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The set of visited sites and the number of visited sites are two basic properties of the random walk
trajectory. We consider two independent random walks on hyper-cubic lattices and study ordering
probabilities associated with these characteristics. The first is the probability that during the time
interval (0, t), the number of sites visited by a walker never exceeds that of another walker. The
second is the probability that the sites visited by a walker remain a subset of the sites visited by
another walker. Using numerical simulations, we investigate the leading asymptotic behaviors of the
ordering probabilities in spatial dimensions d = 1, 2, 3, 4. We also study the time evolution of the
number of ties between the number of visited sites. We show analytically that the average number
of ties increases as a1 ln t with a1 = 0.970508 in one dimension and as (ln t)2 in two dimensions.

I. INTRODUCTION

Random walk is an elementary random process which
is ubiquitous in several branches of mathematics, physics,
chemistry, biology, finance, etc. [1–5]. Questions involv-
ing large deviations, persistence, and geometrical charac-
teristics of random walks continue to emerge [6, 7]. Here,
we investigate ordering probabilities associated with the
set of sites visited by independent random walks.

The maximum position attained by the walk is a ba-
sic characteristic of the set of visited sites. The maxima
of two one-dimensional random walks remain ordered up
to time t with a probability that decays as t−1/4 [8, 9].
In general, it is difficult to compute “persistence” expo-
nents for non-Markovian quantities such as the maximal
position of a random walk [10, 11]. Nevertheless, the per-
sistence exponent 1/4 can be derived analytically [8, 9].
Further, it can also be shown that the average number of
lead changes A(t) grows logarithmically with time [12]

A(t) ' π−1 ln t (1)

The maximal position is (i) not uniquely defined in
higher dimensions, and (ii) does not [13, 14] necessar-
ily increase by equal amounts [15]. In this study, we
focus on the total number N(t) of distinct sites visited
by a random walk, range in short; in one dimension,
N(t) = M(t)−m(t) + 1 where M(t) is the maximum,
and m(t) is the minimum. Unlike the maximum, the
range is well-defined in arbitrary dimension; moreover, it
is a piecewise constant function of time that increases by
one.

We investigate the “competition” between the ranges
of, as well as the sets of sites visited by, two indepen-
dent random walks. Specifically, we consider two iden-
tical random walks with the same starting position on
hyper-cubic lattices Zd in dimension d. In each step, each
random walk moves to one of its 2d neighboring sites, a
site that is selected randomly and independently. We
study survival probabilities associated with the number
of visited sites and the set of visited sites in dimensions

t

FIG. 1. Spacetime diagrams of two random walkers where
the range of the random walker shown in red always exceeds
the range of the random walker shown in blue. The maximal
and minimal positions of the two walkers are also indicated.

d = 1, 2, 3, 4. (We expect that the asymptotic behavior
for d = 4 holds for all d > 4.) Our extensive numerical
simulations reveal a diverse set of asymptotic behaviors
ranging from power laws and stretched exponentials to
simple exponentials. We also find asymptotic behaviors
varying logarithmically with time.

Let Nj(t) be the number of sites visited by the jth

walker: Nj(t) = Nj(t− 1) + 1 if at time t the jth walker
hops to a previously unvisited site. Initially N1(0) =
N2(0) = 1. The ordering probability associated with the
ranges N1 and N2 is [see Fig. 1]

P (t) = Prob[N1(τ) ≤ N2(τ) | 0 ≤ τ ≤ t] (2)

In other words, P (t) is the probability that a random
walker never visits more sites than another independent
random walker up time t. The random quantities N1

and N2 are independent and non-Markovian, and this
feature makes determination of the ordering probability
P (t) challenging [10, 11].

One can also compare the sets of sites visited by the
two walkers, denoted by S1(t) and S2(t). For the sets of
visited sites, the natural ordering is inclusion [16]. The
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FIG. 2. Spacetime diagrams of two random walkers where
each site visited by the random walker shown in blue has
been previously visited by the random walker shown in red.
The maximal and minimal positions of both walkers are also
displayed.

ordering probability associated with the sets S1(t) and
S2(t) is

Q(t) = Prob[S1(τ) ⊆ S2(τ) | 0 ≤ τ ≤ t] (3)

Hence, Q(t) is the probability that a walker never visits
a site that has not been previously visited by another
independent walker up to time t. One can visualize this
condition as a “matryoshka” arrangement with the set
S1 always remaining a subset of S2 throughout the time
interval (0, t), see Fig. 2.

Since Nj = |Sj |, where |S| denotes the number of el-
ements in set S, the probability Q(t) is bounded from
above by P (t):

Q(t) ≤ P (t) (4)

for all t ≥ 0. Our simulations show that the ordering
probabilities P (t) and Q(t) decay algebraically in one
dimension

P (t) ∼ t−β , Q(t) ∼ t−γ (5)

with β = 0.667±0.002 and γ = 1.45±0.03. The algebraic
decays (5) are consistent with the asymptotic behavior of
the ordering probability associated with maxima [8, 9].

We also study the number of distinct ties, that is, in-
stances when N1 equals N2 and vice versa. Our theoreti-
cal results suggest that the average number of ties during
the time interval (0, t) grows as

A(t) '


a1 ln t d = 1

a2 (ln t)2 d = 2

a3 t
1/2(ln t)−1/2 d = 3

ad t
1/2 d ≥ 4

(6)

In Sec. II, we recall a few basic results about statistics
of the range of a random walk. In Sec. III we present the
asymptotic behaviors of the ordering probabilities P (t)

and Q(t) suggested by numerical simulations, and we also
provide heuristic arguments supporting some of these be-
haviors. In Sec. IV, we study the average number of ties
and obtain the growth laws (6) theoretically. Generaliza-
tions to multiple independent random walks are outlined
in Sec. V. We conclude with a discussion (Sec. VI).

II. RANGE OF A RANDOM WALK

The number of distinct sites visited by a random walk,
namely the range, has been the subject of considerable
research [17–21]. Statistical properties of the range are
well understood in one dimension [22–25], but remain
incomplete in higher dimensions [26–37].

We now summarize key statistical properties of the
range, which we later use to analyze the growth laws (6).
These results apply to a symmetric nearest-neighbor ran-
dom walk on the hyper-cubic lattice Zd in dimension d.
The overall hopping rate is set to unity so that the vari-
ance in the displacement r equals time, 〈r2〉 − 〈r〉2 = t.
The leading asymptotic behaviors of the average range
N(t) = 〈N(t)〉 are

N(t) '


√

8t
π d = 1

πt
ln t d = 2

t/Wd d > 2

(7)

where Wd are the so-called Watson integrals [38–41]. For
hyper-cubic lattices

Wd =

∫ 2π

0

. . .

∫ 2π

0

[
1− 1

d

d∑
i=1

cos qi

]−1 d∏
i=1

dqi
2π

(8)

when d ≥ 3. For the cubic lattice, the Watson integral
can be expressed [39] via the gamma function,

W3 =

√
6

32π3
Γ

(
1

24

)
Γ

(
5

24

)
Γ

(
7

24

)
Γ

(
11

24

)
(9)

The asymptotic behavior of the variance,
V = 〈N2〉 − 〈N〉2, is also known

V (t) '


(4 ln 2− 8/π) t d = 1

V2 t
2/(ln t)4 d = 2

V3 t ln t d = 3

Vd t d ≥ 4

(10)

The amplitudes for square and cubic lattices are

V2 = π2 − π4

6
− 2π2

∫ 1

0

dx
lnx

1− x+ x2
= 16.768 193 . . .

V3 = 4π−2(1− 1/W3)4 = 0.005 450 284 . . .

where W3 is given by (9), see [27–29, 34] for derivations of
the amplitudes V2 and V3. However, no compact formulas
are available for the amplitude Vd when d ≥ 4.
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FIG. 3. An illustration of sites visited by two independent
random walkers on the square lattice after 105 steps. Sites
visited only by the first walker are shown in red, sites visited
only by the second walker are shown in blue, and sites visited
by both walkers are shown in green.

Equations (7) and (10) imply that the random quan-
tity N(t) is non-self-averaging in one dimension and self-
averaging when d ≥ 2. Further, N(t) is weakly self-

averaging in two dimensions since the ratio
√
V /N van-

ishes very slowly as (ln t)−1.
The random variable N is fully characterized by the

distribution Pn(t) = Prob[N(t) = n]. In one dimension,
the range distribution converges to [22–25]

Pn(t) ' 8√
2πt

∑
j≥1

(−1)j−1j2 exp
[
− j

2n2

2t

]
(11)

For a random walk on a square lattice, the range dis-
tribution is non-Gaussian [31], and a closed explicit ex-
pression for the asymptotic range distribution remains
elusive. When d ≥ 3, the range distribution is asymptot-
ically Gaussian [27–29]

Pn(t) ' 1√
2πV (t)

exp

{
− [n−N(t)]2

2V (t)

}
(12)

with N(t) and V (t) given by (7) and (10).
The number of common sites C = |S1 ∩ S2| quantifies

the overlap between the sites visited by two independent
random walkers. The average number of common sites,
C(t) = 〈C(t)〉, grows according to

C(t) ∼



t1/2 d = 1

t/(ln t)2 d = 2

t1/2 d = 3

ln t d = 4

1 d ≥ 5

(13)

See [42, 43] for the derivation of (13) and generalization
to common sites visited by m walkers with arbitrary m.
Figure 3 illustrates the number of common sites visited
by two walkers on the square lattice.
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FIG. 4. The ordering probability P (t) versus time t in one
dimension. An average over 238 independent runs has been
performed. Also shown for reference is a line with slope 0.667.
The inset shows the local slope β ≡ −d lnP/d ln t.

III. ORDERING PROBABILITIES

Here, we analyze the evolution of the ordering proba-
bilities P (t) and Q(t) using numerical simulations. We
implement the random walk process in the standard way:

1. Initially, the random walk is at the origin.

2. At each time step, the walker hops to one of its 2d
neighboring sites, a site that is chosen at random.
Therefore, throughout the evolution, the average
displacement remains equal to zero.

3. Time is augmented by one after each step.

With this implementation, the variance of the displace-
ment r(t) equals time, 〈r2(t)〉 = t.

In one dimension, we keep track of three quantities:
the current position of the walk, the leftmost position
m(t) and the rightmost position M(t); the total number
of visited sites is given by N(t) = M(t)−m(t)+1. Hence,
the required computer memory is minimal. In higher di-
mensions, it is necessary to maintain a physical lattice to
indicate which sites were visited by the walker and which
remain unvisited. The simulations can be still performed
efficiently by keeping track of all sites visited by the walk
and resetting only the visited sites on the indicator lat-
tice at the end of each run. This approach is especially
well suited for measuring survival probabilities.

The Monte Carlo simulation results suggest the fol-
lowing asymptotic behaviors for the ordering probability
P (t) associated with the range (2) [see Figs. 4–6]

P (t) ∼


t−β d = 1

t−β ln t d = 2

t−1/2(ln t)−1/2 d = 3

t−1/2 d = 4

(14)

Simulations suggest a simple rational value β = 2/3 for
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FIG. 6. The quantity [t1/2P (t)]−1 versus
√

ln t on a cubic
lattice. Simulation results represent an average of 230 runs.

the persistence exponent; specifically, we measure

β = 0.667± 0.002 (15)

in one dimension (see Fig. 4). In two dimensions, the ef-
fective exponent is only slightly smaller than 2/3, and
moreover, the quantity −d lnP/d ln t increases slowly
with time. These observations indicate a possible log-
arithmic correction, and indeed, the simulations support
the decay P ∼ t−2/3 ln t, see Fig. 5. A simple t−1/2 decay
emerges in four dimensions, and we expect this behavior
extends to d > 4. In three dimensions, the effective expo-
nent is slightly larger than 1/2. Moreover, the quantity
−d lnP/d ln t decreases slowly with time, again indicat-
ing a logarithmic correction. The numerical results sup-
port the decay law P ∼ t−1/2(ln t)−1/2, see Fig. 6.

When d ≥ 4, the ranges N1(t) and N2(t) perform in-
dependent directed random walks, so P ∼ t−1/2. The
logarithmic correction to the t−1/2 asymptotic in three
dimensions is due to the temporal behavior of the vari-
ance, see Eq. (10). Comparing Eq. (14) with the vari-
ance in the number of visited sites, Eq. (10), we observe
that P ∝ V −1/2 when d ≥ 3. The first-passage prob-
ability for a broad class of one-dimensional Markovian

random variables decays as (variance)−1/2, see [44–46].
Therefore, the first-passage probability for the random
variable N1 − N2, namely P (t), is expected to have this
property when d ≥ 3 as N1 and N2 become uncorrelated
and Markovian in the asymptotic limit.

In one dimension, the algebraic decay of P (t) is con-
sistent with the behavior found for the maxima [8]. It
would be interesting to find a heuristic explanation for
the logarithmic enhancement of the ordering probability
P (t) in two dimensions. We note that logarithmic terms
arise in Eqs. (7), (10), and also characterize the support
of the two-dimensional random walk, see [47–56].

The ordering probability associated with the set of vis-
ited sites Q(t) is bounded from above by the quantity
P (t), as stated in Eq. (4). Indeed, the condition in (3)
is significantly more stringent than the condition in (2) .
In one dimension

Q(t) ∼ t−γ , γ = 1.45± 0.03 (16)

Both P (t) and Q(t) decay algebraically in one dimen-
sion. The inequality γ > β follows from Eq. (4), yet a
more stringent relation, γ > 1 > β, holds. These two
inequalities imply that average first-passage time associ-
ated with the survival probability P (t) is infinite, while
that associated with the quantity Q(t) is finite.

When d ≥ 2, the ordering probability Q(t) decays
faster than any power law. Numerical simulations
(Figs. 7–9) support stretched exponential behaviors:

ln[1/Q(t)] ∼


t1/2 d = 2

t3/4 d = 3

t d ≥ 4

(17)

The temporal range probed by the simulations is much
larger in dimension d = 2 compared with that in dimen-
sions d = 3 and d = 4. In d = 2, the simulation results
provide evidence in support of the stretched exponential
decay in (17) as the quantity ν ≡ d ln ln[1/Q(t)]/d ln t
saturates at the value ν = 0.50±0.01; see inset to Fig. 7,
the region t > 80 was excluded because of poor statistics.
The sharp decay of the quantity Q(t) in d = 3 and d = 4
dimensions makes it difficult to assess the asymptotic be-
havior and the decays stated in (17) represent our best
estimates based on extensive Monte Carlo simulations.
For instance, in d = 3, the asymptotic behavior quoted
in (17) is only slightly better aligned with the simulation
results than the decay ln[1/Q(t)] ∼ −t/ ln t.

Establishing the asymptotic behaviors stated in (17)
theoretically is a formidable challenge. In d ≥ 3, a ran-
dom walk hops to an unvisited site with a non-vanishing
probability in the long-time limit, suggesting Q(t) decays
exponentially [57]. However, we find purely exponential
decay only when d ≥ 4.

To appreciate the plausibility of the exponential de-
cay, consider two random walks with identical trajecto-
ries. In this scenario, the sets of sites visited by the
two walkers are identical, S1 ≡ S2. Such a time evolu-
tion is realized with probability (2d)−t. This argument
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FIG. 7. A semi-log plot of Q(t) versus t1/2 in two dimensions.
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runs. The inset displays the quantity ν ≡ d ln ln[1/Q]/d ln t
versus time t.
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FIG. 8. A semi-log plot of Q(t) versus t3/4 in three dimen-
sions. Simulation results represent an average of 246 indepen-
dent runs.

provides the lower bound Q(t) ≥ (2d)−t and the upper
bound bd ≤ ln(2d). In d = 4, the numerical simula-
tions give b4 = 1.05 ± 0.05, while the upper bound is
ln 8 = 2.079. We stress that the bound bd ≤ ln(2d) ap-
plies to a discrete-time random walk.

IV. THE NUMBER OF TIES

We now study ties between the ranges N1 = |S1| and
N2 = |S2|, i.e., instances when the number of sites visited
by the two random walkers become equal. The random
quantity N1 − N2 is piecewise constant, and changes by
unit increments or decrements. Specifically, we are inter-
ested in distinct ties that occur when N1 − N2 resets to
zero. Let T (t) be the number of distinct ties during the
time interval (0, t). The initial condition is T (0) = 1. We
define Φn(t) = Prob[T (t) = n] to be the probability the
number of distinct ties at time t equals n. Our focus is
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FIG. 9. A semi-log plot of Q(t) versus t in four dimensions.
An average over 245 independent runs has been performed.

the average number of ties,

A(t) =
∑
n≥1

nΦn(t) (18)

To obtain the asymptotic behavior of the average num-
ber of ties, we use the general formula [12]

dA

dt
= 2

∑
n≥2

Pn
dPn
dt

(19)

This equation relates the growth of the average number
of ties to the range distribution Pn and its corresponding
cumulative distribution

Pn =
∑
k≥n

Pk (20)

To derive (19) we note that N1 and N2 are independent
variables. The number of ties can increase only when: (i)
these quantities differ by one, say N1 = n−1 and N2 = n,
and (ii) the smaller quantity N1 increases, n−1→ n. The
factor 2 in (19) accounts for the fact that either random
walk may be in the lead. The rate by which the trailing
walker makes the jump n − 1 → n, denoted by Wn−1,n,

is the gain term in dPn

dt , viz.

dPn
dt

= Wn−1,n −Wn,n+1 (21)

Similarly, we have

dPn+1

dt
= Wn,n+1 −Wn+1,n+2,

dPn+2

dt
= Wn+1,n+2 −Wn+2,n+3,

dPn+3

dt
= Wn+2,n+3 −Wn+3,n+4,

(22)

etc. By summing (21) and all the successive equations
(22) we obtain

dPn
dt

=
∑
k≥n

dPk
dt

= Wn−1,n (23)
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prediction, Eq. (27). Simulation results represent an average
of 220 independent runs.

thereby leading to (19). The rate equation (19), which
utilizes continuous time, is suitable for describing the
long-time asymptotic behavior.

Using the asymptotic formula (11) and replacing sum-
mation with integration, we find

Pn '
8√
2πt

∑
j≥1

(−1)j−1j2
∫ ∞
n

dk exp
[
− j

2k2

2t

]
= 4

∑
j≥1

(−1)j−1j Erfc

(
j n√

2t

)
(24)

where Erfc(y) = 2√
π

∫∞
y
dz e−z

2

is the error function.

Differentiating (24) yields

dPn
dt
' t−1 4√

π

∑
j≥1

(−1)j−1j2ν e−j
2ν2

(25)

Substituting (11) and (25) into (19) and replacing sum-

mation over n with integration over ν = n/
√

2t we arrive
at dA

dt '
a1
t [and hence A(t) ' a1 ln t] with

a1 =
64

π

∫ ∞
0

dν
∑
i,j≥1

(−1)i+ji2j2ν e−(i
2+j2)ν2

(26)

It is possible to simplify the integral over the double sum
into a compact sum (Appendix A)

a1 = 16
∑
j≥1

(−1)j−1 j3

sinh(πj)
= 0.970 508 . . . (27)

The simulation results are in excellent agreement with
this theoretical prediction: The numerically measured
amplitude, a1 = 0.970 ± 0.001, is within 0.05% of the
theoretical value (see also Fig. 10).
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FIG. 11. The average number of ties A versus (ln t)2 in two
dimensions. Simulation results are compared with the theo-
retical prediction. The inset compares simulation results for
the pre-factor a2(t) ≡ dA/d(ln t)2 with the approximate value
(31). An average over 216 independent runs has been per-
formed.

When d ≥ 2, the range is a self-averaging quantity with
the asymptotic distribution

Pn(t) ' 1√
V

Pd(σ), σ =
n−N√

V
(28)

By inserting (28) into (19) we obtain

dA

dt
' 2√

V

dN

dt

∫ ∞
−∞

dσ [Pd(σ)]2 (29)

to leading order.
In two dimensions, dN

dt '
π
ln t and V ' V2t2/(ln t)4,

and therefore, Eq. (29) leads to the asymptotic behavior
A(t) ' a2 (ln t)2 in (6) with

a2 =
π√
V2

∫ ∞
−∞

dσ [P2(σ)]2 (30)

The range distribution P2 is not Gaussian in two dimen-
sions, but it has been probed numerically in Ref. [58]
and was found to be close to Gaussian [59]. Substituting

PGauss
2 = (2π)−1/2e−σ

2/2 into (30) yields the uncontrolled
approximation (see Fig. 11)

aGauss
2 =

√
π

4V2
= 0.216 . . . (31)

Numerically we measured a2 = 0.227± 0.001, a value
within 5% of (31). Thus, the uncontrolled Gaussian ap-
proximation yields a close estimate for the amplitude a2.

When d = 3, the range distribution is Gaussian. Using

P3 = (2π)−1/2e−σ
2/2, dN

dt '
1
W3

and V = V3 t ln t we

recast Eq. (29) into

dA

dt
' 1

W3

√
πV3 t ln t

(32)
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Performing the integration yields A(t) ' a3
√
t/ ln t with

a3 =
2

W3

√
πV3

=

√
πW3

(W3 − 1)2
= 10.079 423 . . . (33)

However, numerically we find that A ∼
√
t/ ln t provides

a significantly better fit to simulation results than the
theoretical prediction A ∼

√
t/ ln t, see Fig. 12.

When d ≥ 4, Eq. (29) becomes

dA

dt
' 1

Wd

√
πVdt

(34)

leading to A(t) ' ad
√
t as in (6) with the amplitude

ad =
2

Wd

√
πVd

(35)

This completes the derivation of the asymptotic behav-
iors (6) with the amplitudes (27), (33), and (35). How-
ever, the numerical simulation results are at odds with
the theoretical prediction for a4. Numerically, we mea-
sured W4 = 1.24±0.01 in agreement with W4 = 1.239467
[60] that follows from (8). Numerical simulations yield
the amplitude V4 = 0.26 ± 0.01 for the variance. Ac-
cordingly, Eq. (35) gives a4 = 1.78 but the numerical
simulations yield a4 = 1.04± 0.01.

The diffusive growth A(t) ∼
√
t for d ≥ 4, which we

verified numerically for d = 4, can be deduced using
heuristic arguments. In the limit d → ∞, the quanti-
ties N1 and N2 become Markovian. These two quantities
reduce to directed random walks: each directed walk un-
dergoes +1 hops with unit rate. Hence, the difference
N1 −N2 performs a one-dimensional symmetric random
walk as it undergoes ±1 jumps, both with unit rate. Con-
sequently, the number of ties is equivalent to the number
of times a symmetric random walk returns to the origin.
As a result, the average number of ties grows diffusively,
A(t) ∼

√
t, in the limit d → ∞. While this diffusive

growth is formally justified only in infinite dimension, we
expect this behavior to hold for all d ≥ 4.

The logarithmic growth of the number of ties in one
dimension resembles the growth law (1) corresponding to

ties between maxima. The probability to observe n ties
between maxima of two random walks during the time
interval (0, t) was found to be Poissonian ∼ t−1/4(ln t)n

[12]. We anticipate a similar functional form holds for
ties between the ranges of two random walks,

Φn(t) ∼ t−2/3(ln t)n (36)

Numerically, we confirmed (36) for n = 0, 1, 2, 3.

V. MULTIPLE RANDOM WALKS

The probability Pm(t) that the ranges of m random
walks remain perfectly ordered till time t, defined by

Pm(t) = Prob[N1(τ) ≤ · · · ≤ Nm(τ) | 0 ≤ τ ≤ t] (37)

is a straightforward generalization of (2). We compare
this quantity with the probability

Πm(t) = Prob[x1(τ) ≤ · · · ≤ xm(τ) | 0 ≤ τ ≤ t] (38)

that the positions of m one-dimensional random walks
remain ordered till time t, When t → ∞, these ordering
probabilities decay algebraically with time [61–63],

Πm(t) ∼ t−βm , βm = 1
4m(m− 1) (39)

In high dimensions, the range of a random walk under-
goes a one-dimensional directed random walk. Hence, the
asymptotic behavior of the ordering probability Pm(t)
when d ≥ 4 is specified in Eq. (39). Based on the asymp-
totic behaviors of P2(t) given in Eqs. (14), we conjecture

Pm ∼


t−βm d = 1

t−βm(ln t)hm d = 2

t−m(m−1)/4(ln t)−gm d = 3

t−m(m−1)/4 d ≥ 4

(40)

The set of algebraic exponents βm characterizes Pm(t) in
one dimension (see Table I), and additionally, the loga-
rithmic exponents hm and gm characterize this ordering
probability when d = 2 and d = 3.

We also studied the probability Lm(t) that the range
of one walk (the leader) exceeds that of every other walk
during the time interval (0, t), that is,

Lm(t) = Prob[N1(τ) ≥ Nj(τ) | j = 2, . . . ,m; 0 ≤ τ ≤ t]

Numerically, we find that the ordering probability ex-
hibits an algebraic decay in one dimension (see Table I)

Lm ∼ t−αm (41)

This algebraic decay is similar to that of the ordering
probability Pm(t), see Eq. (40). In Table I, we also list
the set of exponents αm characterizing the decay of the
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m 2 3 4 5 6 m� 1

αm 0.667 0.947 1.103 1.233 1.315 (lnm)/4

αm 1/2 3/4 0.9134 1.03 1.11 (lnm)/4

βm 0.667 1.91 3.65 6.0 8.3 Bm2

βm 1/2 3/2 3 5 15/2 m(m− 1)/4

TABLE I. The exponents αm and βm obtained from nu-
merical simulations of m one-dimensional random walks for
m = 2, . . . , 6. The exponents αm and βm characterizing simi-
lar ordering of the positions of one-dimensional random walks
are listed as a reference. The exponents α2 = 1

2
, α3 = 3

4
are

known analytically. The leading large m behaviors is shown
in the last column. The asymptotic behavior βm ' Bm2 is
conjectural, the amplitude B is unknown.

probability that a random walker remains in the lead
position [64–70], that is

Prob[x1(τ) ≥ xj(τ) | j = 2, . . . ,m, 0 ≤ τ ≤ t] ∼ t−αm

The exponents presented in Table I indicate αm > αm
and βm > βm for all m ≥ 2. The growth of the exponents
αm and βm with m resembles that of αm and βm. The
asymptotic growth is αm ' 1

4 lnm form� 1, see [65–67].
Using heuristic arguments, it is possible to show that

the leading large-m behaviors of αm and αm are the same.
First, we recall the known derivation for the quantity αm.
The boundaries of the region visited by random walks
other than the leader become more and more determin-
istic as m→∞. The region is asymptotically symmetric
with respect to the origin, (−x∗, x∗), with x∗ estimated
from the criterion∫ ∞

x∗

dx
m− 1√

2πt
e−x

2/2t ∼ 1 (42)

An elementary asymptotic analysis yields

x∗ '
√

2Ct, C = lnm (43)

The leader must stay in the region x > x∗ =
√
Cτ dur-

ing the time interval 0 < τ < t. This problem admits
an exact solution [65–67] for arbitrary C > 0, namely,
the survival probability decays as t−α with α = α(C).
We are interested in the m� 1 behavior, and generally,
the deterministic description of the boundaries is asymp-
totically exact only when m � 1. Thus C � 1, and in
this situation α ' (C− 1)/4, see [65–67], with our choice
of the diffusion coefficient D = 1

2 . From (42) we obtain

C ' lnm. Thus, we recover αm ' 1
4 lnm for m� 1.

The range distribution (11) simplifies to

Pn(t) ' 8√
2πt

exp

[
−n

2

2t

]
(44)

in the limit n�
√
t. The probability of finding a random

walk of range n and other m−2 random walks of smaller
range is

(m− 1)Pn(1− Pn)m−2 ' (m− 1)Pne
−(m−2)Pn (45)

with Pn given by (44). The criterion∑
n≥n∗

(m− 1)Pne
−(m−2)Pn ∼ 1 (46)

gives n∗ '
√

2Ct and the same C ' lnm in the leading
order. The range is anomalously large, so the leader must
stay in the region x > x∗ = n∗ =

√
Cτ . Thus, we arrive

at the same leading behavior αm ' 1
4 lnm.

We have also investigated the average number of dis-
tinct complete ties for three random walks, i.e., instances
when N1 = N2 = N3. Using the rate equation approach,
we have found that the number of ties saturates at a finite
value when d ≤ 2, while for d ≥ 3, it grows indefinitely
with time. Numerical simulations confirm these qualita-
tive behaviors. For m ≥ 4 random walks, the number of
complete ties remains finite in any dimension.

VI. DISCUSSION

We investigated the competition between sets visited
by two identical random walks on hyper-cubic lattices.
We also studied the race between the ranges of the walks.
Using analytic methods, we studied the asymptotic be-
haviors (6) for the average number of ties between the
ranges of the two walks. We found that the average num-
ber of ties grows as ln t in one dimension and as (ln t)2

in two dimensions.
We also studied ordering probabilities associated with

the number of sites and the set of visited sites. In gen-
eral, the ordering probabilities decay algebraically in one
dimension, and a challenge for future work is an analytic
determination of the decay exponents β and γ. The be-
havior of the ordering probabilities in higher dimensions
is much richer. Of special interest is the ordering proba-
bility Q(t) associated with the sets of visited sites, viz.,
the probability that the set of sites visited by one random
walker remains a subset of the sites visited by another.
Numerically, we find that the ordering probability Q(t)
decays as a stretched exponential in d ≥ 2. Determining
the quantity Q(t) analytically is a formidable challenge

The probabilities P (t) and Q(t) may be also studied for
Brownian motions [56, 71]. To have well-defined order-
ing probabilities, we postulate that S1(0) ⊂ S2(0) , e.g.,
S2(0) = [−ε, ε] and S1(0) is the origin. The ranges |Sj(t)|
are now positive real numbers, and the probabilities P (t)
and Q(t) are well defined by (2) and (3). The decay laws
(15) and (16) acquire dimensionally consistent form

P (t) ∼
(
ε2

Dt

)β
, Q(t) ∼

(
ε2

Dt

)γ
(47)

where D is the diffusion coefficient. For Brownian motion
in d ≥ 2, one can consider a Wiener sausage containing
all points within a fixed distance from the Brownian tra-
jectory, i.e., a domain visited by a spherical Brownian
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particle. For Wiener sausages, the average visited vol-
ume and its variance are thoroughly understood [72–79],
and qualitatively similar to (7) and (10).

In this study, we addressed the probability that one
random walk never visits a site that was not previously
visited by another walk. A complementary and related
question involves non-intersection probabilities [6, 80, 81]
describing realizations when trajectories do not intersect,
i.e., any two walks never visit the same site. Confor-
mal field theory, two-dimensional quantum gravity, and
Schramm-Löwner evolution have been applied [82–88] to
study non-intersection probabilities in two dimensions.
Methods used for the analysis of non-intersection proba-
bilities in higher dimensions [6, 80, 81] could perhaps be
adapted to the analysis of the ordering probabilities.

In addition to the average number of ties between the
ranges of two random walks, one can study further sta-
tistical properties of the number of ties. Another natural
direction for future work is to investigate ties between
the sets of visited sites.

Appendix A: Derivation of Eq. (27)

To simplify the right-hand side of (26) let us reverse the
order of summation and integration, i.e., first integrate
term by term. The sum in

a1 =
32

π

∑
i,j≥1

(−1)i+j
i2j2

i2 + j2
(A1)

is formally divergent. Regularization allows us to deduce
a finite answer. Rearranging the terms in the sum yields∑

i,j≥1

(−1)i+j
i2j2

i2 + j2
=
∑
i,j≥1

(−1)i+jj2
i2 + j2 − j2

i2 + j2

=
∑
i,j≥1

(−1)i+j
[
j2 − j4

i2 + j2

]

= −
∑
i,j≥1

(−1)i+j
j4

i2 + j2
(A2)

In the last step, we used
∑
j≥1(−1)jj2 = 0. Indeed,

the sum is equal to 7ζ(−2) = 0, with zeta function ζ(s) =∑
j≥1 j

−s at s = −2 viewed as an analytic continuation of

ζ(s) defined when Re(s) > 1. The zeta function vanishes
at all even negative integers, ζ(−2p) =

∑
j≥1 j

2p = 0, as

discovered by Euler, see [89, 90].
We now perform the summation in (A2) over i ≥ 1

using the identity

∑
i≥1

(−1)i

i2 + j2
=

πj
sinh(πj) − 1

2j2
(A3)

Inserting (A2) and (A3) into (A1) we obtain

a1 =
16

π

∑
j≥1

(−1)j
[
j2 − πj3

sinh(πj)

]
(A4)

Using the identity
∑
j≥1(−1)jj2 = 0 again we simplify

(A4) to Eq. (27).
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