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Abstract—Masked autoencoders are scalable vision learners, as the title of MAE [1], which suggests that self-supervised learning
(SSL) in vision might undertake a similar trajectory as in NLP. Specifically, generative pretext tasks with the masked prediction (e.g.,
BERT) have become a de facto standard SSL practice in NLP. By contrast, early attempts at generative methods in vision have been
buried by their discriminative counterparts (like contrastive learning); however, the success of mask image modeling has revived the
masking autoencoder (often termed denoising autoencoder in the past). As a milestone to bridge the gap with BERT in NLP, masked
autoencoder has attracted unprecedented attention for SSL in vision and beyond. This work conducts a comprehensive survey of
masked autoencoders to shed insight on a promising direction of SSL. As the first to review SSL with masked autoencoders, this work
focuses on its application in vision by discussing its historical developments, recent progress, and implications for diverse applications.

Index Terms—Survey, Masked Autoencoder, Self-supervised Learning, Masked Image Modeling.

1 INTRODUCTION

EEP learning [?] has revolutionized artificial intelli-
D gence in the past decade. Early developments focused
on the architecture design with scalable size like increasing
model depth, from AlexNet [3] to VGG [4] and ResNet [5].
In recent years, the attention has gradually shifted from
designing better models to solving the data-hungry issue in
deep learning. For example, ImageNet [6] with more than
one million labeled images has become a typical benchmark
dataset for vision models, and vision transformer (ViT) [7] is
reported to demand hundreds of times more labeled images.
A common way to perform satisfactorily with a relatively
small labeled dataset is to pre-train the model on another
larger dataset, which is widely known as transfer learning.
Self-supervised learning (SSL) [8], [9], outperforming its
supervised counterpart for visual pre-training, has attracted
significant attention.

With the advent of contrastive SSL in 2018, joint-
embedding methods have become a dominant visual pre-
trainign framework; however, this status has been recently
challenged by the success of a generative method termed
masked image modeling (MIM) [10]. BEiT [10] adopts a
mask-then-predict strategy to train the model with the target
visual tokens generated by an off-the-shelf tokenizer. The
tokenizer is pretrained by a discrete variational autoencoder
(dVAE) [11], and therefore BEiT can be seen as a two-
stage training of denoising autoencoder [12]. Furthermore,
an end-to-end masked autoencoder in the vision is proposed
in MAE [1], which has attracted unprecedented attention.

As the term suggests, a masked autoencoder is an au-
toencoder with masked prediction, i.e. predicting a property
of masked input from unmasked input content. It is worth
mentioning that masked autoencoder is not something new
in unsupervised visual pretraining. Dating back to 2008, an
early work [12] predicted masked pixels from unmasked
ones but was referred to as denoising autoencoder [12], [13].
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A similar investigation was conducted again in 2016 with
the task of image inpainting [14]. Its reviving success in
recent MAE [1], outperforming joint-embedding methods,
inspires numerous works to understand its success in vision
and to apply it in various applications, such as video, point
cloud, and graph.

The reason for high popularity of masked autoencoder
in visual pretraining is that a similar generative SSL frame-
work termed masked language modeling (like BERT [15])
has been widely used in NLP. In other words, the success
of masked autoencoder in vision paves a path that SSL
in vision“may now be embarking on a similar trajectory as in
NLP” [1] by generative pretext task with masked prediction.
Moreover, since NLP and computer vision are two domi-
nant branches in modern Al, many researchers believe that
masked autoencoder might be the future for SSL.

To this end, this work conducts a comprehensive survey
of masked autoencoders in SSL. This survey covers its
application with various data types; however, it focuses
on understanding its reviving success in vision. Note that
autoencoder-based masked prediction started to become a
de facto standard practice in language understanding in
2018/2019 [15]; thus, it is less relevant to discuss it in the
2020s. Moreover, it is the success of masked autoencoder in
vision that shows visual SSL can embark on the same path as
that in language, which somewhat revolutionizes visual SSL
and then inspires the investigation of masked autoencoder
in a wide range of applications. With masked autoencoder
in vision as the focus, this survey mainly contains three
parts. (1) Sec. 3 summarizes its historical development and
relation with masked language modeling; (2) Sec. 4 dis-
cusses the masked modeling principle in vision and the
understanding of its success from various perspectives. (3)
Sec. 5 summarizes its implications on pre-training in diverse
applications beyond natural images. To facilitate discussion
without ambiguity, we include a terminology section (i.e.
Sec. 2) to discuss essential terms in this survey.

Message to the readers. This survey will be updated on
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a regular basis to reflect the dynamic progress of masked
autoencoder in its development. Since masked autoencoder
is a fast-evolving field, and we might not be able to grasp
all recent development. Therefore, we encourage researchers
to contact us to inform us with their new works, either
published ones or arXiv ones, on this topic. Those new
works will be included and discussed in the revised version.

2 BACKGROUND AND TERMINOLOGY

Generative SSL v.s. discriminative SSL. In self-supervised
learning, modelling methods can be roughly categorized
into: discriminative or generative. Generative SSL typically
relies on an autoeocnder that consists of encoding (i.e. map-
ping an input to a latent representation with an encoder)
and decoding (i.e. generating the input from the latent repre-
sentation with an decoder) [16]. Discriminative SSL typically
follows its supervised couterpart to design a discriminative
loss. Without ground-truth labels, a discrimiantive pretext
task can be designed as solving jigsaw puzzles [17] or
predicting rotation [18]. Later, the trend of discriminative
visual SSL shifts from such geometry-based prediction to
joint-embedding emthods [19], [20], [21].

Denoising autoencoder v.s. masked autoencoder. As
a classical generative SSL method, denoising autoencoder
is a class of autoencoders that reconstruct the original
clean input from a corrupted input [12], [13]. Note that
denoising in this context (and in this whole survey) refers
to reconstruction from general corruption (including but
not limited to noise). Since masked prediction refers to the
practice of predicting a property of masked input from
unmasked input, it can be seen as a form of denoising
process [22]. This predicted property can be the original
input [22], handcrafted feature [23], or latent representa-
tion [24]. Since masked prediction is a form of denoising
process and thus masked autoencoder can be seen as a form
of general denoising autoencoder. In this work, we use MAE
exclusively to refer to the method in [1] not as shorthand for
masked autoencoder to avoid confusion.

Masked autoencoding v.s. masked modeling. Masked
prediction can be used to both generative and discriminative
modeling methods. However, the term masked X modeling,
namely masked modeling on X-type data, often refers to
the generative case, such as masked language modeling [15],
masked image modeling [25], masked point modeling [26].
Motivated by its success in generative modeling, a few
works [22], [24], [27] have also applied masked prediction in
discriminative SSL frameworks, demonstrating competitive
performance. In other words, masked modeling is not neces-
sarily masked autoencoding. Take image data, for example,
MSN [27] and data2vec [24] can be categorized as masked
image modeling but not masked autoencoding since their
model architectures are decoder-free. In this work, we still
perceive BEIT [10] as a variant of masked autoencoder even
though it decouples the pretext task of masked prediction
from autoencoder training.

3 MASKED AUTOENCODING: NLP TO VISION

NLP and (computer) vision are two dominant research fields
for artificial intelligence. Despite the difference in the data
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types and downstream tasks, vision and language commu-
nities have often inspired each other. Towards a unified
understanding of language and image, it is interesting to ask
whether they can adopt a similar backbone architecture and
training strategy. For the backbone architecture, the advent
of vision Transformer (ViT) in [7] and its application to
various vision tasks demonstrate that Transformers [28] can
serve as a unified backbone architecture for both language
and vision. Numerous works have further attempted to
bridge the gap in their SSL training strategies.

3.1 NLP and vision followed different SSL paths

Generative SSL in NLP. In NLP there exist two leading
language models: GPT [29], [30], [31] and BERT [15]. They
are both based on the transformer architecture but with
notable differences [32]: GPT works by predicting the next
word based on previous words and thus is autoregressive in
nature, while BERT uses the entire surrounding context of
words all at once. In essence, they both remove a portion of
the data and predict the removed content, and they can be
both perceived to rely on masked prediction as the pretext
task.

Discriminative SSL in vision. Before 2018, there was
an active investigation of unsupervised visual pretraining
with both generative and discriminative modeling. Jigsaw
and rotation prediction is designed as the pretext task on
the discriminative side, while inpainting and colorization
have been actively investigated on the generative side
(see Sec.3.2). Since 2018, joint-embedding methods, namely
aligning the embedded representations of augmented views
of the same image [21], have demonstrated substantial per-
formance boost over prior generative methods. Contrastive
learning [33], [34], which makes the representations of pos-
itive samples close and those of negative samples far from
each other, has emerged as a dominant visual SSL method,
especially after the advent of MoCo [8] and SimCLR [9].
Negative-free (i.e. non-contrastive) joint-embedding meth-
ods have also been investigated [19], [35], [36], demon-
strating comparable performance of contrastive learning
methods. A unified perspective on contrastive learning
and negative-free joint-embedding is extensively discussed

in [19], [20].

3.2

Very early attempts. Images have spatial and channel di-
mensions, and therefore we can either predict masked spa-
tial patches from unmasked ones [12], [13], [14] or predict
masked channels from unmasked ones [37], [38], [39], [40].
A standard autoencoder takes an image as the input and
reconstructs it after the information passes through a low-
dimensional bottleneck layer. Without corrupting the input,
the encoder focuses on content compression instead of ex-
tracting semantically meaningful representations. Denoising
autoencoder was proposed in [12], [13] to perform masked
autoencoding in the spatial dimension by randomly mask-
ing some pixels. To make it a harder task to avoid learning
only low-level representation, [14] proposed feature learn-
ing by inpainting, i.e. to fill in large missing areas of the
image and thus prevent hints from nearby pixels. Later, [37],

Is generative SSL suitable for vision?
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TABLE 1

[39] showed that masked channel prediction yielded supe-
rior performance on downstream tasks, especially for dense
semantic segmentation, since it keeps the spatial content.
They were further improved in [38], [40]. The investigation
in this direction has been less active since the emergence of
contrastive learning (see discussion in Sec.3.1).

Inspiration from NLP. The above investigation [12],
[13], [14], [37], [38], [39], [40] was before 2017. With GPT
and BERT emerging in 2018/2019 to show the success of
masked prediction in language understanding, a natural
question is: can we transfer the success of masked modeling
from language to image? iGPT [41] is the first successful
attempt in this direction; however, as highlighted in [42],
their work is for proof-of-concept and cannot be used in
practice due to two reasons: (1) it takes two orders higher
pre-training compute than contrastive methods and (2) it
performs worse than contrastive methods based on CNN.
As the first attempt to replace CNN with a transformer in
vision, [7] identified that the success of transformer in NLP
tasks stems from excellent scalability and self-supervised
pre-training. Since the self-supervised pre-training practice
in [7] mimicked the masked language modeling task in
BERT, we call it iBERT in analogy to iGPT entending GPT
from language to vision. iBERT performs a masked patch
prediction for visual SSL. However, this preliminary inves-
tigation of ViT for SSL also shows inferior performance over
joint-embedding methods. This challenge was finally broken
by BEiT [10] as well as MAE [1] (see Sec.4 for their details).

3.3 Summary and remark

Summary. Figure 1 shows the overall timeline for the de-
velopment of unsupervised visual pretraining (including
GPT and BERT for NLP). Interestingly, unsupervised visual
pretraining started with generative SSL in 2008. Its reviving
attempt in 2016 and 2017 was then buried by discriminative
SSL, especially after the advent of joint-embedding meth-
ods. However, with the inspiration from NLP, generative
SSL with masked prediction comes back again.

Comparison of denosing autoencoder [12] and masked autoencoder [1]

denoising autoencoder [12]  masked autoencoder [1]

Training dataset MNIST ImageNet
Model Architecture CNN ViT

Corruption size pixels patches

Corruption ratio maximum 50% patches

Remark. Early denoising autoencoder [12] and recent
masked autoencoder [1] both attempt to reconstruct a clean
input from a corrupted one, precisely predicting masked in-
put content from unmasked input content. Despite high sim-
ilarity regarding pretext task, the masked autoencoder intro-
duced in [1] differs from early denoising autoencoder [12]
in numerous ways, which are summarized in Table 1.

4 MASKED AUTOENCODER FOR IMAGE MODELING

As discussed in Sec.3, iGPT and iBERT have shown the
possibility of transferring the pretext task of masked pre-
diction from language to image data. However, their per-
formance is inferior to joint-embedding methods and thus
has caught less attention. BEIiT is the first to show the
success of autoencoder-based masked prediction outper-
forming DINO, a SOTA joint-embedding method. Therefore,
this section starts with introducing BEiT with its improved
variants.

4.1

BEiT. The overview of BEiT is shown in Figure 2. In contrast
to iBERT [7] that directly reconstructs the masked patches,
BEiT mimicks BERT [15] to reconstruct visual tokens. Since
Image patches do not have off-the-shelf tokens as words in
the language, BEIT trains an image tokenizer via discrete
variational autoencoder (dVAE) [11] before the second-step
masked image modeling where the tokenizer is used to
guide the learning of BEiT encoder (note that decoder is
unused). Specifically, the tokenizer takes the original image,
and the BEiT encoder takes a corrupted image, including
unmasked patches and masked patches. Then, it outputs the

BEIT and its improved variants
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visual tokens of masked patches to match the corresponding
visual tokens from the tokenizer (staying fixed in this pro-
cess). BEiT is the first to show that masked image modeling
has downstream task performance superior to SOTA con-
trastive DINO [43]. Despite its success, it remains unknown
whether directly predicting masked image patches as in
iBERT [7] might be a simpler alternative.

Stagel ¥

‘g_,.ri—’q 123 234456 567 ;f._:(
- 987 876 765 543 -
0,,':‘9_'::' » Tokenizer Decoder R | Recqneinicied
< . 112 223 334 445 e ; net
o 211 322 433 544 T
Stage2 | . , (123 204 ss6:5 |
s a87 476 765543, |
Tokenizer | | 135 223 334 aas |\ -
P . " -
s & |22 4354 | 56 876 765 322
1 11 1
[ Masked Image Modeling Head
| I 1
n ng | ng i}
BEIT Encoder
Ee T
- o|[1][2][3][«][s](e][7][&][2][10][11][12] [13][14][15][1e E:“;:':;";
il i e ot EEE R SRR L S e L e e 9
- Tatten K e - - Pat
i (5] ER EA ], T B i

Fig. 2. Overview of BEIT pre-training. The figure is edited from [10].

BEiT [10] consists of two stages: token-based MIM as
the main stage and tokenizer training as the preparation
stage. Multiple works [44], [45], [46] have followed this
two-stage approach by either improving the tokenizer-based
MIM process or seeking an alternative tokenizer.

Tokenizer-based MIM. mc-BEiT [45] attempts to ef-
fectively utilize the visual tokenizer generated by dVAE.
Specifically, it observes that unlike linguistic vocabulary
consisting of discrete words, the image tokenizer is continu-
ous. Under visual discretization, visual patches with similar
semantics can have different token IDs, and visual patches
with different semantics can have the token ID, which is not
desired. Therefore, mc-BEiT recasts the MIM in BEiT from
a single-choice classification problem to a multiple-choice
one by softening the training objective from a hard-label
cross-entropy loss to a soft-label one. Following BEiT [10],
CAE [46] first trains a image tokenizer via dVAE to generate
target visual tokens. BEiT performs the encoding and decod-
ing role implicitly and simultaneously, while CAE performs
the two tasks explicitly and separately. A key component
realizes this termed latent contextual regressor to introduce
alignment between the representations of masked patches
and unmasked ones. The CAE encoder exclusively focuses on
feature extraction without making predictions for masked
patches. The CAE encoder exploits the full representation
capability by letting the latent contextual regressor handle
the prediction pretext task.

Better target tokenizer. PeCo [44] identifies that the
visual tokenizer generated by dVAE [11] does not consider
semantic level. PeCo adds the distance between deep visual
features as an extra loss to enforce perceptual similarity
between the original image and the reconstructed image
to make the target visual tokens more semantically mean-
ingful. For studying masked prediction, [23] follows the
two-stage approach as BEiT and investigates various target
tokenizers. Interestingly, it is found that handcrafted HOG
features [47] achieve a competitive performance, suggesting
a target tokenizer generated by dVAE might be unnecessary.

4

However, HOG is only compatible with visual data and
limits its applications in other data modalities.

4.2 End-to-end masked autoencoder

A drawback of the two-stage methods is that their approach
relies on a pretrained dVAE to generate originally continu-
ous but intentionally discretized target visual tokens [22], and
thus is not end-to-end. In essence, BEiT separates masked
prediction from autoendoer training, which leaves room for
improving effectiveness and efficiency. To this end, MAE [1]
experiments with end-to-end training of masked autoen-
coder. We highlight that SimMIM [25] has conducted a very
similar investigation. MAE and SimMIM appear on arXiv
concurrently (MAE being one week earlier) and are both
accepted at CVPR2022. Here, we summarize the two works
and compare their nuanced difference.

MAE. The overview of MAE [1] is shown in Fig-
ure 3. MAE revisits the pretext task of predicting masked
patches. Specifically, their proposed MAE [1] directly pre-
dicts masked patches from the unmasked ones with a simple
loss of mean squared error (MSE). Moreover, the masking
ratio is set to 75%, which is significantly higher than that
in BERT (typically 15%) [15] or prior MIM (20% to 50%) [7],
[10], [41]. The ablation findings support such a high masking
ratio is beneficial for fine-tuning and linear probing. It is
worth mentioning that this also motivates a recent work to
experiment with a higher masking rate in masked language
modeling for higher effectiveness [48]. To save computation,
the encoder of MAE only operates on the unmasked patches.
Moreover, MAE designs an asymmetric encoder-decoder
architecture with a lightweight decoder. With the above
technical tricks, their proposed simple MAE is (3 x or more)
faster than BEiT [10] while achieving superior performance.
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Fig. 3. Overview of a masked autoencoder with the figure borrowed from
the original work MAE [1].

SimMIM. Independently and concurrently, a similar
architecture termed Simple Masked Image Modeling (Sim-
MIM) is proposed in [25], where similar findings are
reported. Specifically, SimMIM confirms that directly pre-
dicting the pixels as in MAE performs no worse than other
methods with complex design, such as tokenization, clus-
tering, or discretization. It is also found that moderately
increasing the patch size (32, for instance) is beneficial for
a more powerful pretext task. A high masking ratio is also
confirmed in MAE to be helpful for performance, especially
for a relatively small patch size. Moreover, as shown in Fig-
ure 4, SImSIM investigates multiple masking strategies, such
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as square, block-wise, and random. Their best performance
is achieved with the random masking strategy, which is the
same as that in MAE.
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Fig. 4. Various masking strategies in SimMIM with the figure borrowed
from the original paper [25].

Difference between MAE and SimMIM. One of their
non-trivial differences lies in the position of masked patch
tokens. Specifically, masked patch tokens are adopted as
the input of decoder and decoder in MAE [1] and Sim-
MIM [25], respectively. With the pretext task of masked
prediction, the autoencoder in MAE and SimMIM fulfills
two roles: representation encoding (for unmasked patches)
and pretext prediction (for masked patches). With both
masked and unmasked patches as the input, the encoder
of SImMMIM [25] simultaneously performs representation
encoding and pretext prediction, due to which the decoder
can be designed as simple as a single layer. By contrast, the
encoder in MAE [1] exclusively realizes representation en-
coding, leaving the role of pretext prediction to the decoder.
As a result, MAE still relies on a transformer decoder, as
reported in [1], even though it does not need to be as heavy
as the encoder. Due to this, MAE achieves significantly
higher linear probing accuracy than SimMIM; however, this
superiority diminishes with finetuning. For example, with
ViT-B as the backbone on ImageNet, SimMIM achieves a
finetuning performance of 83.8%, slightly higher than the
reported 83.6% for MAE. Another merit of MAE by feeding
only the unmasked patches into the encoder is its higher
efficiency, especially when the masking ratio is high. Unlike
SimMIM with Swin-B as the default backbone, MAE is not
compatible with hierarchical ViT (like Swin [49], [50]). The
reason for its incompatibility and solutions to address them
are discussed in the following.

4.3 Towards improving efficiency

Despite the impressive performance, a significant bottleneck
of masked autoencoder for visual SSL is that it requires
large computation. In this section, we introduce multiple
works that attempt to improve the efficiency of masked au-
toencoders from roughly two perspectives: (1) hierarchical
structure and (2) input manipulation.

Hierarchical structure. Since ViT [7] used in MAE has a
crucial issue that decreasing the patch size will quadratically
increase computing resources, hierarchical ViT (hViT) [49],
[50] was introduced. Specifically, Swin and PVT [49], [50]
use a shrinking pyramid structure with additional tricks
such as shifted windows [50] to learn local feature corre-
lations or spacial reduction attention [49] to reduce com-
putation in the attention layer used to further improve
performance. Unfortunately, it is not intuitive to adapt hViT
to enable MAE pre-training since the local window attention
used in hViT is challenging to handle randomly masked
patches as in MAE.

Several works [51], [52], [53] attempt to boost the power
of hViTs while achieving efficiency in MAE. Huang et
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al. [51] present a unique masking strategy called group
window attention that gathers unmasked patches into sev-
eral equal-sized groups to perform masked attention. Their
method, based on a Swin transformer, combines the multi-
scale feature learnability of hViT and the efficiency of
masked image modeling by making the hierarchical trans-
former compatible with MAE. Similarly, Uniform Masking
MAE (UM-MAE) [52] introduced a two-stage sampling and
masking process. The proposed Uniform Masking strategy
first uniformly samples a quarter (25%) of patches in each
block, then further masks random patches on top of the
sampled patches. The first step maintains similar elements
across the non-overlapped local windows, while the second
step makes the self-supervisory task more challenging by
avoiding shortcuts for pixel reconstruction from neighbor-
ing low-level features. HiViT [53] proposes a new hViT ar-
chitecture to substitute window attention layers in Swin [50]
with MLP layers which enables masking as in MAE. The
above works [51], [52], [53] achieve comparable perfor-
mance to the baselines (MAE, SimMIM) while requiring less
training time as well as less GPU memory.

Input manipulation. Several methods attempt to im-
prove the efficiency of MAE by changing the input. Specif-
ically, they aim to reduce the input size by attending to
small windows [54] or objects in the image [55]. These
methods reduce the required computation while achieving
comparable or better downstream task performance.

Local masked reconstruction (LoMaR) [54] is inspired
from the fact that local information is enough for recon-
structing masked patches. Instead of relying on the entire
image for mask reconstruction, a number of small win-
dows with 7x7 patches are sampled to restrict attention
to local regions. LoMaR achieves higher downstream task
performance faster compared with MAE. It excels on high-
resolution images since the required compute increase lin-
early with image size where it is quadratic for MAE. Obj-
MAE [55] achieves input efficiency by dropping non-object
patches and learning object-wise representations. A class
activation map (CAM) [56] is used to identify a rough object
region, and the object regions are masked and used as input
for the MAE. ObjJMAE reduces the pre-training compute
cost by 72% while achieving comparable performance to
MAE, which masks the whole scene. MixMIM [57] takes
a slightly different approach: to replace an image’s masked
tokens with tokens from another image. The mixed image
is then fed into a encoder then the decoder reconstructs
the two original images. Because of the absence of uninfor-
mative masked tokens, [57] is not only able to be suitable
for hierarchical ViTs such as Swin [50] but also achieves
stronger results efficiently compared to existing MIM works.

4.4 Various perspectives on the success of masked
autoencoder in vision

To explain why BEIT [10] helps the finetuning on down-
stream tasks, its authors analyze the self-attention map
and show that BEiT distinguishes semantic regions using
self-attention heads without any task-specific supervision.
Moreover, [1] shows that an MAE, pretrained with a mask-
ing ratio of 75%, infers complex and holistic reconstruc-
tions even when 95% of pixels are masked, suggesting it
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learns various concepts, ie., semantics. The authors of
MAE [1] “hypothesize that this behavior occurs through a
rich hidden representation inside the MAE”. Given that the
masked and reconstructed visual patches are not semantic
entities as words in languages, this behavior is somewhat
unexpected and is hypothesized to occur “by way of a rich
hidden representation” [1]. However, which component in
masked autoencoder makes the model learn such a “rich
hidden representation” remains unclear. Numerous works
have investigated from various perspectives for a better
understanding of its success.

Backbone perspective: Is masked autoencoder compat-
ible with CNN? With ViT [7] as the default backbone in
MAE [1], a natural question is whether masked autoen-
coder works only with a transformer backbone instead of
CNN. Since CNN cannot tackle the masked inputs and
positional embedding directly, multiple works [58], [59],
[60], [61] have attempted to unify ViT and CNN in a
compatible masked autoencoder framework. Inspired by
the observation that early convolutions help transformers
see better [62], ConvMAE [58] utilizes hybrid convolution-
transformer architectures: convolution blocks at early stages
and transformer blocks at later stages are in charge of
high-resolution token embedding and low-resolution token
embedding, respectively. Towards a unified framework of
MIM with both transformer and CNN architecture, [61] pro-
poses corrupted image modeling (CIM), which replaces the
input images artificially masked in MIM with a corrupted
image generated by a trainable generator (BEiT). Therefore,
the reconstruction task in MIM can be extended to either
generative or discriminative objectives trained by a ViT or
CNN enhancer. CIM is the first to unify ViT and CNN in
a non-Siamese framework and yields compelling results in
vision benchmarks. More recently, it has been highlighted
in [60] that the success of masked image modeling can
be agnostic to the architecture. The proposed Architecture
Agnostic Masked Image Modeling framework (A?MIM) is
compatible with ViT and CNN in a unified way [60]. It
is found in [60] that the success of masked autoencoder
lies in learning middle-level patch interaction, which is
agnostic to architecture choices. Early attempts of CNN-
based inpainting [14] resembles masked autoencoder but
focuses on reconstruction task with low-level interactions,
which causes higher feature uncertainty [60].

Data perspective: does masked autoencoder require a
very large dataset? A popular belief regarding the benefit
of transfer learning comes from pretraining on a much
larger dataset than the target dataset. Challenging this be-
lief, [63] investigates whether self-supervised pretraining
on a smaller dataset can yield the same benefit. The fact
that their investigation is performed with ViT-based masked
autoencoder makes it more interesting because, compared
with its CNN, ViT is found to require much more sam-
ples [7]. Interestingly, [7] shows that pretraining masked
autoencoder (either BEiT or SplitMakk [63] ) on 1% of Ima-
geNet dataset achieves comparable transfer performance to
the iNaturalist-2019 dataset as pretraining on full ImageNet
dataset. By contrast, prior DINO [43] is much more sensitive
to the data size (as well as the data type). More recently, [64]
performed a comprehensive study on data scaling (from
10% of ImageNet to full ImageNet-22K) on masked autoen-
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coder models of various sizes ranging from 49 million to 1
billion parameters. It shows that MIM is also demanding on
larger data, especially for larger models with longer training
epochs [64]. Beyond size, some works have also investigated
domain issues in data and found that they can be alleviated
by training the masked autoencoder on images of mixed-
style [65] or multi-tasks [66].

Denoising perspective: Does masked autoencoder ben-
efit from other corruptions? Given that masked autoen-
coder is a class of denoising autoencoder, [67] investi-
gates a general question: are there other effective image
degradation methods beyond masking for effective visual
pretraining? Five methods, namely zoom-in, zoom-out, dis-
tortion, blurring, and de-colorizing, have been investigated,
and they are found to perform better than None (i.e., no
pretraining), suggesting a unified denoising perspective on
the success of masked autoencoder. Nonetheless, blurring
and de-colorizing perform worse than other degradation
methods with spatial transformation because they cause
image style shift from the pretext task to the downstream
task. Among them, zoom-in performs the best and is com-
plementary with masking to further boost the performance.
In contrast to existing spatial masking, [68] also investigates
frequency masking by predicting masked high-frequency
from the unmasked low-frequency content, or vice versa,
demonstrating competitive performance. Moreover, super-
resolution, deblur, and denoise have also been investigated
but they yield inferior performance.

Theoretical perspective: can masked autoencoder be
explained with rigorous mathematics? Towards a math-
ematical understanding, [69] was the first to propose a
unified theoretical framework for understanding masked
autoencoder in vision. Particularly, each image’s embedding
in MAE can be interpreted not as a 2D pixel grid but as a
learned basis function in certain Hilbert spaces. Moreover,
under a non-overlapping domain decomposition setting, the
patch-based attention in ViT can be understood from the
operator theoretic perspective of an integral kernel. With
attention as the focus, [69] further proves that the stability of
internal representations and that masked latent representa-
tions are interpolated globally with an inter-patch topology.
To understand why MAE helps in downstream tasks, based
on an autoencoder of a two/one-layered CNN, [70] theoret-
ically shows that it can capture discriminative semantics in
the pretraining dataset. Deviating from the focus on atten-
tion [69], it provides insight on what features MAE learns
and why MAE beats conventional supervised learning (SL).
Particularly, MAE encoder captures all discriminative se-
mantics in the pretraining dataset, including samples that
have either single or multiple independent discriminative
semantics, and therefore provably outperforms SL on down-
stream tasks.

4.5 Relationship with joint-embedding methods

Before the success of masked autoencoder, visual self-
supervised pretraining had been dominated by joint-
embedding methods, either contrastive ones ( [9], [71]) or
negative-free ones [43], [72]. Thus, it is highly relevant
to compare masked autoencoder with joint-embedding for
visual self-supervised pretraining.
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4.5.1 Masked autoencoder and joint embedding: boosting
each other

An intriguing observation regarding their difference is as
follows: compared with joint-embedding methods [43], [71],
masked autoencoders [1], [25] have stronger finetuning
performance on the downstream tasks but weaker linear
probing accuracy. A popular understanding is that masked
autoencoder lacks in learning semantically-meaningful fea-
tures because it focuses on low-level patch match with a
local loss [1], [25]. On the other hand, high-level semantic
features have the property of being robust to spatial trans-
formation (like random crop) and style change (like color
jittering) [73], and thus joint embedding approaches adopt
a global loss on the features after global average pooling to
encourage the learned representation to be augmentation-
invariant.

Improving masked autoencoder with global loss. Split-
Mask [63] consists of three steps: split, inpaint, and match.
The patches are divided into two disjoint subsets in the split
step: A and . For inpainting, it adopts a similar architecture
as MAE in that a lightweight (shallow) ViT decoder is used
to recover the masked patches from the representation of
unmasked patches [63]. What differentiates SplitMask [63]
from MAE [1] lies in the third match step, which encourages
the global prediction of A and B subsets of patches to match
each other. This global match aligns with the augmentation-
invariant goal in joint-embedding approaches, thus mak-
ing the representation more semantically meaningful. [74]
improves MAE by combining it with joint-embedding ap-
proaches. Specifically, it predicts the masked tokens to
match those from another augmented view to encourage
semantic learning with an optional global loss.

Improving joint-embedding methods with local loss.

Multiple works in the above analysis show that the
global loss in joint-embedding methods can be utilized
to improve the semantic meaning of the learned repre-
sentations. Intuitively, it is possible to improve the joint-
embedding techniques by adding a local loss. For example,
MST [75] extends the DINO framework by combining it
with a masked prediction task. It is worth mentioning
that MST [75] came out earlier than BEiT and MAE. More
recently, RePre [76] improves MoCO v3 [71] with a recon-
struction loss by using a decoder to reconstruct the original
image from the multi-hierarchy features in the encoder. [77]
shows that their inferior fine-tuning performance can be
significantly improved by a simple post-processing with
feature distillation (FD). After FD, their representations are
more suitable for optimization and thus finetuning friendly.

4.5.2 Masked autoencoder and joint embedding: bridging
their gap

Masked autoencoder and joint-embedding perform masked
prediction (predicting a property of masked patches from
unmasked patches) and augmented alignment (aligning
the embedded representation of different augmentations),
respectively. From the perspective of the architecture com-
ponent, the encoder training in masked autoencoder relies
on a decoder, while that in joint-embedding uses a Siamese
encoder for generating the self-supervision. Motivated by
their success, multiple works have attempted masked pre-
diction without a decoder, decoder-free MIM, which bridges
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the gap between joint-embedding and masked autoencoder
for visual pretraining.

Decoder-free MIM. Beyond masked autoencoder,
decoder-free MIM can be seen as another line of simplifying
BEiT from two stages to single stage. To keep the patch-level
visual context, ConMIM [22] follows the principle of de-
signing the training objective to be masked patch prediction
as in [10]. Specifically, resembling MoCo [8], [71], ConMIM
adopts a Siamese encoder, which is updated by the (student)
encoder with EMA, as a teacher model to guide the training
of the encoder. ConMIM [22] feeds an unmasked image and
a masked image of the same view into teacher and student
encoders, respectively. The teacher encoder can be seen as
a dynamic tokenizer as a static one in BEiT [10]. There-
fore, the embedded representations of masked patches are
predicted to match the dynamic tokenizer corresponding to
the same position [22]. A similar teacher-student framework
is adopted in MSN [27] and data2vec [24]. In contrast to
ConMIM [22], MSN [27] adopts a global loss to encourage
learning semantic-aware representation. CNN-based MSN
has also been investigated in [78]. It has also been demon-
strated in data2vec [24] that this simple framework works
well in the vision field and can be generalized to other data
modalities, including speech and language. MSN [27] works
well for linear probing and few-shot learning but might be
inferior to masked autoencoder for the finetuning perfor-
mance on downstream tasks since patch-level visual context
is discarded. To get the merits on both sides, iBOT [79]
adopts two losses: a local loss to distill in-view patch to-
kens and another global loss to distill between cross-view
[CLS] tokens, which makes the target patch tokens more
semantically-meaningful [79]. More recently, AttMask [50]
shows that iBOT can be further improved by performing an
attention-guided masking instead of random masking on
the student side. Particularly, the teacher model indicates
the attention with full image as the input and masking on
the attended areas improves the performance on a variety
of downstream tasks.

Collapse issue. A shared issue in the above decoder-free
MIM methods [22], [24], [27] is the potential feature collapse,
i.e. outputting a constant for all inputs. They adopt different
approaches to avoid this issue. For example, ConMIM [22]
adopts a contrastive loss with those feature representations
corresponding to different positions in the same image as
negative samples. MSN [27] follows [81] to do cluster assign-
ments, while data2vec [24] achieves this goal by carefully
fine-tuning the hyperparameters like momentum coefficient
in EMA and learning rate. Note that autoencoder-based
MIM methods do not have the collapse issue by default.

5 OTHER APPLICATIONS: VISION AND BEYOND

Inspired by the success of MAE [1], numerous works have
applied masked autoencoder to various applications. We
categorize them into two classes. The first class is related to
vision, for which pure natural images have been extensively
covered in the above section. Thus, this section covers its
other aspects, including images with medical applications,
images with temporal information, images with language.
Going beyond vision, the second class focuses on different
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types of data, such as point clouds, graph, audio, reinforce-
ment learning, etc.

5.1 Vision related applications
5.1.1 Medical images

Medical images are a class of data for medical analysis
with data distribution different from natural images. Mul-
tiple works have shown that masked autoencoders can
also work well in medical applications by either applying
MAE directly to medical data [82], [83] or improving the
loss design [84], [85], [86], [87]. With MAE [1] and Sim-
MIM [25] as the architecture, [82] and [83] apply masked
autoencoders directly in medical images, showing the ef-
fectiveness of masked autoencoder in medical applications,
e.g. CT images. Specifically, [82] shows that MAE pre-
trained on medical dataset achieves superior performance
to its counterpart pretrained on ImageNet, which can be
explained from the perspective domain shift. [83] shows
that a moderately large patch size (32) achieves satisfactory
performance, which aligns with the finding in [25]. There
are also attempts to enhance MAE [1] by improving the
loss [84], [85], [86], [87], including global loss and self-
distillation loss. It is shown in [84], [85] that an additional
global loss on top of a local loss makes the representations
more semantically meaningful for medical images, which
resembles the principle in iBOT and SplitMask. [86] views
the output of MAE encoder as a bag of instances and aggre-
gates the most informative tokens into global representation
(slide-level) for further classification. To make full use of vis-
ible patches, Self-distillation MAE(SD-MAE) [87] improves
MAE by adding a self-distillation loss of visible patches
between latent representations after encoding and decoding,
which achieves competitive performance compared with
contrastive methods.

5.1.2 Video

Numerous works have applied SSL frameworks built on
images to videos since videos are essentially a clip of se-
quential images. This trend is also observed after the success
of masked autoencoders, with works in [23], [88], [89]
and [90], [91] applying videos to BEiT [10] and MAE [1]
respectively.

To learn spatial and temporal priors of videos in a
decoupled way, BEVT [85] proposes a two-stage solu-
tion that learns spatial representations with masked image
modeling, then learns temporal representations with jointly
masked image modeling and masked video modeling.
BEVT achieves comparable or superior results to baseline
methods on three video datasets. VIMPAC [89] proposes
a different single-stage masked video modeling method,
which includes a block-wise masking strategy for videos
and augmentation-free contrastive learning loss to learn the
global features. Experimental results verify the effectiveness
and scalability of the proposed VIMPAC. Both BEVT [88]
and VIMPAC [89] rely on an external tokenizer which
can be limited in compute-intensive video understanding
scenarios. Therefore, [23] proposes to replace the tokens
with features and investigates five types of features, among
which hand-crafted HOG is found to work effectively and
efficiently.
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Since MAE is found to be more simple yet effective
than BEiT, the works in [90], [91] follow the architecture
of MAE for simplicity and efficiency. With a similar model
architecture to MAE, VideoMAE [90] finds that it learns
useful spatio-temporal structures with a very high masking
ratio (90% to 95%) in tube masking strategy. Experimen-
tal results show that VideoMAE [90] achieves impressive
performance on tiny datasets. Similar investigation has
also been investigated in [92] but with spacetime-agnostic
random masking. Beyond video understanding for existing
frames, [93] investigates masked visual modeling for future
frame prediction. The gap between masked prediction for
partial existing frames and full future frames is addressed
by a variable masking ratio. OmniMAE [91] extends MAE
to a unified pre-training of image and video modalities.
Trained on images and video with a single ViT encoder, Om-
niMAE achieves competitive performance on both image
and video recognition benchmarks, outperforming models
explicitly trained for a single modality.

5.1.3 Vision and language

Prior to masked autoencoder, contrastive learning is a
popular approach to learn language and vision represen-
tations jointly. Contrastive Language-Image Pre-training
(CLIP) [94] is a pioneering work that propose learning
images with language as supervision. By jointly learning
an image and text encoder, CLIP takes the pair of image
and text as a prediction target during contrastive pre-
training and often achieves competitive results compared to
fully supervised baselines. Other works extend of CLIP by
adding self-supervision [95], data scaling [96] or enabling
flexibility to the encoders [97]. Contrastive learning intro-
duces sampling bias due to data augmentations and cannot
tackle unpaired samples [98]. To solve these problems, [98]
proposes Multimodal Masked Autoencoder (M3AE), which
encodes a flexible mixture of inputs, including image-text
pairs and image-only inputs. Experimental results show that
MBS3AE learns generalizable vision representations and uni-
fied information from images and languages. To investigate
how to design an effective vision-language model with an
end-to-end manner, Multimodal End-to-end TransformER
(METER) [99] implements comprehensive experiments and
analyses on multiple designs, including encoders, multi-
modal fusion module, pre-training objectives. However,
adding MIM loss does not improve downstream task per-
formance in their settings [99]. [100] also investigates the
masking strategies of text data in language-vision tasks,
which improves performance on downstream tasks.
Moreover, [101] presents a unified task-agnostic model
that can perform various vision and language tasks. It is
able to tackle different tasks with a unified model without
employing task-specific branches by tokenizing the inputs
and outputs of every given task. A standard transformer en-
coder/decoder is pre-trained with masked language mod-
eling and masked image modeling, then further trained
on a large multi-task dataset that encompasses different
language/vision tasks. Similarly, [102] proposes VL-BEiT
that can tackle both monomodal and multimodal vision-
language tasks. A single bidirectional multimodal trans-
former [97] is pre-trained on mask prediction of monomodal
(language, vision) and multimodal (image-text pair) data
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to be jointly optimized to different types of data. VL-BEiT
achieves strong results on various vision-language bench-
marks and image tasks.

5.2 Beyond vision
5.2.1 Point clouds

Motivated by the success of BEiT in vision, [26] extends
masked modeling strategy to point cloud with masked point
modeling termed Point-BERT. Following BEiT, Point-BERT
first trains a discrete VAE to generate discrete point tokens
containing meaningful local information and then predicts
the tokens of masked point patches from the unmasked
point patches. With a pure transformer architecture sur-
passing carefully designed point cloud models, Point-BERT
achieves 93.8% accuracy on ModelNet40 and 83.1% accuracy
on the complicated setting of ScanObjectNN, suggesting
the BERT-style pre-training technique also works for point
cloud. Point-BERT relies on dVAE, which is trained by
augmentation-based contrastive learning and thus is so-
phisticated. Moreover, the masked tokens from their inputs
are processed as the input of Transformers, causing high
compute and early leakage of location information [103].
MaskPoint [104] alleviates this issue by pre-training with
a decoder to contrast masked points and noise. Moreover,
Point-MAE [103] follows MAE [1] to adopt a more straight-
forward approach to directly predict the locations of masked
points. Resembling Point-MAE, [105] proposes Point-M2AE,
a Multi-scale MAE for point clouds. Different from Point-
MAE, Point-M2AE adopts an encoder-decoder with pyra-
mid architectures to capture both fine-grained and high-
level semantics in a progressive manner. Accordingly, Point-
M2AE also adopts a multi-scale masking strategy to yield
visible patches consistent across scales. Moreover, a local
spatial self-attention mechanism is also adopted to make
the encoder focus on neighboring patterns. [106] has pro-
posed Voxel-MAE to pre-train on large-scale point clouds to
improve downstream 3D object detection. The key idea lies
in dividing the point clouds into voxel representations and
classify whether they contain point clouds.

5.22 Graph

MGAE [107] is the first to investigate masked autoen-
coder for graphs. Prior to its advent, works on learning
graph node representations in an unsupervised manner
can be categorized into two classes: graph autoencoder
and graph self-supervised learning (GSSL). They focus on
designing effective encoder networks and advanced pre-
text tasks, respectively. Even though edge dropping and
edge reconstruction are commonly adopted in both lines
of investigations, masked autoencoding by recovering the
masked edges from randomly masked input graph structure
has never been explored until the advent of MGAE [107].
Following MAE [1], MGAE operates only on convolution-
based partial network structure (without masked edges).
Moreover, the decoder is designed to capture the cross-
correlation between an anchor edge’s head and tail nodes.
MGAE performs better or on par with graph autoencoder
and GSSL. GMAE [108] further investigates masked autoen-
coders for a graph with transformer instead of convolu-
tion. Another item that distinguishes them is that MGAE
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reconstructs masked edges, and GMAE reconstructs the
features of masked nodes. [109] also argues that rebuilding
the features is more beneficial. Beyond empirical results
with experimental trial-and-error, MaskGAE [110] further
provides theoretical justifications for the potential benefits
of masked graph modeling.

5.2.3 Reinforcement learning

The auxiliary tasks and RL updates [111] are jointly trained
in [112], where the performances of ViT models is compared
to that of a CNN-based RL method [113]. The results indi-
cate that CNN-based RAD [113] performs better on most
image-based deep RL tasks, but reconstruction-based ViT
models [1], [24] outperform RAD on some tasks. With ViT
architecture, Xiao et. al [114] adopted pre-trained visual
representations to train various motor control tasks. First,
MAE [1] is used to learn visual representations from real-
world images. Then, the encoder is freezed and the feature
vector is used alongside propropceptive robot information
to train task-specific motor cotrolling policies with model-
free reinforcement learning [115]. The authors demonstrate
that a single encoder can be used to learn various tasks
without task-specific fine-tuning, and achieves superior per-
formance compared to supervised baselines. Seo et. al [116]
demonstrate a similar approach, but show that convolu-
tional feature masking is more effective than pixel patch
masking since it learns fine-grained features within patches.

5.2.4 Audio

Recent works learning audio representations create different
input views by temporal relationships or data augmenta-
tions, which cannot provide information from the intact
input. Inspired by the success of MAE in vision, [117], [118]
apply masked autoencoders successfully on the masked
audio spectrogram to learn audio representations from both
time and frequency axes. Moreover, [118] is trained jointly
on discriminative and generative loss for instance-wise clas-
sification and reconstruction, respectively.

5.2.5 More diverse applications

Masked autoencoder has also been attempted in more di-
verse applications. For example, [119] experiments with
masked autoencoder with extrapolator (ExtraMAE) to re-
cover complex original time series signals from masked
observations. Recognizing contrastive tabular-SSL does not
sufficiently capture the underlying manifold due to the
ad-hoc fashion of its augmentation design, [120] proposes
Masked Encoding for Tabular data (MET). With the MAE [1]
in vision as the baseline, MET adopts individual represen-
tation for each coordinate with an additional adversarial
loss by considering the property of tabular data. Some
works [61], [121] have also adopted a pretrained masked
autoencoder as an augmentation generator. For example,
the reconstructed views from MAE are found to outperform
hand-crafted augmentations (like scale, flip, and color jitter)
in both supervised and semi-supervised setups [121].

6 CONCLUSION

This survey is the first to review the progress of masked
autoencoder for SSL. We summarize the early attempts of
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masked autoencoder in vision and its relation with masked
language modeling. With the focus on the reviving success
of masked autoencoder in unsupervised visual pretraining,
we summarize and compare the seminal methods as well
as those follow-up works to improve them. We also provide
insight on the success of masked autoencoder in vision from
various perspectives, including backbone perspective, data
perspective, denosing perspective and theoretical perspec-
tive. Finally, we summarize its application in vision and
beyond. Preliminary summarization of the works in table
format is provided in the appendix.
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TABLE 2
Summary of works with maksed autoencoder in vision.
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Summary of works with masked autoencoder on videos.
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