47(6):379-389, 2014.

Swanand J. Deodhar, KBC. Saxena, Rajen K. Gupta, and Mikko Ruohonen. Strate-
gies for software-based hybrid business models. The Journal of Strategic Information
Systems, 21(4):274-294, 2012.

Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian. Selecting
empirical methods for software engineering research. In Guide to advanced empirical
software engineering, pages 285-311. Springer, 2008.

Neil Ernst and Gail C. Murphy. Case studies in just-in-time requirements analysis.
In 2nd International Workshop on Empirical Requirements Engineering, EmpiRE’12,
pages 25-32, Chicago, IL, USA, Sep. 2012. IEEE.

Bent Flyvbjerg. Five Misunderstandings about Case-Study Research. In Qualitative
Research Practice, pages 390-404. SAGE, concise paperback edition, 2007.

Smita Ghaisas, Preethu Rose, Maya Daneva, Klaas Sikkel, and Roel J. Wieringa. Gen-
eralizing by similarity: Lessons learnt from industrial case studies. In Proceedings of the
1st International Workshop on Conducting Empirical Studies in Industry, CESI 14,
pages 37-42, Piscataway, NJ, USA, 2013. IEEE Press.

Tony Gorschek, Per Garre, Stig Larsson, and Claes Wohlin. A model for technology
transfer in practice. IEEE software, 23(6):88-95, 2006.

Herman Hartmann and Jan Bosch. Towards a multi-criteria decision support method for
consumer electronics software ecosystems. Journal of Software: Evolution and Process,
28(6):460-482, 2016.

Ernan Haruvy, Suresh P Sethi, and Jing Zhou. Open source development with a com-
mercial complementary product or service. Production and Operations Management,
17(1):29-43, 2008.

@yvind Hauge, Claudia Ayala, and Reidar Conradi. Adoption of open source software
in software-intensive organizations - a systematic literature review. Information and
Software Technology, 52(11):1133 — 1154, 2010.

Joachim Henkel. Selective revealing in open innovation processes: The case of embedded
linux. Research Policy, 35(7):953-969, 2006.

Joachim Henkel. Champions of revealing-the role of open source developers in commer-
cial firms. Industrial and Corporate Change, 18(3):435-471, December 2008.

Joachim Henkel, Simone Schoberl, and Oliver Alexy. The emergence of openness: How
and why firms adopt selective revealing in open innovation. Research Policy, 43(5):879—
890, 2014.

Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design Science in
Information Systems Research. MIS quarterly, 28(1):75-105, March 2004.

Helena Holmstrom Olsson and Jan Bosch. From ad hoc to strategic ecosystem man-
agement: The Three-Layer Ecosystem Strategy Model (TeLESM). Journal of Software:
Evolution and Process, 29(7):e1876, 2017.

Martin Host and Alma Orucevic-Alagic. A systematic review of research on open source
software in commercial software product development. Information and Software Tech-
nology, 53(6):616 — 624, 2011.

Netta livari, Henrik Hedberg, and Tanja Kirves. Usability in Company Open Source
Software Context - Initial Findings from an Empirical Case Study. In Barbara Russo,
Ernesto Damiani, Scott Hissam, Bjorn Lundell, and Giancarlo Succi, editors, Open
Source Development, Communities and Quality, pages 359-365, Boston, MA, 2008.
Springer US.

Slinger Jansen, Sjaak Brinkkemper, Jurriaan Souer, and Lutzen Luinenburg. Shades of
gray: Opening up a software producing organization with the open software enterprise
model. Journal of Systems and Software, 85(7):1495-1510, 2012.

Slinger Jansen, Anthony Finkelstein, and Sjaak Brinkkemper. A sense of community: A
research agenda for software ecosystems. In 31st International Conference on Software
Engineering - Companion Volume, ICSE’09, pages 187190, Vancouver, BC, Canada,
May 2009. IEEE.

What to Share, When, and Where 45

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Richard Kemp. Open Source Software (OSS) governance in the organisation. Computer
Law & Security Review, 26(3):309-316, 2010.

Terhi Kilamo, Imed Hammouda, Tommi Mikkonen, and Timo Aaltonen. From propri-
etary to open source - Growing an open source ecosystem. Journal of Systems and
Software, 85(7):1467-1478, 2012.

Hans-Bernd Kittlaus and Samuel A. Fricker. Software Product Management: The
ISPMA-Compliant Study Guide and Handbook. Springer, 2017.

Peter M. Kort and Georges Zaccour. When should a firm open its source code: a
strategic analysis. Production and Operations Management, 20(6):877-888, 2011.
Jaison Kuriakose and Jeffrey Parsons. How do Open Source Software (OSS) developers
practice and perceive requirements engineering? An empirical study. In 5th Interna-
tional Workshop on Empirical Requirements FEngineering, EmpiRE’15, pages 49-56,
Ottawa, ON, Canada, Aug 2015. IEEE.

Paula Laurent and Jane Cleland-Huang. Lessons Learned from Open Source Projects
for Facilitating Online Requirements Processes. In Martin Glinz and Patrick Heymans,
editors, Requirements Engineering: Foundation for Software Quality, pages 240-255,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

Johan Linaker, Hussan Munir, Krzysztof Wnuk, and Carl-Eric Mols. Motivating the
contributions: An open innovation perspective on what to share as open source software.
Journal of Systems and Software, 135:17-36, 2018.

Johan Linaker, Bjorn Regnell, and Daniela Damian. A community strategy framework
- how to obtain influence on requirements in meritocratic open source software commu-
nities? Information and Software Technology, 2019.

Johan Linaker, Bjorn Regnell, and Daniela Damian. A method for analyzing stakehold-
ers’ influence on an open source software ecosystem’s requirements engineering process.
Requirements Engineering, Apr 2019.

Johan Linaker, Bjorn Regnell, and Hussan Munir. Requirements engineering in open
innovation: a research agenda. In Proceedings of the 2015 International Conference on
Software and System Process, ICSSP’15, pages 208-212. ACM, Aug. 2015.

Juho Lindman, Juha-Pekka Juutilainen, and Matti Rossi. Beyond the business model:
Incentives for organizations to publish software source code. In Cornelia Boldyreff, Kevin
Crowston, Bjorn Lundell, and Anthony I. Wasserman, editors, Open Source Ecosys-
tems: Diverse Communities Interacting, pages 47-56, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

Bjorn Lundell, Brian Lings, and Edvin Lindqvist. Open source in Swedish companies:
where are we? Information Systems Journal, 20(6):519-535, 2010.

Bjorn Lundell, Brian Lings, and Anna Syberfeldt. Practitioner perceptions of Open
Source software in the embedded systems area. Journal of Systems and Software,
84(9):1540-1549, 2011.

Hanna Méaenpad, Simo Mékinen, Terhi Kilamo, Tommi Mikkonen, Tomi Méannist6, and
Paavo Ritala. Organizing for openness: six models for developer involvement in hybrid
OSS projects. Journal of Internet Services and Applications, 9(1):17, 2018.

Carl-Eric Mols, Krzysztof Wnuk, and Johan Linaker. The open source officer role —
experiences. In Federico Balaguer, Roberto Di Cosmo, Alejandra Garrido, Fabio Kon,
Gregorio Robles, and Stefano Zacchiroli, editors, Open Source Systems: Towards Robust
Practices, pages 55—59, Cham, 2017. Springer International Publishing.

Lorraine Morgan and Patrick Finnegan. Beyond free software: An exploration of the
business value of strategic open source. The Journal of Strategic Information Systems,
23(3):226-238, 2014.

Hussan Munir, Johan Linaker, Krzysztof Wnuk, Per Runeson, and Bjérn Regnell. Open
innovation using open source tools: a case study at sony mobile. Empirical Software
Engineering, 23(1):186-223, Feb 2018.

Hussan Munir, Per Runeson, and Krzysztof Wnuk. A theory of openness for software
engineering tools in software organizations. Information and Software Technology, 97:26
— 45, 2018.

Hussan Munir, Krzysztof Wnuk, and Per Runeson. Open innovation in software engi-
neering: a systematic mapping study. Empirical Software Engineering, 21(2):684-723,
2016.

46

Johan Linaker, Bjérn Regnell

51.

52.

53.

54.

55.

56.

57.
58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

Frank Nagle. Learning by contributing: gaining competitive advantage through contri-
bution to crowdsourced public goods. Organization Science, 29(4):569-587, 2018.

Anh Nguyen Duc, Daniela S. Cruzes, Geir K. Hanssen, Terje Snarby, and Pekka Abra-
hamsson. Coopetition of Software Firms in Open Source Software Ecosystems. In Arto
Ojala, Helena Holmstrom Olsson, and Karl Werder, editors, Software Business, pages
146-160, Cham, 2017. Springer International Publishing.

Anh Nguyen-Duc, Daniela S. Cruzes, Snarby Terje, and Pekka Abrahamsson. Do Soft-
ware Firms Collaborate or Compete? A Model of Coopetition in Community-initiated
OSS Projects. e-Informatica Software Engineering Journal, 13(1):37-62, 2019.
Siobhan O’Mahony. The governance of open source initiatives: what does it mean to be
community managed? Journal of Management € Governance, 11(2):139-150, 2007.
Dirk Riehle. Controlling and steering open source projects. Computer, 44(7):93-96,
2011.

Dirk Riehle. The single-vendor commercial open course business model. Information
Systems and e-Business Management, 10(1):5-17, 2012.

Colin Robson. Real world research, volume 3. Wiley Chichester, 2011.

Per Runeson, Martin Host, Austen Rainer, and Bjorn Regnell. Case Study Research in
Software Engineering - Guidelines and Examples. Wiley, 2012.

Walt Scacchi. Understanding the requirements for developing open source software
systems. In Software, IEE Proceedings-, volume 149, pages 24-39. IET, 2002.

Mario Schaarschmidt, Gianfranco Walsh, and Harald FO. von Kortzfleisch. How do
firms influence open source software communities? A framework and empirical analysis
of different governance modes. Information and Organization, 25(2):99-114, 2015.
Carolyn B. Seaman. Qualitative methods in empirical studies of software engineering.
IEEE Transactions on Software Engineering, 25(4):557-572, 1999.

Shahrokh Shahrivar, Shaban Elahi, Alireza Hassanzadeh, and Gholamali Montazer. A
business model for commercial open source software: A systematic literature review.
Information and Software Technology, 103:202 — 214, 2018.

Maha Shaikh and Ola Henfridsson. Governing open source software through coordina-
tion processes. Information and Organization, 27(2):116-135, 2017.

Zeena Spijkerman and Slinger Jansen. The open source software business model
blueprint: A comparative analysis of 10 open source companies. In Proceedings of the
International Workshop on Software-intensive Business: Start-ups, Ecosystems and
Platforms, volume 2018, pages 128-145, 2018.

Wouter Stam. When does community participation enhance the performance of open
source software companies? Research Policy, 38(8):1288 — 1299, 2009.

Matthias Stuermer, Sebastian Spaeth, and Georg Von Krogh. Extending private-
collective innovation: a case study. R&D Management, 39(2):170-191, 2009.
Mahbubul Syeed, Juho Lindman, and Imed Hammouda. Measuring Perceived Trust in
Open Source Software Communities. In Federico Balaguer, Roberto Di Cosmo, Alejan-
dra Garrido, Fabio Kon, Gregorio Robles, and Stefano Zacchiroli, editors, Open Source
Systems: Towards Robust Practices, pages 49-54, Cham, 2017. Springer International
Publishing.

Frank Van der Linden, Bjorn Lundell, and Pentti Marttiin. Commodification of indus-
trial software: A case for open source. IEEFE Software, 26(4):77-83, 2009.

Kris Ven and Herwig Mannaert. Challenges and strategies in the use of open source
software by independent software vendors. Information and Software Technology,
50(9):991-1002, 2008.

Dindin Wahyudin, Khabib Mustofa, Alexander Schatten, Stefan Biffl, and A. Min Tjoa.
Monitoring the ”health” status of open source web-engineering projects. International
Journal of Web Information Systems, 3(1/2):116-139, 2007.

Florian Weikert and Dirk Riehle. A model of commercial open source software product
features. In Georg Herzwurm and Tiziana Margaria, editors, Software Business. From
Physical Products to Software Services and Solutions, pages 90-101, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

Joel West. How open is open enough?: Melding proprietary and open source platform
strategies. Research Policy, 32(7):1259-1285, 2003.

What to Share, When, and Where 47

73.

74.

75.

76.

77.

78.

79.

80.

Joel West. Value capture and value networks in open source vendor strategies. In
Proceedings of the 40th Annual Hawaii International Conference on System Sciences,
HICSS’07, pages 176-176, Waikoloa, HI, USA, Jan 2007. IEEE.

Joel West and Scott Gallagher. Challenges of open innovation: the paradox of firm
investment in open-source software. R&D Management, 36(3):319-331, 2006.

Joel West and Siobhan O’Mahony. Contrasting Community Building in Sponsored and
Community Founded Open Source Projects. In Proceedings of the 38th Annual Hawaii
International Conference on System Sciences, HICSS’05, pages 196-196, Big Island,
HI, USA, Jan 2005. IEEE.

Joel West and David Wood. Creating and Evolving an Open Innovation Ecosystem:
Lessons from Symbian Ltd. Awailable at SSRN 1532926, 2008.

Roel J. Wieringa. Design science methodology for information systems and software
engineering. Springer, 2014.

Krzysztof Wnuk, Dietmar Pfahl, David Callele, and Even-André Karlsson. How can
open source software development help requirements management gain the potential
of open innovation: An exploratory study. In Proceedings of the ACM-IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement, ESEM’12,
pages 271-280, New York, NY, USA, 2012. ACM.

Minghui Zhou, Audris Mockus, Xiujuan Ma, Lu Zhang, and Hong Mei. Inflow and
retention in oss communities with commercial involvement: A case study of three hybrid
projects. ACM Transactions on Software Engineering and Methodology (TOSEM),
25(2):1-29, 2016.

Nicole Ziegler, Oliver Gassmann, and Sascha Friesike. Why do firms give away their
patents for free? World Patent Information, 37:19 — 25, 2014.

	1 Introduction
	2 Related and Previous Work
	3 Research Design
	4 Results
	5 Discussion
	6 Threats to Validity
	7 Conclusion
	Appendices
	Appendix A Questionnaire - First Research Cycle
	Appendix B Questionnaire - Second Research Cycle
	Appendix C Findings on Contribution Objectives
	Appendix D Findings on Contribution Complexities

