
Thutmose Tagger: Single-pass neural model for Inverse Text Normalization

Alexandra Antonova, Evelina Bakhturina, Boris Ginsburg

NVIDIA
{aleksandraa, ebakhturina, bginsburg}@nvidia.com

Abstract
Inverse text normalization (ITN) is an essential post-processing
step in automatic speech recognition (ASR). It converts numbers,
dates, abbreviations, and other semiotic classes from the spoken
form generated by ASR to their written forms. One can consider
ITN as a Machine Translation task and use neural sequence-to-
sequence models to solve it. Unfortunately, such neural models
are prone to hallucinations that could lead to unacceptable errors.
To mitigate this issue, we propose a single-pass token classifier
model that regards ITN as a tagging task. The model assigns a
replacement fragment to every input token or marks it for dele-
tion or copying without changes. We present a method of dataset
preparation, based on granular alignment of ITN examples. The
proposed model is less prone to hallucination errors. The model
is trained on the Google Text Normalization dataset and achieves
state-of-the-art sentence accuracy on both English and Russian
test sets. One-to-one correspondence between tags and input
words improves the interpretability of the model’s predictions,
simplifies debugging, and allows for post-processing corrections.
The model is simpler than sequence-to-sequence models and
easier to optimize in production settings. The model and the
code to prepare the dataset is published as part of NeMo project1.
Index Terms: inverse text normalization

1. Introduction
Inverse text normalization (ITN) is an important post-processing
step within an automatic speech recognition (ASR) system. ITN
transforms spoken-domain text into its written form. For exam-
ple, the input expression "on may third we paid one hundred and
twenty three dollars" should be converted to "on may 3 we paid
$123". The commonly recognized problem is that any automatic
conversion can introduce unrecoverable errors that change the
meaning of the input. For example, the conversions to "on may
03 we paid 123$" or "on may 03 we paid 123 dollars" are also
acceptable since they keep the original meaning, while "on may
30 we paid $123" or "on may 3 we paid $1203" are incorrect.
There exist several approaches to ITN:

1. The traditional rule-based approach, based on Weighted
Finite-State Transducers (WFST) or regular expressions,
provides complete control over the generated output.
However, this approach requires linguistic knowledge
and is hard to create and maintain to cover all possible
cases. Additionally, the rule-based systems usually do
not take context into account, which could deteriorate the
normalization accuracy.

2. Neural network (NN) based approaches, for example,
seq2seq architectures in [1, 2, 3] use a two-step approach.
First, a tagger identifies the spans for conversion, and
then a decoder translates these spans from spoken to the
written domain. A decoder with a copy mechanism is

1https://github.com/NVIDIA/NeMo

used in [4]. NN-based models take context into account
and generalize better compared to rule-based systems.
However, seq2seq models are prone to hallucinations,
and their errors are hard to debug and correct.

3. Hybrid models combine neural seq2seq with WFST rules
[5]. The WFST constrains the predictions of the NN
model when the NN has low confidence in the prediction
or corrects common mistakes in the output of the seq2seq
model.

This paper proposes a model, Thutmose Tagger, that treats
the ITN task as a tagging problem (Section 2). The goal of
tagging is to assign a tag to each input word in the spoken
domain sentence so that the concatenation of these tags yields
the desired written domain sentence (Figure 1). Our model is
NN-based, but has simpler architecture than a seq2seq model: it
is a single-pass token classifier.

Our approach is inspired by LaserTagger [6]. LaserTagger
shows that many monotonic sequence-to-sequence transforma-
tion tasks, such as text simplification or grammar correction, can
be reformulated as tagging tasks. It classifies all input words
as keep, delete, or replacement tags. The authors propose to
collect a vocabulary of replacements tags from the input cor-
pus - exclude all longest common sub-sequences, and regard
all non-common fragments as deletions or replacements. The
LaserTagger method is not directly applicable to ITN because
it can only regard the whole non-common fragment as a single
replacement tag, whereas spoken-to-written conversion, e.g. a
date, needs to be aligned on a more granular level. Otherwise,
the tag vocabulary should include all possible numbers, dates etc.
which is impossible. For example, given an example pair "over
four hundred thousand fish" - "over 400,000 fish", LaserTagger
will need a single replacement "400,000" in the tag vocabulary.

To overcome this problem, we collect the replacement vo-
cabulary based on automatic alignment of spoken-domain words
to small fragments of written-domain text along with <SELF>
and <DELETE> tags (Section 2.2).

A tagging approach for ITN is also introduced in [7], where
each tag represents a sequence of actions needed to convert an
input fragment to the written form. However, the authors do
not provide an actual implementation of the model and tools
to build the training dataset. In Proteno[8], the authors apply a
tagging approach to written-to-spoken text normalization (TN)
to limit the number of possible decoder outputs. The Proteno
approach classifies written tokens into classes and performs
written-to-spoken form conversion using manually predefined
or automatically learned transformations. Our work considers a
reverse problem of spoken to written conversion and relies on an
automatic alignment procedure.

The contributions of our paper are the following:

• We present a new model for ITN, which shows state-of-
the-art sentence accuracy for English and reduces WER
by 3% on Russian hard examples.

in twenty thirteen it carried over four hundred thousand fish

BERT-based token classifier

<SELF> _20 13_ 00 ,000_<SELF> <SELF> <SELF> _4 <SELF>

Post-processing in 2013 it carried over 400,000 fish

Figure 1: ITN as tagging: inference example. The sequence of input words is processed by BERT-based token classifier, giving the output

tag sequence. Simple rule-based deterministic post-processing gives the final output.

• We apply an alignment technique from statistical ma-
chine translation to automatically find alignment between
spoken and written parts of the examples in ITN dataset.

• The model and scripts for dataset construction are open
source2.

Section 2 describes the models and methods used to build
the training dataset. Section 3 reports the experimental results for
English and Russian languages and provides the error analysis.

2. Proposed approach
The Thutmose Tagger is a neural token classification model. The
input is the spoken domain sentence without punctuation. The
model outputs tags for all input words. Thutmose is a pretrained
BERT encoder [9] with a multi-layer perceptron (MLP) on top,
followed by the softmax layer. Fig.1 illustrates how the sentence
"in twenty thirteen it carried over four hundred thousand fish" is
converted to "in 2013 it carried over 400,000 fish".

2.1. Initial data

To train a neural tagging model, we first build aligned datasets
for Russian and English languages from the Google Text Nor-
malization (GTN) dataset [10]. The GTN dataset consists of
unnormalized (i.e. written form) and normalized (i.e. spoken
form) sentence pairs that are aligned on a phrase-level. We
need to align them on a more granular level to get a monotonic
one-to-one correspondence between each spoken word and cor-
responding fragments in written form (see Table 1). The goal is
to get a restricted vocabulary of target fragments (tags) that can
cover most spoken-written pair conversions.

2.2. Alignment

We extract all corresponding phrases from GTN Dataset 3 to cre-
ate a parallel corpus for each semiotic class. We use the Giza++
[11] package to align the resulting parallel corpora. To do the
alignment we need to tokenize data first. The spoken text is
tokenized by word boundary, while the written part is tokenized
as follows: 1) All alphabetic sequences are separate tokens, 2)
In numeric sequences each character is a separate token. 3) All
non-alphanumeric characters are separate tokens. Additionally,
we add an underscore symbol to mark the beginning and end of a
sequence for future detokenization. For example, "jan 30,2005"
is tokenized as "_jan_ _3 0 , 2 0 0 5_".

We run Giza++ with default settings and join together
character-tokens in the written part that are aligned to the same

2https://github.com/NVIDIA/NeMo/blob/stable/
tutorials/text_processing/ITN_with_Thutmose_
Tagger.ipynb

3we reserve the same files for testing as in [10]

Table 1: Examples of alignment. Each section consists of two

rows: first contains words from the spoken-domain part, the

second row consists of written-domain fragments, aligned to the

input words one-to-one.

one thousand two hundred megawatts
1 2 00 _mw_
н е й ч е р
n a t u re
r and b
r & _b_
one hundred thousand dollars
1 00 ,000 _$<<_
fourteen and a half
_14 1

2

spoken input word. If a spoken input word aligns to nothing, we
add a "<DELETE>" tag. As a result we should get a one-to-one
alignment for each phrase (see Table 1). There are cases, for
which Giza++ alignments are not perfect, for example, consec-
utive equal digits are sometimes aligned incorrectly. We apply
a set of simple regular expressions to correct some systematic
incorrect splits (eg. "_1 4000_ => _14 000_", "_1 5,000_ =>
15 ,000").

2.3. Non-Monotonic alignments

One important restriction of the Tagger model is that spoken and
written pairs are assumed to be monotonically aligned. Most of
the spoken-written pairs in GTN satisfy this requirement. We
can detect non-monotonic examples: they have different order
of the aligned tokens in Giza++ output. Some non-monotonic
cases like special date formats (e.g. "the sixteenth of june two
thousand four" - "2004-06-16") have semantically equivalent
monotonic versions in the corpus (e.g. "16 June 2004"), so
non-monotonic examples can be dropped. We discard all non-
monotonic examples, except several common cases for which we
encode the information about token movements in the tag itself.
This is done before the alignment. Specifically, we move target
tokens so that the sequence becomes monotonic and encode the
information about the movement with one or two angle brackets,
reflecting the direction and type of movement.

Table 2: Encoding movement information in tags

Input: ten square kilometers ten thousand dollars
Tags: _10_ _²_> _km_ _10 ,000_ _$<<
Swapped: _10_ _km_ _²_ $ _10 ,000_

During the detokenization step, we look at the tags with
angle brackets and move the corresponding target token to its
appropriate place (Table 2).

2.4. Tag Vocabulary and Training Dataset

The alignment procedure splits written sentences into fragments
and aligns them one-to-one to the spoken form. Then, we count
the frequencies of such written fragments and include some
predefined number of the most frequent of them in the tag vocab-
ulary. We use 2127 tags for English and 3201 tags for Russian
replacement vocabularies. "<SELF>" and "<DELETE>" tags
are also added to the tag vocabularies to signify that an input
token should be either copied or deleted.

We discard examples where the target part is not fully cov-
ered with the tag vocabulary. It is acceptable because most rare
fragments result in alignment errors. Nevertheless, the model
may find a way to translate any input sequence with its available
tag vocabulary at inference time. The exceptions may exist, but
they are scarce.

The tagger model sees the whole sentence to make context-
dependent decisions. All input tokens outside ITN spans are
mapped to "<SELF>" tags during dataset creation. The tagger
itself knows nothing about ITN spans, and it simply learns to
predict tags for all tokens in a sentence in a single pass.

Both English and Russian training corpora consist of about 2
million sentences, from which 1.5 million are random sentences
from the training part of GTN Dataset. Additionally, we sample
500,000 sentences that contain examples of different tags from
the tag vocabulary since some tags are really rare.

2.5. Post-processing

To get the final output we apply a simple post-processing
procedure upon the tag sequence. Specifically, we substitute
"<SELF>" tokens with input words, remove "<DELETE>" to-
kens, move tokens that have movements encoded in tags, and,
finally, remove spaces between fragments bordered with under-
score symbols.

3. Experiments
We compare our Thutmose tagger model with Duplex Text Nor-
malization model [3], which shows state-of-the-art results on
GTN Dataset and serves as a solid baseline. The Duplex architec-
ture consists of two parts: 1) A tagger that detects the beginning
and end of a span that needs to be converted by ITN, and 2) A
T5-based [12], [13] decoder that generates the output expression.

3.1. Training details

As a backbone for our tagging model, we use pretrained models
from HuggingFace library 4: bert-base-uncased and distilbert-

base-uncased [9] for English, and DeepPavlov/rubert-base-

cased and distilbert-base-multilingual-cased for Russian. We
train on 8 V100 16 GB GPU for 6 epochs using batch size 64,
optimizer AdamW [14] with 2e-4 learning rate, 0.1 warm up,
and 0.1 weight decay.

3.2. Evaluation details

The original test data from GTN Dataset contains a single ref-
erence for each ITN span. In order to take into account more
than one acceptable variant, we prepare a dictionary of multiple

4https://huggingface.co

possible references. This dictionary is collected automatically
from GTN Dataset. It maps the whole input text of ITN span to
the list of different conversions that occurred with this input any-
where in the corpus. For example, "the fifteenth of july nineteen

forty one" could have the following valid written forms: "15 july

1941", "15th july 1941", "15th july, 1941", "15 jul 1941". Then,
the inferenced span is regarded as correct if all symbols (except
spaces) match to at least one possible reference, e.g., "10 sq.ft.",
"10ft2", and "10sq.ft." are valid options for "ten square feet".

In addition to the default test set as in [10], which is a small
contiguous part of the full test data in the GTN dataset, we
sample another test set (HARD test set in tables 4, 3) - with
at least 1000 examples of each semiotic class. This test set is
harder because it contains less frequent examples.

We evaluate three metrics. 1. Sentence accuracy - an auto-
matic metric that matches each prediction with multiple possible
variants of the reference. We divide all errors into two groups:
"digit error" and "other error". "Digit error" occurs when at least
one digit differs from the closest reference variant. The "other
error" means a non-digit error is present in the prediction, e.g.,
punctuation or letter mismatch. 2. Word Error Rate (WER) -
an automatic metric commonly used in ASR. Each prediction
is compared with exactly one reference from the initial corpus.
3. Number of unrecoverable errors shows the number of errors
that corrupt the semantics of the input. We manually assess the
model’s outputs that do not match the reference to estimate this
value.

4. Results
Table 3 and Table 4 summarize sentence-level accuracy for En-
glish and Russian ITN. Sentences with semiotic classes TELE-
PHONE and ELECTRONIC are removed for comparison as
Thutmose Tagger and Duplex model apply different preprocess-
ing which makes results incomparable. Duplex and Thutmose
Tagger models show similar results on "digit errors" for English
and Russian. At the same time, the Thutmose tagger outperforms
Duplex by 1% and 3% sentence accuracy on default and hard
Russian test sets, mostly due to "other errors". We observed that
Thutmose Tagger works better on cyrillic-to-latin transliterations,
while there is no such class of ITN task in English.

Thutmose tagger shows slightly worse WER(+0.8%) on En-
glish default test set, while other metrics are better on the same
test set. This maybe be partly explained by minor detokenization
problems (extra spaces) and by the fact that some translation
variants (eg. non-monotonic) are discarded from the corpus
during training, but they remain in the test set. The difference be-
tween Thutmose tagger with BERT and DistilBERT for English

Table 3: Performance metrics (percentage) on English GTN test

set, d-BERT stands for distilBERT.

Test
set Metric Duplex

model
Thutmose
(BERT)

Thutmose
(d-BERT)

De- Sent. acc. 97.31 97.43 97.36
fault Digit error 0.35 0.31 0.38

Other error 2.34 2.26 2.26
WER 2.9 3.7 3.74

Hard Sent. acc. 85.34 85.17 84.71
Digit error 3.12 3.13 3.06
Other error 11.54 11.70 12.23
WER 9.34 9.02 9.10

Table 4: Performance metrics (percentage) on Russian GTN test

set, d-BERT stands for distilBERT.

Test
set Metric Duplex

model
Thutmose
(BERT)

Thutmose
(d-BERT)

De- Sent. acc. 92.34 93.45 92.72
fault Digit error 0.51 0.43 0.52

Other error 7.15 6.11 6.75
WER 3.63 2.94 3.67

Hard Sent. acc. 81.02 84.03 81.75
Digit error 3.24 3.08 3.77
Other error 15.74 12.90 14.48
WER 11.76 7.07 8.05

Table 5: Number of unrecoverable errors for Russian test set.

Semiotic
class

Total
examples

Unrecoverable errors
Duplex
model

Thutmose
tagger

Cardinal 8352 18 (0.22%) 7 (0.08%)
Ordinal 1642 1 (0.06%) 2 (0.12%)
Fraction 1001 14 (1.40%) 12 (1.20%)
Decimal 1034 3 (0.29%) 4 (0.39%)
Date 2808 0 (0.0%) 0 (0.0%)
Measure 1400 2 (0.14%) 2 (0.14%)
Money 1005 7 (0.70%) 10 (0.99%)
Total 17,242 45 (0.26%) 37 (0.21%)

is small: 0.07% and 0.46% sentence accuracy decrease for the
default and hard test sets respectively. For Russian this differ-
ence is bigger: 0.73% and 2.28% respectively, since multilingual
distilBERT is not specifically tuned for Russian language.

Table 5 shows the number of unrecoverable errors for Rus-
sian ITN. The results of the two models are close to each other,
except the CARDINAL class on which Duplex model make
more mistakes. Note, that Russian ITN task is more difficult
than English. For example, ordinals may have different affixes,
depending on grammatical context. This makes the tag vocabu-
lary larger and the task more complex. Also there is a large ITN
task subclass, when Russian spoken words need to be transliter-
ated to written English (e.g. company names - IBM, Intel).

4.1. Error analysis

Table 6 provides examples of Duplex model errors; such errors
are typical to seq2seq models. One issue common to seq2seq
models is hallucination, which can result in unpredictable and
hard to overcome errors. Also, the model might choose to per-
form normalization with more frequent phrases even when it
contradicts the input (first three examples in Table 6). These
particular examples are handled correctly by Thutmose tagger.

Table 7 gives examples of Thutmose model errors. They oc-
cur sporadically and usually are caused by incorrect alignments
in the training corpus. It is easier to analyze the reasons for
tagger errors than those of generative models. With the tagger
model, we can directly see what tag the model assigns to each
token and investigate how similar examples are aligned in the
training corpus.

Table 6: Examples of errors of Duplex model

Input: is about thirty five united states cents
Prediction: is about 35 usd
Reference: is about 0.35 usd

Input: like a twenty dollars table radio for point nine
eight
Prediction: like a $20 table radio for .99
Reference: like a $20 table radio for .98

Input: air canada seven seven three dropped engine
parts on departure
Prediction: air canada 777 dropped engine
parts on departure
Reference: air canada 773 dropped engine
parts on departure

Input: t o one five six is a phosphodiesterase inhibitor
Prediction: tor56 is a phosphodiesterase inhibitor
Reference: t- 0156 is a phosphodiesterase inhibitor

Table 7: Examples of errors of Thutmose tagger

Input: twelve thousand seventy one
Tags: _12 0 07 1_
Prediction: 120071
Reference: 12071
Explanation: Duplication due to corpus alignment mistakes.

twelve thousand seventy one
12 , 07 1 (12,071)
12 0 7 1 (12071)

Input: five million croatian kunas
Tags: _5_ <SELF> _million__czk_
Prediction: 5 million million czk
Reference: 5 million hrk
Explanation: 1. tag dictionary misses "hrk" (too rare)
2. Duplication due to corpus alignment mistakes.

six million czech korunas
6 _million__czk_

5. Conclusions
We propose a new tagging-based approach to tackle ITN task
and apply a dataset construction method based on automatic
alignment. Our model, Thutmose, is a single-pass neural model.
It does not need separate steps for span detection and decoding,
and this simplifies the model pipeline and eliminates span de-
tection errors. One-to-one correspondence in input and output
makes it easy to preserve alignment to audio timestamps and to
apply custom corrections to some exceptional cases. Thutmose
tagger is simpler than the existing approaches, and it achieves
state-of-the-art quality results for English and Russian languages
on the Google test set. The model performance can be further
improved by just improving the alignment algorithms and gen-
erating a better training corpus without increasing the model
complexity.

6. Acknowledgements
The authors would like to thank Yang Zhang and Elena Ras-
torgueva for their helpful review and feedback.

7. References
[1] H. Zhang, R. Sproat, A. H. Ng, F. Stahlberg, X. Peng, K. Gorman,

and B. Roark, “Neural models of text normalization for speech
applications,” Computational Linguistics, vol. 45, no. 2, pp. 293–
337, 2019.

[2] C. Peyser, H. Zhang, T. N. Sainath, and Z. Wu, “Improv-
ing performance of end-to-end ASR on numeric sequences,”
arXiv:1907.01372, 2019.

[3] T. M. Lai, Y. Zhang, E. Bakhturina, B. Ginsburg, and H. Ji, “A uni-
fied transformer-based framework for duplex text normalization,”
arXiv:2108.09889, 2021.

[4] M. Ihori, A. Takashima, and R. Masumura, “Large-context pointer-
generator networks for spoken-to-written style conversion,” in
ICASSP, 2020.

[5] M. Sunkara, C. Shivade, S. Bodapati, and K. Kirchhoff, “Neural
inverse text normalization,” in ICASSP, 2021.

[6] E. Malmi, S. Krause, S. Rothe, D. Mirylenka, and A. Severyn, “En-
code, tag, realize: High-precision text editing,” arXiv:1909.01187,
2019.

[7] E. Pusateri, B. R. Ambati, E. Brooks, O. Platek, D. McAllaster,
and V. Nagesha, “A mostly data-driven approach to inverse text
normalization.” in INTERSPEECH, 2017.

[8] S. Tyagi, A. Bonafonte, J. Lorenzo-Trueba, and J. Latorre, “Pro-
teno: Text normalization with limited data for fast deployment in
text to speech systems,” arXiv preprint arXiv:2104.07777, 2021.

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language under-
standing,” arXiv:1810.04805, 2018.

[10] R. Sproat and N. Jaitly, “RNN approaches to text normalization: A
challenge,” arXiv:1611.00068, 2016.

[11] F. J. Och and H. Ney, “A systematic comparison of various statisti-
cal alignment models,” Computational linguistics, vol. 29, no. 1,
pp. 19–51, 2003.

[12] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer
learning with a unified text-to-text transformer,” arXiv:1910.10683,
2019.

[13] L. Xue, N. Constant, A. Roberts, M. Kale, R. Al-Rfou, A. Siddhant,
A. Barua, and C. Raffel, “mt5: A massively multilingual pre-
trained text-to-text transformer,” arXiv:2010.11934, 2020.

[14] I. Loshchilov and F. Hutter, “Decoupled weight decay regulariza-
tion,” arXiv:1711.05101, 2017.

