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Abstract—Smoke detection has become a significant task in 
associated industries due to the close relationship between the 
petrochemical industry's smoke emission and its safety 
production and environmental damage. There are several 
production situations in the real industrial production 
environment, including complete combustion of exhaust gas, 
inadequate combustion of exhaust gas, direct emission of 
exhaust gas, etc. We discovered that the datasets used in 
previous research work can only determine whether smoke is 
present or not, not its type. That is, the dataset's category does 
not map to the real-world production situations, which are not 
conducive to the precise regulation of the production system. As 
a result, we created a multi-categories smoke detection database 
that includes a total of 70196 images. We further employed 
multiple models to conduct the experiment on the proposed 
database, the results show that the performance of the current 
algorithms needs to be improved and demonstrate the 
effectiveness of the proposed database. 
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I. INTRODUCTION 
Petrochemical companies are the primary producers of 

energy in China, and smoke detection at petrochemical 
companies has long drawn considerable interest. It is 
necessary that exhaust gas emitted by the venting flare must 
be entirely burnt to guarantee the long-term normal operation 
of the system and efficiently eliminate environmental 
pollution. The main existing solution to reduce exhaust gas 
pollution emissions is to inject combustion-supporting steam 
to promote the complete combustion of exhaust gas [1]. With 
the proper amount of combustion-supporting steam, exhaust 
gases can be completely burned to reduce pollution. If the 
amount of combustion-supporting steam is inadequate, the 
smoke produced by incomplete combustion will pollute the air. 
However, when the amount of combustion-supporting steam 
is excessive, it not only results in a waste of resources but also 
obstructs the exhaust gas combustion, resulting in the direct 
release of the exhaust gas into the atmosphere. Therefore, the 
key to the highly effective combustion of exhaust gas is the 
suitable regulation of combustion-supporting steam. Current 
approaches rely based on sensors and human adjustment, but 
due to their unique features, it is impossible to ensure the 
effective and efficient combustion of exhaust gas using these 
two methods [2]-[4]. With the advancement of artificial 
intelligence, image-based technologies may offer novel 
solutions to the task of smoke detection. 

The state of combustion of exhaust gas can be directly 
reflected in the image. During the combustion of exhaust gas, 
the color of smoke will vary according to the degree of 
combustion and will also represent the industrial 
environment's operating conditions. For instance, in 
petrochemical plants and refineries, the presence of the 
smokeless state indicates that the system is operating normally. 
When black smoke is detected, the system is in abnormal 
operating, indicating that there is insufficient combustion of 
the exhaust gases. The higher the carbon content, the darker 
the hue, and the larger the environmental harm, the blacker the 
smoke will be. The white smoke indicates excessive 

combustion-supporting steam, and the exhaust gas is released 
straight into the atmosphere, which will seriously pollute the 
environment. Consequently, when black smoke or smokeless 
is discovered, it may cause significant safety dangers as well 
as environmental issues. 

In order to reduce pollution, particulate matter detection 
[5]–[10] and image-based smoke detection methods have been 
the subject of extensive research [11]–[15]. As far as we are 
aware, the available methods with their data sets can only 
determine whether smoke is present or absent, they cannot 
determine the type of smoke [16]-[20]. Furthermore, actual 
industrial control systems can only make basic decisions 
based on limited smoke detection results, and the new 
algorithms developed using these datasets are unable to 
provide additional information to assist the control systems in 
producing more precise regulation. As a result, creating a 
database with multiple categories has a significant realistic 
impact on resolving the aforementioned engineering issues. 
Therefore, we proposed and created a multi-classification 
database for smoke detection in this paper with a total of 
70196 image patches. 

 The remaining structure of this paper is organized as 
follows. The process for creating the dataset is described in 
depth in Section 2. The effectiveness of the database and the 
performance of the algorithm are examined in Section 3. The 
main conclusion is offered in Section 4 at the end. 

II. DATABASE 
During the combustion of exhaust gases, three types of 

smoke are often produced: white smoke, black smoke, and 
smokeless, which is also the most common form of smoke. 
Similar findings have been seen in other industrial domains, 
such as thermal power plants. As a result, we create a new 
three-categories smoke detection database (TCSDD) for 
smoke detection based on [15] to continue the research on the 
aforementioned engineering difficulties. 

The dataset includes a training set, a validation set, and a 
testing set in accordance with standard dataset design 
practices. In the process of designing the database, it is found 
that the color of smoke in an image does not exactly match 
pure black or white.  In order to identify the categories of an 
image according to the color of smoke, the subjective scoring 
technique is utilized. An image's label should be derived from 
the outcomes of multiple labeling to minimize the learning 
error brought on by inaccurate labels. This study uses 20 data 
from 20 different sources to determine an image's label. The 
selection of the final label from a range of results can be 
equivalent to the hard voting process in ensemble learning. To 
be specific, let X=[x1,x2,…,xn], where n is the number of 
categories and xi is the number of votes an image has received 
to be classified in a certain category (n equals three in this 
paper). The sum of xi should also equal M, where M is the 
total number of votes cast for an image, which is 20. The 
following is the image's final category: 

 𝑥𝑥 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑋𝑋) (1) 



argmax denotes that the final category of the image is obtained 
from the subscript of the value that causes X to obtain the 
maximum value. 

Another issue that was discovered while building the 
database is the stark variation in the number of images in each 
category. The performance of the network depends on the 
distribution of samples among the categories [20]. 
Specifically, there are 8363 smokeless images, 1423 black 
smoke images, and 778 white smoke images in the validation 
set that was initially partitioned, compared to 8511 smokeless 
images, 1423 black smoke images, and 778 white smoke 
images in the initially built training set. As a result, data 
augmentation is needed for images of white smoke and black 
smoke. Considering the color change enhancement has 
significant interference with the smoke image, that should be 
considered when developing the specific algorithm. Therefore, 
the rotation operation is mostly employed to augment data. 
The rotation angle that is applied to the image can be 
calculated by 360 / N * I, where N is the multiple of the data 
increase and I = [1,2,..., N]. For the black smoke images, the 
rotation operation with n equals 6 is utilized, and for the white 
smoke images, the rotation operation with n equals 12 is used, 
which closely balances the number of images in the three 
categories. By utilizing rotation, the total number of images in 
the three categories is almost equal. 

The finished dataset is as follows: The training set consists 
of 26538 images, comprising 9336 image patches of white 
smoke, 8511 image patches of smokeless, and 8538 image 
patches of black smoke. A total of 26483 image patches, 8363 
smokeless image patches, 8928 black smoke image patches, 
and 9192 white smoke image patches make up the validation 
set. There are a total of 17328 image patches in the testing set, 
including 9888 image patches of smokeless patches, 4644 
image patches of black smoke, and 2796 image patches of 
white smoke. The images in the dataset are displayed in Figure 
1, it is important to note that only the images from the training 
set and the validation set are rotated. 

 

III. EXPERIMENT 
In this section, we will further examine the performance of 

existing state-of-the-art general classification networks and 
networks designed specifically for smoke detection, as well as 
assess the usefulness of this database.  

A. Experimental Protocol 
Evaluation Criteria. For quantifying the performance of 

each model, The loss, precision, recall, and accuracy of the 
validation set and testing set, as well as the recall and precision 
of each category, were recorded. From these indicators, we 
were able to analyze the model's behavior and assess the 
database's efficacy. The following are the definitions of these 
indicators: 

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

 (2) 

 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (3) 

 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (4) 

 𝑓𝑓1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝∗𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 (5) 

TP, TN, FP, and FN represent True positive, True negative, 
False Positive, and False negative respectively. In the binary 
classification task, recall and precision are typically calculated 
for the positive and negative samples. We determine the recall 
and precision for each category, then average the results to get 
the overall recall and precision. A good model is expected to 
achieve greater values on these indicators as far as possible.  

Operating Environment. Operating Environment. All 
models used in this paper have the same configuration to allow 
for a fair comparison of model performance. Our experimental 
framework is PyTorch. An Ubuntu computer running the 
Inter(R) Gold 6248R CPU at 3.00GHz and an NVIDIA 
GeForce RTX 3090 graphics card power the experimental 
environment. All models have the same configuration for their 
hyperparameters. Table 1 displays the experiment's 
hyperparameter setting. 

TABLE I.  HYPERPARAMETER SETTINGS USED IN THE EXPERIMENT 

 Hyperparameter settings 

Epoch  200 

Batch Size 128 

Optimizer SGD base_lr:0.01 Momentum:0.9 Weight_decay:1E-5 

Loss CrossEntropyLoss 

Lr Scheduler Learning rate scales linearly from base_lr to 1E-5 

Competing Models. The comparative experiments are 
conducted on our database with a total of seven start-of-the-
art models, those models are Alex-Net [21], VGG-Net [22], 
Res-Net [23], Google-Net [24], Mobile-Net [25], Shuffle-Net 
[26], DCNN [15]. The first four networks have seen 
significant advancements in general image classification 
datasets in recent years and have been widely employed. 
MobileNet and ShuffleNet are created for real-world 
industrial uses. They are simpler to apply in the industry, 
having great precision and quick calculating speeds. DCNN is 
developed by Gu et al. specifically for smoke detection. 

 
Figure 1 Examples of data, the patches from left to right 

are the original image and the image enhanced by rotation. 



B. Performance Comparison 
On the TCSDD database,  we record and compare the 

performance of the aforementioned seven start-of-the-art 
models using four indicators: accuracy, recall, precision, and 
f1-score. Loss is also employed as a measure of the robustness 
and generalization of networks. In this study, the loss of a 
model is determined on the testing set by averaging the total 
loss that results from adding the losses of all the samples in 
the testing set. The performance results of the network are 
shown in Table 2. 

TABLE II.  PERFORMANCE COMPARISON OF SEVEN STATE-OF-THE-
ART  

Networ
ks 

Alex
Net 

ResN
et Vgg Googl

eNet 
Shuff
leNet 

Mobil
eNet 

DCN
N 

Acc 0.928 0.926 0.941 0.954 0.922 0.942 0.935 

R 0.928 0.922 0.934 0.949 0.928 0.941 0.926 

P 0.907 0.908 0.929 0.943 0.904 0.926 0.926 

F1 0.918 0.915 0.932 0.946 0.916 0.933 0.926 

loss 0.328 0.380 0.895 0.191 0.343 0.276 0.358 

Accuracy, precision, recall, and the f1-score are each 
denoted by the letters Acc, R, P, and F1 in Table 2. It can be 
shown from Table 2 that GoogleNet performs best, with an 
accuracy of 0.954, a recall of 0.949, and a precision of 0.943. 
Additionally, we discover that all models' precision is lower 
than recall, which indicates that the model's precision needs to 
be increased. In real-world applications, we not only need to 
be able to accurately identify particular scenarios, but we also 
don't want the model to become perplexed by various scenes. 
Therefore, it is necessary to work on increasing precision 
while keeping recall. For the indicators of each category, the 
experimental results demonstrate that the smokeless category 
has a higher recall and precision than the white smoke and 
black smoke categories, which is consistent with prior 
research's findings and suggests that the model does a good 
job of differentiating between smoke- and non-smoke-filled 
environments. In other words, it can effectively detect whether 
smoke is present in the image in the binary classification test. 
when employing TCSDD, the main errors occurred in the 
black smoke and white smoke categories. There has been a lot 
of work put into building the database to prevent importing 
inaccurate label information as much as possible. This 
demonstrates that there are additional causes for the 
uncertainty, like backdrop confusion in the image or color 
confusion brought on by changes in illumination. Features that 
are unaffected by environmental noise and brightness 
variations should be further mined by the models. 

According to the above content, A basic ranking of the 
models may be determined based on the metrics, and the 
rankings are as follows: GoogleNet > MobileNet > VGG ≈ 
DCNN > AlexNet ≈  ResNet18 ≈  ShuffleNet. The best 
performance is achieved by Googlenet, this may be related to 
its multi-scale information extraction mechanism. VGG lags 
behind Mobilenet because its loss on the test set is 
substantially higher than Mobilenet's, suggesting that its 
generalization performance might be a little bit worse. 
Mobilenet also shows excellent capabilities, which also 
increases the potential for practical industrial applications. In 
addition, DCNN also offers great detection capabilities. 

IV. CONCLUSION 
Smoke detection is essential to reducing air pollution and 

ensuring safe production. In this paper, we create a three-
categories smoke database dedicated to petrochemical smoke 
detection. First, the image labels are obtained by the method 
of subjective scoring, then data augmentation is performed by 
rotation to solve the problem of category imbalance. The final 
generated dataset contains 70,196 image patches. we have run 
a performance competition on the proposed database with 
some state-of-the-art models, and the results show that 
performance still needs to be improved. In our future work, 
we will strive to leverage self-supervision and other 
techniques to mine smoke features to improve the 
performance of fully-supervised tasks for the challenge of 
distinguishing different forms of smoke. 
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