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Abstract

We consider online imitation learning (OIL), where the task is to find a policy that imitates
the behavior of an expert via active interaction with the environment. We aim to bridge the
gap between the theory and practice of policy optimization algorithms for OIL by analyzing
one of the most popular OIL algorithms, DAGGER. Specifically, if the class of policies is
sufficiently expressive to contain the expert policy, we prove that DAGGER achieves constant
regret. Unlike previous bounds that require the losses to be strongly-convex, our result
only requires the weaker assumption that the losses be strongly-convex with respect to the
policy’s sufficient statistics (not its parameterization). In order to ensure convergence for a
wider class of policies and losses, we augment DAGGER with an additional regularization
term. In particular, we propose a variant of Follow-the-Regularized-Leader (FTRL) and its
adaptive variant for OIL and develop a memory-efficient implementation, which matches the
memory requirements of FTL. Assuming that the loss functions are smooth and convex with
respect to the parameters of the policy, we also prove that FTRL achieves constant regret
for any sufficiently expressive policy class, while retaining O(

√
T ) regret in the worst-case.

We demonstrate the effectiveness of these algorithms with experiments on synthetic and
high-dimensional control tasks.

1 Introduction

Learning to make control decisions online in a stable and efficient manner is important in computer anima-
tion (Ling et al., 2020; Zhang & van de Panne, 2018), resource management (Zhou et al., 2011; Ignaciuk
& Bartoszewicz, 2010), robotics (Andrychowicz et al., 2020; Xie et al., 2018; Schaal & Atkeson, 2010),
and autonomous vehicles (Chen et al., 2020; Sadigh et al., 2016). Online decision making has a variety of
challenges: from partial-observability and asymmetric information (Warrington et al., 2021; Choudhury et al.,
2018), to function approximation and bootstrapping error (van Hasselt et al., 2018). One common method to
avoid some of these problems is through online imitation learning (Ross et al., 2011) (OIL). The OIL setting
assumes access to an expert which is known to achieve the desired control objective (e.g. drive safely), and
the task is to learn a policy that imitates the behavior of this expert through direct interaction with the
environment by the learned policy.
Although there has been substantial progress in practical algorithms for IL such as imitation learning from
observations alone (Kidambi et al., 2021; Peng et al., 2018), adversarial IL (AIL) (Ghasemipour et al., 2020;
Creswell et al., 2018; Fu et al., 2018), learning from imperfect experts (Sun et al., 2018; Laskey et al., 2017;
Sun et al., 2017) or demonstrations (Rengarajan et al., 2022; Reddy et al., 2020; Nair et al., 2018), and
learning amortized proposals for planning (Lioutas et al., 2022; Fickinger et al., 2021; Piché et al., 2019),
there has been relatively little work on direct policy optimization. Even in areas which sometimes provide
guarantees like apprenticeship learning (Shani et al., 2022; Syed & Schapire, 2007; Abbeel & Ng, 2004), and
behavioral cloning (BC) (Florence et al., 2021), there is still a large gap between theory and practice.
For OIL, one of the most popular policy optimization algorithms, DAGGER (Ross et al., 2011), minimizes the
discrepancy between the learned policy and the expert over all states observed through interaction with the
environment. Ross et al. (2011) frame the OIL problem as online convex optimization (OCO) (Hazan, 2019),
where the sequence of functions measure the discrepancy between the current policy and the expert. Ross
et al. (2011) show that DAGGER is in fact an instance of the follow-the-leader (FTL) algorithm (Hazan et al.,
2007) and inherits the FTL guarantees when the discrepancy function is strongly-convex in the parameters of
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Figure 1: Adversarial Gridworld with a finite-horizon MDP and linear policy parameterization. The agent
attempts to match noisy expert feedback in each round: the blue and purple arrows denoting the expert action
and the two grids illustrate expert actions in alternate rounds. We observe that FTL has substantially larger
cumulative regret, while OGD and FTRL demonstrate better empirical performance (details in Appendix D.1).

the policy. The advantage of the OCO framework is that it actively models adversarial sequences of functions
and ensures the resulting algorithms guard against worst case behavior.
However, in OIL the functions are not adversarial. Instead, they are generated by a behavioral policy used to
interact with the environment and the function used to measure the discrepancy between the learned and
expert policies. Consequently, some OIL algorithms, including DAGGER, have good empirical performance
for a broader range of function classes than suggested by the theory. Recent work by Yan et al. (2020) suggests
that this theory-practice inconsistency stems from the use of highly expressive policy classes. Assuming
that the policy class contains the expert policy, Yan et al. (2020) prove that common OCO algorithms
including follow-the-regularized leader (Abernethy et al., 2008), online gradient descent (Zinkevich, 2003),
and AdaGrad (Duchi et al., 2011) have better worst-case performance than suggested by the existing theory.
However, they (i) only focus on convex functions where modern OIL involves minimizing non-convex loss
functions, and (ii) only consider the linearized variants of FTRL such as AdaGrad which are less sample-
efficient then their unlinearized counter-parts because they do not take advantage of previous examples. In
this work, we address these issues and make the following contributions.

1.1 Contributions

Follow-the-Leader: Instead of focusing on the worst-case performance of FTL for arbitrary convex functions,
in Section 3, we analyze the theoretical performance of FTL (and thus DAGGER) by exploiting the specific
structure in OIL problems. In particular, assuming the class of policies (which we are optimizing over) is
sufficiently expressive such that it contains the expert policy, we prove FTL can achieve constant regret for OIL
problems (Theorem 3.1). Unlike previous work (Yan et al., 2020), this result justifies the superior empirical
performance of FTL, and does not require convexity or smoothness with respect to the policy parameterization.
Furthermore, we show the use of expressive policy classes can also improve the computational complexity
of FTL, making it more robust to hyperparameter tuning. Our analysis shows that much of the empirical
success of DAGGER might be due both to its use of specific loss functions as well as expressive policy classes.
However, when the policy class is not rich enough or the agent is not provided with sufficient state information,
DAGGER can result in linear regret and poor empirical performance (Warrington et al., 2021; Choudhury
et al., 2018). As a simple example, the grid-world in Fig. 1 shows how DAGGER (denoted by its corresponding
online optimization algorithm FTL) might exhibit poor oscillatory behavior. This is reminiscent of the
counter-example for FTL in the OCO setting in the absence of strong-convexity (Shalev-Shwartz et al.,
2012). In the OCO literature, adding a regularization term is the standard way to remedy such oscillatory
behavior (Abernethy et al., 2008).
Follow-the-Regularized-Leader: Analogously, we use the follow-the-regularized-leader (FTRL) algo-
rithm (Abernethy et al., 2008) in the OIL setting (Section 4). FTRL generalizes FTL, helping it guard against
adversarial examples similar to Fig. 1. Unlike FTL, our FTRL analysis assumes loss functions are smooth
and convex with respect to the policy parameterization. In Theorem 4.4, we prove that FTRL can obtain
constant regret if the policy class is sufficiently expressive and contains the expert policy. In the absence
of an expressive policy class, FTRL still results in sublinear regret, improving over FTL in this setting.
However, unlike FTL which is parameter-free, FTRL requires that its regularization strength be set according
to unknown problem-dependent constants, which can result in poor empirical performance. Consequently,
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we make use of the adaptive FTRL (AdaFTRL) algorithm (McMahan, 2017) in the OIL setting. Using a
proof technique similar to Vaswani et al. (2020); Yan et al. (2020); Levy et al. (2018); Xie et al. (2020),
for smooth, convex loss functions, we prove that AdaFTRL obtains the same regret guarantees as FTRL.
We additionally show that unlike FTRL, AdaFTRL does not require the knowledge of problem-dependent
constants (Theorem 4.4).
Experimental Evaluation: In Section 5, we evaluate the algorithms for both continuous (Todorov et al.,
2012) and discrete control (Mnih et al., 2013). Our experiments demonstrate the superior empirical perfor-
mance of FTL and (Ada-)FTRL, methods that update the policy by utilizing all the past data (so-called
“offline” updates). Our experiments also indicate the benefit of functional regularization, with the FTRL
variants often outperforming DAGGER (FTL) in terms of either average cumulative loss or average return. An
accompanying codebase can be found here: Improved-Policy-Optimization-for-Online-Imitation-Learning.git.
This code includes all algorithms and baselines discussed in the paper, as well as the additional experiments
discussed in Appendix D.

2 Problem Formulation

We consider an infinite-horizon discounted Markov decision process (MDP) (Bertsekas, 2019; Sutton &
Barto, 2018; Puterman, 1994) denoted by M , and defined by the tuple 〈S,A,P, r, ρ, γ〉 where S is the
set of states, A is the action set, P : S × A → ∆S is the transition distribution, ρ ∈ ∆S is the initial
state distribution and γ ∈ [0, 1) is the discount factor. Here, ∆S and ∆A refer to the |S|-dimensional and
|A|-dimensional probability densities respectively. In reinforcement learning (RL), we wish to maximize
a reward function denoted by r : S × A → R. The expected discounted return or value function of
a policy π : S → ∆A is defined as V π(s) = Ea0,s1,a1... [

∑∞
τ=0 γ

τr(sτ , aτ )|s], where aτ ∼ π(·|sτ ), and
sτ+1 ∼ P(sτ+1|sτ , aτ ) and V π(ρ) := Es0∼ρV

π(s). A policy π induces a measure dπ over states such that
dπ(s) = (1− γ)

∑∞
τ=0 γ

τPrπ[sτ = s | s0 ∼ ρ], where Prπ(sτ = s | s0 ∼ ρ) is the visiting probability of s when
playing policy π starting from s0 ∼ ρ. Given a class of policies Π, the objective is to return a policy that
maximizes the value function, maxπ∈Π V

π(ρ).

2.1 Reduction to Online Convex Optimization

Choosing a reward function which is easy to learn from, and that achieves a desired engineering goal, can
be difficult (Dulac-Arnold et al., 2021; Hadfield-Menell et al., 2017; Sadigh et al., 2017). Therefore, control
engineers often use expert supervision to directly learn an optimal policy. Such experts can make execution
of controllers online computationally cheaper at test time Lioutas et al. (2022), or to “warm-start” learning
for a complicated control task (Liu et al., 2021). In all cases, given access to such an expert policy πe, the
aim of OIL is to output a policy that imitates the expert. In particular, if the divergence D : ∆A ×∆A → R
measures the discrepancy between two policy distributions (for example the KL or Wasserstein divergence),

π∗ = min
π∈Π

E
s∼dπ

[D (π(·|s), πe(·|s))]. (1)

That is to say, we search for a policy which minimizes the divergence between expert and agent policies. By
imitating the expert, OIL intends to learn a policy that achieves a high return such that V π∗(ρ) ≈ V πe(ρ).
Since we cannot compute dπ or differentiate through it in general, OIL iteratively samples states from dπ,
and solves the following optimization problem at iteration t ∈ [T ] (Ross et al., 2011; Yan et al., 2020),

πt+1 = arg min
π∈Π

lt(π) = arg min
π∈Π

E
s∼dπt

[D (π(·|s), πe(·|s))]. (2)

In this paper, we assume that Π consists of policies that are realizable through a set of sufficient statistics, by
a model parameterized with w ∈ W . We use πw to refer to the parametric realization of π, with the choice of
the policy parameterization implicit in the πw notation. For example, a linear policy parameterization often
assumes access to features φs,a ∈ Rd, and assumes that there exists a w ∈ Rd such that, π(a|s) ∝ exp(〈w, φs,a〉).
Notably, if the divergence is convex with respect to the parameterization w, then each loss function lt is also
convex in w, and OIL can be recast as an online convex optimization problem (Hazan, 2019). Note that here,
the functions lt are not independent and identically distributed, but instead are generated by a complex
interaction between the policy πt and the MDP at every iteration. In online optimization, we are tasked with
finding a sequence of policies parameterized by {w1, w2, . . . wT } that minimize the sequence of loss functions
lt. Given T , the performance of an online optimization algorithm that produces a sequence {w1, w2, . . . wT }
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Algorithm 1 Online optimization for OIL
1: Input: Policy parameterization πw, Initial policy πw0 . πw0 has full support over the expert actions.
2: for t = 1, 2...T do
3: Starting from s ∼ ρ, roll-out policy πwt . . Such interactions can be batched together.
4: Construct the loss lt(w) defined in Eq. (2).
5: Update wt+1 using an online optimization algorithm. . e.g. OGD, AdaGrad, FTRL, FTL.
6: end for
7: Output: Control policy parameters wT

is measured in terms of its regret R(T ) defined as:

R(T ) :=
T∑
t=1

lt(wt)− min
w∈W

[
T∑
t=1

lt(w)
]
. (3)

R(T ) measures the sub-optimality of the algorithm compared to the best performance in hindsight. We define
W∗T := arg minw∈W

∑T
t=1 lt(w) as the best parameter in hindsight. Algorithms that achieve sublinear regret

for which limT→∞R(T )/T = 0 are referred to as no-regret algorithms. It is important to note that common
algorithms (Orabona, 2019) achieving sublinear regret do so for any (potentially adversarial) sequence of loss
functions. Since it is difficult to correctly account for the interdependence of loss function and policy (which
is to say, the policy plays a role in the generation of the next observed loss function), no-regret algorithms
instead guarantee performance by safeguarding against worst-case behavior. In the next section, we focus on
one such no-regret algorithm, follow-the-leader (FTL), and analyze its performance in OIL.

3 Follow-the-Leader

In this section, we begin by stating the Follow-the-Leader (FTL) update and then characterize its theoretical
performance on OIL problems. The basic FTL update is given by:

wt+1=arg min
w∈W

Ft(w) :=
t∑
i=1

li(w), (4)

where li(w) is defined following Eq. (2). This algorithm is desirable because it is parameter free, and makes
use of “offline” updates (Schulman et al., 2017; Mnih et al., 2016; Lillicrap et al., 2016; Schulman et al., 2015;
Degris et al., 2012) by taking advantage of examples gathered during all previous interactions. These offline
updates allow the algorithm to improve the policy without further interactions from the environment, and is
important in settings where gathering environment interactions is expensive. In the general OCO framework,
when the loss functions lt are strongly-convex in w, FTL achieves O (log(T )) regret, but will incur Ω(T )
regret in the absence of strong-convexity (Hazan et al., 2007). However, these results do not capture the
empirical success of FTL (e.g. DAGGER) used in conjunction with complex policy parameterizations like
neural networks for which the loss functions are non-convex in w (Warrington et al., 2021).
To make progress towards addressing this discrepancy, we assume that (i) the policy class Π is sufficiently
expressive so as to contain the expert policy, (ii) the optimization problem in Eq. (4) can be solved exactly,
and (iii) the divergence D(π, πe) has a unique minimizer and is bounded in the sufficient statistics of π.
Crucially, we do not make any assumptions about the policy parameterization. Assumption (i) is true when
using expressive policy classes like neural networks, while assumption (ii) relates to the supervised learning
problem in Eq. (4). (ii) can be satisfied if the objective satisfies a gradient domination condition in w,
like for example, the PL inequality (Karimi et al., 2016). Lastly, assumption (iii) is typically true for the
divergence-distribution pairs used in practice. For example, consider a continuous state-action space, where
for a fixed state s and π(a|s) = N (a;µ>s, I) and πe(a|s) = N (a;µ>e s, I), then D(π, πe) = 1/2‖µ>s− µ>e s‖2.
Under these assumptions, we prove (in Appendix C) FTL incurs constant regret.
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Theorem 3.1 (Follow-the-leader - Online Imitation Learning ). Under the following assumptions: (i) the
policy class Π is sufficiently expressive so as to contain the expert policy, the (ii) optimization problem
in Eq. (4) can be solved exactly, and (iii) the divergence D(π, πe) has a unique minimizer and is bounded in
the sufficient statistics of π, FTL (Eq. (4)) obtains the following regret guarantee in the OIL setting,

R(T ) ≤ C

1− γ where, C := max
τ,t

{
E

s∼pτt (s)
[D(π(·|s), πe(·|s))]

}
< max

s
D(π(·|s), πe(·|s)).

where pτt (s) is the probability of reaching state s at time-step τ using policy πt.

The above result implies that FTL can take advantage of an expressive policy class, and obtain constant regret
in the OIL setting. Unlike the general online convex optimization results that require strong-convexity in w
and imply a logarithmic regret for FTL (for completeness, we include these proofs in Appendix B.7-B.8), the
above theorem doesn’t require the strong-convexity of lt(w) and is in fact independent of parameterization.
Next, we consider the practical implementation of FTL and discuss the advantages of using expressive policy
classes in conjunction with FTL updates.

Solving subproblem in Eq. (4): If πe ∈ Π, then there exists a we s.t. πe = π(we). Since D(πe, π(we)) = 0,
for all t, lt(we) = 0. Hence, the finite-sum problem in Eq. (4) satisfies the interpolation (Vaswani et al.,
2019a; Ma et al., 2018) property. In this case, stochastic gradient descent (using a randomly sampled li)
matches the convergence rate of deterministic gradient descent on Ft. For example, if Ft(w) satisfies the PL
property, then it can be minimized to an ε-error in O(log (1/ε)) gradient evaluations, making the cost of the
FTL update independent of t. We note that modern machine learning models (e.g. deep neural networks)
used for OIL are sufficiently expressive and can ensure that the expert policy is contained in the resulting
policy class. Furthermore, note that under interpolation, we can solve the subproblem using SGD with a
stochastic line-search (Vaswani et al., 2019b), making the FTL update fully “parameter-free”.
We thus see that having an expressive policy class has a statistical (smaller number of interactions with the
environment) as well as a computational advantage (small number of iterations to solve the sub-problem for
each update). But in cases where Π does not contain πe, we have demonstrated (see Fig. 1) that FTL can
result in linear regret and poor empirical performance. In order to remedy this issue, we consider a more
general class of algorithms known as follow-the regularized-leader (FTRL) (Abernethy et al., 2008).

4 Follow-the Regularized-Leader

Recall that for an expert with noisy feedback, FTL can lead to oscillations resulting in large cumulative
regret (Fig. 1). We propose to use regularization to stabilize the behavior of FTL. In particular, we analyze
the Follow-the Regularized-Leader (FTRL) algorithm. We first state the FTRL update and then reformulate
it for a more scalable practical implementation. For smooth, convex losses, we quantify the regret of FTRL
and its adaptive variant in Theorem 4.3 and Theorem 4.4 respectively. The FTRL update (specifically the
proximal variant given by Abernethy et al. (2008)) can be defined as:

wt+1=arg min
w∈W

Ft(w) + ψt(w) :=
[

t∑
i=1

li(w) +
t∑
i=1

σi
2 ‖w − wi‖

2

]
. (5)

Note that FTRL can be used in conjunction with other regularizers (Orabona, 2019), but we focus on the
squared Euclidean distance throughout this paper. The above update reduces to FTL (Eq. (4)) when σi = 0
for all i. Eq. (5). Our analysis uses a proximal regularization term similar to McMahan (2017), though other
variants also exist. Note that a naive implementation of Eq. (5) requires storing all the previous parameters
(w1, w2, . . . , wt). This issue is exacerbated when using large, complex models to parameterize the policy.
Using FTRL for continual learning also results in the same problem (Kirkpatrick et al., 2017), and is tackled
heuristically. Instead, we reformulate the update in Eq. (5) as follows:
Proposition 4.1 (Reformulation). Defining ηt := 1/

(∑t

i=1
σi
)
, the update in Eq. (5) can be reformulated

(proof in Appendix B) as:

wt+1 = arg min
w∈W

[
t∑
i=1

li(w)− 〈w,
t−1∑
i=1
∇li(wt)〉+ 1

2ηt
‖w − wt‖2

]
. (6)
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Unlike Eq. (5), this update does not have a memory requirement which increases with the number of iterations
and model size. That is, if m is the model-size, then Eq. (5) requires O(mT ) memory, while the reformulated
update can be implemented using only O(m + T ) memory (same as FTL). We note such reformulations
are not unique, and choosing one reformulation over another could lead to drastically different solutions in
settings where the inner optimization problem defined by equation 5 is non-convex, or solved inexactly. While
we leave a theoretical discussion on this topic to future work, we include an additional reformulation for
comparison which we refer to as Alt-FTRL,

wt+1 = arg min
w∈W

[
t∑
i=1

li(w) + 1
2ηt
‖w‖2 − w>

[
t−1∑
i=1

wt

[
1
ηt
− 1
ηt−1

]]]
. (7)

This reformulation averages over the previous parameters instead of their gradients, and is included in the
empirical comparison in Section 5. Next, we describe how interpolation improves the computational efficiency
of FTRL.

Solving subproblem in Eq. (5): Similar to Eq. (4), if πe ∈ Π, the finite-sum in Ft(w) satisfies the
interpolation property defined in Section 3. In this case, proximal stochastic gradient descent (using a
randomly sampled li and a proximal operator with ψt(w) discussed in Appendix B) matches the convergence
rate of deterministic gradient descent (Cevher & Vũ, 2019). Hence, similar to Eq. (4), Eq. (5) can be solved
efficiently. Unlike the result in Section 3, here, we assume that the loss functions are L-smooth and convex
in w (see Appendix A for formal definitions and Appendix B.6 for proofs under the convex, non-smooth
but Lipschitz setting). The subsequent results also assume that W is a convex compact set of diameter
D, meaning supx,y∈X ‖x− y‖ ≤ D. We use the following definition to quantify the degree to which the
interpolation property is satisfied.
Definition 4.2 (Interpolation-Error). For a fixed iteration t, if w∗t := arg minw∈W lt(w), and for a w∗ ∈ W∗,

ε2t := min
w∗∈W∗

{lt(w∗)− lt(w∗t )}. (8)

If πe ∈ Π, then we ∈ W∗. We know that lt(we) = 0 for all t, and since each lt is lower-bounded by zero, it
implies that ε2t = 0 for all t. Hence, ε2t is a measure of the expressivity of the policy class that is induced
by the w :→ π mapping and the set W. In the following theorem (proved in Appendix B), under the above
assumptions, we show that FTRL incurs sublinear regret regardless of whether πe ∈ Π.
Theorem 4.3 (FTRL - Smooth + Convex). Assuming each lt is (i) L-smooth, (ii) convex, FTRL (Eq. (6))
for ηt = min

{
(
∑T
t=1 ε

2
t )−1/2, 1

2L

}
for all t, achieves the following regret

R(T ) ≤
T∑
t=1

[
ηt ‖∇lt(wt)‖2

2

]
+ D2

2ηT
≤ 2D2L+ (D2 + 2L)

√√√√ T∑
t=1

ε2t .

This result follows similar proof techniques established in works like Orabona (2019); Ghadimi & Lan (2013),
however unlike previous results for FTRL, we present a bound which explicitly accounts for the level of
interpolation similar to (Loizou et al., 2021; Vaswani et al., 2020). If πe ∈ Π, εt = 0 for all t, and FTRL
achieves constant regret similar to FTL. For non-zero εt, FTRL still incurs sublinear O(

√
T ) regret. However,

we note that unlike Theorem 3.1, the above result requires the loss functions to be convex and smooth.
Unfortunately, the above result requires setting η according to L and εt, both of which are typically unknown
in practice. To address this issue, we use an adaptive variant of FTRL (Joulani et al., 2020; McMahan, 2017)
and characterize its regret bound in the following theorem (proved in Appendix B).
Theorem 4.4 (AdaFTRL - Smooth + Convex). Assuming each lt is (i) L-smooth, (ii) convex, FTRL
(Eq. (6)) for ηt = α/

√∑t

i=1
||∇li(wi)||2, achieves the following regret

R(T ) ≤
T∑
t=1

[
α||∇lt(wt)||2

2
∑t
i=1 ||∇li(wi)||2

]
+ D2

2α

√√√√ T∑
t=1
||∇lt(wt)||2 ≤ 2L

(
α

2 + D2

2α

)2

+
√

2L
(
α

2 + D2

2α

)√√√√ T∑
t=1

ε2t .
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Observe that the above bound holds for any finite value of α, though the upper-bound is minimized when
α = D. The only difference with the FTRL update used in Theorem 4.3 is the choice of ηt. Hence, we can
continue to use the reformulated update in Proposition 4.1. Furthermore, in smooth convex settings, AdaFTRL
achieves the same regret as in Theorem 4.3 without the knowledge of problem-dependent constants like L or
εt. The proof of Theorem 4.4 is similar to AdaGrad (Vaswani et al., 2020; Levy et al., 2018). We conclude by
showing that FTRL (and AdaFTRL) generalizes OGD (and AdaGrad) respectively. In particular, if we were
to use the linearized losses, meaning that ls(w) = 〈∇ls(ws), w〉 in Proposition 4.1, then, by definition of wt+1,
setting the gradient to zero,

∑t
i=1∇li(wi)−

∑t−1
i=1∇li(wi) + ηt(wt+1 −wt) = 0, =⇒ wt+1 = wt − ηt∇lt(wt),

which recovers the OGD (and AdaGrad) update with the corresponding choice of ηt.

5 Experiments

In this section, we compare FTL, FTRL, Alt-FTRL, AdaFTRL, online gradient descent (Zinkevich, 2003)
(OGD) and AdaGrad (Duchi et al., 2011) in terms of both the average cumulative loss equal to 1/t

∑t
s=1 ls(ws)

and the policy return V πt (ρ). Every round consists of M interactions with the environment and we evaluate
each algorithm for a total of 25000 (10000 for Atari) environment interactions, meaning that T = 25000/M.
Throughout the main paper, we use M = 1000, and defer the results for M = 100 to Appendix D). In
order to tune the ”outer-learning-rate” η for OGD, AdaGrad, and the FTRL variants, we do a grid-search
over η ∈ [10−5, 10−4, . . . , 105] on one of the environments, and take the top three step-sizes that has the
minimum average cumulative loss over the course of 2000 environment interactions under M = 100. We then
evaluate these three step-sizes over 25000 interactions, and take the best of the three in terms of average
cumulative loss. For the off-policy methods (FTL and the FTRL variants), we also search over the space of
”inner-learning-rates” α ∈ [10−5, 10−4, . . . , 105], and run two optimization procedures, Adam (Kingma & Ba,
2014), and SLS (Loizou et al., 2021). For FTRL and Alt-FTRL, we set ηt = α/

√
t. For FTL, FTRL and its

variants, we used gradient descent to solve the subproblems for each update. For solving each subproblem,
we used a maximum of 1000 iterations terminating the optimization when the gradient norm was sufficiently
small (10−8).

5.1 Continuous Control on Mujoco

We evaluate the algorithms for continuous control tasks (with continuous state and action spaces) in Mujoco
suite (Todorov et al., 2012), and build and train models using pytorch (Paszke et al., 2019). In particular, we
consider the Hopper and Walker-2D environments where the task is to learn a policy that can imitate the
expert policy trained used reinforcement learning. The expert policy uses a neural network parameterization
and is trained using soft actor-critic (Haarnoja et al., 2018). For each environment, we report the performance
of each method when the loss function lt(w) is either the l2 or l1 loss. All results are averaged over 3 runs, and
we report the mean and relevant quantiles. The policy corresponds to a multivariate Gaussian distribution
with a fixed diagonal covariance and the mean parameterized by either a linear or neural network model.
The neural network architecture is the same as that of the expert, meaning that in this case, the policy class
is sufficiently expressive to include the expert policy. For the linear model, the resulting loss functions are
convex, whereas using a neural network parameterization results in non-convex loss functions. Because of its
poor empirical performance, we do not plot the OGD in the main paper and defer these plots to Appendix D.
For both parameterizations (Fig. 2 and Fig. 3), we observe that (i) FTL, FTRL, Alt-FTRL, and AdaFTRL
consistently outperform OGD and AdaGrad, (ii) FTRL and its variants consistently outperform FTL in terms
of the average cumulative loss, (iii) AdaFTRL improves over both FTRL and Alt-FTRL in terms of average
cumulative loss, (iv) FTL has good performance for the non-strongly-convex l1 loss in the linear case where
interpolation is not necessarily satisfied, and (v) good performance with respect to the average loss metric
does not imply good return (for example, with the linear model and L2 loss, AdaGrad matches the average
loss of the other methods, but has poor performance with respect to the cumulative return). We conclude
that (i) “offline” updates used in FTL, FTRL and its variants result in superior empirical performance and (ii)
regularization helps improve the empirical performance with FTRL outperforming FTL in terms of average
cumulative loss but not always average cumulative reward, and (iii) FTL performs better compared to what
is suggested by the theory.
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Figure 2: Comparing Adagrad, FTL, FTRL, Alt-FTRL, and AdaFTRL, the four plots on the left display
the expected cumulative reward while average cumulative loss displayed on the right. A behavioral cloning
baseline (BC) is included to verify the effect of environment interaction under the learned policy. Each line
describes the mean, 5% and 95% quantiles as computed by Harris et al. (2020). The plots for the average
cumulative loss show that for linear models, (i) FTRL, Alt-FTRL and AdaFTRL maintain performance that
is as good or better than FTL in terms of average cumulative loss, indicating the benefits of regularization,
and (ii) FTL, FTRL, and AdaFTRL do significantly better than AdaGrad, indicating that making “offline”
updates are crucial in maintaining performance in online imitation learning.

5.2 Discrete Control on Atari

We evaluate the algorithms for discrete control tasks (with discrete state-action spaces) in the Atari suite (Mnih
et al., 2013). In particular, we consider the Pong and Breakout game environments where the task is to
learn a policy that can imitate the expert policy trained used reinforcement learning. The expert policy
uses a neural network parameterization and is trained using proximal policy optimization (Hill et al., 2018;
Schulman et al., 2017). The learned policy corresponds to a categorical distribution parameterized by either
a linear model that uses the fixed pretrained features from the reinforcement learning algorithm, or the same
neural network architecture as the expert and is learned in an end-to-end fashion. For the linear model
(which uses the pretrained feature extractor from the expert), the resulting loss functions are convex, while
the end-to-end setup tests the non-convex setting. Because of its poor empirical performance, we again do
not plot OGD in the main paper and defer these plots to Appendix D. Notably both settings the policy class
is sufficiently expressive so as to include the expert policy.
In Fig. 4, we again observe that for both policy parameterizations, (i) FTL, FTRL and AdaFTRL consistently
outperform OGD and AdaGrad, (ii) FTRL and AdaFTRL often dominate FTL in terms of the average
cumulative loss, (iii) AdaFTRL has similar performance as its non-adaptive variants in terms of the average
cumulative loss, (iv) FTL has good performance for the non-strongly-convex cross-entropy loss, and (v)
similar to Section 5.1, good performance with respect to the average loss metric does not imply good return.
We again conclude that (i) “offline” updates used in FTL, FTRL and its variants result in superior empirical
performance and (ii) regularization helps improve the empirical performance with FTRL outperforming (in
average cumulative loss) FTL in the end-to-end setting, and (iii) FTL performs better compared to that
suggested by the theory.

6 Other Related Work

We briefly discussed the most relevant related work in Section 1. We now clarify how OIL relates to other
common settings, focusing specifically on imitation learning from observation alone or ILOA (Yan et al., 2020;
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Figure 3: Comparing Adagrad, FTL, FTRL, Alt-FTRL and AdaFTRL, the four plots on the left display the
expected cumulative reward in left 4 plots and Average cumulative loss on the right four plots. A behavioral
cloning baseline (BC) is included to verify the effect of environment interaction under the learned policy, and
expert performance is indicated with a dotted line. Each line presents the mean, 5% and 95% quantiles as
computed by Harris et al. (2020). These plots show that for neural network models, (i) FTRL, Alt-FTRL,
and AdaFTRL maintain performance in terms of cumulative loss that is as good as FTL, even under a
complex model class, and (ii) FTL, FTRL, and AdaFTRL all do significantly better than their on-policy
counterparts, indicating that making “offline” updates can be crucial in maintaining performance.

Sun et al., 2019). Unlike OIL, ILOA often requires solving difficult sub-problems at every round of interaction.
One of the most popular variants of ILOA called apprenticeship learning - AL (Shani et al., 2022; Zahavy
et al., 2020; Abbeel & Ng, 2004), uses the state-occupancy generated by the expert to construct a reward
surface, and solves for the optimal policy under this surface. For example, Syed & Schapire (2007) assume
(a) access to expert trajectories and that (b) the underlying unknown reward function is a non-negative
linear combination of known ”state-features”, and solve a saddle-point problem by alternating between 1)
constructing a prospective reward under which the expert occupancy is optimal and the agent’s occupancy is
maximally sub-optimal, and 2) using the prospective reward, solve an RL problem via policy optimization. In
contrast, the basic OIL setting (Ross et al., 2011; Yan et al., 2020) make no assumption about the unknown
reward surface, and instead assumes access to an expert oracle which provides the optimal action given
a state. Here, the OIL problem is typically framed as an online optimization problem, can be solved by
standard OCO techniques, and notably doesn’t require solving RL problems as a subroutine.
A variety of authors improve upon the framework given by (Syed & Schapire, 2007; Abbeel & Ng, 2004),
often taking advantage of theoretical advances in constrained optimization. For example, Frank-Wolfe
updates (Zahavy et al., 2020; Abernethy & Wang, 2017), can be used to solve classical variants of the
apprenticeship learning problem, and results which extend this framework have even proven some convergence
results in non-stationary tabular MDPs (Geist et al., 2022; Zahavy et al., 2021; Zhang et al., 2020). In
contrast to these works, our results in Section 4 can handle more complex policy parameterizations (e.g.
linear) given that the corresponding losses satisfy the appropriate convexity assumptions, while the FTL
results in Section 3 can handle general policy parameterizations under an interpolation assumption (extending
similar work in the bandits setting by Degenne et al. (2018)). In some cases by framing the saddle point
problem as online mirror-decent (Shani et al., 2022), one can convert the computationally costly saddle-point
problem into a more tractable iterative algorithm similar to adversarial imitation learning (AIL) (Creswell
et al., 2018; Ghasemipour et al., 2020; Fu et al., 2018). Again however, these algorithms require stricter
assumptions on the class of MDPs considered, or have no guarantees at all. From a sample-complexity
perspective, Baram et al. (2017) shows by assuming access to an expert oracle (like in OIL), the number of
environment interactions required to match the expert performance ≈ 105, while AIL-like algorithms require
up to 106 even with a similar number of expert examples. Addressing this gap in statistical efficiency between
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Figure 4: Comparing Adagrad, FTL, FTRL, Alt-FTRL, and AdaFTRL, we plot the the expected cumulative
reward on the left 4 plots and the average cumulative loss on the right. Each line presents the mean, 5%
and 95% quantiles as computed by Harris et al. (2020). We observe that for the end-to-end setting, (i)
FTRL, Alt-FTRL, and AdaFTRL outperform FTL in terms of average cumulative loss, and (ii) FTL, FTRL,
Alt-FTRL, and AdaFTRL all do significantly better than AdaGrad, indicating that “offline” updates can be
crucial for good empirical performance. A behavioral cloning baseline (BC) is included to verify the effect
of environment interaction under the policy, and expert performance is indicated with a dotted line. We
also note that the ”linear policy class” represents a linear transformation of the experts pretrained feature
encoder. This ensures that the learned policy satisfies the interpolation convexity assumptions.

these algorithm classes, and extending results based non-stationary MDPs to continuous state-action spaces
represent interesting areas of future research.

7 Discussion

We show that in OIL settings (i) algorithms which make use of offline updates (FTL, FTRL, AltFTRL,
AdaFTRL) perform better than algorithms which do not (OGD, AdaGrad) and (ii) including regularization
can lead to empirical improvements in terms of reward and average cumulative loss. Furthermore, we improved
the theoretical results for both FTL and FTRL, showing that both algorithms can achieve constant regret
when the policy class is sufficiently expressive and contains the expert policy. Importantly, our guarantees
for FTL only require that the losses be strongly-convex with respect to the policy’s sufficient statistics (not
its parameters). Our research leaves a host of open questions – (i) does FTRL converge for the IL setting
independent of parameterization in a similar fashion to FTL and (ii) can these results be generalized to the
standard online learning setting without leveraging OIL structure, and (iii) how do inexact optimization,
stochastic gradients, and limited memory affect performance of FTL and FTRL.
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Supplementary material

Organization of the Appendix
A Definitions
C Proof of Theorem 3.1
B Proofs for Section 4
D Additional Experimental Details

A Definitions

Our main assumptions are that each individual function li is differentiable, has a finite minimum l∗i , and is
L-smooth, meaning that for all v and w,

li(v) ≤ li(w) + 〈∇li(w), v − w〉+ L

2 ‖v − w‖
2
, (Individual Smoothness)

which also implies that f is L-smooth. A consequence of smoothness is the following bound on the norm of
the stochastic gradients,

‖∇li(w)‖2 ≤ 2L(li(w)− l∗i ).

We also assume that each li is convex, meaning that for all v and w,

li(v) ≥ li(w)− 〈∇li(w), w − v〉, (Convexity)

Depending on the setting, we will also assume that f is µ strongly-convex, meaning that for all v and w,

f(v) ≥ f(w) + 〈∇f(w), v − w〉+ µ

2 ‖v − w‖
2
, (Strong Convexity)

B Proofs for Section 4

B.1 Proof of Proposition 4.1

Proposition 4.1 (Reformulation). Defining ηt := 1/
(∑t

i=1
σi
)
, the update in Eq. (5) can be reformulated

(proof in Appendix B) as:

wt+1 = arg min
w∈W

[
t∑
i=1

li(w)− 〈w,
t−1∑
i=1
∇li(wt)〉+ 1

2ηt
‖w − wt‖2

]
. (6)

Proof. Since ηt := 1∑t

s=1
σs

, by definition of wt+1 in Eq. (5),

t∑
s=1
∇ls(wt+1) + wt+1

ηt
=

t∑
s=1

σsws

Similarly, by definition of wt,
t−1∑
s=1
∇ls(wt) + wt

ηt−1
=

t−1∑
s=1

σsws
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From the above relations,
t∑

s=1
∇ls(wt+1) + wt+1

ηt
=

t−1∑
s=1
∇ls(wt) + σtwt + wt

ηt−1

=⇒ wt+1 + ηt

t∑
s=1
∇ls(wt+1) = wt + ηt

t−1∑
s=1
∇ls(wt)

Therefore, at iteration t, we need to obtain wt+1, we need to solve the following equation w.r.t w,

w + ηt

t∑
s=1
∇ls(w) = wt + ηt

t−1∑
s=1
∇ls(wt) (9)

Similar to FTL, this update requires storing the previous functions fs from s = 1 to t, but does not require
storing the previous models like in Eq. (5). Minimizing the following loss is equivalent to ensuring Eq. (9).

wt+1 = arg min
w

[
t∑

s=1
ls(w)− 〈w,

t−1∑
s=1
∇ls(wt)〉+ 1

2ηt
‖w − wt‖2

]
(10)

B.2 Derivation of Alternative FTRL Reformulation in equation 7

In a more direct fashion then the proof above, we can see that

wt+1 = arg min
w∈W

[
t∑
i=1

li(w) + 1
2ηt
‖w‖2 −

t−1∑
i=1

w>wt

[
1
ηt
− 1
ηt−1

]]
, (11)

In fact represents the same objective as

wt+1 = arg min
w∈W

[
t∑
i=1

li(w) +
t∑
i=1

σi
2 ‖w − wi‖

2

]
(12)

We can see this if we differentiate both equations

∇Falt(w) = ∇
[

t∑
i=1

li(w) + 1
2ηt
‖w‖2 −

t−1∑
i=1

w>wi

[
1
ηi
− 1
ηi−1

]]

= ∇
[

t∑
i=1

li(w) + w>w

2

t−1∑
i=1

[
1
ηi
− 1
ηi−1

]
−

t−1∑
i=1

w>wi

[
1
ηi
− 1
ηi−1

]]

= ∇
[

t∑
i=1

li(w) + w>w

2

t−1∑
i=1

[
1
ηi
− 1
ηi−1

]
−

t−1∑
i=1

w>wi

[
1
ηi
− 1
ηi−1

]
+

t−1∑
i=1

w>i wi
2

[
1
ηi
− 1
ηi−1

]]

= ∇
[

t∑
i=1

li(w) +
t−1∑
i=1

σi
2 ‖w − wi‖

2

]
= ∇F (w) (13)

Note that we define,
σt = 1

ηt
− 1
ηt−1

, and 1
ηt

=
√
t (14)

to ensure that the magnitude of regularization used in both reformulations is of order
√
t.

B.3 Main Regret Lemma

We define

Ft(w) :=
t−1∑
i=0

li(w) + ψt(w), (15)
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where, ψt(w) is a strongly-convex proximal regularizer that satisfies the following property:
wt = arg min [ψt+1(w)− ψt(w)] . (16)

Eq. (5) uses ψt(w) =
∑t−1
i=1

σi
2 ‖w − wi‖

2. Since ψt+1(w)− ψt(w) = σt
2 ‖w − wt‖

2, which is minimized at wt
and hence the regularizer in Eq. (5) satisfies the desired property, and is a valid strongly-convex proximal
regularizer. We will now prove the following lemma for a general strongly-convex proximal regularizer ψt. In
this case, the FTRL update in Eq. (5) can be generalized to:

wt = arg minFt(w) = arg min
t−1∑
i=0

li(w) + ψt(w) =⇒
t−1∑
i=1
∇li(wt) +∇ψt(wt) = 0. (17)

Lemma B.1. Assuming that the functions Ft are λt-strongly convex, then the regret for the FTRL update
in Eq. (17) can be bounded as:

R(T ) ≤ [F1(w1)] +
T∑
t=1

[
1

2λt+1
‖∇lt(wt)‖2

]
−

T∑
t=1

[ψt(wt)− ψt+1(wt)] + ψT+1(w∗)

Proof.

Ft+1(wt)− Ft+1(wt+1) ≤ 1
2λt+1

‖∇Ft+1(wt)‖2

(Since Ft+1 is λt+1-strongly convex and wt+1 is the minimizer of Ft+1.)

= 1
2λt+1

∥∥∥∥∥
t∑
i=1
∇li(wt) +∇ψt+1(wt)

∥∥∥∥∥
2

(By definition of Ft+1)

= 1
2λt+1

∥∥∥∥∥
t−1∑
i=1
∇li(wt) +∇ψt(wt) +∇ψt+1(wt)−∇ψt(wt) +∇lt(wt)

∥∥∥∥∥
2

= 1
2λt+1

‖∇Ft(wt) +∇ψt+1(wt)−∇ψt(wt) +∇lt(wt)‖2 (By definition of Ft)

= 1
2λt+1

‖∇ψt+1(wt)−∇ψt(wt) +∇lt(wt)‖2 (Since wt is the minimizer of Ft)

= 1
2λt+1

‖∇lt(wt)‖2 (Since wt is the minimizer of ψt+1(w)− ψt(w))

Ft+1(wt)− Ft+1(wt+1) = [Ft+1(wt)− Ft(wt)] + [Ft(wt)− Ft+1(wt+1)]
= [lt(wt) + ψt+1(wt)− ψt(wt)] + [Ft(wt)− Ft+1(wt+1)]

Summing from t = 1 to T , and using the above relation,
T∑
t=1

[lt(wt) + ψt+1(wt)− ψt(wt)] +
T∑
t=1

[Ft(wt)− Ft+1(wt+1)] ≤
T∑
t=1

[
1

2λt+1
‖∇lt(wt)‖2

]

=⇒
T∑
t=1

[lt(wt)− lt(w∗)] + [F1(w1)− FT+1(wT+1)] ≤
T∑
t=1

[
1

2λt+1
‖∇lt(wt)‖2

]
−

T∑
t=1

[ψt(wt)− ψt+1(wt)]−
T∑
t=1

lt(w∗)

R(T ) ≤ [FT+1(wT+1)− FT+1(w∗)− F1(w1)] +
T∑
t=1

[
1

2λt+1
‖∇lt(wt)‖2

]
−

T∑
t=1

[ψt(wt)− ψt+1(wt)] + ψT+1(w∗)

Since wT+1 is the minimizer of FT+1,

R(T ) ≤ [F1(w1)] +
T∑
t=1

[
1

2λt+1
‖∇lt(wt)‖2

]
−

T∑
t=1

[ψt(wt)− ψt+1(wt)] + ψT+1(w∗)

18



Published at 1st Conference on Lifelong Learning Agents, 2022

The above expression is true for both FTL, and (adaptive) FTRL, and only uses the definitions of the proximal
regularizer and the strong-convexity property for Ft. We specialize this result for ψt(w) =

∑t−1
i=1

σi
2 ‖w − wi‖

2

used in Eq. (5).

Lemma B.2. Assuming that each li is µi strongly-convex for µi ≥ 0, the regret for the FTRL update
in Eq. (5) can be bounded as:

R(T ) ≤
T∑
t=1

[
1

2
∑t
i=1[σi + µi]

‖∇lt(wt)‖2
]

+ D2

2

T∑
t=1

σt

where D is the diameter of W.

Proof. With this choice of ψt, we note that F1(x1) = ψ1(x) = 0 for all w. Using Lemma B.1,

R(T ) ≤
T∑
t=1

[
1

2λt+1
‖∇lt(wt)‖2

]
+

T∑
t=1

[σt
2 ‖wt − wt‖

2
]

+ ψT+1(w∗)

=
T∑
t=1

[
1

2λt+1
‖∇lt(wt)‖2

]
+

T∑
t=1

σt
2 ‖w

∗ − wt‖2 .

Since the iterates are bounded on W, ‖w − w∗‖ ≤ D for all w,

R(T ) ≤
T∑
t=1

[
1

2λt+1
‖∇lt(wt)‖2

]
+ D2

2

T∑
t=1

σt

Since each li is µi strongly-convex, Ft is
∑t−1
i=1 µi strongly-convex, and hence λt+1 =

∑t
i=1 µi.

B.4 Proof of Theorem 4.3
Theorem 4.3 (FTRL - Smooth + Convex). Assuming each lt is (i) L-smooth, (ii) convex, FTRL (Eq. (6))
for ηt = min

{
(
∑T
t=1 ε

2
t )−1/2, 1

2L

}
for all t, achieves the following regret

R(T ) ≤
T∑
t=1

[
ηt ‖∇lt(wt)‖2

2

]
+ D2

2ηT
≤ 2D2L+ (D2 + 2L)

√√√√ T∑
t=1

ε2t .

Proof. In this case, µi = 0 i.e. li is convex only convex without strong-convexity. Using Lemma B.2 with
µi = 0 and defining ηt := 1∑t

i=1
σt

,

R(T ) ≤
T∑
t=1

[ηt
2 ‖∇lt(wt)‖

2
]

+ D2

2ηT
(18)

Recall that we use a constant step-size implying that η1 = η2 = ηT = η = min
{ 1
E ,

1
2L
}

, where E2 :=
∑T
t=1 ε

2
t .

With this choice,

R(T ) ≤ ηL
T∑
t=1

[lt(wt)− lt(w∗t )] + D2

2η (By smoothness, and since w∗t is a minimizer of lt.)

= ηL

T∑
t=1

[lt(wt)− lt(w∗)] + ηL

T∑
t=1

[lt(w∗)− lt(w∗t )] + D2

2η

= ηLR(T ) + ηL+
T∑
t=1

ε2t + D2

2η
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Since η < 1
L ,

R(T ) ≤ ηL

1− ηL

T∑
t=1

ε2t + D2

2η(1− ηL)

Since η ≤ 1
2L , 1

1−ηL ≤ 2,

=⇒ R(T ) ≤ 2ηL
T∑
t=1

ε2t + D2

η

Since η = min
{ 1
E ,

1
2L
}

, 1
η = max {E , 2L},

R(T ) ≤ 2ηL
T∑
t=1

ε2t +D2 max {E , 2L} ≤ 2L
E

T∑
t=1

ε2t +D2(E + 2L) ≤ 2LE +D2E + 2D2L

=⇒ R(T ) ≤ 2D2L+ (D2 + 2L)

√√√√ T∑
t=1

ε2t

B.5 Proof of Theorem 4.4
Theorem 4.4 (AdaFTRL - Smooth + Convex). Assuming each lt is (i) L-smooth, (ii) convex, FTRL
(Eq. (6)) for ηt = α/

√∑t

i=1
||∇li(wi)||2, achieves the following regret

R(T ) ≤
T∑
t=1

[
α||∇lt(wt)||2

2
∑t
i=1 ||∇li(wi)||2

]
+ D2

2α

√√√√ T∑
t=1
||∇lt(wt)||2 ≤ 2L

(
α

2 + D2

2α

)2

+
√

2L
(
α

2 + D2

2α

)√√√√ T∑
t=1

ε2t .

Proof. We follow the same proof as Theorem 4.3 until Eq. (18). Since ηt = α√∑t

i=1
‖∇li(wi)‖2

,

R(T ) ≤ α

2

T∑
t=1

 ‖∇lt(wt)‖2√∑t
i=1 ‖∇li(wi)‖

2

+ D2

2α

√√√√ T∑
i=1
‖∇li(wi)‖2

Bounding
∑T
t=1

 ‖∇lt(wt)‖2√∑t

i=1
‖∇li(wi)‖2

 ≤ √∑T
t=1 ‖∇li(wi)‖

2 using the AdaGrad inequality in (Duchi et al.,

2011; Levy et al., 2018),

R(T ) ≤
(
α

2 + D2

2α

) √√√√ T∑
t=1
‖∇li(wi)‖2

By smoothness, and since w∗t is the minimizer of lt.

≤
√

2L
(
α

2 + D2

2α

) √√√√ T∑
t=1

[lt(wt)− lt(w∗t )],

=
√

2L
(
α

2 + D2

2α

) √√√√ T∑
t=1

[lt(wt)− lt(w∗) + lt(w∗)− lt(w∗t )]

Recall that ε2t := lt(w∗)− lt(w∗t ), and using the definition of R(T ),

=⇒
T∑
t=1

[lt(wt)− lt(w∗)] ≤
√

2L
(
α

2 + D2

2α

) √√√√ T∑
t=1

[lt(wt)− lt(w∗)] +
T∑
t=1

ε2t
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Squaring both sides,(
T∑
t=1

[lt(wt)− lt(w∗)]
)2

≤ 2L
(
α

2 + D2

2α

)2( T∑
t=1

[lt(wt)− lt(w∗)] +
T∑
t=1

ε2t

)
Using Lemma B.3,

R(T ) =
T∑
t=1

[lt(wt)− lt(w∗)] ≤ 2L
(
α

2 + D2

2α

)2

+
√

2L
(
α

2 + D2

2α

)√√√√ T∑
t=1

ε2t

Lemma B.3. If x2 ≤ a(x+ b) for a ≥ 0 and b ≥ 0,

x ≤ 1
2
√
a2 + 4ab+ a ≤ a+

√
ab.

Proof. The starting point is the quadratic inequality x2 − ax− ab ≤ 0. Letting r1 ≤ r2 be the roots of the
quadratic, the inequality holds if x ∈ [r1, r2]. The upper bound is then given by using

√
a+ b ≤

√
a+
√
b

r2 = a+
√
a2 + 4ab
2 ≤ a+

√
a2 +

√
4ab

2 = a+
√
ab.

B.6 FTRL in the non-smooth, but Lipschitz setting

In the absence of smoothness, we will make the standard assumption that each li is G-Lipschitz, meaning
that for all w, ‖∇li(w)‖ ≤ G.

Theorem B.4 (FTRL - Lipschitz + Convex). Assuming each lt is (i) G-Lipschitz, (ii) convex, FTRL
with ηt = α√

t
achieves the following regret,

R(T ) ≤
√
T

2

[
G2α+ D2

α

]
where D is the diameter of W.

Proof. Using Lemma B.2 when µi = 0, defining ηt := 1∑t

i=1
σt

and bounding ‖∇lt(wt)‖2 ≤ G2,

R(T ) ≤ G2

2

T∑
t=1

[ηt] + D2

2ηT

For ηt = α√
t
,

R(T ) ≤ G2α
√
T

2 + D2
√
T

2α
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Theorem B.5 (AdaFTRL - Lipschitz + Convex). Assuming each lt is (i) G-Lipschitz, (ii) convex,
AdaFTRL with ηt = α√∑t

i=1
‖∇li(wi)‖2

achieves the following regret,

R(T ) ≤
(
α

2 + D2

2α

)
G
√
T

where D is the diameter of W.

Proof. We follow the same proof as Theorem 4.4. Since ηt = α√∑t

i=1
‖∇li(wi)‖2

,

R(T ) ≤
(
α

2 + D2

2α

) √√√√ T∑
t=1
‖∇li(wi)‖2

Bounding ‖∇lt(wt)‖2 ≤ G2 completes the proof.

B.7 FTL in the smooth, strongly-convex setting

Theorem B.6 (FTL - Smooth + Convex). Assuming that (i) each li is µ strongly-convex for µ > 0, (ii)
smooth, the regret for the FTL update in Eq. (4) can be bounded as:

R(T ) ≤ DL

µ
(1 + log(T ))

Proof. FTL can be considered as a special case of the general FTRL update in Eq. (17) with ψt(w) = 0 for
all t and w, meaning that σt = 0. Using Lemma B.2 in this case,

R(T ) ≤
T∑
t=1

[
1

2
∑t
i=1[µ]

‖∇lt(wt)‖2
]

Using smoothness and since W has diameter D,

≤ DL
T∑
t=1

1
2µt ≤

DL

µ
(1 + log(T )).

B.8 FTL in the strongly-convex, non-smooth, but Lipschitz setting

Theorem B.7 (FTL - Lipschitz + Convex). Assuming that (i) each li is µ strongly-convex for µ > 0, (ii)
G-Lipschitz, the regret for the FTL update in Eq. (4) can be bounded as:

R(T ) ≤ G2

2µ (1 + log(T ))

Proof. Following the same proof as Theorem B.6,

R(T ) ≤
T∑
t=1

[
1

2µt ‖∇lt(wt)‖
2
]

Since ‖∇lt(wt)‖2 ≤ G2,

R(T ) ≤ G2

2µ (1 + log(T )).
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C Proof of Theorem 3.1
Theorem 3.1 (Follow-the-leader - Online Imitation Learning ). Under the following assumptions: (i) the
policy class Π is sufficiently expressive so as to contain the expert policy, the (ii) optimization problem
in Eq. (4) can be solved exactly, and (iii) the divergence D(π, πe) has a unique minimizer and is bounded
in the sufficient statistics of π, FTL (Eq. (4)) obtains the following regret guarantee in the OIL setting,

R(T ) ≤ C

1− γ where, C := max
τ,t

{
E

s∼pτt (s)
[D(π(·|s), πe(·|s))]

}
< max

s
D(π(·|s), πe(·|s)).

where pτt (s) is the probability of reaching state s at time-step τ using policy πt.

Proof. Recall that at every round FTL returns the following set of parameters:

πT = arg min
π

FT−1(π) = arg min
π

T−1∑
t=1

lt(π) = arg min
π

T−1∑
t=1

Edγπt [D(π, πe)] (19)

The loss at round t can be decomposed using the marginal state distribution at round t. Specifically, if
pτt−1(s) is the probability of visiting state s at time-stamp τ under the policy πt−1, then,

lt(πt) = (1− γ)
∞∑
τ=t

γτ E
pτt

[D(πt(·|s), πe(·|s))] + (1− γ)
t−1∑
τ=0

γτ E
pτt

[D(πt(·|s), πe(·|s))] (20)

From Lemma C.1, we get that for all τ < t we have pτt = pτπe . This implies:

lt(πt) = (1− γ)
∞∑
τ=t

γτ E
pτt

[D(πt(·|s), πe(·|s))] + (1− γ)
t−1∑
τ=0

γτ E
pτπe

[D(πt(·|s), πe(·|s))] (21)

In settings where we are able to exactly match the expert, by using FTL, πt(·|s) = πe(·|s) for all states
where pτi (s) > 0 for any i = 1, . . . , t − 1 and τ < t. Using Lemma C.1, for τ < i, since pτi = pτπe , we can
conclude that πt(·|s) = πe(·|s) for all states where pτπe(s) > 0 for τ < t. This means that the second term
Epτπe [D(πt(·|s), πe(·|s))] = 0.

= (1− γ)
∞∑

τ=t+1
γτ E

pτt

[D(π(·|s), πe(·|s))] (22)

≤ max
{
E
pτt

[D(π(·|s), πe(·|s))]
}

(1− γ)
∞∑

τ=t+1
γτ (23)

≤ Cγt+1 (24)

where C := max
{
Epτt [D(π(·|s), πe(·|s))]

}
. We can now sum the left and right hand sides over T .

T∑
t=1

lt(πt)−
T∑
t=1

lt(π∗) ≤ C
1− γT+1

1− γ ≤ C

1− γ (25)
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Lemma C.1 (Follow the Leader: Induced State-Distribution Under Interpolation). Let the sequence of
loss functions observed be defined as the following:

lt(π) = E
dγπt (s)

[D(π(·|s), πe(·|s))], lτt (π) =
∫
s

pτt (s)D(π(·|s), πe(·|s))ds (26)

Assume that the policy class contains πe. If at every round we minimize the following function with respect
to π:

Ft(π) =
t−1∑
k=0

lk(π) = (1− γ)
t−1∑
k=0

∞∑
τ=0

γτ lτk(π) (27)

then ∀ τ < t we have that pτt (s) = pτe (s).

Proof. We now show inductively that at round t, pt(s) := pπt(s) = pπe(s) ∀τ < t under the assumptions
stated above. The proof proceeds by induction, starting with our base case.
Base-Case: τ = 0
We can immediately note that the initial state distribution is independent of policy, and thus following the
definition of our generative model p0

1(s0) = p0
e(s0).

Base-Case: τ = 1
Next we can consider the results of a single round of the algorithm, and its effect on p1

1(s). By following FTL
under interpolation we have:

π1 = arg min
π

L1(π) = arg min
π

l0(π) (Definition of L1.)

l0(π1) = 0 =⇒ lk0(π1) = 0 ∀k. (Interpolation assumption.)
=⇒ D[π1(·|s), πe(·|s)] = 0 ∀s s.t. p0

0(s) := p0
e(s) > 0 (Definition of l10.)

=⇒ π1(a|s) = πe(a|s) ∀s s.t. p0
0(s) > 0, ( Definition of a divergence and assumption stated below.)

The final line holds provided the divergence D is strongly convex with respect to the policy π. Now we have
that both p0

1(s) = p0
e(s) by τ=0, and π1(a|s) = πe(a|s), we can get direct equality with respect to state at

the next time-step:

p1
e(s′) =

∫
s

∫
a

p(s′|s, a)πe(a|s)p0
e(s)dsda (28)

=
∫
s

∫
a

p(s′|s, a)π1(a|s)p0
0(s)dsda (29)

= p1
1(s′) (30)

Inductive Step:
Assume that for some arbitrary round t we have the following: pτe (s) = pτt−1(s) ∀τ < t, and we want to
prove that at round t+ 1, pτe (s) = pτt (s) ∀τ < t+ 1,

(1) Following the same argument as before πt(a|s) = πe(a|s) ∀a, ∀s s.t. pt−1
e (s) > 0:

(2) We can show that pt−1
t−1(s) = pt−1

t (s) ∀st−1 s.t. pt−1
e (s) > 0 by way of contradiction. Consider the case

where the above does not hold, but the policy interpolates all previous functions observed. By definition of
πt and πt−1 for all τ < t if pτe (s) > 0 then πt(·|s) = πe(·|s) and πt−1(·|s) = πe(·|s).

If pt−1
t−1(s) 6= pt−1

t (s) ∀st−1 s.t. pt−1
e (s) > 0, then let us consider the first time step τ∗ such that pτ∗

t−1(s) 6=
pτ

∗

t (s) ∀s s.t. pτ∗

t−1(s) = pτ
∗

e (s) > 0. Then by definition of τ∗ and the inductive hypothesis, pτ
∗−1
t−1 (s) =

pτ
∗−1
t (s) ∀s s.t. pτ

∗−1
t−1 (s) = pτ

∗−1
t (s) = pτ

∗−1
e (s) > 0. Now by the definition of the generative model this

implies that ∃s s.t. πt(·|s) 6= πt−1(·|s) and pτ∗−1
e (s) > 0. This is a contradiction, as we showed above. Hence

pt−1
t−1(s) = pt−1

t (s) ∀st−1 s.t. pt−1
e (s) > 0.
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We can again put all this together to get the desired result:

ptt(s′) =
∫
s

∫
a

p(s′|s, a)πt(a|s)pt−1
t (s)dsda (Definition of Marginal.)

=
∫
s

∫
a

p(s′|s, a)πt(a|s)pt−1
t−1(s)dsda (Sub-proof (2).)

=
∫
s

∫
a

p(s′|s, a)πt(a|s)pt−1
e (s)dsda (Inductive hypothesis.)

=
∫
s

∫
a

p(s′|s, a)πe(a|s)pt−1
e (s)dsda (FTL)

= pte(s′). (Definition of Marginal.)

Therefore by induction we have that under interpolation, FTL ensures that at round t pτt (s) = pτe (s)∀τ ≤
t− 1.

D Additional Experimental Details

D.1 Grid-world Example From Section 1

In this experiment, we compare three algorithms: online gradient decent, follow-the-leader, and follow-the-
regularized-leader. In this setting we create a 7× 7 grid where the agent is able to move in one of five ways at
each time-step: up, down, left, right, or not at all. The expert actions switch in each round with up and right
in odd rounds and down and left on even rounds Fig. 1. The experiment is run for a total of 100 rounds,
each of which has a horizon of 5 environment interactions. At the beginning of each round, the agent starts
at a position sampled uniformly at random. We verify that FTL incurs substantially larger regret over 1000
rounds. In Fig. 1, we only include the first 100 rounds to reduce the computational burden.
To solve the subproblems required for the FTL and the FTRL updates, we use an Armijo, backtracking
line-search starting with a fixed step-size (Armijo, 1966). For OGD and FTRL, we use a grid-search over
the η ∈ [10−5, . . . , 105]. For a full list of parameters and code, see the Gridworld-Example folder inside the
accompanying code-base. We also include a combined figure below illustrating the relationship between the
reward, which is defined as zero if the agent did not chose the expert action, and one otherwise.
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Figure 5: Displays the cumulative regret, and the cumulative reward over 100 rounds.
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D.2 Toy Experiments

In these experiments, we consider a series of online regression problems which constitute a mixture of
continuous state and discrete action problems (with a logistic loss), and continuous state and continuous
action problems (with L1, L2 losses). For setting the hyper-parameters for these problems, we did a grid-search
for each problem, loss class, and algorithm, for the initial ten rounds. We then used the best hyper-parameter
configuration (in terms of the cumulative regret), and evaluated it for 250 rounds. Similar to Appendix D.1,
we use a back-tracking line-search. We analyze the performance of each algorithm in two settings for each
loss – simple and adversarial.
In the simple setting, we construct a random weight matrix W ∗ ∈ R3×10 and a random feature matrix X
where each state is represented by a 10-dimensional vector. The action space consists of 3 actions generated
as W ∗X. For the discrete action case, the logits for each action are proportional to W ∗X. In the adversarial
setting, we use the same generative process as the simple setting, but switch between using W ∗> and −W ∗>
in alternate rounds. For both settings, we sample one environment interaction/round. For a full list of
parameters and code, see the Toy-Experiments folder inside the accompanying code-base.
The figures in Appendix D.2 display similar trends – (i) in the simple (non-adversarial) setting, across
all losses, FTRL, AFTRL (AdaFTRL), FTL perform significantly better than AdaGrad, OGD (ii) in the
adversarial setting, FTL has poor empirical performance across losses.
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Figure 6: Displays a set of toy experiments in which different online learning algorithms are applied to various
online regression problems. In this case we display both the L1 and L2 loss as well as the logistic loss. Our
code also includes results for the Huber loss which were omitted.

D.3 Mujoco

In this section, we discuss the details for the Mujoco (Todorov et al., 2012) continuous control experiments.
For a full list of parameters and code, see the Mujoco-Experiments folder inside the accompanying code-base.

D.3.1 Behavioral Cloning (Interaction under Expert)

In the experiments presented in the main paper, we interact with the environment using only the current
agent policy. Most existing algorithms (Ross et al., 2011) use a linear combination of the expert policy and
the agents learned policy. We include an ablation in which we only use the expert policy to interact with
the environment, and compare the performance of the algorithms for the linear and neural network settings
in Fig. 7 and Fig. 8 respectively.
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Figure 7: Comparing the algorithms with a linear policy parameterization when using the expert policy to
interact with the environment. In this setting, we use 1000 environment interactions per round. We observe
that FTRL, AdaFTRL are still the best performing methods, but FTL has slightly worse performance, with
AdaGrad performs slightly better.
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Figure 8: Comparing the algorithms with a neural network policy parameterization when using the expert
policy to interact with the environment. In this setting, we use 1000 environment interactions per round.
We observe that FTRL, AdaFTRL are still the best performing methods, but both FTL and AdaGrad have
significantly worse performance.
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D.3.2 Decreased sample-sizes for linear models

In this section, we demonstrate the effect of using a reduced number of environment interactions per round.
We use 100 environment interactions/round and show the results for the linear policy parameterization (Fig. 9,
Fig. 10).
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Figure 9: Comparing the algorithms with a linear policy parameterization when using the agent policy to
interact with the environment. In this setting, we use 100 environment interactions per round. We observe
that FTL, FTRL, AdaFTRL are the best performing methods, while AdaGrad performs better compared
to Fig. 2.
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Figure 10: Comparing the algorithms with a linear policy parameterization when using the expert policy to
interact with the environment. In this setting, we use 100 environment interactions per round. We observe
that FTL, FTRL, AdaFTRL are the best performing methods, while AdaGrad has worse performance.
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D.4 Atari

As was described in the main paper, in this setting both the expert and learned policy parameterize a
categorical distribution which takes an input an 256 by 256 image of the atari screen. Following the same
data augmentation as Schulman et al. (2015), we additionally convert the image to a 84 by 84 grey scale
image and stack the previous four states observed (also called frame stacking). In this setting the expert is
learned using the PPO algorithm, and we again use the architecture described in Schulman et al. (2015). To
reduce the computational burden, we only use 3 independent runs. For a full list of parameters and code, see
the Atari-Experiments folder inside the accompanying code-base.
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