arXiv:2208.00156v1 [cs.LG] 30 Jul 2022

Reinforcement learning with experience replay
and adaptation of action dispersion

Pawel Wawrzynski Wojciech Masarczyk
Institute of Computer Science Institute of Computer Science
Warsaw University of Technology Warsaw University of Technology
Warsaw, Poland Warsaw, Poland
pawel.wawrzynski@pw.edu.pl wojciech.masarczyk.dokt@pw.edu.pl

Mateusz Ostaszewski
Institute of Computer Science
Warsaw University of Technology
Warsaw, Poland
mateusz.ostaszewski@pw.edu.pl

Abstract

Effective reinforcement learning requires a proper balance of exploration and ex-
ploitation defined by the dispersion of action distribution. However, this balance
depends on the task, the current stage of the learning process, and the current envi-
ronment state. Existing methods that designate the action distribution dispersion
require problem-dependent hyperparameters. In this paper, we propose to automat-
ically designate the action distribution dispersion using the following principle:
This distribution should have sufficient dispersion to enable the evaluation of future
policies. To that end, the dispersion should be tuned to assure a sufficiently high
probability (densities) of the actions in the replay buffer and the modes of the
distributions that generated them, yet this dispersion should not be higher. This
way, a policy can be effectively evaluated based on the actions in the buffer, but ex-
ploratory randomness in actions decreases when this policy converges. The above
principle is verified here on challenging benchmarks Ant, HalfCheetah, Hopper,
and Walker2D, with good results. Our method makes the action standard deviations
converge to values similar to those resulting from trial-and-error optimization.

1 Introduction

In reinforcement learning (RL), (Sutton and Barto, [2018])) a problem is considered of an agent that
makes subsequent actions in a dynamic environment. The actions change the state of the environment,
and depending on them, the agent receives numeric rewards. The agent learns to designate actions
based on states to receive the highest rewards in the future.

To optimize its behavior, the agent needs to observe the consequences of different actions, i.e.; it
needs to apply diverse actions in each state. Therefore, the agent uses a stochastic policy to designate
actions, i.e., each time the agent draws them from a certain distribution conditioned on the state.
The more dispersed this distribution is, the more experience the agent gathers, but the less likely it
becomes that the agent gets to states that yield high rewards. This so-called exploration-exploitation
trade-off is essential for efficient reinforcement learning. Despite a lot of significant research, adaptive
optimization of this trade-off is still an open problem.

Preprint. Under review.

In this paper, we analyze the following approach to designating dispersion of action distribution,
thereby quantifying the exploration-exploitation trade-off. We assume that the agent experience is
stored in a memory buffer of a fixed size, and the policy changes at a certain pace due to learning.
The learning is driven mostly by actions representative for evaluated policies. Therefore, the current
action distribution should be so dispersed for the currently taken actions to have sufficiently high
density in future policies for effective evaluation and selection of these policies.

The contribution of the paper can be summarized in the following points:

* We analyze the evaluation of future policies as a primary reason for exploration in RL. We
propose a way to quantify exploration to enable that evaluation.

* We introduce an RL algorithm that automatically designates a dispersion of action distri-
bution (the amount of exploration) in the trained policy. This dispersion is sufficient to
evaluate the current policy but not larger. Hence, when the policy converges, the dispersion
is suppressed.

* We present simulations that demonstrate the efficiency of the above algorithm on four
challenging learning control problems: Ant, HalfCheetah, Hopper, and Walker2D.

The rest of the paper is organized as follows. Section[2]overviews literature related to the topic of this
paper. The following section formulates the problem of designating the amount of randomness in an
agent’s policy that optimizes its behavior with RL. Section @] presents our approach to this problem.
In Section[5] simulations are discussed in which our method is compared with RL algorithms PPO,
SAC, and ACER. The last section concludes the paper.

2 Related work

Exploration in reinforcement learning. Most existing reinforcement learning algorithms are de-
signed to optimize policies with a fixed amount of randomness in actions. This amount is defined
by a quantity such as action standard deviation or the probability of an exploratory action. Within
the common approach to RL, this quantity is tuned manually. A simple approach to automatize this
tuning is to train this quantity as one of the policy parameters. This approach was first introduced
as a part of the REINFORCE (Williams and Pengl [1991) algorithm and later applied in the Asyn-
chronous Advantage Actor-Critic (Mnih et al.,2016) algorithm and the Proximal Policy Optimization
(Schulman et al.,2017) algorithm. However, a policy learned this way degrades to a deterministic one
without hand-crafted regularization (Mnih et al.|[2016). This regularization is typically introduced as
an entropy-based bonus term.

A different approach is to control exploration to increase state-space coverage. One way to achieve
this goal is to reward the agent for visiting novel states. State novelty may be determined with a
counting table (Tang et al.,|2017) or estimated using environment dynamics prediction error (Pathak
et al.,|2017; Stadie et al., |2015). Another way is to maximize the expected difference between the
current policy and past policies, thus increasing the coverage of the policies space (Hong et al., 2018).

The maximum entropy RL is a different approach to optimize exploration while keeping policy from
degrading to a deterministic one (Jaynes, |1957; Ziebart et al.,[2008). In this approach, the policy
is optimized with regard to a quality index that combines actual rewards and the entropy of the
action distribution. The first off-policy maximum entropy RL algorithm was the Soft Actor-Critic
(SAC) (Haarnoja et al.| 2018) algorithm. It is the most prominent RL method to tune the amount
of exploration during its operation. Although the idea of achieving that by rewarding for the action
distribution entropy was a breakthrough, it is still heuristic and sometimes does not work. And even
if it does, it still requires a handcrafted coefficient, namely the weight of the entropy. The follow-up
version of SAC (Haarnoja et al.,|2019) tunes this coefficient to approach a target level with gradient
descent dynamically. This target level is set for the finite action space A to —|A|[, a value that works
empirically on benchmark tasks but is not justified otherwise. Meta-SAC (Wang and Ni, [2020) tunes
the target entropy value with a meta-gradient approach.

Existing techniques reduce the balancing of exploitation and exploration to balancing of rewards and
entropy. That generally requires problem-dependent coefficients. Within our approach, we define
an independent criterion for the amount of exploration, thereby, in principle, avoiding problem-
dependent settings.

Efficient utilization of previous experience in RL. The fundamental Actor-Critic architecture
of reinforcement learning was introduced in (Barto et al., |1983). Approximators were applied to
this structure for the first time in (Kimura and Kobayashil [1998]). To boost the efficiency of these
algorithms, experience replay (ER) (Mahadevan and Connell, |1992) can be applied, i.e., storing the
events in a database, sampling, and using them for policy updates several times per each actual event.
ER was combined with the Actor-Critic architecture for the first time in (Wawrzynski, [2009).

Application of the experience replay to Actor-Critic creates the following problem. The learning
algorithm needs to estimate the quality of a given policy based on the consequences of actions
registered when a different policy was in use. Importance sampling estimators are designed to do that,
but they can have arbitrarily large variances. In ,(Wawrzynski, |2009) that problem was addressed
with truncating density ratios present in those estimators. In (Wang et al.| |2016)) specific correction
terms were introduced for that purpose.

The significance of the relevance of samples was noted for the on-policy algorithms that use experience
buffer. This class of algorithms shows another approach to the problem above. They prevent the
algorithm from inducing a policy that differs too much from the one used to collect samples. That
idea was first applied in Conservative Policy Iteration (Kakade and Langford, |2002)). It was further
extended in Trust Region Policy Optimization (Schulman et al.l 2015). This algorithm optimizes
a policy with the constraint that the Kullback-Leibler divergence between that policy and the tried one
should not exceed a given threshold. The K-L divergence becomes an additive penalty in Proximal
Policy Optimization algorithms, namely PPO-Penalty and PPO-Clip (Schulman et al.,[2017).

A way to avoid the problem of estimating the quality of a given policy based on the tried one is to
approximate the action-value function instead of estimating the value function. Algorithms based on
this approach are Deep Q-Network (DQN) (Mnih et al.|[2013), Deep Deterministic Policy Gradient
(DDPG) (Lillicrap et al.l 2016)), and Soft Actor-Critic (SAC) (Haarnoja et al.l 2018). SAC uses
noise as input for calculating policy, and it is considered one of the most efficient in this family of
algorithms.

This paper combines actor-critic structure with experience replay in the old-fashioned way introduced
in (Wawrzynski, 2009).

3 Problem formulation

We consider the typical RL setup (Sutton and Barto, |2018)). An agent operates in its environment
in discrete time ¢ = 1,2, At time ¢ it finds itself in a state, s; € S, performs an action, a; € A,
receives a reward, 7, € R, and the state changes to s; 1.

In this paper, we consider the actor-critic framework (Barto et al., [1983; [Kimura and Kobayashi,
1998)) of RL. The goal is to optimize a stationary control policy defined as follows. Actions are
generated by a distribution

a~o(-;pm,m) (D
parameterized by two vectors: u that does not affect the dispersion of the action distribution, and n
that does. Approximators produce both p and n

1= pa(s;0,)
1 = 1(s; 0n),
with 6, and 0,, being their vectors of parameters.

2

Neural-normal policy. This policy is applicable for A = R%. Both ji(s; 6,,) and 7j(s; 6,)) are neural
networks with input s and weights 6, and 0,, respectively)’| The action is sampled from the normal
distribution with mean fi(s; 6,,) and covariance matrix diag(exp(27(s; 6,,))). Thus we denote

o (s130n) = exp(ii(se; 0y)), 3)
and generate an action as
ar = fi(s¢50,) + & o a(se;0,), €]
where & ~ N(0,1), o(s¢;6,) is a vector of standard deviations for different action components and
“0” denotes the Hadamard (elementwise) product.

!They could also be implemented as a single network outputting both y and 7, but for brevity we use this
distinction.

Experience replay. We assume that the policy is optimized with the use of experience replay. The
agent’s experience, i.e., states, actions, and rewards, are stored in a memory buffer. Simultaneously to
the agent’s operation in the environment, the experience is called from the buffer and used to optimize
6, and 6,.

0 n

Goal. The vectors of weights, 6,, and 6,, define a policy, 7. The criterion of the policy optimization
is the maximization of the value function

V7™(s) = E, (Zizo Virepi| 8¢ = 3) 5)

for each state s; v € [0, 1) is a coefficient — the discount factor.

The value function may be estimated based on so-called n-step returns, namely
VT(s)) Zre4 - 49" ripne1 + 7"V (544n), (6)
forany n € N.

The optimization criterion of ¢, maximizes the probability of experienced actions that led to high
rewards afterward. However, ¢,, should be tuned to keep a proper balance between exploration and
exploitation in the agent’s behavior.

4 Method

4.1 General idea

We consider an actor-critic algorithm with experience replay. The algorithm keeps a window of length
M of previous events and continuously optimizes the policy. We postulate that the dispersion of the
distribution of the current policy should be sufficient to produce actions that will enable the evaluation
and selection of future policies, i.e., these actions should be likely in future policies. However, the
future policies are unknown. We assume that they will be as different from the current policy as
the current policy is different from those that produced the actions registered in the current memory
buffer.

P O) N &

Vv Vv Vv
a mj a

QY

Figure 1: Illustration. 1 — the policy that generated action a;; its mode is m;, 2 — the current policy, 3 —
a hypothetical future policy. Under the proposed method, the dispersion of the current policy ensures
that the mode and action of the previous policy are likely according to the current one. Symmetrically,
the current action a, should enable the evaluation of the future policy.

Following the above postulate, we propose two rules to optimize §,,:

R1: For the i-th event registered in the memory buffer, the mode of the distribution that has produced
the action a; should be likely according to the current policy and the state s;.

R2: For the same event, the action a; should be likely according to the current policy and the state
S;.

The above rules (illustrated in Fig. [I) are intended to have the following effects: 1) When the action
distribution for a given state, s, changes due to learning, the current action distribution for the state
s is dispersed, thereby enabling to evaluate a broad range of behaviors expected to be exercised in
the course of the learning. 2) However, when the policy approaches the optimum and the pace of
its change decreases, the distribution becomes less dispersed, enabling more precise action choices.
Eventually, the action distribution converges to a deterministic choice when the policy converges.

4.2 Operationalization
The mode of the distribution that has produced the action a; is defined as
mi = arg max o(a; fi(si; 0,,), 7(si5) @)

for 6, and 6, used at time . Following the aforementioned rules R1 and R2, to optimize 0, we
minimize the loss

Li(0n) = —Inp(m; fi(si; 0,), (i3 0y)) — alno(ais fi(si;0,), (s 6)) (8)
averaged over the events collected in the memory buffer. a > 0 is a coefficient.

Neural-normal policy. For this policy the mode (7) is equal to m; = fi(s;;6,,) for 6,, applied at
time . The loss (8) then takes the form

1 i _ 1 i B
1i(0n) =175 (mi = i35 0,,)) 0 0 (5550n) % + 017 S (ai — i3 0))* © (513 0) >

+ (1 +)177(s4;6,) + const,

€))

where 1 is a vector of ones (17v is a sum of elements in v), and the squares -2 and -~ are elementwise.

4.3 Algorithm

Algorithm 1 Experience replay in Actor-Critic with Experience Replay and Adaptive eXploration,
ACERAX

1: Samplei ~ U({t — M,...,t —n}).
2: Compute the temporal difference

n—1
e= Z“Yk (rivk + 9V (Sivrs15) = V(sipriv)) X

k=0

itk _ _
a;i;fi(s;0,),1(s;0
X Uy H‘P(JN(J 1)s 71(8;556))
= ¥j
Jj=i
3: Compute the Critic gradient estimate:
oV (ss;v)
Av=e——F—+
v=e—p T

4: Compute the Actor gradient estimate:

Olnp(as; fi(si;0,),7(s550,)) Op(fi(si;0,))

Af, = —
nee 007 007
5: Compute the dispersion loss gradient estimate:
0l;(60,)
A0 =501

6: Update v with Av, 8, with A,,, and 0,, with Ag,,.

The algorithm presented here is Actor-Critic with Experience Replay and Adaptive eXploration,
ACERAX. It is based on the Actor-Critic structure shown in Section |3} experience replay, and n-step
returns. The algorithm uses a critic, V (s;), an approximator of the value function with weights v.

At each time t of the agent-environment interaction, the following tuple is registered
(styae,re,mp, 00), o= (53 0,), e =(ag; pe, M(se:6p))-

As the agent-environment interaction continues, previous experience is being replayed; that is,
Algorithm[T]is being recurrently executed.

In Line 1, the algorithm selects an experienced event to replay. In Line 2, it determines the relative
quality of a;, namely the temporal difference multiplied by a softly truncated density ratio. € is
changing due to learning. Thus the conditional distribution (a;|s;) is now different than it was at the
time when the action a; was executed. The product of density ratios in e accounts for this discrepancy
in distributions. To limit the variance of the density ratios, the soft-truncating function v, is applied,
e.g.,

Yp(z) = btanh(z/b), (10)
for b > 1. In the ACER algorithm (Wawrzynski, 2009), the hard truncation function, min{-, b} is
used for the same purpose, which is limiting density ratios necessary in designating updates due to
action distribution discrepancies. However, soft-truncating distinguishes the magnitude of density
ratio and may be expected to work slightly better than the hard truncation.

In Line 3, an improvement direction of the parameters of critic, v, is computed. Av is designed to
make V (-; v) approximate the value function better.

In Line 4, an improvement direction for the actor parameter 6, is computed. The increment A6, is
designed to increase/decrease the likelihood of occurrence of the sequence of actions a; proportionally
to e. The p function is a penalty for improper values of i(s;;6,,), e.g., exceeding a box to which the
actions should belong.

In Line 5, an improvement direction for the actor parameter 6,, is computed, for /;(6,,) defined in .

The improvement directions Av, Af,, and A6, are applied in Line 6 to update v, 6, and 6,,
respectively, with the use of either ADAM, SGD, or another method of stochastic optimization. They
may be applied in minibatches, several at a time.

S Experimental study

This section presents simulations whose purpose is to evaluate the ACERAX algorithm introduced
in Sec.[d] In our first experiment, we determine the algorithm’s sensitivity to its o parameter and
its approximately optimal value across several RL problems. In the second experiment, we look at
action standard deviations the algorithm determines and compare them with constant action standard
deviations optimized manually. We call the algorithm with constant approximately optimal action
standard deviations ACER, as it differs only in details from that presented (Wawrzynski, [2009) under
that name. In the third experiment, we compare ACERAX to two state-of-the-art RL algorithms:
the Soft Actor-Critic (SAC) (Haarnoja et al.} 2018) algorithm and the Proximal Policy Optimization
(PPO) (Schulman et al.l 2017) algorithm. We use the Stable Baselines3 implementation (Raffin and
Stulpl 2020) of SAC and PPO in the simulations. Our experimental software is available online

For the comparison of the RL algorithms to be the most informative, we chose four challenging tasks
inspired by robotics, namely Ant, Hopper, HalfCheetah, and Walker2D (see Fig. [2) from the PyBullet
physics simulator (Coumans and Bail 2019).

5.1 Experimental settings

Each learning run lasted for 3 million timesteps. Every 30000 timesteps, the training was paused, and
a simulation was made with frozen weights and without exploration for 5 test episodes. An average
sum of rewards within a test episode was registered. Each run was repeated five times.

We have taken implementation SAC and PPO from (Raffin et al.,|2021), and the hyperparameters
that assure the state-of-the-art performance of these algorithms from (Raffin and Stulp} 2020). For
each environment, hyperparameters for ACER and ACERAX, such as step-sizes, were optimized to
yield the highest ultimate average rewards. The values of these hyperparameters are reported in the
appendix.

5.2 Searching for o

For each environment, we tried & = 0,0.001,0.01,0.1, 1. The results are depicted in Fig.[3] It is
seen that the learning is not very sensitive to this parameter. & = 0 means that the previous modes of

2provided in the final version of the paper

s ; }

Figure 2: Environments used in simulations. From the left: Ant, HalfCheetah, Hopper, Walker2D.

Ant HalfCheetah
3500 3000
3000
2500 2000
< g
5 2000 S 1000
L) O
V 1500 — a=0 N — a=0
a=0.001 0 a=0.001
1000 — a=0.01 — a=0.01
500 — a=0.1 ~1000 — a=0.1
— a=1 — a=1
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps (in Million) Timesteps (in Million)
H Walk
opper 3500 alker
3000 3000
2500 2500
2000 2000
5 5
§ 1500 & 1500
1000 1000
500 500
0 — a=1 0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 15 2.0 25 3.0
Timesteps (in Million) Timesteps (in Million)

Figure 3: Results of ACERAX and different c. From the left: Ant, HalfCheetah, Hopper, Walker2D.

action distributions and the previous actions are made likely according to the current policy. a > 0
means that the previous actions are made likely, which is intended to be a form of regularization: It
prevents the policy from degrading to a deterministic one too early. The experiments suggest that
performance is almost insensitive to this parameter when o € [0, 1]. We choose @ = 0.1 for the rest
of the experiments.

5.3 Different initial action standard deviations

We have optimized in a grid search constant standard deviations for actions for ACER in these
environments. In all environments we selected o = 0.4 =~ exp(—1.2). In another experiment, we
verify the average outputs of the 77 network depending on its initialization. To this end, we impose
different initial biases in the output neurons of this network. Afterward, we register the outputs of
this network over time. Fig. Epresents the trajectories of average min; 7; (s¢; 6,)) and max; 7j; (s¢; 0,)).
It is seen that regardless of the initialization, these outputs converge quite close to —1.2. We also see
that min; 7, (s¢; 6,)) < max; 7;(s¢; 6,,) which justifies the need of designating standard deviations of
different action dimensions separately.

5.4 Comparison of ACERAX, ACER, PPO, and SAC

Fig. |§|presents learning curves for all four environments for SAC, PPO, ACER, and our proposed
ACERAX. It is seen that all algorithms exhibit a similar speed of learning and ultimate rewards,
with ACERAX performing very well according to both these criteria. (In fact, ACERAX yields
the best average ultimate performance in 3 out of 4 environments, but this result is not statistically
significant.) However, the reference algorithms control exploration-exploitation balance with heuristic

—— B =-1(max) —— B =-2 (max) —— B =0 (max)
—— B =-1(min) —— B =-2(min) —— B =0 (min)
0.0
-0.5
s
o 10
K=}
-15
-2.0
0.0 0.5 1.0 15 2.0 25 3.0
Timesteps (in Million)
—— B =-2 (max) —— B =0 (max) —— B =-1(max)
—— B = -2 (min) —— B =0 (min) —— B =-1(min)
0.0
-0.5
E 1.0
5L
o

0.0 0.5 1.0 15 2.0
Timesteps (in Million)

25

3.0

0.0

=0.5

-1.0

log(o)

-15

0.0

—— B =-2 (max) —— B =-1(max) —— B =0 (max)
—— B =-2(min) —— B =-1(min) —— B =0 (min)
0.0 05 1.0 15 2.0 2.5 3.0
Timesteps (in Million)

—— B =-1(max) —— B =0 (max) —— B =-2(max)
—— B =-1(min) —— B =0 (min) —— B =-2(min)

0.0 0.5 1.0 15 2.0 25 3.0
Timesteps (in Million)

Figure 4: Comparison of the behavior of 77 = log(c) during training for different initial biases in
the last layer of the 7 network. Each plot represents the maximum or minimum value of the mean
calculated over the coordinates of the standard deviation vector. The averages were calculated based
on five independent runs. From the left: Ant, HalfCheetah, Hopper, Walker2D.

4000
3500
3000
2500

L
5 2000
O

Y 1500

1000
500

PPO
SAC
ACER
ACERAX

0.0 0.5 1.0 1

.5 2.0
Timesteps (in Million)

Hopper

25

3.0

3000

2500

2000

1500

Score

1000

500

0.0 0.5 1.0 15 2.0

Timesteps (in Million)

3000

2000

1000

Score

—1000

HalfCheetah

0.0 0.5 1.0 15 2.0 2.5

. 3.0
Timesteps (in Million)

Walker

3000

2500

2000

1500

Score

1000

500

SAC
ACER
ACERAX

0.0 0.5 1.0 15 2.0 2.5

Timesteps (in Million)

3.0

Figure 5: Results for ACERAX, ACER, PPO, and SAC. From the left: Ant, HalfCheetah, Hopper,

Walker2D.

or problem-dependent coefficients. In ACERAX, this balance is based on an an universal principle
that is somehow affected by the « coefficient but is not very sensitive to this coefficient.

5.5 Discussion

Exploration is necessary for reinforcement learning, but it inevitably deteriorates currently expected
rewards. Best previous approaches to tuning the amount of exploration online are based on additional
rewards for action distribution entropy. But the scale of these rewards is generally problem-dependent,
as this is never known in advance what fraction of the original rewards need be traded for action
distribution entropy to assure proper exploration.

The approach analyzed here is based on the assumption that the policy is optimized on the data in
the replay buffer. The current action distribution dispersion should be sufficient to support policy
evaluation and selection when this action will be replayed from the buffer in the future.

Our approach generally yielded good performance in the experiments. That happened at the cost of
an additional neural network, 7, that controlled the action distribution dispersion. Our experiments
suggest that this network should be much smaller than the ji network — it had ten times fewer neurons
in each layer. We interpret this latter condition as follows: It should be impossible for the 7 network
to overfit to the experience, as it would result in nearly zero action distribution dispersion for some
states.

6 Conclusions

Exploration/exploitation balance is a fundamental problem in reinforcement learning. In this paper, we
analyzed an approach to the adaptive designation of the amount of randomness in action distribution.
In this approach, the probability densities are maximized by the modes of the distribution of actions
in the replay buffer. Consequently, current actions are likely to support the evaluation and selection
of future policies. Furthermore, this strategy diminishes the randomness in actions when the policy
converges, giving the agent increasing control over its actions. The RL algorithm based on this
strategy introduced here, ACERAX, was verified on four challenging robotic-like benchmarks: Ant,
HalfCheetah, Hopper, and Walker2D, with good results. Our method makes the action standard
deviations converge to values similar to those resulting from trial-and-error optimization.

Our proposed strategy for optimizing dispersion of action distribution is based on the maximization
of weighted logarithms of previous modes of action distributions and previous actions. The optimal
weights are potentially problem-dependent, although the strategy appears to be barely sensitive to
these weights. Getting rid of any potentially problem-dependent coefficients from this strategy is
a curious direction for further research.

References

Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983). Neuronlike adaptive elements that can
learn difficult learning control problems. IEEE Transactions on Systems, Man, and Cybernetics
B, 13:834-846.

Coumans, E. and Bai, Y. (2016-2019). Pybullet, a python module for physics simulation for games,
robotics and machine learning. http://pybullet.org,

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft actor-critic: Offpolicy maximum
entropy deep reinforcement learning with a stochastic actor. arXiv:1801.01290.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A.,
Abbeel, P, and Levine, S. (2019). Soft actor-critic algorithms and applications. arXiv:1812.05905.

Hong, Z.-W., Shann, T.-Y., Su, S.-Y., Chang, Y.-H., Fu, T.-J., and Lee, C.-Y. (2018). Diversity-driven
exploration strategy for deep reinforcement learning. In Neural Information Processing Systems
(NeurIPS).

Jaynes, E. T. (1957). Information theory and statistical mechanics. ii. Physical Review, 108:171-190.

Kakade, S. and Langford, J. (2002). Approximately optimal approximate reinforcement learning. In
International Conference on Machine Learning ICML), pages 267-274.

http://pybullet.org

Kimura, H. and Kobayashi, S. (1998). An analysis of actor/critic algorithms using eligibility traces:
Reinforcement learning with imperfect value function. In International Conference on Machine

Learning (ICML).

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D.
(2016). Continuous control with deep reinforcement learning. In ICML.

Mahadevan, S. and Connell, J. (1992). Automatic programming of behavior based robots using
reinforcement learning. Artificial Intelligence, 55(2-3):311-365.

Mnih, V., Badia, A. P,, Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver, D., and Kavukcuoglu,
K. (2016). Asynchronous methods for deep reinforcement learning. arXiv:1602.01783.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, 1., Wierstra, D., and Riedmiller, M.
(2013). Playing atari with deep reinforcement learning. arXiv:1312.5602.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T. (2017). Curiosity-driven exploration by
self-supervised prediction. arXiv:1705.05363.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., and Dormann, N. (2021). Stable-
baselines3: Reliable reinforcement learning implementations. Journal of Machine Learning
Research, 22(268):1-8.

Raffin, A. and Stulp, F. (2020). Generalized state-dependent exploration for deep reinforcement
learning in robotics. arXiv:2005.05719.

Schulman, J., Levine, S., Moritz, P., Jordan, M. 1., and Abbeel, P. (2015). Trust region policy
optimization. arXiv:1502.05477.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy
optimization algorithms. arXiv:1707.06347.

Stadie, B., Levine, S., and Abbeel, P. (2015). Incentivizing exploration in reinforcement learning
with deep predictive models. arXiv:1507.00814.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction. Second edition.
The MIT Press.

Tang, H., Houthooft, R., Foote, D., Stooke, A., Chen, X., Duan, Y., Schulman, J., De Turck, F.,
and Abbeel, P. (2017). #Exploration: A study of count-based exploration for deep reinforcement
learning. arXiv:1611.04717.

Wang, Y. and Ni, T. (2020). Meta-sac: Auto-tune the entropy temperature of soft actor-critic via
metagradient. arXiv:2007.01932.

Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R., Kavukcuoglu, K., and de Freitas, N. (2016).
Sample efficient actor-critic with experience replay. arXiv:1611.01224.

Wawrzynski, P. (2009). Real-time reinforcement learning by sequential actor—critics and experience
replay. Neural Networks, 22(10):1484-1497.

Williams, R. and Peng, J. (1991). Function optimization using connectionist reinforcement learning
algorithms. Connection Science, 3(3):241-268.

Ziebart, B. D., Maas, A., Bagnell, J. A., and Dey, A. K. (2008). Maximum entropy inverse reinforce-
ment learning. In AAAI Conference on Atrtificial Intelligence, pages 1433-1438.

10

A Algorithms’ hyperparameters

Hyperparameters of SAC and PPO have been taken from Raffin and Stulp|(2020). They are presented
in Tab. [T]and 2} respectively.

In all experiments we used a discount factor of 0.98. Common hyperpameters of ACER and ACERAX
are presented in Tab.[3] When possible, we have adopted hyperparameters of these algorithms from
SAC. These include the actor and critic sizes and the parameters that define the intensity of experience
replay. Step-sizes have been selected from the set

{...,107°,3-107°,107%,3-107%,... }.
Standard deviations for actions components in ACER have been selected from the set
{0.1,0.2,0.3,0.4,0.5}.
Different action components for the same environment have the same standard deviation. For all
environment its selected value was the same, 0.4.

The 7 network used in the ACERAX algorithm had 40 and 30 neurons in its two hidden layers, i.e.,
it was of size (40, 30). The step-sizes for this network are presented in Table E} Biases of the
network output layer were initialized with —1. That means that the initial standard deviation of action
components was exp(—1) = 0.37.

Parameter Value
Parameter Value Actor size (400, 300)
Actor size {400, 300) Critic size (400, 300)
Critic size (400, 300) n 10
Discount factor vy 0.98 b 3
Replay buffer size | 3-10° Memory size 106
Minibatch size 256 Minibatch size 256
Entropy coefficient auto Gradient steps 1
Target entropy | — dim(A) Discount factory | 0.98
Learning start 10* Ant
Gradient steps 8 Actor step-size 1075
Train frequency 8 . Critic step-size 1075
Step-size 7.3-107 HalfCheetah
Initial log o -3 Actor step-size 3-107°
Table 1: SAC hyperparameters. The actor and Critic step-size 3-107*
critic sizes define numbers of neurons in hidden Hopper) .
layers of respective neural networks. Actor step-size 3-10
Critic step-size 3-1074
Walker2D
Parameter Value Actor step-size 3-107°
Actor size (256, 256) Critic step-size 3-1074
Critic size (256, 256))
Discount factor 0.99 Table 3: ACER and ACERAX hyperparameters.
GAE parameter A 0.9
Minibatch size 128
. Parameter Value
Horizon 512 —
7] size (40, 30)
Number of epochs 20 oo o .
g . _5 Initial 7 output bias -1
tep-size 310 Ant 7] step-size 3-1078
Entropy param. 0.0 SRR i
Clip range 0.4 HalfChetalE 7] step-size 3- 1078
Initial log o _9 Hopper nftep-51z.e 3-10 .
Walker2D 7 step-size | 3- 10~

Table 2: PPO hyperparameters.
Table 4: ACERAX hyperparameters.

B Computational resources

At the stage of code debugging, we used an external cluster. For the actual experimental study we
used a PC equipped with AMD™Ryzen™Threadripper™1920X for about 7 weeks.

11

	1 Introduction
	2 Related work
	3 Problem formulation
	4 Method
	4.1 General idea
	4.2 Operationalization
	4.3 Algorithm

	5 Experimental study
	5.1 Experimental settings
	5.2 Searching for
	5.3 Different initial action standard deviations
	5.4 Comparison of ACERAX, ACER, PPO, and SAC
	5.5 Discussion

	6 Conclusions
	A Algorithms' hyperparameters
	B Computational resources

