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Abstract—A present challenge in wireless communications is
the assurance of ultra-reliable and low-latency communication
(URLLC). While the reliability aspect is well known to be
improved by channel coding with long codewords, this usually
implies using interleavers, which introduce undesirable delay.
Using short codewords is a needed change to minimizing the
decoding delay. This work proposes the combination of a coding
and decoding scheme to be used along with spatial signal
processing as a means to provide URLLC over a fading channel.
The paper advocates the use of random linear codes (RLCs)
over a massive MIMO (mMIMO) channel with standard zero-
forcing detection and guessing random additive noise decoding
(GRAND). The performance of several schemes is assessed over
a mMIMO flat fading channel. The proposed scheme greatly
outperforms the equivalent scheme using 5G’s polar encoding
and decoding for signal-to-noise ratios (SNR) of interest. While
the complexity of the polar code is constant at all SNRs, using
RLCs with GRAND achieves much faster decoding times for
most of the SNR range, further reducing latency.

Index Terms—Ultra-reliable and low-latency communications
(URLLC), massive MIMO, Random linear codes (RLCs), Guess-
ing random additive noise decoding (GRAND)

I. INTRODUCTION

The physical layer has much to contribute to the goal

of wireless ultra-reliable and low-latency communication

(URLLC), whose major goals are to reduce latency to 1 ms
and simultaneously ensure at least 99.999 % reliability [1].

Noise-guessing decoding was very recently proposed as a

universal decoder for codes having codewords of moderate

length or sufficiently high rate, which are ideal for appli-

cations in wireless URLLC, where the codewords are desir-

ably short. The technique, dubbed guessing random additive

noise decoding (GRAND), allows ditching interleavers and

eliminating the decoding delay bottleneck they imposed [2].

Given that the entropy of the noise is much smaller than

the entropy of the codewords, decoding of the noise pattern

that affected a codeword greatly diminishes the complexity of

maximum likelihood (ML) decoding. Moreover, because it is

a universal decoder, it opened doors to using random linear

codes (RLCs), which are able to attain the maximum rate of

the finite-blocklength regime, precisely the one of interest in

URLLC. The combination of RLC encoding with GRAND is

a perfect fit for URLLC, where the flexibility of choice of the

codewords’ lengths and rates of a RLC greatly exceeds any

limitation regarding their length.

As it is well known, massive multiple-input multiple-output

(mMIMO) allowed the very high spectral efficiencies in 5G

due to spatial multiplexing. In order to cater for both objectives

in URLLC, this paper proposes coded mMIMO links using a

RLC and GRAND. GRAND has been recently proposed for

single-input single-output (SISO) flat Rayleigh channels and

shown to outperform Bose–Chaudhuri–Hocquenghem (BCH)

codes using the Berlekamp-Massey (B-M) decoder [3]. To the

best of our knowledge, the use of RLCs and GRAND is for

the first time proposed and assessed in the context of a MIMO

fading channel.

II. RANDOM LINEAR CODES

Shannon’s random code-construction [4] provably reaches

capacity when the length of the codewords tends to infinity and

the decoder performs ML decoding. However, selecting the

codebook members randomly leads to two different problems:

i) a storage problem, given that all codewords would have

to be stored both at the encoding side and at the decoding

side, and ii) a decoding complexity problem given that, when

applying the ML principle, a corrupted codeword needs to be

compared with all codewords in the codebook in order to find

the most likely one.

The storage problem posed by Shannon’s construction has

been overcome by RLCs, because, as in the case of any linear

block code, the generator matrix G encapsulates a very short

description of a code, and is the only piece of information

needed to be stored.

RLCs are known to be capacity-achieving in the binary

symmetric channel (BSC), [4], [5], in the asymptotic regime.

Notably, they also attain the maximum rate possible in the

finite-blocklength regime [6], [7], the one of interest for prac-

tical URLLC. Furthermore, RLCs can be constructed with any

size and any rate, and thus having those degrees of freedom is

a major practical advantage for most engineering applications.

III. GUESSING RANDOM ADDITIVE NOISE DECODING

Albeit classical RLCs are known to be capacity-achieving,

they do not offer a solution to the remaining problem of

having a practical decoder. A practical solution for the RLC’s

decoding conundrum only recently emerged with the advent

of GRAND-based algorithms [2], [8], [9]. GRAND focuses

on guessing the noise that corrupted the transmitted code-

word, rather than exhaustively going through all the possible
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codewords, and is proven to still lead to ML decoding [8].

GRAND is a universal decoder, enabling the decoding of any

block code of moderate length and with a sufficiently high

code rate, and can be used whether the code is random or

has some mathematical structure (e.g. polar codes [10], [11],

BCH codes [3], [11], Hamming codes, etc), being a binary or

multi-level code. Notably, the solely requirement for GRAND

is that a membership test exists to detect if a received word is

a valid codeword. In the case of RLCs, the test relies on the

codeword’s syndrome.

Because GRAND is a universal decoder, it opened doors

to using the capacity-achieving RLCs for which no practical

decoder was yet available. Recent research has shown that

RLCs supersede the performance of polar codes of the same

length, even with short codewords [2], [10]. However, while

off-the-shelf polar codes do not exist for any wanted length

or desired rate, RLCs can be constructed with any desired

blocklength and rate.

For uniform-at-random RLCs, encoding k bits onto n, with

rate R = k/n, where the codewords are chosen uniformly at

random from the set (or space) where 2n possible words exist,

out of which only 2k = 2nR are valid codewords. The distance

between any two codewords is also uniformly distributed. As

n → ∞, GRAND permits a successful decoding in 2n/2nR =
2n(1−R) trials, on average. Consequently, higher code rates

lead to a faster decoding when using GRAND because the

words’ space becomes denser.

IV. SYSTEM MODEL FOR CODED MASSIVE MIMO

A coded mMIMO system is considered, with a RLC encoder

at the transmitter and GRAND at the receiver, as depicted

in Fig. 1. The description of the transmission chain is made

considering only one packet of information comprising k
bits, which is encoded onto a codeword, sent via spatial

multiplexing. For longer streams the process can be repeated

by slicing the string of bits in packets of size k.

A. RLC encoding scheme

A block a of k i.i.d. information bits is linearly encoded

onto a codeword of bits xb of length n using a systematic

RLC with rate R = k
n

over the binary Galois F2. A (n, k) RLC

defines a codebook C with 2k = 2nR codewords of length n,

constituting a linear subspace of the discrete vector space Fn
2 .

The minimal Hamming distance between two codewords in C
is d, however, its role in the context of RLC is not as relevant

to determine the performance of some code [12, Ch.13]. The

code is defined by a binary random generator matrix G ∈
F
k×n
2 , which acts as the basis matrix for the code subspace,

such that C =
{

xb = aG : a ∈ Fk
2

}
. The generator matrix is

of the form G = [ P | Ik ], where P ∈ F
k×(n−k)
2 is a binary

random matrix, and Ik is the identity matrix of size k × k,

responsible for the systematic part of the encoding. As a result

of this construction, all codewords xb are equally probable.
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Fig. 1. System model for coded mMIMO URLLC.

B. Spatial multiplexing with mMIMO

The baseband bit encoder outputs the n-bit codeword xb,

which is fed to a transmitter equipped with NT transmit

antennas which maps the n bits onto NT complex sym-

bols belonging to a M -QAM constellation defined by the

symbol alphabet A ∈ C, each of which carrying log2(M)
bits. These symbols form the complex transmit vector is

x(c) = [x1, ..., xNT
]T . In this work one uses a “one-shot”

approach to the transmission of each codeword. This means

that the number of transmit antennas fits the number of

complex symbols needed to transmit one codeword when using

a given cardinality M for the modulation, and is given by

NT =
n

log2(M)
, (1)

nevertheless, this constraint can be easily alleviated.

The codeword of n bits is divided in small strings with

log2(M) bits, which are mapped onto NT constellation sym-

bols using some mapping scheme. Two mapping schemes will

be considered: natural mapping and Gray mapping. In both

cases the complex constellation alphabet A is constructed

as the Cartesian product of two pulse amplitude modulation

(PAM) alphabets, where each of the I and Q components

carry
log

2
(M)
2 PAM bits. The system is designed such that

the fist n/2 bits of a codeword control the PAM symbols in

the I component, and the remaining n/2 bits control the PAM

symbols in the Q component. Square QAM constellations with

M = 22θ are considered, with θ = 2, 3.

The symbols transmitted from each antenna are assumed to

have unit power, that is E{(x(c))Hx(c)} = M , where (.)H is

the Hermitian transpose operator. The coded transmitted signal

x goes through a channel (perfectly known at the receiver),

characterized by the matrix H ∈ CNR×NT and is received

at the receiver equipped with NR ≫ NT antenna elements.

Using the complex MIMO model for flat Rayleigh fading, the

received signal y = [y1, ..., yNR
]T can be expressed as:

y(c) =

√

SNR

M
H(c)x(c) + n(c), (2)

where n(c) = [n1, ..., nNR
]T represents the additive noise

at the receiver. Both the entries in H(c) and in n are i.i.d.

random variables taken from a complex normal distribution

CN (0, 1). For implementation purposes, the complex-valued

MIMO model was converted to a real-valued one [13].

While it is well-known that the performance of ZF is

very poor in symmetric MIMO (NR = NT ), ZF attains

quasi-optimal performance in highly asymmetric MIMO with



NR ≫ NT . Matrix inversion may become expensive but very

good approximate solutions for the inverse matrix can be

obtained via Neumann series [14]. Considering NR ≫ NT ,

ZF incurs no performance loss and boosts the receiver array

gain. ZF detection amounts to applying the Moore-Penrose

pseudo-inverse [13]

H+ =
(
HHH

)−1
HH , (3)

resulting at the receiver:

H+y = INT
x+H+n

︸ ︷︷ ︸

u

, (4)

where INT
is the identity matrix of size NT and u ∈ C

NT

denotes the new noise vector after the ZF filter.

Symbol detection is made via a slicer defined by the shape

of the constellation, and finally the bits are demapped from the

detected symbols, reconstructing a binary word yb = xb ⊕ e,

with ⊕ denoting the modulo-2 addition. This word is fed to

the decoder, which applies GRAND to infer the transmitted

word x̂b, which was corrupted by the error pattern e (where

yb, xb, and e, are all strings of n-bits).

C. Decoder applying GRAND

The task of the decoder is to estimate xb given yb. The

central idea of GRAND is that this task is equivalent to the

one of decoding the error pattern ê affecting xb.

Instead of using the generator matrix G, any linear block

code can also be defined by its parity check matrix H ∈

F
(n−k)×n
2 whose kernel is: C =

{

xb ∈ Fn
2 : HxT

b = 0
}

,

reminding that xb ∈ C. Note: the notation of the parity matrix

coincides with the one of the MIMO channel matrix; given the

very different contexts in which they appear, we have opted

to keep the traditional notations.

The syndrome of a detected word y is s(xb) = HxT
b =

H
(
xT

b ⊕ eT
)
= HeT , which is the 0 vector only if e is 0 or

e is a valid codeword; in both cases yb ∈ C. The syndrome

associated with each error pattern is not unique. The number of

distinct syndromes is only 2(n−k) and the number of possible

error patterns is
∑n

t

(
n

t

)
. Therefore, identifying the true error

pattern based on s(xb) leads to highly sub-optimal decoding.

Unlike other deployed decoders, GRAND concentrates on

identifying the error pattern rather than the codeword itself; it

attempts to decode xb by successively testing error patterns in

decreasing probability order, as described in Fig. 2.

Because of the combined effect of using a M -QAM modula-

tion and having a MIMO flat fading channel, the noise patterns

e will not have the same probability distribution of the additive

white Gaussian noise (AWGN) model that has mostly been

considered when analysing GRAND. Nevertheless, in this

work one considers that the probability of the error patterns

gets smaller with an increasing weight, denoted as |e|. Thus,

error patterns of weight |e| = i are tested, with i = 1, . . . , nb,

meaning that a maximum number of nb bit-flips is considered

in a n-bit codeword.

Generate error pattern ê
(in decreasing probability order)

yb⨁ ê

yb = xb+ e

Membership test
Yes

No AND |ê| ≤ nb

No AND all |ê| tested

x̂b = yb

x̂b = y� ⨁ ê

Fig. 2. Description of the GRAND algorithm.

V. PERFECT CHANNEL HARDENING LOWER-BOUND

The error patterns e that corrupt the transmitted codeword

are not simply due to the thermal AWGN noise at the receive

antennas. As seen in Section IV-B, in (4), when the receiver

makes ZF detection, the noise affecting the decision is an

amplified version of the thermal noise. The effect the ZF filter

has on the original noise n can be tracked by considering the

autocorrelation matrix of the new noise u = H+n, which is:

Ru = E
{
uuH

}
= E

{(
H+n

) (
H+n

)H
}

= E
{(

H+n
) (

nH(H+)H
)}

= H+
E
{
nnH

}
(H+)H = σ2

nH
+(H+)H ,

(5)

where the autocorrelation of additive noise, E
{
nnH

}
=

Rn = σ2
n INR

, was used. Replacing (3) in (5), after some

matrix algebra, it is possible to obtain

Ru = σ2
n

(
HHH

)−1
= σ2

nT
−1, (6)

where T = HHH ∈ CNT×NT is the Gram matrix [15].

As seen in (4), the correct detection of x̂ is perturbed by

the modified noise vector u. It is possible to show that the

output SNR after ZF detection of the NT incoming signals is

always lower than the input SNR [16] [13, sec. 2.5.2]:

snr
(ZF )
i =

snri
[

(HHH)
−1

]

ii

, 1 ≤ i ≤ NT , (7)

meaning that, in real-world channels, ZF detection always

leads to noise enhancement in the detection of x̂.

There is only one particular (and ideal) situation that does

not lead to noise enhancement: when all the column vectors

in H are mutually orthogonal. This is precisely what tends to

happen when NT is fixed and NR → ∞, as in the case of

mMIMO, leading to the so-called channel hardening effect.

The geometric interpretation is the following: one has NT

random Gaussian vectors living in a NR-dimensional space;

with high probability any pair of the NT vectors will be



orthogonal to each other. In that case, the Gram matrix, which

comprises all the inner products hH
i hj , i, j = 1, . . . NT ,

becomes a diagonal matrix of the form:

T = diag
(
||h11||

2, . . . , ‖hNTNT
||2
)
= NRINT

, (8)

given that ‖hii||2 =
∑NR

i=1 |hi|2 = NR, for all the NT vectors.

Replacing (8) in (5), in the case of perfect channel harden-

ing, the autocorrelation of the noise after ZF is Ru =
σ2

n

NR
INT

.

Finally, the power of u is ‖u‖2 = Tr (Ru) =
σ2

n NT

NR
.

It is now possible to establish the equivalent channel model

if the NT ×NR mMIMO configurations were to attain perfect

channel hardening at those (finite) dimensions: y = INT
x+u.

One has NT independent parallel channels with each of the

NT component of u having power |ui|
2 =

σ2

n

NR
, shedding light

on the tremendous benefit of having a larger receiver array.

VI. RESULTS

The proposed system was assessed by numerical simula-

tion in terms of performance and decoding complexity when

transmitting a short codeword in “one shot”, i.e., only using

one MIMO burst, aiming at URLLC. The results are also

compared with the (128,103) benchmark polar code used in the

control channel of the 5G air interface, thus having R = 0.8.

For an increasing spectral efficiency of the modulation, the

number of transmit antennas is reduced to accommodate the

same payload of n bits, according to expression (1). In the

case of M = 64, expression (1) would lead to a non-integer

NT = 21.3. To make it an integer number of antennas, the

RLC code is slightly changed to (132,106) in the case of 64-

QAM, keeping the same code rate R = 106
132 = 0.8.

The assessment of the system’s performance is made via the

block error rate (BLER) versus Eb

N0

, as it is most common in

recent papers assessing GRAND. Eb denotes the energy per

information bit and N0 is the bilateral spectral density of the

noise at each one of the receive antennas. The decoding com-

plexity is measured by the expected number of membership

tests needed at each Eb

N0

. All the results are ergodic in sense

that each Monte Carlo iteration uses a different channel matrix

H and a different generator matrix G for the RLC.

Figures 3 and 4 show the performance and complexity

results respectively for M = 16, 64. One should highlight that

n remains constant in the different cases, while NT and M
change, with opposite effects and thus the joint effect does

not lend itself to an easy interpretation. As one would expect,

with all other parameters unchanged, Gray mapping always

outperforms the equivalent scheme using natural mapping.

By increasing the value of nb, threshold error patterns of

larger weight are tested and therefore the performance dra-

matically increases, at the expense of a much larger member

of membership tests. The upper bound for the number of

membership tests is given by

UB =

nb∑

t=1

(
n

t

)

=

(
n

1

)

+

(
n

2

)

+ · · ·+

(
n

nb

)

, (9)
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Fig. 3. Performance (left) and decoding complexity (right) for different nb

thresholds in GRAND, using RLC (128,103), with NT = 32, and 16-QAM.
The corresponding perfect channel hardening lower-bounds are also plotted.
The performance of the polar-code (128,103) is also included.
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Fig. 4. Performance (left) and decoding complexity (right) for different nb

thresholds in GRAND, using RLC (133,106), with NT = 22, and 64-QAM.
The corresponding perfect channel hardening lower-bounds are also plotted.

however, the results show that the average number of mem-

bership tests is much lower than (9) in the case M = 16 (and

also with M = 4, not shown due to space limitations). With

64-QAM the complexity can approach the upper bound when

the noise is too large due to the sheer number of modulation

symbols in error. It is interesting to observe how the average

number of membership tests always tends to one, which is a

consequence of the decreasing number of bits in error, such

that eventually almost all received words are valid codewords.

The comparison of the performance of the proposed

schemes using RLC and GRAND with the performance at-

tained using the polar code (128,103) decoded using the list

decoding technique used in 5G [17], for a list length of 8,

shows that the RLC with GRAND remarkably outperforms the

polar code. More surprisingly, this is true even when GRAND

runs with only nb = 2 (seen in Fig. 3 and also with 4-QAM,

not shown due to space limitations). Note that for M = 64
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one could easily construct a RLC with a rate that fits the setup,

however, a polar code counterpart does not exist and could not

be included for comparison in Fig. 4).

Figures 3 and 4 include both the performance and the com-

plexity results for the situation with perfect channel hardening

(see Sec. V). This gauges the loss coming form the non-ideal

mMIMO. As expected, the more asymmetrical the MIMO

configuration becomes, the closer one is from that ideal case.

One has a fixed NR = 200 and NT = 32, 22. In fact, in the

(M = 64, NT = 22) setup the gap to the ideal channel is only

≈ 0.5 dB for all nb and for both mapping schemes.

The complexity involved in decoding the polar code is

assessed by means of the average decoding time of codewords,

as depicted in Fig. 5. The decoding time of polar codes

remains constant for all Eb

N0

. However, as a consequence

of the accentuated reduction of the number of membership

tests performed (as observed in figures 3, and 4), GRAND

almost always spends much less time decoding a codeword

than the list decoder. Depending on Eb

N0

, when GRAND is

set with nb = 1, 2 it is ≈ 2.5 to ≈ 5 times faster in the

(M = 4, NT = 64) setup and ≈ 5 to ≈ 12 times faster in

the (M = 16, NT = 32) setup. Even with the best performant

nb = 3, applying GRAND to the RLC is faster than decoding

the polar code for Eb

N0

> 2.75 dB in the first setup and > 2.3
dB in the second. Using RLC with GRAND is up to over ≈ 3
times faster in the first setup and up to ≈ 8 times faster in the

second setup. The average decoding time was measured using

MATLAB on PC equipped with a CPU Intel Core i7-12700

and 32GB of RAM with maximum clock speed of 4.9 GHz.

VII. CONCLUSIONS

This paper proposed transmission schemes for high-

throughput, high-reliability, and very-low latency, adequate for

URLLC. The proposal puts together RLCs using GRAND

transmitted over mMIMO. The coded schemes attain a large

gain (3.5 − 4.7 dB) in respect to the uncoded transmission,

significantly outperform the polar-coded counterparts with

state-of-the-art list decoding, and for most of the SNR range

GRAND delivers a much faster decoding time, thus reducing

decoding latency, in addition to the delay savings for not

requiring the use of interleavers. Performance can be traded-

off with decoding time, and one can get decoding speeds up

to 12 times faster than the schemes with polar codes, while

still beating the performance of the polar code.
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