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Abstract. The non-equidistant fast Fourier transform (NFFT) is an extension of the famous
fast Fourier transform (FFT) that can be applied to non-equidistantly sampled data in time/space or
frequency domain. It is an approximative algorithm that allows to control the approximation error
in such a way that machine precision is reached while keeping the algorithmic complexity in the
same order as a regular FFT. The NFFT plays a major role in many signal processing applications
and has been intensively studied from a theoretical and computational perspective. The fastest
CPU implementations of the NFFT are implemented in the low-level programming languages C and
C++ and require a compromise between code generalizability, code readability, and code efficiency.
The programming language Julia promises new opportunities in optimizing these three conflicting
goals. In this work we show that Julia indeed allows to develop an NFFT implementation, which is
completely generic, dimension-agnostic and requires about 2–3 times less code than the other famous
libraries NFFT3 and FINUFFT while still being one of the fastest NFFT implementations developed
to date.
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1. Introduction. The Fourier transform plays an important role in many math-
ematical applications in particular those involving signal processing. Convolutions in
time/spatial domain can be expressed as multiplications in frequency domain, which
is often faster and allows one to invert convolutions in analytical form. In practice,
signals are usually discrete and of finite length such that the discrete Fourier transform
(DFT) needs to be applied. It maps a number of N samples in time/spatial domain
to N samples in frequency domain and requires OpN2q operations, which is often too
expensive to apply the DFT in its ordinary form. The fast Fourier transform (FFT)
[5] allows one to carry out the DFT in only OpN logNq operations and enables many
applications for which the DFT would be too expensive. Its high impact in various
applications makes the FFT one of the most important numerical algorithms devel-
oped in the 20th century. One of the fastest FFT software libraries is the FFTW [9],
which is used in most scientific applications.

An important limitation of the FFT is that it requires the input and ouput signals
to be equidistantly sampled. This makes it unusable for some important applications,
e.g., in optical coherence tomography [10] and magnetic resonance imaging [7, 17].
In this work we focus on the case, where the signal in one domain is sampled in
a non-equidistant manner. In such cases, simple interpolation, to map from non-
equidistant to equidistant points, leads to large numerical errors, which intuitively can
be explained by the fact that local (interpolation) errors lead to global errors in the
reciprocal domain. This motivated the development of the non-equidistant fast Fourier
transform (NFFT), which allows to keep the approximation error below the floating
point precision and thus can be used like an exact algorithm in most circumstances. It
was developed in the 1990s and 2000s by various researchers [6, 3, 1, 26, 28, 20] with a
special focus on developing error bounds that allow to predict the approximation error
in dependence of NFFT hyperparameters. One important ingredient of the NFFT is
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the use of a window function, which is convolved with the irregular data and sampled
at equidistant points. In the past, several window functions have been proposed of
which the Kaiser-Bessel function provides the highest accuracy, since it is well localized
in time/spatial and frequency domain. Quite recently, new error bounds have been
derived for different window functions [22] including the Kaiser-Bessel window [21].

Beside this theoretical work, there is also a strong demand for high-quality fast
software packages implementing the NFFT. While the algorithm itself has a rather
simple mathematical notation, a straight forward textbook implementation would
suffer from suboptimal performance and be orders of magnitude slower than a tuned
software library. For this reason, several high-performance NFFT libraries like NFFT3
[13] and FINUFFT [2] have been developed in the past. NFFT3 was developed in
the late 2000s, is written C and supports multi-threading. In addition to the NFFT
it offers algorithms for the non-equidistant fast cosine transform (NDCT) and the
non-equidistant fast sine transform (NDST). Two important features of NFFT3 are
the ability to apply the algorithm to arbitrary dimensional signals and the ability to
cache window function evaluations for faster computation. FINUFFT was developed
in the late 2010s, is written in C++ and provides two major innovations: First, it uses
a new window function that can be evaluated in a fast manner. Second, it uses a new
multi-threading approach for the adjoint NFFT using a block-partitioning strategy.
In combination with highly tuned C++ code, these two innovations make FINUFFT
one of the fastest NFFT implementations developed to date. The NFFT has also been
implemented on graphical processing units (GPU) [25, 18, 14, 29, 24], which can give
additional speedups over CPU implementations but is not in the scope of the current
paper.

When developing a new NFFT software library, there is a certain design space to
be explored. An implementation can

1. be generic, i.e., allowing for different floating point types (Float32/Float64),
2. be dimension-agnostic,
3. allow changing the window function,
4. allow changing the precomputation strategy,
5. be fast/multi-threaded,
6. be readable/maintainable,
7. be re-usable/binding friendly.

Since not all of these goals can be achieved at the same time, certain compromises
must be made, many of which also depend on the programming language being used.
Both NFFT3 and FINUFFT are implemented in C/C++ and made the following
design decisions:

‚ Both libraries are partly generic, i.e., they allow for Float32 and Float64

floating point types. To avoid manual code duplication, the number type
is defined using a C macro allowing for automatic code copies and textual
replacements. In fact, most of the NFFT3 code is written in macro form to
avoid code duplication.

‚ It is difficult to achieve a fast and dimension-independent implementation in
C at the same time. This is because a static dimension, known at compile
time, allows the compiler to generate much more efficient machine code. In
particular nested for loops slow down code execution significantly if they
are emulated in a dimension-agnostic fashion during runtime. Both libraries
solve this problem by independent and redundant implementation of specific
dimensions (NFFT3: 1D–5D, FINUFFT: 1D–3D). NFFT3 has an additional
dynamic and slow fallback for higher dimensions while FINUFFT is restricted
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to 1D–3D. Thus, speed and dimension-agnosticity can be combined in C but
this decreases the code readability/maintainability.

‚ Hardcoding the window function can lead to additional speedups since it
avoids a dynamic dispatch in a hot code path. For this reason the window
function is a compile time option in NFFT3 while it is hardcoded in FIN-
UFFT.

The purpose of this work is to develop a new NFFT package that makes less trade-
offs than its C/C++ counterparts. Our package, named NFFT.jl, is implemented in
the programming language Julia [4], which was first published in 2012 and has since
then been developed into a popular programming language for scientific computing.
Julia code can be both high-level like Matlab/Python and low-level like C/C++. The
resulting machine code is usually as fast as comparable C/C++ machine code. This
is achieved by a proper language design and the use of a just-in-time (JIT) compiler
that allows to dynamically generate efficient machine code during runtime. Nowadays,
Julia also supports multi-threading, which originates back to the prototype published
in [15].

This paper outlines the key implementation aspects of NFFT.jl and makes an
in-depth performance analysis compared to NFFT3 and FINUFFT. Since the archi-
tecture of NFFT.jl is rather flexible, we were able to implement several features that
are only available in either NFFT3 or FINUFFT. This allows us to compare and
benchmark certain implementation strategies within the same code base. We also
make algorithmical improvements to the strategies proposed in [2], making NFFT.jl
one of the fastest NFFT implementation developed to date.

2. Mathematical Description. We start with a mathematical description of
the NFFT. Throughout this work, we stick to a multi-dimensional formulation and
keep the notation close to the one used in [13]. Before discussing the NFFT, we
first introduce the underlying mathematical transform to be computed: the non-
equidistant discrete Fourier transform (NDFT).

2.1. NDFT. We let N P ND be the size of the NDFT in the equidistant sam-
pling domain and D P N be its dimensionality. We further use the multi-dimensional
index set

(2.1) IN :“ ZD X
D
ź

d“1

„

´
Nd
2
,
Nd
2

˙

representing all equidistant sampling points. The subindex nd covers ´Nd

2 , . . . ,
Nd

2 ´1

for even Nd and ´Nd´1
2 , . . . , Nd´1

2 for odd Nd. The corresponding signal is denoted
by fn P C, n P IN . In the frequency domain, the signal is sampled at non-equidistant
sampling points kj “ pkd,jq

D
d“1 P TD, j “ 1, . . . , J with J P N and T :“ r´1{2, 1{2q.

The resulting Fourier coefficients are denoted by f̂j P C, j “ 1, . . . , J . The (direct)
NDFT is then defined as

f̂j :“
ÿ

nPIN

fn e´2πin¨kj , j “ 1, . . . , J (equidistant to non-equidistant),(2.2)

where n ¨ kj is the standard inner product between the two sampling points. This
transformation is also known as the type-2 NDFT [2].

Remark 2.1. There are different conflicting definitions of the NDFT that con-
sider the input signal to be sampled either in frequency [13] or in spatial domain [8].
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Although we largely follow the notation of [13] we decided to switch frequency and
spatial domain to make the NDFT consistent with the DFT, which is commonly de-
fined to map from spatial to frequency domain. We note that this change only affects
notation and that the computations remain the same.

The NDFT has an associated adjoint that can be expressed as

yn :“
J
ÿ

j“1

f̂j e2πin¨kj , n P IN (non-equidistant to equidistant).(2.3)

This is also named the type-1 NDFT [2] and it is related to the backward DFT. On
purpose, we used the new variable yn instead of fn since the adjoint NDFT is in
general not the inverse of the NDFT. This only holds true for special cases, i.e., for
equidistant sampling nodes and when introducing a suitable normalization factor.

The algorithmic complexity for a direct computation of the NDFT and its adjoint
is OpJ |IN |q where |IN | :“

śD
d“1Nd. This is because it requires two nested for loops,

one over the J sampling points kj and one over the |IN | equidistant sampling points
n.

2.2. NFFT. We next introduce the fast realization of the NDFT. There are
different approaches for accelerating the NDFT all having in common to use some
sort of approximation to enable the usage of one or several ordinary FFTs. In this
work, we consider the most popular and widely used approach, which uses convolutions
to grid the non-equidistant signal to an equidistant signal enabling FFT usage. The
basic idea of this approach is to exploit the convolution theorem, which states that a
convolution in frequency domain corresponds to a multiplication in spatial domain. To
exploit this, one introduces an artificial convolution in the non-equidistant sampling
domain with a window function ϕ̂. This is corrected in the equidistant sampling
domain by dividing by the window’s inverse Fourier transform ϕ, i.e., applying a
deconvolution. The key point is that the artificial convolution allows one to switch
from equidistant to non-equidistant sampling points and makes it possible to first use
the FFT to switch domains and then apply the resampling. Since the operation being
applied is not shift-invariant in the discrete and non-equidistant setting we name it
resampling to avoid confusing it with a regular continuous or discrete convolution.
The grid on which the FFT is applied is chosen to be larger than the grid on which
the equidistant input signal is sampled. To this end, a so-called oversampling factor
σ ą 1 is introduced and an oversampled grid of size ĂN “ σN is considered. σ
impacts the accuracy of the NFFT and in practice it is chosen in the range r1.25, 2s
with 2 being the common default value. Smaller values decrease the accuracy of the
NFFT but reduce the memory requirement and are therefore commonly used for large
transforms of high dimensionality.

In summary, the NFFT consists of three steps:
1. resampling correction in equidistant domain
2. fast Fourier transform
3. resampling to map from equidistant to non-equidistant domain

2.2.1. Direct NFFT. We next provide a short derivation of the NFFT and
start with the D-dimensional window function ϕ̂ : RD Ñ R. The latter is based on a
one-dimensional version ϕ̂Base : RÑ R using the tensor product

(2.4) ϕ̂pkq “ ϕ̂pk1, . . . , kDq “
D
ź

d“1

ϕ̂Base

˜

rNd
m
kd

¸

.
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Here, m ! Nd is the second hyperparameter of the NFFT that controls the width
of the window function. The window function ϕ̂ is chosen in such a way that it is
even and well localized in spatial and frequency domain. Due to the tensor product
structure of ϕ̂, its inverse Fourier transform ϕ can be expressed as a tensor product
as well:

(2.5) ϕpnq “ ϕpn1, . . . , nDq “
D
ź

d“1

m

rNd
ϕBase

ˆ

m

rNd
nd

˙

.

Moreover, ϕ is real because of the even symmetry of ϕ̂. Finally, we require ϕpnq ‰ 0
for n P IN , which is fulfilled for the commonly used window functions.

The ansatz for deriving the NFFT is based on the inverse Fourier transform

(2.6) ϕpnq “

ż

RD

ϕ̂pkqe2πin¨kdk “
ÿ

rPZD

ż

TD

ϕ̂pk ` rqe2πin¨pk`rqdk.

When considering n P ZD we can exploit the periodicity of the complex exponential
(e2πin¨pk`rq “ e2πin¨k for r P ZD) and introduce the one-periodization of the window
function ϕ̃pkq :“

ř

rPZD ϕ̂pk ` rq yielding

ϕpnq “

ż

TD

ϕ̃pkqe2πin¨kdk.

Applying the substitution kÑ k ´ k1 results in

(2.7) ϕpnq “

ż

TD

ϕ̃pk ´ k1qe2πin¨pk´k1qdk1.

Dividing by ϕpnq and e2πin¨k yields

(2.8) e´2πin¨k “
1

ϕpnq

ż

TD

ϕ̃pk ´ k1qe´2πin¨k1dk1.

Now we approximate the integral on the right hand side using a rectangular quadrature
rule with ĂN “ σN sampling nodes yielding

(2.9) e´2πin¨k «
1

|I
ĂN
|ϕpnq

ÿ

lPI
ĂN

ϕ̃pk ´ l m ĂNqe´2πin¨plm ĂNq

where m denotes the element-wise division. This means, we can approximate a com-
plex exponential sampled at any k P TD using a sum of shifted complex exponentials.

Inserting the approximation (2.9) into the NDFT (2.2) yields

(2.10) f̂j «
ÿ

lPI
ĂN

ϕ̃pkj ´ l m ĂNq
ÿ

nPIN

fn
|I

ĂN
|ϕpnq

loooomoooon

resampling correction

e´2πin¨plm ĂNq

looooooooooooooooooooooomooooooooooooooooooooooon

DFT
loooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooon

resampling

.

One can see that the resampling (last step) allows us to use the FFT (second step)

since the sampling nodes l m ĂN are now equidistant. To account for the resampling,
the inner part first applies a resampling correction.
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Until now, we have not yet made the algorithm any faster than a direct evaluation
of the NDFT since the resampling requires OpJ |I

ĂN
|q operations. To do so, we need

to exploit that the window function ϕ̂ is well localized and thus close to zero for
most of the evaluations performed during the resampling. To exploit this formally, we
truncate ϕ̂ at ˘mm ĂN with m “ pmq

D
d“1 and define the truncated window function

(2.11) ψ̂pkq :“

#

ϕ̂pkq for k P
śD
d“1r´

m
ĂNd
, m
ĂNd
q

0 otherwise

with support supp ψ̂ “
śD
d“1r´

m
ĂNd
, m
ĂNd
q. In the same way ψ̂Base is defined to be

ϕ̂Base truncated to r´1, 1q. From (2.10), it can be seen that the resampling step is
based on the one-periodization ϕ̃. To accelerate its computation, we thus require the
corresponding one-periodization ψ̃pkq :“

ř

rPZD ψ̂pk` rq. Replacing ϕ̃pkq by ψ̃pkq in
(2.10) yields

(2.12) f̂j «
ÿ

lPI
ĂN,m

pkjq

ψ̃pkj ´ l m ĂNq
ÿ

nPIN

fn
|I

ĂN
|ϕpnq

e´2πin¨plm ĂNq,

with the multi-index set

(2.13) I
ĂN ,m

pkq :“
!

l P I
ĂN

: Dp P Z p´mm ĂN ď k ´ lm ĂN ` p1 ămm ĂNq
)

,

where 1 “ p1q
D
d“1. This is the set of indices l for which kj ´ l m ĂN P supppψ̃q and

in turn other indices can be dropped without changing the result of the computation.
It has at most 2mD elements, which is much less than the

śD
d“1

rNd elements of I
ĂN

.

In particular, the number of elements is independent of ĂN . For the implementation
described in section 3 we require an alternative formulation of the index set I

ĂN ,m
pkq

that separates the individual dimensions:

I
ĂN ,m

pkq “
D
ź

d“1

I
ĂNd,m

pkdq with I
ĂN,m

pkq “ tωn,mpk, `q : ` P t1, . . . , 2muu.

Here, the function ω
ĂN,m

: Tˆ t1, . . . , 2mu Ñ I
ĂN

with

ω
ĂN,m

pk, `q “ pr rNpk mod 1q ´m` `´ 1s mod rNq ´
rN

2

allows us to calculate the index set directly taking account the index wrap due to the
periodization of the window function ψ̃.

The direct NFFT is summarized in Algorithm 2.1:
1. In the first step, the resampling correction is applied. To this end, the input

data fn is divided by the inverse Fourier transform of the window function
ϕpnq for each n P IN . The output of the resampling correction is stored in a
new temporary vector g “ pgnqnPI

ĂN
that is defined on the fine grid I

ĂN
. The

first step of the NFFT thus also applies the zero padding necessary for the
in-place FFT in the second step of the algorithm.

2. In the second step, an ordinary D-variate FFT is applied. It operates in-place
but to keep the mathematical notation sound, we introduce the output vector
ĝ “ pĝlqlPI

ĂN
.

3. In the third step, the resampling is applied.
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Algorithm 2.1 Direct NFFT

Input: D,m P N, N , ĂN P ND, with ĂN “ σN and σ ą 1,
non-equidistant sampling points kj P TD, j “ 1, . . . , J ,
equidistantly sampled signal fn P C,n P IN

1: for n P I
ĂN

do

2: gn “

#

fn
|I

ĂN
|ϕpnq for n P I

N

0 for n P I
ĂN
zI
N

Ź resampling correction

3: end for
4: for l P I

ĂN
do

5: ĝl “
ÿ

nPI
ĂN

gne´2πin¨plm ĂNq Ź FFT

6: end for
7: for j “ 1, . . . , J do
8: f̂j “

ÿ

lPI
ĂN,m

pkjq

ĝl ψ̃pkj ´ l m ĂNq Ź resampling

9: end for

Output: non-equidistantly sampled signal f̂j P C, j “ 1, . . . , J
Complexity: Op|I

ĂN
| log |I

ĂN
| `mDJq

2.2.2. Adjoint NFFT. The adjoint NFFT is based on the same idea as the
direct NFFT. Inserting (2.9) into (2.3) and replacing ϕ̃ by ψ̃ yields

(2.14) yn «
1

|I
ĂN
|ϕpnq

ÿ

lPIN

¨

˚

˝

ÿ

jPIᵀ
ĂN,m

plq

f̂j ψ̃pkj ´ l m ĂNq

˛

‹

‚

looooooooooooooooooomooooooooooooooooooon

resampling

e2πin¨plm ĂNq

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

adjoint DFT
looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon

resampling correction

.

Here, the index set Iᵀ
ĂN ,m

plq is defined as

(2.15)

Iᵀ
ĂN ,m

plq :“
!

j P t1, . . . , Ju : Dp P Z p´mm ĂN ď kj ´ lm ĂN ` p1 ămm ĂNq
)

and again allows one to perform the inner resampling over only a subset of the original
indices. One can also see that the adjoint NFFT applies the three steps in reverse to
the direct NFFT. The adjoint NFFT is summarized in Algorithm 2.2:

1. In the first step, the non-equidistantly sampled signal f̂j is convolved with

the one-periodic window function ψ̃ yielding the equidistantly sampled signal
ĝl. The sum is again restricted to the subset of indices Iᵀ

ĂN ,m
plq at which ψ̃ is

non-zero. However, the adjoint resampling needs a different evaluation order
than indicated by the summation. The reason is that it is very in-efficient to
determine Iᵀ

ĂN ,m
plq during the summation. Instead, one uses two for loops:

the inner looping over l P I
ĂN ,m

pkjq and the outer looping over the sampling
points kj , j “ 1, . . . , J . This change of evaluation order means that the direct
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Algorithm 2.2 Adjoint NFFT

Input: D,m P N, N , ĂN P ND, with ĂN “ σN and σ ą 1,
non-equidistant sampling points kj P TD, j “ 1, . . . , J ,

non-equidistantly sampled signal f̂j P C, j “ 1, . . . , J

1: for l P I
ĂN

do

2: ĝl “
ÿ

jPIᵀ
ĂN,m

plq

f̂j ψ̃pkj ´ l m ĂNq Ź adjoint resampling

3: end for
4: for n P I

ĂN
do

5: gn “
ÿ

lPI
ĂN

ĝle
2πin¨plm ĂNq Ź adjoint FFT

6: end for
7: for n P IN do
8: yn “

gn
|I

ĂN
|ϕpnq Ź adjoint resampling correction

9: end for

Output: equidistantly sampled signal yn P C
Complexity: Op|I

ĂN
| log |I

ĂN
| `mDJq

and the adjoint resampling have a very similar structure. The only difference
is that the summation over l has no data dependency for the direct transform
whereas the adjoint transform needs to perform additive vector updates on
ĝ, which cannot be performed concurrently for different nodes kj .

2. The second step is a D-variate adjoint FFT.
3. The third step is the resampling correction. Similar to the direct transform,

only the subset of g on the grid IN needs to be considered in this step.

2.2.3. Matrix-Vector Notation. The NFFT can be written in matrix-vector
notation, which is helpful for conceptual understanding and can also be used for
actual implementations (see discussion about GPU implementations in section 6). In
matrix-vector form, the NFFT can be expressed as

f̂ “ Af “ BFDf

where A “
`

e´2πin¨kj
˘

j“1,...,J;nPIN
P CJˆ|IN | is the NDFT matrix, f “ pfnqnPIN P

C|IN | is the input vector, and f̂ “
´

f̂j

¯J

j“1
P CJ is the output vector. The first NFFT

step is the multiplication with the generalized diagonal matrix

D “

ˆ

δl,n
1

|I
ĂN
|ϕpnq

˙

lPI
ĂN

;nPIN

P R|IĂN
|ˆ|IN |

where δ is the Kronecker symbol. The second step is the application of the Fourier
matrix

F “
´

e´2πin¨plm ĂNq
¯

nPI
ĂN

;lPI
ĂN

P C|IĂN
|ˆ|I

ĂN
|.
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The last step is the multiplication with the sparse matrix

(2.16) B “

´

ψ̃pkj ´ l m ĂNq
¯

j“1,...,J;lPI
ĂN

P RJˆ|IĂN
|

having at most p2mqDJ non-zero entries. The adjoint NFFT in matrix-vector form
is obtained by reversing the order of the three matrices and applying the adjoint
operator to each step individually:

y “ AHf̂ “DᵀF HBᵀf̂

2.2.4. Algorithmic Complexity. The algorithmic complexity of the direct
NFFT and its adjoint is

Op |I
ĂN
|

loomoon

resampling correction

` |I
ĂN
| log |I

ĂN
|

loooooomoooooon

FFT

` p2mqDJ
looomooon

resampling

q “ Op|I
ĂN
| log |I

ĂN
| `mDJq

“ O
ˆ

|IN | log |IN | ` log

ˆ

1

ε

˙

J

˙

.

Here, we assumed in the last step that σ is constant (e.g., σ “ 2), and that the
accuracy ε improves exponentially with the kernel parameter m. The latter is fulfilled
for all commonly used window functions.

Beside this theoretical consideration, the actual performance of the NFFT and
its individual steps highly depends on the dimensionality and the size of the problem.
The resampling correction step is the cheapest one and can usually be neglected in
terms of computation time. In the most common setting (J « |IN |), the FFT is the
second fastest operation and the resampling is the primary bottleneck being up to one
order of magnitude slower. This is the reason why NFFT implementations usually
put most efforts into optimizing the resampling as much as possible. However, in
sparse sampling settings (J ! |IN |) the FFT can become a dominant factor if the
resampling is done properly. In multi-threading applications it is thus important
to parallelize all parts of the NFFT. Otherwise even the resampling correction can
become a bottleneck.

3. Implementation. After formulating the NFFT and its adjoint in mathemat-
ical notation we next focus on our software package NFFT.jl. Looking back to the
design goals sketched in the introduction we put the highest priority on a generic,
dimension-agnostic and fast/multi-threaded implementation. The second most im-
portant property is to keep the code readable and maintainable. Finally, we also
want our implementation to be flexible and allow to change window functions and
precomputation strategies with low effort. Reusability in different programming lan-
guages was not a top priority during the design of NFFT.jl but we sketch potential
strategies for using NFFT.jl in programming languages other than Julia in section 6.

3.1. Example Usage. A typical example usage of NFFT.jl for a 2D transfor-
mation is outlined below:

1 using NFFT

2

3 D = 2 # dimensionality

4 J = 32*32 # number of sampling points

5 N = (32, 32) # input signal size
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6 k = rand(D, J) .- 0.5 # sampling points in [-0.5,0.5]^D

7

8 p = NFFTPlan(k, N; m=4, σ=2) # create the NFFT plan

9

10 f = randn(Complex{Float64}, N) # signal to be transformed

11 fHat = p * f # compute direct NFFT

12 y = adjoint(p) * fHat # compute adjoint NFFT

For simplicity, the input signal and the sampling nodes are initialized with ran-
dom numbers. Based on the signal size N (line 5) and the sampling nodes k (line 6), an
NFFTPlan object is created in line 8. The constructor takes care of allocating all nec-
essary memory for temporary arrays and performing precomputations to make later
transformations as fast as possible. This precomputation approach is very common in
scientific programming. The actual NFFT’s are applied in line 11 (direct) and 12 (ad-
joint). Since the NFFT can be interpreted as a matrix-vector multiplication, NFFT.jl
uses the method * to express the transformation. The method adjoint creates a lazy
wrapper type that allows * to call the adjoint transformation. In this way the syntax
is very close to the mathematical notation. The chosen interface also matches the
common naming scheme and coding pattern used for linear transformations in the
Julia ecosystem.

In our example, the output vector was allocated within the * method. To avoid
this allocation one can use the interface

1 mul!(fHat, p, f)

2 mul!(y, adjoint(p), fHat)

which allows one to pass the output vector as the first argument. Internally, * is
implemented as a small wrapper around mul!. Again, mul! is a standard method
in Julia to express in-place linear transformations. Finally, there is also a high-level
interface

1 nfft(k, f; m=4, σ=2)

2 nfft_adjoint(k, N, fHat; m=4, σ=2)

that automatically creates a plan before calling the low-level NFFT functions. This
is convenient if the NFFT is applied only once.

3.2. Memory Management. NFFTPlan is a struct holding several temporary
arrays required by the NFFT. In particular it holds:

‚ the temporary vector ĝ.
‚ the forward and backward plan of the inner FFT, i.e., data structures formed

during precomputation to facilitate the computation of FFTs.
‚ different index and data vectors related to the resampling (see subsection 3.7)

and the resampling correction (see subsection 3.5).
The concrete number of data that the plan holds depends on the precomputation
strategy (see subsection 3.7.4). Furthermore, the block-partitioning strategy discussed
in section subsection 3.7.2 also needs additional memory.

3.3. Generic Types. One important design goal of NFFT.jl is the ability to use
different number types. In Julia, this can be done by introducing a type parameter T
that can take on any floating point number type. We restrict all real data types (like
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the input nodes k and the precomputed window function entries) to be of type T while
complex values like the input and output vectors of the NFFT are of type Complex{T}.
This forcing of a common number type is important for optimal performance, as the
need for type promotion is removed. The type T is encoded in the NFFTPlan type and
allows the JIT compiler to generate dedicated machine code for each number type.
Index types are all stored as 64-bit integers, which is the native integer number type
on most modern CPUs. In principle a flexibilization of the index type is straight
forward but this will only be considered if the current restriction to 64-bit integers
poses a real problem.

3.4. Dimension-Agnostic Implementation. The second important design
goal of NFFT.jl is to be dimension-agnostic. This is achieved by an integer parameter
D, which allows us to encode the dimension in the NFFTPlan. This ensures the genera-
tion of dedicated machine code for each dimension. For instance, the signal size N is
stored as a fixed size tuple N::NTuple{D,Int64}. Besides these storage aspects, the
real challenge is to implement the actual calculations in a dimension-agnostic way.
Two possible solutions to tackle this challenge are:

1. Write dedicated implementations for each dimension D.
2. Implement multi-dimensional loops using iterators that treat D as a runtime

parameter.
The first solution ensures maximum performance but leads to code duplication. This is
problematic since code changes need to be done in all copies of the code thus increasing
the maintainability cost. The second solution can be implemented with less code and
without any duplication but it has the downside of being much slower because the
compiler cannot emit fast machine code. Because of these downsides we considered
neither of these two solutions. Instead, we exploit that Julia’s architecture enables
the implementation of fast and generic dimension-agnostic Cartesian iterators. During
the development of Julia, two different Cartesian iterator types have been established.
The first option named CartesianIndices is iterator-based and allows one to iterate
over a D-dimensional array A with

1 for i in CartesianIndices(A)

2 A[i] = ...

3 end

Since the dimension D is a parameter of the array A, the JIT compiler is able to generate
efficient code for CartesianIndices-based for loops. The second option, which was
developed much earlier, is a macro-based solution available in the Base.Cartesian

module. A dimension-agnostic loop using Base.Cartesian is formulated as

1 @nloops $D i A begin

2 @nref $D A i = ...

3 end

and generates the following code for D = 3:

1 for i_3 = axes(A, 3)

2 for i_2 = axes(A, 2)

3 for i_1 = axes(A, 1)

4 A[i_1, i_2, i_3] = ...

5 end
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6 end

7 end

This looks exactly like a hand-written implementation for a given dimensionality
with the important difference, that the code is automatically specialized for the array
dimension D. In NFFT.jl, we mainly use the CartesianIndices-based solution, since
it is easier to read and maintain. However, in cases where more flexibility and control
is needed, we use the Base.Cartesian macros. In particular, we use it in situations
where the inner and the outer for loop are handled differently. This allows us to apply
multi-threading only to the outer for loop.

3.5. Resampling Correction. The resampling correction (and its adjoint) is
a simple element-wise operation. Due to oversampling, the input and output array
do not have the same size but the iteration only runs over IN . To this end, we use
Base.Cartesian and multi-thread the most outer for loop.

One important implementation detail of the resampling correction is to take the
indices of the later FFT into account. The FFT is usually defined with a sum running
from 0 to rNd ´ 1 while the FFT within the NFFT needs to be performed on the grid

I
ĂN

with indices running from ´
ĂNd

2 to
ĂNd

2 ´ 1. Accordingly, an fftshift needs to be
performed. To avoid having to perform an extra step, we integrate the index mapping
into the resampling correction step and thus only need to touch each point once.

The primary bottleneck of the resampling correction is the evaluation of the func-
tion ϕ. While this can often be neglected because the resampling is much more expen-
sive, there are situations, such as 1D transforms with J ! |IN |, where the resampling
correction can become a bottleneck. Therefore we perform two optimizations:

1. We cache ϕ so that it can be reused when applying many NFFTs to different
data. Here we can exploit the tensor product structure of ϕ and cache the
vectors

βtensor
d “

`

βtensor
nd,d

˘

ndPINd

, βtensor
nd,d

“
1

mϕBase

´

m
ĂNd
nd

¯ , d “ 1, . . . , D.

During the resampling correction we can then calculate 1
|I

ĂN
|ϕpnq on the fly

using:

1: for nD P IND
do

2: γD Ð βtensor
nD,D

3: for nD´1 P IND´1
do

4: γD´1 Ð γD β
tensor
nD´1,D´1

5: ¨ ¨ ¨

6: for n1 P IN1
do

7: γ1 Ð γ2 β
tensor
n1,1

8: gn Ð fnγ1

9: end for
10: ¨ ¨ ¨

11: end for
12: end for

Here, we used the assignment notationÐ to indicate that the temporary vari-
ables γd are updated during the loop. This form of precomputation requires
only Op

řD
d“1Ndq memory (and evaluations of ϕ), whereas a full precom-
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putation has a requirement of Op
śD
d“1Ndq. During the actual resampling

correction, there is no real downside, since there is just one additional multi-
plication in the inner loop, which in practice is not necessarily slower because
the bottleneck is the load and store operation acting on gn and fn in line 8.
For completeness NFFT.jl also has an option for full precomputation, which
is useful in the GPU prototype that we sketch in section section 6.

2. While the number of evaluations of ϕ is greatly reduced in the multi-dimen-
sional case, we observed a measurable influence for 1D transformations. We
therefore optimize the precomputation of 1

|I
ĂN
|ϕpnq by approximating ϕ with

a Chebyshev polynomial, which is much faster to evaluate than our default
window (Kaiser-Bessel).

3.6. Fast Fourier Transform. The FFT is usually not part of the NFFT im-
plementation itself. Instead one uses an existing high-performance FFT library. We
chose the FFTW.jl package, which is a wrapper around the popular FFTW library [9].
An alternative is to use the binary compatible implementation from Intel’s Math Ker-
nel Library (MKL), which can be changed via a runtime switch. Right now, NFFT.jl
is hardcoded to use FFTW/MKL, while in principle it is possible to make this step
exchangable using the interface package AbstractFFTs.jl.

The FFTW package provides a planner interface to split off precomputations
and preallocations. In NFFT.jl, the FFTWPlan is integrated into the NFFTPlan, thus
separating planning from computation. Since FFTW requires a dedicated plan for
forward and backward transformation, both plans are precomputed and stored in
the NFFTPlan. The number of FFTW threads is matched to the number of threads
used for the resampling and its correction within the NFFT. FFTW.jl allows one to
use the thread-pool of the Julia runtime, which enables nested parallelism, i.e., if
multiple NFFT/FFT are called in parallel from different threads, there will be no
over-commitment breaking down the performance.

3.7. Resampling. The most important and most challenging operation of any
NFFT implementation is the resampling. While the mathematical formula looks
straight forward, there can be slowdowns of more than one order of magnitude between
textbook implementations and optimized ones. We next outline the most important
aspects that should be taken into account.

3.7.1. Loop Optimization. To discuss the details of the implementation, we
recapitulate the resampling steps, which are given by

direct resampling: f̂j “
ÿ

lPI
ĂN,m

pkjq

ĝl ψ̃pkj ´ lm ĂNq, j “ 1, . . . , J(3.1)

adjoint resampling: ĝl “
ÿ

jPIᵀ
ĂN,m

plq

f̂j ψ̃pkj ´ l m ĂNq, l P I
ĂN

(3.2)

Since the direct and adjoint transform have a very similar structure, we can share
most of the concepts and code discussed in this section. The operations (3.1) and

(3.2) can either be memory bound because of the access to ĝl, f̂j and kj or compu-

tational bound because of the calculation of ψ̃pkj ´ l m ĂNq. In subsection 3.7.2 and
subsection 3.7.3 we discuss how to prevent cache misses, which substantially accel-
erates memory access time. In subsection 3.7.4 we discuss different precomputation
strategies for accelerating the computation of ψ̃pkj ´ lm ĂNq.
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When both aspects are carefully taken into account one can perform additional
loop optimizations. While these are often applied automatically, appropriately written
code is required for the compiler to do so. The first optimization is the usage of an
(immutable) fixed-size array. This allows the compiler to allocate arrays on the stack
and keep them in CPU registers. Furthermore, it enables loop unrolling and allows
the compiler to use SIMD (single instruction multiple data) instructions for parallel
processing on a single core. In Julia it is possible to create fixed-size arrays during
runtime using tuple types. We therefore create D fixed-size vectors

ψ̃local
d,j :“

´

ψ̃local
`,d,j

¯2m

`“1
, d “ 1, . . . , D

ψ̃local
`,d,j :“ ψ̃Base

ˆ

1

m

´

rNdkd,j ´ ω
ĂNd,m

pkd,j , `q
¯

˙

and calculate (3.1) by
(3.3)

f̂j “
2m
ÿ

`D“1

ψ̃local
`D,D,j

2m
ÿ

`D´1“1

ψ̃local
`D´1,D´1,j ¨ ¨ ¨

2m
ÿ

`1“1

ψ̃local
`1,1,j ĝl, l “

´

ω
ĂNd,m

pkd,j , `dq
¯D

d“1
.

The nested product calculation in (3.3) exploits the tensor product structure of the
window function and results in a very simple inner loop (over `1) that can be fully
optimized by the compiler.

Remark 3.1. Local caching of the window function using the vectors ψ̃local
d,j should

not be confused with the precomputation of ψ̃ discussed in subsection 3.7.4. This is
because the local vector ψ̃local

d,j is calculated right before the resampling. Hence it is
a local computation trick that helps the compiler to generate very efficient machine
code. On the other hand, this caching can make precomputation unnecessary for larger
dimensions. This is because the calculation of all non-zero entries of the B matrix –
which might require an expensive window evaluation – has an arithmetic complexity
of OpmDq while the sum in (3.3) requires OpmDq operations. With increasing D, the
caching operation becomes negligible even for expensive window functions.

3.7.2. Block-Partitioning Motivation. The non-equidistant nature of the
sampling points kj implies that there is no natural ordering of the sampling points
in multiple dimensions. This means that subsequent sampling points kj , kj`1 can
have a large distance in TD. If this is the case, they interact with largely separated
regions in the vector ĝ. Computational-wise, this leads to cache misses and degrades
performance. This is especially a problem when using multiple threads, where cache
misses can be avoided if closely located points are processed on the same CPU core.

A second and much more severe issue comes up within the adjoint resampling step.
The direct resampling accesses ĝ only for reading, which can be done concurrently
without changing the result of the computation. The adjoint, however, performs in-
place additions acting on ĝ and results in race conditions when carried out in parallel.
Locking the access to ĝ using a mutex could solve this problem but basically results
in a serial execution since the access to ĝ is a large portion of the computation time.
In practice, it even degrades the performance, since the CPU pipeline cannot be
optimally used because of the unpredictable locking of the access to ĝ.

Both of the aforementioned issues have been tackled in NFFT3 [27] and FIN-
UFFT [2]. Ref. [27] proposed node sorting and 1D block-partitioning as independent
concepts for the NFFT3 library. Sorting is done with respect to the index l that is
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obtained by flooring ĂN d kj ´m1 to I
ĂN

. Block-partitioning is performed by split-
ting ĝ in its 1D in-memory representation into T regions, where T is the number of
threads. Then, all points acting on a specific block are determined and used during
the actual computation. This approach achieves close to linear speedup with the
number of threads when the density of the sampling points is close to uniform. It,
however, yields sub-optimal scaling for non-uniform sampling density since the load is
not well-balanced. This issue was solved in [2] where a more general block-partitioning
strategy was proposed. The first idea is to use multi-dimensional blocks to improve
the data locality. The second idea is to use a fixed number of points per block yielding
better load balancing. Decoupling the number of blocks from the number of threads
(i.e., use more blocks than threads) ensures that a single long-lasting thread does not
slow down the entire computation. We note that a block partitioning scheme to ex-
ploit data locality has already been proposed in [12], although no focus has yet been
placed on parallel implementation in that work.

In NFFT.jl we followed the approach proposed in [2] with the main difference that
our blocks are smaller and all have the same size. For reference, we also implement
a regular resampling without block-partitioning, which can be used to investigate the
performance gains of block-partitioning. To the best of our knowledge, both NFFT3
and FINUFFT use no block-partitioning in the direct resampling but only in the
adjoint resampling. We apply the concept to both operations.

3.7.3. Block-Partitioning Implementation. We next describe block-parti-
tioning formally. The basic idea is to split the domain TD into P P 2ND equally sized
blocks

(3.4) Rp :“
D
ź

d“1

„

pd
Pd
,
pd ` 1

Pd

˙

, p P IP

such that
Ť

pPIP
Rp “ TD. Based on this we can collect the indices j “ 1, . . . , J of

the nodes kj in a block Rp by

(3.5) Γp :“ tj P t1, . . . , Ju : kj P Rpu .

Instead of iterating over j “ 1, . . . , J with a single for loop, we can now use two nested
for loops:

1. an outer for loop over the blocks p P IP .
2. an inner for loop over the node indices j P Γp.

We next partition the index set I
ĂN

into P blocks of size Q “

Q

ĂN m P
U

, where the

ceiling is performed in an element-wise fashion. Then, we calculate those indices
l P I

ĂN
that could be necessary in the resampling for the nodes in the block p. This

is the index set

Iblock
p,m :“

ď

kPRp

I
ĂN ,m

pkq,

which has |Q` 2m| entries.
Having defined the index set Iblock

p,m we have everything in place to define the block-
partitioned resampling. We start with the direct resampling, which is summarized in
Algorithm 3.1. The outer loop of the algorithm runs over the blocks (line 1). For each
block p, a local cache q̂p “ pq̂n,pqnPIblock

p,m
P CQ`2m is created and the data from ĝ is

copied to q̂ (lines 2–4). Then, the inner loop over all nodes within Γp is carried out.
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This loop initializes f̂j with zero (line 6) and then performs the inner resampling over
I
ĂN ,m

pkjq where now the local cache q̂ is used instead of ĝ (lines 7–9). Multi-threading
the direct block-partitioned resampling is straight forward. The outer for loop over
the blocks is run in parallel (indicated by parfor) and does not need to take data
dependencies into account.

Algorithm 3.1 Block-Partitioned Resampling

1: parfor p P IP do Ź for each block
2: for l P Iblock

p,m do
3: q̂l,p Ð ĝn Ź init block
4: end for
5: for j P Γp do Ź for each node in block

6: f̂j Ð 0
7: for l P I

ĂN ,m
pkjq do Ź inner resampling

8: f̂j Ð f̂j ` q̂l,p ψ̃pkj ´ l m ĂNq
9: end for

10: end for
11: end parfor

The block-partitioned implementation of the adjoint resampling is summarized in
Algorithm 3.2. In the first step (lines 1–3), ĝ is initialized with zeros. Then, the main
outer loop over the blocks p is initiated. It first initializes the local caches q̂ with
zero (lines 5–7). Then, for each node index j in Γp all summands acting on the local
block q̂ are added at the appropriate location (lines 9–11). Afterwards, the local cache
needs to be added to the global vector ĝ (lines 14–16). To multi-thread the block-
partitioned adjoint resampling, first the initial loop initializing ĝ with zero is run in
parallel. Then, the main outer for loop over the blocks is multi-threaded. As a matter
of fact, the data dependency caused by the in-place addition now needs to be taken
into account. The first loop in lines 8–12 is unproblematic, since q̂ is thread-local and
the inner loop is run in series. However, the second loop (lines 14–16), needs to be
locked with a mutex, since otherwise different threads would simultaneously update
values in ĝ. While this locking could potentially slowdown computation, we note
that in practice, the first loop (lines 8–12) has a much higher workload and therefore
observed only a small scaling penalty. This is in full agreement with the observations
made in [2].

Remark 3.2. In practice, the sets Iblock
p,m and I

ĂN ,m
pkjq can be calculated efficiently.

Both represent structured blocks within I
ĂN

that can be represented by just start/end
indices in each dimension. In some cases, an index wrap needs to be taken into
account. This wrapping can be implemented efficiently by precalculating the wrapping
indices for each block. In the actual implementation, all indices are shifted to positive
indices with an additional index offset that needs to be taken into account during the
calculation. The loop over I

ĂN ,m
pkjq can be implemented without wrapping since q̂

contains extra padding, i.e., wrapping only needs to be taken into account in the for
loop in lines 2–4 of the direct resampling and lines 14–16 of the adjoint resampling.

3.7.4. Window precomputation. Next we discuss different strategies to avoid
large computational cost of the window function evaluation. In the literature (e.g.,
[19] and [2]), we found the following options:

1. No precomputation
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Algorithm 3.2 Block-Partitioned Adjoint Resampling

1: parfor l P I
ĂN

do
2: ĝl Ð 0 Ź init output array
3: end parfor
4: parfor p P IP do Ź for each block
5: for l P Iblock

p,m do
6: q̂l,p Ð 0 Ź init block
7: end for
8: for j P Γp do Ź for each node in block
9: for l P I

ĂN ,m
pkjq do Ź inner resampling

10: q̂l,p Ð q̂l,p ` f̂j ψ̃pkj ´ l m ĂNq
11: end for
12: end for
13: lock Ź critical section
14: for l P Iblock

p,m do
15: ĝl Ð ĝl ` q̂l,p Ź add to output array
16: end for
17: end lock
18: end parfor

One can directly evaluate the window during the application of the resam-
pling. Depending on the window, this can lead to very slow runtimes if the
window evaluation is expensive.

2. Full precomputation
Another common strategy is to compute all window entries prior to the trans-
formation. There are different variants for this, either one can keep the in-
dexing logic the same and just use the cached window entry if needed. Alter-
natively one can go one step further and represent the entire resampling as a
multiplication with a sparse matrix B, see (2.16). This requires storing the
indices of the non-zero entries in B.

3. Tensor product based precomputation
The tensor product approach is similar to full computation but calculates the
window function in each direction separately. This is basically the same as
using the local caches ψ̃local

d,j with the exception that the caches are stored
globally for all nodes kj . Pulling all window entries into the inner sum, as
full precomputation would do, is in many situations slower, since it increases
the memory bandwidth, while the local tensor caching approach (with and
without precomputation) is CPU bound.

4. Linear interpolation based precomputation
A common pattern to speed up the evaluation of the window function is linear
interpolation. To this end, during precomputation a lookup table

ψ̃linear :“
´

ψ̃linear
s

¯S´1

s“0
with ψ̃linear

s :“ ψ̃Base

ˆ

s

S ´ 2

˙

(3.6)

is created where S is the number sampling points. During resampling one
then needs to perform the lookup

ψ̃Base

ˆ

1

m

´

rNdkd,j ´ ld

¯

˙

« ψ̃linear
s̃ ` α pψ̃linear

s̃`1 ´ ψ̃linear
s̃ q(3.7)
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where

κ “

ˇ

ˇ

ˇ

ˇ

S ´ 2

m

´

rNdkd,j ´ ld

¯

ˇ

ˇ

ˇ

ˇ

, s̃ “ tκu , α “ κ´ tκu .

The sampling point s “ S ´ 1 laying outside the support of the window
function is required since for | rNdkd,j ´ ld| “ m, we have s̃ “ S ´ 2 and

in turn the lookup table ψ̃linear is accessed at index S ´ 1 in (3.7). When
choosing S ´ 2 to be a multiple of m (i.e., S “ mY ` 2, Y P N), it is
possible to perform the calculation of κ, s̃, α only once and increase s̃ with
a constant offset when iterating ld through the index set I

ĂNd,m
. The error

of the linear interpolation depends on S, i.e., the larger S, the smaller is the
error. NFFT3 provides experimentally determined values for S, which keep
the window approximation error for specific m below the entire NFFT error.
For instance, for the Kaiser-Bessel window they can be written as

S “ m2cminpm,8q ` 2, C “ pcmq
8
m“1 “

`

3 7 9 14 17 20 23 24
˘

.

Performance-wise it turns out that this method works well for small m ă 5
but larger m require very large lookup tables. For instance, m “ 8 and the
Kaiser-Bessel window requires 134217730 entries (1 GB in double precision).
This large amount of memory makes the operation much slower for large m
since the lookup table does not fit into cache anymore and the resampling
basically needs to run over the entire look-up table with a spacing of S´2

m in
2m steps.

5. Polynomial approximation based precomputation
An alternative window approximation was proposed in [2]. It uses piecewise
polynomial approximation with a high polynomial degree. The idea is to split
the window into 2m parts and perform polynomial approximation indepen-
dently on each interval

“

´1` p`´ 1q{m,´1` `{m
˘

, ` “ 1, . . . , 2m by setting
up the Vandermonde matrix V and the corresponding sampling vector b:

V “

ˆˆ

´
1

2
`

ϑ

Θ´ 1

˙z˙

ϑ“0,...,Θ´1;z“0,...,Z´1

,

b` “

ˆ

ψ̃Base

ˆ

´1`
1

m

ˆ

`´ 1`
ϑ

Θ´ 1

˙˙˙Θ´1

ϑ“0

.

The polynomial coefficients µ` “ pµz,`q
Z´1
z“0 are then calculated by solving the

least-squares problem }V µ` ´ b`}2
µ`
Ñ min. The reason to consider the least-

squares problem is that we apply an oversampling and choose more sampling
points than the polynomial degree Θ “ 2Z to achieve smaller errors. We thus
are in the approximation setting and not the interpolation setting. During
resampling the polynomial approximation uses the lookup

ψ̃Base

ˆ

1

m

´

rNdkd,j ´ ω
ĂNd,m

pkd,j , `q
¯

˙

«

Z´1
ÿ

z“0

µz,` ζ
z, ` “ 1, . . . , 2m

where ζ “ rNdkd,j ´
Y

rNdkd,j

]

´ 1
2 . By using 2m intervals, the position ζ is

the same for all intervals and therefore only the weights µz,` need to change
when iterating through ` “ 1, . . . , 2m.
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Table 1
Memory requirement for different window function precomputation strategies.

Precomputation Memory [# values]

No -

Full p2mqDJ

Tensor 2mDJ

Linear S “ mY ` 2

Polynomial 2mZ

Our polynomial approximation implementation is slightly different then the
one implemented in FINUFFT. In particular, we sample the window function
equidistantly on the real line, whereas FINUFFT uses a sampling of a square
in the complex space that is tailored to the specific window function used
in FINUFFT. In our experiments a polynomial degree of Z ´ 1 “ 2m is
sufficient to keep the window function approximation error below the NFFT
error, while [2] reported 2m ` 3 to be necessary. This might be due to the
different sampling when setting up the approximation problem or the different
window function being used. In contrast to FINUFFT, which hardcodes the
polynomial coefficients for a specific set of m/σ in a C file generated by
a Matlab script, NFFT.jl sets up the coefficients µz,` up on the fly during
precomputation.

Table 1 summarizes the memory requirement for the different precomputation op-
tions. The least memory is required for no precomputation followed by polynomial
approximation, which effectively always requires less than or equal to 272 entries tak-
ing into account that machine precision is reached for m “ 8. Full and tensor product
precomputation are more expensive since they have a per node cost. For D ą 1
tensor precomputation requires much less memory then full precomputation. Linear
interpolation is difficult to classify, since it can require less memory than full/tensor
precomputation for small m and large J but also require more memory for large m
and small J .

We implemented all precomputation strategies except for no precomputation in
NFFT.jl. They can be changed by passing the precompute option to the NFFTPlan

and setting it to one of the enum values FULL, TENSOR, LINEAR, or POLYNOMIAL. The
reason for not implementing no precomputation is that an efficient implementation of
this option with exchangeable window function requires making the window function
a type parameter of the NFFTPlan. Since direct evaluation is known to be slower
than polynomial interpolation even for cheap windows (see the discussion in [2]), we
refrained from implementing no precomputation to avoid an increase in software com-
plexity. Tensor product precomputation is combined with polynomial approximation
in NFFT.jl, i.e., the precomputation is accelerated with polynomial approximation
when using the TENSOR option.

Having a look at the two reference libraries, NFFT3 supports the first four pre-
computation strategies, while FINUFFT supports only polynomial approximation.

3.7.5. Window Size Considerations. We defined the truncated window func-
tion ψ̂ to have a support of r´ m

ĂNd
, m
ĂNd
q along dimension d. This means that the sum

within the resampling has p2mqD non-zero summands. When considering the support
r´ m

ĂNd
, m
ĂNd
s, as commonly done in the literature, one needs to consider the special case
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that a node kj lies exactly on the grid specified by l m ĂN and in turn the sum has
p2m` 1qD summands. In principle one could switch between p2m` 1qD and p2mqD

by checking if kj lies on the grid. As a matter of fact, this would actually harm the
performance, since an if statement in a hot loop would need to dynamically switch
between p2mqD and p2m` 1qD, which could lead to CPU pipeline flushes.

Our solution mitigates the problem with the potential downside of a slightly higher
error. This, however, is very unlikely since kj would need to match a grid point exactly
in floating point precision. An alternative to our approach is implemented in NFFT3.
It considers p2m ` 2qD points and uses ϕ̂ instead of ψ̂ during window evaluation.
This has the advantage that no unnecessary multiplications with zero are carried out,
which would happen if ψ̂ was sampled outside of its support. In turn, this method can
lower the approximation error of the NFFT. In section 5, we investigate how much the
choice of p2m` 2qD points improves the accuracy and whether it is better to instead
use p2mqD points and increment m, which results in the same number of operations
but a different window shape.

4. Materials and Methods. In the remainder of the manuscript an extensive
evaluation of NFFT.jl is carried out. Both accuracy and performance are investigated
and compared to NFFT3 and FINUFFT.

In all examples J “ |IN | random sampling points kj P TD are chosen. This is a
typical yet challenging use case and in particular the random nodes can be considered
to be the worst-case scenario an NFFT implementation needs to tackle. We use 1D–
3D datasets with N1D “ 218 “ 262144, N2D “ p512, 512qᵀ, N3D “ p64, 64, 64qᵀ.
The oversampling parameter is chosen to be σ “ 2 while the kernel size parameter
m is chosen between 3 and 10. For NFFT.jl and NFFT3, the Kaiser-Bessel window
(Kaiser-Bessel function for ϕ and the corresponding Fourier transform for ϕ̂) is chosen.
FINUFFT uses the exponential of semicircle kernel.

All computations were performed on a computer with 1024 GB of main memory
and an AMD EPYC 7702 CPU. NFFT.jl was used in version 0.13. FINUFFT (v2.1.0)
and NFFT3 (v3.5.2) were applied using the Julia wrapper packages FINUFFT.jl and
NFFT3.jl. Julia was used in version 1.8.2. FFTW is used by all libraries and the same
option (FFTW MEASURE) was used such that the FFT computation time is the same.
This has been verified by inspecting the inner NFFT timings, which can be accessed
for all libraries. Benchmarks are performed by repeating the same computation several
times (with a 120 seconds threshold) and using the minimum time of all runs. This
can be viewed as an estimate for the lower bound that is reached with hot CPU caches
and no other workload affecting the computation. The accuracy of the NFFT and its

adjoint are determined by calculating the relative error }fNDFT´fNFFT}8
}fNDFT}8

where fNDFT

is the result vector when applying the NDFT and fNFFT is the result vector of the
NFFT.

The code for the entire analysis can be accessed in the benchmark/paper direc-
tory of the NFFT.jl GitHub repository, which can be found at: https://github.com/
JuliaMath/NFFT.jl.

5. Results.

5.1. Accuracy Analysis. We start the evaluation by looking at the accuracy of
the NFFT.jl for the 2D dataset. The relative error of the direct and adjoint transform
is shown for different precomputation strategies of the window function, an oversam-
pling factor of σ “ 2 and m “ 3, . . . , 10 in Figure 1. First of all one can see that
the error decreases exponentially with the kernel parameter m. For the Kaiser-Bessel

https://github.com/JuliaMath/NFFT.jl
https://github.com/JuliaMath/NFFT.jl
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Fig. 1. Relative error of NFFT.jl for different precomputation strategies, an oversampling
factor of σ “ 2 and window size parameters m “ 3, . . . , 10. Left shows the error of the direct
transform while right shows the error of the adjoint transform.
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Fig. 2. Relative error of NFFT.jl compared to NFFT3 and FINUFFT for an oversampling
factor of σ “ 2 and window size parameters m “ 3, . . . , 10. Left shows the error of the direct
transform while right shows the error of the adjoint transform.

window the optimum accuracy is reached at m “ 8 at which point the error saturates.
When comparing the different precomputation strategies one can observe almost no
difference. This is remarkable since FULL does not apply a window approximation,
while TENSOR (in NFFT.jl), LINEAR and POLYNOMIAL do. This shows that by a proper
selection of the window approximation parameters it is possible to keep this approx-
imation error below the other approximation errors of the NFFT. Accuracy-wise, it
thus does not matter which precomputation strategy is used.

We next compare the accuracy between NFFT.jl, NFFT3 and FINUFFT. FIN-
UFFT does not allow to directly set the parameters σ and m but instead uses a
tolerance parameter ε to derive σ and m. By reading the source code and enabling
debugging information, it was possible to select ε such that, for a fixed value σ “ 2,
the desired value m was obtained. Due to an upper limit of m “ 8, larger m were
omitted for FINUFFT. The accuracy comparison is shown in Figure 2. In a first qual-
itative comparison, one can see that the errors are very similar with NFFT3 being
slightly more accurate than NFFT.jl for the direct NFFT, and NFFT.jl being more
accurate than FINUFFT for both transformations. When looking at the quantitative
values, the mean relative error ratio between NFFT.jl and NFFT3 is 1.767 for the
direct transform and 1.106 for the adjoint transform. The mean relative error ratio
between FINUFFT and NFFT.jl is 2.722 for the direct transform and 2.242 for the
adjoint transform. In all cases, only m “ 3, . . . , 7 have been used for the calculation
of the mean ratio. The differences in accuracy can be explained as follows. FINUFFT
uses a different window function that is not as accurate as the Kaiser-Bessel window
used in the other two implementations. The difference between NFFT.jl and NFFT3
is caused by NFFT.jl using a window of size 2m while NFFT3 uses a window of size
2m ` 2 leading to a slightly lower window truncation error. However, the accuracy
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gain by increasing m by one – resulting in a window size of 2pm ` 1q “ 2m ` 2 – is
much greater than the gain when using 2m` 2 points without changing the shape of
the window. This justifies the choice of 2m points taken by NFFT.jl and FINUFFT.

5.2. Block-Size Investigation. We next take a closer look at the resampling
and investigate the block-partitioning performance within NFFT.jl. Figure 3 shows
the runtime performance of the direct and the adjoint NFFT for different block sizes,
different dimensionalities (1D–3D), POLYNOMIAL precomputation, and different num-
bers of threads (1–8). The block sizes are chosen in such a way, that the largest value
(1D: 219, 2D: p1024, 1024qᵀ, 3D: p128, 128, 128qᵀ) corresponds to the usage of one
block only. This edge case results in no parallelization and thus leads to sub-optimal
performance in the multi-threaded cases. When choosing smaller block sizes also the
single-threaded performance is improved for all dimensionalities since this allows for
better usage of CPU caches. For all dimensionalities, one can see that the performance
degrades when choosing the blocks too small since in that case, the administration
overhead for the blocks becomes too high. The optimum block size differs for different
numbers of threads and the direct and adjoint transform. It ranges from 103 to 105

in 1D, from 64 to 128 in 2D, and from 16 to 32 in 3D. Based on that we set the
default value to 4096 (1D), p64, 64qᵀ (2D), and p16, 16, 16qᵀ (3D) in NFFT.jl. For
higher dimensions the block size is set to one.

In addition to the block-partitioning performance (solid), the figure also shows the
performance of the regular resampling (dashed). For the adjoint transform the latter is
only available for single-threading. One can see that the block-partitioned resampling
outperforms the regular resampling in all cases when considering an optimal block
size. This shows that block-partitioning should not only be used for the adjoint but
also for the direct NFFT.

5.3. Performance Analysis. A performance comparison of NFFT.jl, NFFT3,
and FINUFFT for 1D–3D and running on a single thread is shown in Figure 4. In
addition to the runtime performance (columns 1–2) also the precomputation time
(column 3) is shown. All times are calculated for m “ 3, . . . , 8 and plotted versus
the relative error. We use this representation, since it allows us to make comparisons
even if the accuracy of different implementations differs.

The runtime of NFFT.jl is shown for both POLYNOMIAL and TENSOR pre-com-
putation. One can see that the runtime performance is usually a little bit higher
for TENSOR with the downside of a larger precomputation time. This trade-off is
more prominent for the 1D and 2D transform whereas in 3D the runtimes are very
close while the precomputation times are almost negligibly small compared to the
transformation time. As a result, we decided to make POLYNOMIAL the default option
since it provides good performance and uses less memory.

When comparing the different libraries one can see that the performance varies for
different dimensionality and different accuracy. In all cases, FINUFFT and NFFT.jl
are faster than NFFT3. In 1D, NFFT.jl with POLYNOMIAL precomputation is as fast as
FINUFFT while TENSOR precomputation is fastest. In 2D, TENSOR precomputation is
still a little bit faster. In that case, FINUFFT is slighly slower in the direct transform
while for the adjoint transform NFFT.jl and FINUFFT are almost on the same level
with FINUFFT being slightly faster for high accuracy. The results in 3D are similar,
with the only exception that the NFFT.jl with POLYNOMIAL precomputation is at the
same level as NFFT.jl with TENSOR precomputation. This is expected because the
local window caching discussed in section 3.7.1 exploits the tensor product structure,
resulting in a lower time fraction for the window precomputation than for the actual
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Fig. 3. Runtime performance of NFFT.jl for block-partitioned (solid) and regular (dashed)
resampling, 1D–3D transformations, and 1–8 threads. Left shows the runtime of the direct trans-
formation while right shows the runtime of the adjoint transformation.

summation in the resampling step.
When looking at the precomputation time one can see that FINUFFT is fastest

for all dimensionalities. This is most important for 1D transforms where the precom-
putation time is larger or in the same order as the actual transformation time.

The multi-threading performance of NFFT.jl, NFFT3, and FINUFFT is com-
pared in Figure 5 for the 2D data (m “ 4 and σ “ 2). The upper two plots show the
runtime for t “ 1, . . . , 8 threads. One can see that all libraries speedup computation
by adding more threads although the parallel efficiency (lower two plots) drops with
increasing threads. The parallel efficiency is defined as the ratio between actual and
theoretically possible speedup. It is in a similar range for all three libraries with a
slightly higher value for NFFT3. This might be due to the lock required in NFFT.jl’s
and FINUFFT’s block-partitioning implementation, which is not required in NFFT3’s
implementation.

6. Discussion. The aim of this work was to introduce the software package
NFFT.jl, which is written in pure Julia and combines high-performance with a flexible
architecture. The use of Julia is not an implementation detail but, on the contrary,
enables us to make less compromises in the implementation, which would neither be



24 T. KNOPP, M. BOBERG, M, GROSSER

10−14 10−12 10−10 10−8 10−6 10−4
0.00

0.01

0.02

0.03

0.04

0.05

R
u
nt
im

e
/
s

NFFT, 1D

10−14 10−12 10−10 10−8 10−6 10−4
0.00

0.01

0.02

0.03

0.04

0.05

NFFTH, 1D

10−14 10−12 10−10 10−8 10−6 10−4
0.000

0.025

0.050

0.075

0.100

Precompute, 1D

10−14 10−12 10−10 10−8 10−6 10−4
0.00

0.05

0.10

0.15

0.20

R
u
nt
im

e
/
s

NFFT, 2D

10−14 10−12 10−10 10−8 10−6 10−4
0.00

0.05

0.10

0.15

0.20

NFFTH, 2D

10−14 10−12 10−10 10−8 10−6 10−4
0.00

0.05

0.10

0.15

Precompute, 2D

10−14 10−12 10−10 10−8 10−6 10−4
0.0

0.5

1.0

1.5

2.0

2.5

Relative Error

R
u
nt
im

e
/
s

NFFT, 3D

NFFT.jl/POLY NFFT.jl/TENSOR NFFT3 FINUFFT

10−14 10−12 10−10 10−8 10−6 10−4
0.0

0.5

1.0

1.5

2.0

2.5

Relative Error

NFFTH, 3D

10−14 10−12 10−10 10−8 10−6 10−4
0.00

0.05

0.10

0.15

0.20

0.25

Relative Error

Precompute, 3D

Fig. 4. Single-threading performance of NFFT.jl with the TENSOR and the POLYNOMIAL
precomputation strategy compared to NFFT3 (with TENSOR) and FINUFFT.

possible in high-level languages like Matlab and Python, nor in low-level languages
like C/C++. Along these lines, our work can also be understood as a showcase of how
Julia enables new possibilities in scientific computing that are challenging to achieve
with classical tools. The highlight of NFFT.jl is a completely generic implementation
that is both number-type and dimension-agnostic.

A comparison of code complexity is not really possible since it also depends on
the programmers experience in a certain programming language, whether a code base
is found to be complex. Even a comparison of code size is difficult, since the number
of characters also depends on the verbosity of keywords used in a given language.
Keeping that in mind we counted memory used by the source code of the core NFFT
algorithm for all three libraries. It is 184 KB for the kernel/nfft directory of NFFT3
and 246 KB for the src directory of FINUFFT. The latter, however, contains 106
KB of generated code, which we would not count as source code yielding 140 KB
effectively. In contrast, the src directory of NFFT.jl has 74 KB of source code.
This shows that Julia allows for using less code for achieving the same or even more
functionality than its C/C++ counterparts.

The performance of NFFT.jl was found to be the same or better than NFFT3
and FINUFFT. NFFT.jl was faster in both the 1D and the 2D examples and was at
the same speed as FINUFFT for the 3D example. Regarding precomputation time,
NFFT.jl was only slightly slower than FINUFFT and much faster than NFFT3 for
the POLYNOMIAL precomputation. NFFT.jl with TENSOR precomputation was slower
than POLYNOMIAL but still much faster than NFFT3, which is due to our polynomial
window approximation being applied during precomputation.
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Fig. 5. Multi-threading performance of NFFT.jl with the TENSOR and the POLYNOMIAL
precomputation strategy compared to NFFT3 (with TENSOR) and FINUFFT. Shown is the speedup
and the parallel efficiency for t “ 1, 2, 4, 8 threads.

Beside the benchmark between different NFFT software libraries we also made
some general findings on NFFT implementation strategies. First of all we compared
the use of 2m and 2m ` 2 sampling points for the window function and found that
the gain in accuracy by the two additional points sampled outside the support of ψ̂
are not worth the additional accuracy, since it is more effective to instead increase
the window parameter m itself, which increases the width of the window. Moreover,
we investigated different block sizes and found dimension-dependent value ranges for
which the NFFT reaches highest performance. Since the optimum block-size is highly
dependent on the transform size, the number of used threads, and the CPU, we plan to
develop an optimization mode, where the optimum block size is automatically chosen
based on online-benchmarks, similar to the FFTW MEASURE option in FFTW.

One principle downside of NFFT.jl compared to its C/C++ counterparts is that
the latter are currently more binding-friendly than the former. We note, however,
that Julia can be embedded in C and therefore it is possible to integrate NFFT.jl in
every programming language that allows to call C code. While this still requires a
full Julia installation there is also the possibility to statically compile Julia code into
a shared library using PackageCompiler.jl. We note, however, that static compilation
of Julia code is still actively being worked on and will likely evolve in future versions
of the language.

An important future step for the NFFT.jl project is to exploit GPU implemen-
tations written in Julia. Right now, there is a prototype implementation named
CuNFFT.jl, which is fully functional and required only 125 lines of code. This is
achieved by using the FULL precomputation operation and uploading the entire sparse
matrix onto the GPU. For optimum performance, one however, would need to write
custom kernels and use a similar block-partitioning strategy as we did in the CPU
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implementation.
NFFT.jl is already a feature-rich NFFT library that is used in different contexts

[23, 11, 16]. During the write-up of this paper, we focused on fixing performance
bottlenecks and streamlining the interface of the core algorithm. This does not imply,
that NFFT.jl is feature complete yet. One important extension would be the im-
plementation of the NNFFT (also named type-3 NFFT), which has non-equidistant
sampling points in both domains. Another missing feature are the fast versions of the
non-equidistant cosine and sine transforms (NFCT and NFST). Application oriented
tools – like quadrature weights for the non-equidistant sampling points – are also in
the scope of NFFT.jl. Those are implemented in the package NFFTTools.jl, which is
one layer lower in the package graph and can in principle be also used in combination
with other NFFT Julia packages such as NFFT3.jl and FINUFFT.jl.

7. Conclusion. In conclusion, this work has outlined how the scientific program-
ming language Julia can be used to implement a very flexible software package for
NFFT computation. Our implementation is completely type- and dimension-agnostic
and still uses less code than established packages. We implemented state-of-the-art
acceleration techniques taken from two established NFFT libraries and showcased
their performance characteristic in 1D–3D examples.
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