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Meta-DETR: Image-Level Few-Shot Detection
with Inter-Class Correlation Exploitation

Gongjie Zhang', Zhipeng Luof, Kaiwen Cui, Shijian Lu™, and Eric P. Xing

Abstract—Few-shot object detection has been extensively investigated by incorporating meta-learning into region-based detection
frameworks. Despite its success, the said paradigm is still constrained by several factors, such as (i) low-quality region proposals for
novel classes and (ii) negligence of the inter-class correlation among different classes. Such limitations hinder the generalization of
base-class knowledge for the detection of novel-class objects. In this work, we design Meta-DETR, which (i) is the first image-level
few-shot detector, and (ii) introduces a novel inter-class correlational meta-learning strategy to capture and leverage the correlation
among different classes for robust and accurate few-shot object detection. Meta-DETR works entirely at image level without any region
proposals, which circumvents the constraint of inaccurate proposals in prevalent few-shot detection frameworks. In addition, the
introduced correlational meta-learning enables Meta-DETR to simultaneously attend to multiple support classes within a single
feedforward, which allows to capture the inter-class correlation among different classes, thus significantly reducing the misclassification
over similar classes and enhancing knowledge generalization to novel classes. Experiments over multiple few-shot object detection
benchmarks show that the proposed Meta-DETR outperforms state-of-the-art methods by large margins. The implementation codes

are available at https:/github.com/ZhangGongjie/Meta-DETR.

Index Terms—Object Detection, Few-Shot Learning, Meta-Learning, Few-Shot Object Detection, Class Correlation.

1 INTRODUCTION

OMPUTER vision has experienced significant progress
C in recent years. However, there still exists a huge gap
between current computer vision techniques and the human
visual system in learning new concepts from very few
examples: most existing methods require a large amount of
annotated samples, while humans can effortlessly recognize
a new concept even with just a glimpse of it [1]. Such
human-like capability to generalize from limited examples
is highly desirable for machine vision systems, especially
when sufficient training samples are unavailable or their
annotations are hard to obtain.

In this work, we explore the challenging task of few-shot
object detection, which requires detecting novel objects with
only a few training samples. With minimal supervision on
novel classes, the key to few-shot object detection is to learn
transferable knowledge from base classes and generalize it
to novel classes. To this end, many studies [2], [3], [4], [5], [6]
incorporate meta-learning into generic region-based object
detection frameworks, mostly Faster R-CNN [7], and have
achieved very promising results.

Despite their success, there still exist two underlying lim-
itations that hinder better exploitation of base-class knowl-
edge, as illustrated in Fig.2. First, region-based detection
frameworks rely on region proposals to produce final pre-
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Fig. 1. Comparison of few-shot object detection pipelines: Prior studies
(upper part) perform region-level detection, which are often constrained
by inaccurate region proposals for novel classes. Besides, they can
only deal with one support class at one go and overlook the correlation
among different classes. The proposed Meta-DETR (lower part) works
at image level without any proposals. It captures inter-class correlation
by learning from multiple support classes simultaneously, which sup-
presses confusion among similar classes and enhances model general-
ization greatly.

dictions, thus are sensitive to low-quality region proposals.
However, as investigated by [5] and [8], it is not easy to
produce high-quality region proposals for novel classes with
limited supervision under the few-shot detection setups.
Such a gap in the quality of region proposals obstructs the
generalization from base classes to novel classes. Second,
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(a) Quality Gap in Region Proposals

(b) Cosine Similarity of Class Prototypes

(c) Misclassification of Related Classes

Fig. 2. Existing few-shot detection frameworks tend to suffer from inaccurate region proposals and negligence of inter-class correlation. Due to very
limited training samples for novel classes, the proposal quality (measured by Average Recall on top 1000 proposals) for novel classes is clearly
lower than that of base classes as illustrated in (a). This hinders the knowledge generalization to novel classes. Additionally, object classes with
similar appearances are highly correlated in feature space such as ‘cow vs. horse’ and ‘motorbike vs. bike’ as illustrated in (b), which tend to be
misclassified if the learning does not incorporate the correlation among them as illustrated in (c).

most existing meta-learning-based approaches [2], [3], [4],
[5] adopt ‘feature reweighting’ or its variants to aggregate
query and support features, which can only deal with one
support class (i.e., target class to detect) at a time and
essentially treat each support class independently. Without
seeing multiple classes within a single feedforward, they
largely overlook the important inter-class correlation among
different support classes. This limits the ability to distin-
guish similar classes (e.g., distinguishing from cows and
horses) and to generalize from related classes (e.g., learning
to detect cows by generalizing from detecting sheep).

To mitigate the above limitations, we design Meta-DETR,
an innovative few-shot object detector that performs pure
image-level prediction and at the same time exploits the
inter-class correlation among different classes. Fig. 1 il-
lustrates its major differences with prior designs. To our
best knowledge, this is the first work that identifies the
constraint caused by region-based detection under the few-
shot setups and explores to address few-shot object de-
tection with DETR-based detection frameworks, which can
skip proposal generation and directly perform detection at
image level. With image-level prediction, Meta-DETR fully
bypasses the constraint of inaccurate region proposals as in
prevalent few-shot detection frameworks. In addition, the
introduced inter-class correlational meta-learning strategy
enables Meta-DETR to attend to multiple support classes at
one go instead of class-by-class meta-learning with repeated
runs as in most existing methods. By integrating detection
tasks that involve multiple classes into meta-learning, Meta-
DETR can explicitly leverage the inter-class correlation,
including the inter-class commonality to facilitate general-
ization among related classes and the inter-class uniqueness
to reduce misclassification among similar classes.

In summary, the contributions of this work are threefold.
First, we identify the quality gap of proposals for base
and novel classes in region-based prediction, and propose
Meta-DETR to address few-shot object detection. Being the
first pure image-level few-shot detector, Meta-DETR fully

circumvents the gap of inaccurate proposals for novel-class
objects, thus enabling better generalization to novel classes.
Second, we design a novel correlational meta-learning strat-
egy, which can deal with multiple support classes simulta-
neously. It effectively exploits inter-class correlation among
different classes, thus greatly reducing misclassification and
enhancing model generalization. Third, extensive experi-
ments show that, without bells and whistles, the proposed
Meta-DETR consistently outperforms state-of-the-art meth-
ods by large margins on detecting novel objects.

2 RELATED WORK
2.1 Object Detection

Generic object detection [9] is a joint task on object lo-
calization and classification. Modern object detectors are
mostly region-based and can be broadly classified into two
categories: two-stage and single-stage detectors. Two-stage
detectors include Faster R-CNN [7] and its variants [10],
[11], [12], which first adopt a Region Proposal Network
(RPN) to generate region proposals, and then produce final
predictions based on the proposals. Differently, single-stage
detectors [13], [14], [15], [16], [17], [18] employ densely
placed anchors as region proposals and directly make pre-
dictions over them. Recently, another line of research featur-
ing DETR [19] and its variants [20], [21], [22], [23], [24], [25],
[26], [271, [28], [29] has received vast attention, thanks to
the merits of pure image-level framework, fully end-to-end
pipeline, and comparable or even better performance. How-
ever, these aforementioned generic detectors still heavily
rely on large amounts of annotated training samples, thus
will suffer from drastic performance drop when directly
applied to few-shot object detection.

2.2 Few-Shot Object Detection

Existing works on few-shot object detection can be cate-
gorized into two paradigms: transfer learning and meta-
learning. Methods with transfer learning mainly include
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Fig. 3. The framework of Meta-DETR: Query Image and Support Images are processed by a weight-shared Feature Extractor to produce Query

Features and support features. To leverage the inter-class correlation
which first matches the query features with multiple support classes s

in meta-learning, a Correlational Aggregation Module (CAM) is designed,
imultaneously and then introduces multiple task encodings (i.e., the three

illustrative of different colors) to differentiate these support classes. Finally, few-shot detection is achieved with a class-agnostic Transformer
Encoder & Decoder that learns to predict objects’ locations and their corresponding task encodings (instead of directly predicting objects’ class
labels). The architecture of CAM is detailed in Section 4.2 and Fig. 4. The training objectives of Meta-DETR are formulated in Section 4.3.

LSTD [30], TFA [31], MPSR [32], and FSCE [33], where novel
concepts are learned via fine-tuning. Differently, methods
with meta-learning [2], [3], [4], [5], [6], [17], [34] extract
knowledge that can generalize across various tasks via
‘learning to learn’, i.e., learning a class-agnostic predictor
on various auxiliary tasks.

Our proposed Meta-DETR falls under the umbrella
of meta-learning, but differs from existing approaches by
achieving image-level detection and effectively leveraging
the correlation among various support classes. To the best of
our knowledge, Meta-DETR is the first work that incorpo-
rates meta-learning into the recently proposed DETR frame-
works. It is also the pioneering work to explicitly integrate
the inter-class correlation among support classes into few-
shot object detection frameworks using meta-learning.

3 PRELIMINARIES
3.1 Problem Definition

Given two sets of classes Cpase and Cpovel, Where Cpase N
Chovel = 9, a few-shot object detector aims at detecting
objects of Chase U Cnovel by learning from a base dataset
Dhase With abundant annotated objects of Cpase and a novel
dataset Dyovel With very few annotated objects of Cpovel.
In the task of K-shot object detection, there are exactly K
annotated objects for each novel class in Dyovel-

3.2 Rethink Region-Based Detection Frameworks

Most existing few-shot object detectors are developed on
top of Faster R-CNN [7], a region-based object detector,
thanks to its robust performance and ease for optimization.
However, by relying on region proposals to produce de-
tection results, these approaches are inevitably constrained
by the inaccurate proposals for novel classes due to very
limited supervision under the few-shot detection setups. As
illustrated in Fig. 2(a), there is a clear gap in the quality
of region proposals for base and novel classes, hindering
region-based detection frameworks from exploiting base-
class knowledge to generalize to novel classes. Though

several studies [5], [8] attempt to acquire more accurate
region proposals, this issue still remains as it is rooted in
the region-based detection frameworks under the few-shot
learning setups.

3.3 Rethink Meta-Learning via Feature Reweighting

To meta-learn a class-agnostic detector that can generalize
across various classes, most existing methods [2], [3], [4],
[5] adopt ‘feature reweighting’ or its variants to aggregate
query features with support class information, acquiring
class-specific meta-features to detect objects corresponding
to the support class. However, such meta-learning strategies
can deal with only one support class within each feed-
forward process, i.e., C' repeated runs are required to detect
C support classes within each query image. More impor-
tantly, by treating each support class independently, ‘feature
reweighting’ overlooks the essential inter-class correlation
among different support classes. As shown in Fig.2(b),
many object classes with similar appearances are highly
correlated. Intuitively, their correlation can effectively facil-
itate the distinction and the generalization among similar
classes. However, as shown in Fig.2(c), we observe that
objects misclassified as highly correlated classes constitute
a major source of error due to the negligence of inter-class
correlation in existing methods.

4 MEeTA-DETR

This section provides a detailed description of the proposed
Meta-DETR, including its network architecture, training ob-
jective, as well as the learning and inference procedure.

4.1 Model Overview

Fig.3 shows the architecture of the proposed Meta-DETR.
Motivated by previous discussions, Meta-DETR employs
the recently proposed Deformable DETR [20], a fully end-
to-end Transformer-based [35] detector, as the basic detec-
tion framework. As Meta-DETR does not rely on predicted
region proposals to make final predictions, it can fully
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bypass the constraint of inaccurate proposals on novel-class
objects. Besides, thanks to the introduced correlational meta-
learning, Meta-DETR can aggregate query features with
multiple support classes simultaneously, thus capturing and
leveraging the inter-class correlation among different classes
to reduce misclassification and boost generalization.

Given a query image and a set of support images with
instance annotations, a weight-shared feature extractor first
encodes them into the same feature space. Subsequently, a
Correlational Aggregation Module (CAM), which will be in-
troduced later, performs simultaneous aggregation between
the query features and the set of support classes. To differ-
entiate between different support classes in a class-agnostic
manner, CAM introduces a set of task encodings assigned
to each support class. Finally, a transformer architecture de-
tects objects by predicting their locations and corresponding
task encodings. As the detection targets are dynamically
determined by support classes and their mappings to task
encodings, Meta-DETR is trained as a meta-learner to extract
generalizable knowledge not specific to certain classes.

4.2 Inter-Class Correlational Meta-Learning

The Correlational Aggregation Module (CAM) is the key com-
ponent in Meta-DETR to perform inter-class correlational
meta-learning, which aggregates query features with sup-
port classes for the subsequent class-agnostic prediction.
CAM differs from existing aggregation methods in that
it can aggregate multiple support classes simultaneously,
which enables it to capture their inter-class correlation to
reduce misclassification and enhance model generalization.
Specifically, as illustrated in Fig. 4, the query and support
features are first processed by a weight-shared multi-head
attention module, encoding them into the same embedding
space. Then the prototype for each support class is obtained
by applying RolAlign [36], followed by average pooling on
the support features, where RolAlign ensures that class pro-
totypes are obtained from the relevant regions that contain
corresponding support object instances. After that, CAM
performs feature matching and encoding matching, which
will be elaborated in the remainder of this subsection to
match the query features with support class prototypes
and task encodings, respectively. The matching results are
summed together and fed to a feed-forward network (FFN)
to produce the final output. Note that the support class
prototypes are obtained in CAM before feature matching
and encoding matching.

4.2.1 Feature Matching

Feature matching, which aims to filter out features irrelevant
to support classes, is achieved by an attention mechanism
with minor modifications. Specifically, given a query fea-
ture map Q € RHW>? and the support class prototypes
S € RE*4 where HW is the spatial size, C' is the number
of support classes, and d is the feature dimensionality, the
matching coefficients are obtained via:

(QW)(sW)*
Vd

where W is a linear projection shared by Q and S, which
ensures they are embedded into the same feature space.

A = Attn(Q, S) = Softmax( ), 1
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Fig. 4. The architecture of the Correlational Aggregation Module (CAM).
CAM first obtains class prototypes from support features. Then, it
performs two matching processes: Feature Matching filters out query
features that are unrelated to support classes, while Encoding Matching
matches query features to a set of pre-defined task encodings that
differentiate their corresponding support classes in a class-agnostic
manner.

Subsequently, the output of the feature matching module
can be obtained via:

Qr = A0(S)0Q, @

where o(-) denotes sigmoid function and © denotes
Hadamard product. o(S) serves as feature filters for each
individual support class with the function of extracting only
class-related features from query features. By applying the
matching coefficients A to o(S), we have filters that can
filter out query features that are not matched to any support
class, producing a filtered query feature map Qg that only
highlights objects belonging to the given support classes.

4.2.2 Encoding Matching

To achieve correlational meta-learning, we introduce a set
of pre-defined task encodings assigned to each support
class and match query features to their corresponding task
encodings, so that final predictions can be made on the task
encodings instead of specific classes. We implement task
encodings T € RE*? with sinusoidal functions, following
the positional encodings of the Transformer [35]. Encoding
matching uses the same matching coefficients as feature
matching, and the matched encodings Qg are obtained via:

Qe = AT. ®)

4.2.3 Modeling Background for Open-Set Prediction

Object detection features an open-set setup where back-
ground, which does not belong to any of the target classes,
often takes up most of the spatial locations in a query image.
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Therefore, as shown in Fig.4, we additionally introduce
a learnable prototype and a corresponding task encoding
(fixed to zeros), denoted as BG-Prototype and BG-Encoding
respectively, to explicitly model the background class. This
eliminates the matching ambiguity when query does not
match any of the given support classes.

4.3 Training Objective
4.3.1 Target Generation

We let N denote the fixed number of object queries, which
means Meta-DETR infers IV predictions within a single feed-
forward process. Let zquery denote the query image, and
Y= {yl}i\;1 denote the ground truth objects within the query
image, where y is a set of size N. When y; indicates an
object, y; = (¢;, b;), where ¢; denotes the target class label
and b; denotes the bounding box of the object. When y;
indicates no object, y; = (2, @).

Meta-DETR dynamically conditions its detection targets
on the sampled support classes and their mappings to the
task encodings. As discussed in Section 4.1, Meta-DETR
predicts over C' support classes (i.c., target classes) simul-
taneously. The C' support classes are randomly sampled,
denoted as csupp = {si }Z 1- Besides, these support classes
are further mapped to a set of task encodings. We denote
the mapping function from the labels of support classes to
the labels of task encodings as x(+). A specific case of x(-)
can be formulated as:

Note that the exact format of the mapping function x(-) does

not matter. Then, the detection targets of Meta-DETR can be
formulated as:

y/ = {y;}fil = {( {Hb{L)}z 1= {d’(yhcsux)p)}fvp @)

where 9 (yi, csupp) acts to remove annotations of irrelevant
objects (objects with labels not in cy,pp) and to map the
labels of target classes to the labels of the corresponding
task encodings, which can be formulated as:

(2,92),
(x(ci), bi),
(6)

Note that y’ can completely consist of (&, @) when there is
no objects that belong to the provided support classes.

ify, = (2,9) or ¢ ¢ Csupp
if ¢; € csupp-

w(yu Csupp) = {

4.3.2 Loss Function

Assume the N predictions for target class made by Meta-
DETR are § = {Ql}f\;l = {(61,32)}11 We adopt a pair-
wise matching loss Limatch (i, Yo (s)) to search for a bipartite
matching between § and y’ with the lowest cost:

N
6 = arg min Zi:l ﬁmatch(yfgv gd(i))v @)

where o denotes a permutation of N elements, and &
denotes the optimal assignment between predictions and
targets. Since the matching should consider both classifica-
tion and localization, the matching loss is defined as:

['match(yza Yo (i) ) ]]‘{c #g}ﬁcls(cm co‘(z)) @®)
]]-{C;#g}ﬁbox( 2l o(i)) .

With the optimal assignment & obtained with Eq.7 and
Eq.8, we optimize the network using the following loss
function:

N
Z [ as (€ Ea(y) + Ly ¢g}£box(b§,3&(i))} ;

i=1

9)
where we adopt sigmoid focal loss [37] for L.s and adopt
a linear combination of /1 loss and GIoU loss [38] for Ly,ox.

Similar to DETR [19] and Deformable DETR [20], L(y', 3) is
applied to every layer of the transformer decoder.
Following Meta R-CNN [3], we introduce a cosine simi-
larity cross-entropy loss [39] to classify the class prototypes
obtained by our designed CAM. It encourages prototypes of
different classes to be distinguished from each other.

4.4 Training and Inference Procedure
4.4.1

The training procedure consists of two stages. The first stage
is base training stage. During this stage, the model is trained
on the base dataset Dy, with abundant training samples
for each base class. The second stage is few-shot fine-tuning
stage. In this stage, we train the model on both base and
novel classes with limited training samples. Only K object
instances are available for each novel category in K-shot
object detection. Following prior works [3], [4], [31], we also
include objects from base classes to prevent performance
drop for base classes. In both base training and few-shot fine-
tuning stages, the whole network is optimized in an end-to-
end manner with the same training objective described in
Section 4.3.

Two-Stage Training Procedure

4.4.2 Efficient Inference

Unlike the training stage, there is no need to repeatedly
sample support images and extract their features with the
feature extractor. We can first compute the prototype for
each support class once and for all, then directly use them
for every query image to predict. This promises efficient
inference of our proposed Meta-DETR.

5 EXPERIMENTS
5.1 Datasets

We follow the well-established data setups for few-shot
object detection [2], [3], [4], [31], [34]. Concretely, two widely
used few-shot object detection benchmarks are adopted in
our experiments.

Pascal VOC [45] is a commonly used dataset for object
detection that consists of images with object annotations of
20 classes. We use trainval 07+12 for training and perform
evaluations on test07. We use 3 novel / base class splits,

e., (“bird”, “bus”, “cow”, “motorbike”, “sofa” / others),
(“aeroplane”, “bottle”,”cow”,“horse”,“sofa” / others), and
(“boat”, “cat”, “motorbike”,”sheep”, “sofa” / others). The
number of shots is set to 1, 2, 3, 5 and 10. Mean average
precision at IoU threshold 0.5 (mAP@0.5) is used as the
evaluation metric. Results are averaged over 10 randomly
sampled support datasets.
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TABLE 1
Few-shot detection performance (mMAP@0.5) on Pascal VOC for novel classes

| Class Split 1 | Class Split 2 | Class Split 3 | Avg
Method \ Shots | 1 2 3 5 10 | 1 2 3 5 10 | 1 2 3 5 10 |
Results over a single run:
LSTD [30] 82 10 124 291 385|114 38 50 157 310|126 85 150 273 363 | 17.1
RepMet [40] § 26.1 329 344 386 413|172 221 234 283 358|275 311 315 344 372 | 308
Meta-YOLO [2] 148 155 267 339 472|157 153 227 30.1 405|213 256 284 428 459 | 284
Meta Det [34] 189 206 302 368 49.6 |21.8 231 278 317 430|206 239 294 439 441 | 310
Meta R-CNN [3] 199 255 350 457 515|104 194 296 348 454|143 182 275 412 481 | 31.1
TFA w/ fc [31]% 368 291 43.6 557 570|182 29.0 334 355 39.0|277 336 425 487 502 | 387
TFA w/ cos [31]% 39.8 36.1 447 557 56.0|235 269 341 351 39.1 308 348 428 495 498 | 399
MPSR [32] £ 417 431 514 552 618|244 295 392 399 478|356 406 423 48.0 49.7 | 433
TFA w/ cos + Halluc [41]} 451 44.0 447 550 559|232 275 351 349 39.0|305 351 414 49.0 493 | 40.6
Retentive R-CNN [42] { 424 458 459 537 561|217 278 352 370 403|302 376 43.0 49.7 501 | 41.1
CME [43]% 415 475 504 582 609|272 302 414 425 468|343 396 451 483 515 | 444
SRR-FSD [44] fw 478 505 513 552 568|325 353 391 408 438 |40.1 415 443 469 464 | 448
FSCE [33] 442 438 514 619 634|273 295 435 442 502|372 419 475 546 585 | 46.6
Meta-DETR (Ours) 40.6 514 58.0 592 63.6 | 37.0 36.6 43.7 49.1 54.6 | 41.6 459 52.7 589 60.6 | 50.2
Results averaged over multiple random runs:
FRCN+ft-full [7]% 99 156 21.6 280 356 | 94 138 174 219 298| 81 139 19.0 239 31.0| 199
Deformable-DETR+ft-full [20]1 | 5.6 133 21.7 342 45.0| 109 130 184 273 394 | 73 166 208 322 418 | 23.2
TFA w/ fc [31]% 229 345 404 467 520|169 264 305 346 397|157 272 347 408 446 | 338
TFA w/ cos [31] 1 253 364 421 479 528|183 275 309 341 395|179 272 343 408 456 | 347
FsDetView [4] 242 353 422 491 574|216 246 319 370 457|212 30.0 372 438 49.6 | 36.7
MPSR [32]1 A 347 426 461 494 567|226 305 31.0 367 433|275 325 382 44.6 500 | 39.1
DCNet [6] £ 339 374 437 511 596|232 248 306 367 466|323 349 397 426 507 | 39.2
FSCE [33]% 329 440 468 529 59.7 |237 306 384 430 485|226 334 395 473 540 | 41.2
Meta-DETR (Ours) 351 49.0 532 574 620|279 323 384 432 518|349 418 471 541 582 | 458

1" indicates methods using multi-scale features.

TABLE 2
Few-shot detection performance (mMAP@0.5)
on Pascal VOC class split 1 for both base and novel classes

Base Classes Novel Classes
Method \ Shots 1 3 5 10 1 3 5 10
Meta-YOLO [2] 66.4 64.8 634 63.6|14.8 26.7 339 47.2
FsDetView [4]§ 642 694 698 71.1|242 422 49.1 574
TFAw/ cos [31] § 77.6 773 774 77.5|253 421 479 529
MPSR [32] § 60.6 65.9 68.2 69.8|34.7 46.1 494 56.7
FSCE [33] § 755 737 75.0 75.2|329 46.8 529 59.7
Meta-DETR (Ours) § | 67.2 70.0 73.0 73.5|35.1 53.2 574 62.0

"8” indicates results averaged over multiple random runs.

MS COCO [46] is a more challenging object detection
dataset, which contains 80 classes including those 20 classes
in Pascal VOC. We adopt the 20 shared classes as novel
classes, and adopt the remaining 60 classes as base classes.
The number of shots is set to 1, 3, 5, 10, and 30. We use
train 2017 for training, and perform evaluations on val 2017.
Standard evaluation metrics for MS COCO are adopted.
Results are averaged over 5 randomly sampled support
datasets.

5.2 Implementation Details

We adopt the commonly used ResNet-101 [47] as the feature
extractor. The network architectures and hyper-parameters
remain the same as Deformable DETR [20]. We implement
our model in single-scale version for fair comparison with
other works. We also follow FsDetView [4] to implement the
aggregation with a slightly more complex scheme compared
with solely feature reweighting. We train our model with 8 x

"A" indicates re-evaluated results using official codes.

" indicates usage of external data.

Nvidia V100 GPUs, using the AdamW [48] optimizer with
an initial learning rate of 2 x 10~% and a weight decay of
1 x 10~%. Batch size is set to 32. In the base training stage,
we train the model for 50 and 25 epochs for Pascal VOC and
MS COCO, respectively. Learning rate is decayed at the 452
and 20'" epoch by 0.1. In the few-shot fine-tuning stage,
the same settings are applied to fine-tune the model until
convergence.

5.3 Comparison with State-of-the-Art Methods

5.3.1 Pascal VOC

Table 1 shows the few-shot detection performance for novel
classes of Pascal VOC. It can be seen that Meta-DETR
consistently outperforms existing methods across various
setups. With multiple runs over randomly sampled support
datasets to reduce randomness, Meta-DETR achieves the
best average performance across all setups, with a large
margin of +4.6% overall mAP compared with the second-
best. The strong performance demonstrates the superiority
and robustness of our proposed Meta-DETR.

We also present results taking base classes into consid-
eration in Table 2. While achieving good performance for
novel classes with limited training samples, Meta-DETR
can still detect objects of base classes with competitive
performance. TFA [31] produces outstanding performance
for base classes since it only fine-tunes detector’s last layer,
thus having relatively constrained capacity in generalizing
on novel classes. We would highlight that our proposed
Meta-DETR achieves the best base-class and novel-class per-
formance among all compared methods using meta-learning
(i.e., Meta-YOLO [2] and FsDetView [4]).
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TABLE 3
Few-shot detection performance on COCO for novel classes

TABLE 4
Ablation study on region-level detection vs. image-level detection

Shot | Method | APo.5.0.95 APo.5 APo.75

FRCN+ft-full [7]1§ 1.7 33 1.6
Deformable-DETR+ft-full [20] § 1.8 3.1 1.8
1 |TFA w/ cos [31]1§ 1.9 38 17
TFA w/ cos + Halluc [41] £ 3.8 6.5 4.3
Meta-DETR (Ours) § 7.5 12.5 7.7
FRCN+ft-full [7]1§ 37 71 35
Deformable-DETR+ft-full [20] § 49 7.8 5.1
3 |TFA w/ cos [31]1§ 5.1 9.9 4.8
TFA w/ cos + Halluc [41] 1 6.9 12.6 7.0
Meta-DETR (Ours) § 13.5 21.7 14.0
FRCN+ft-full [7]1§ 46 87 44
Deformable-DETR+ft-full [20] § 74 12.3 7.7
5 |TFA w/ cos [31]1§ 7.0 13.3 6.5
FsDetView [4] § 10.7 24.5 6.7
Meta-DETR (Ours) § 154 25.0 15.8
FRCN+ft-full [7] 1§ 55 10.0 55
Deformable-DETR+ft-full [20] § 11.7 196 121
Meta-YOLO [2] 5.6 123 46
Meta Det [34] 7.1 14.6 6.1
Meta R-CNN [3] 8.7 19.1 6.6
TFA w/ cos [31]1§ 9.1 17.1 8.8
10 |FSOD[5] 12.0 24 118
FsDetView [4] § 12.5 27.3 9.8
MPSR [32] 9.8 179 97
SRR-FSD [44] 1 & 113 230 98
CME [43] 15.1 246 164
DCNet [6] 1§ 12.8 234 112
FSCE [33]1§ 11.1 - 9.8
Meta-DETR (Ours) § 19.0 30.5 19.7
FRCN+ft-full [7]1§ 74 131 74
Deformable-DETR+ft-full [20] § 16.3 27.2 16.7
Meta-YOLO [2] 9.1 190 7.6
Meta Det [34] 11.3 21.7 8.1
Meta R-CNN [3] 12.4 253 108
TFA w/ cos [31]11§ 12.1 20 120
30 |FsDetView [4]§ 14.7 30.6 12.2
MPSR [32] £ 14.1 254 142
SRR-FSD [44] t W 14.7 29.2 135
CME [43] 16.9 28.0 17.8
DCNet [6] 1§ 186 326 175
FSCE [33]1§ 153 - 142
Meta-DETR (Ours) § 22.2 350 228

"1” indicates methods using multi-scale features.
"8” indicates results averaged over multiple runs.
"w” indicates usage of external data.

5.3.2 MS COCO

Table 3 shows experimental results on MS COCO. It can be
seen that, although MS COCO is much more challenging
than Pascal VOC with higher complexity like occlusions
and large scale variations, Meta-DETR still outperforms all
existing methods under all setups by even larger margins.
This can be attributed to (i) the complete circumvention of
even more inaccurate region proposals for novel classes (See
Fig. 2(a)) caused by the higher complexity of MS COCO,
and (ii) the effective exploitation of the correlations among
more classes in MS COCO. In addition, Meta-DETR per-
forms exceptionally well compared with other region-based
methods under the stricter metric APg 75, which implies that
our proposed Meta-DETR can effectively lift the constraint
of inaccurate region proposals and produce more accurate
few-shot object detection.

aligned Novel mAP@0.5
Method network R/ I‘ 1 2 3 5 10
FsDetView [4] R |242 353 422 49.1 574

FsDetView + Deform. Trans. v R
Meta-DETR w/o CAM v I

28.0 36.3 41.8 489 574
272 421 50.5 52.9 59.3

"R” denotes region-level detection. "I” denotes image-level detection.

TABLE 5
Ablation study on the impact of Correlational Aggregation Module

Detection R/I Correlational Aggr. c Novel mAP@0.5
Framework Module (CAM) 1 2 3 5 10
11]272 421 505 52.9 59.3
Meta-DETR I v 1303 44.0 52.1 55.7 62.0
v 5351 49.0 53.2 57.4 62.0

FsDetView [4] R ‘ 1 ‘24.2 353 422 49.1 574

v 5130.1 41.1 45.2 51.4 575

"R” denotes region-level detection. "I” denotes image-level detection.

"C” denotes the number of support classes to aggregate simultaneously, which
can only be 1 without the proposed Correlational Aggregation Module (CAM).

5.4 Ablation Studies

We conduct comprehensive ablation studies to verify the
effectiveness of our design choices. Experimental results are
averaged over 10 runs with different randomly sampled
support datasets on the first class split of Pascal VOC.

Region-Level Detection vs. Image-Level Detection. From
Table 1 and Table 3, we can find that fine-tuning Deformable
DETR (Deformable-DETR+ft-full) generally outperforms
fine-tuning Faster R-CNN (FRCN+ft-full), especially in the
MS COCO dataset, where it is much harder to obtain
accurate region proposals for novel classes due to higher
complexity (see Fig. 2(a)). This observation aligns well with
our insight that region-based detection frameworks tend to
suffer from inaccurate regional proposals for novel classes.
To further verify the superiority of image-level few-shot
object detection, we adopt FsDetView [4], a state-of-the-art
meta-learning-based few-shot detector built on top of Faster
R-CNN, as a solid baseline to compare with our method.
For a fair comparison, we add deformable transformers to
FsDetView (denoted as FsDetView + Deform. Trans.) to rule
out the performance difference brought by the transformer
architecture. Furthermore, we replace our proposed CAM in
Meta-DETR with the feature aggregation module proposed
in FsDetView (denoted as Meta-DETR w/o CAM). As shown
in Table 4, even with aligned network architecture and
aggregation scheme, Meta-DETR w/o CAM still outperforms
FsDetView + Deform. Trans. under most setups. The results
validate the superiority of solving few-shot object detection
at image level.

Impact of Correlational Aggregation Module (CAM). As
shown in Table 5, when incorporating CAM into our model,
even if we keep the number of support classes for simul-
taneous aggregation (C) as 1, CAM can still boost few-
shot detection performance under all settings. This demon-
strates CAM’s strong capacity in aggregating query and
support information even without the leverage of inter-class
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Fig. 5. Ablation study on the number of support classes for simultaneous correlational aggregation under different few-shot setups. Results are

averaged over 10 repeated runs on Pascal VOC class split 1.
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Fig. 6. t-SNE visualization of objects learned in the feature space with
and without our designed Correlational Aggregation Module. Results are
obtained on Pascal VOC class split 1 under the 2-shot setup.

TABLE 6
Confusion matrices of similar class pairs predicted with
and without the proposed Correlational Aggregation Module

TABLE 7
Ablation study on the design choices of the attention mechanism
in the proposed Correlational Aggregation Module

(a) Apply (b) Query (c) Modeling Novel mAP@0.5
Sigmoid ~ Multiplication Background | 1 2 3 5 10
29.8 448 512 548 59.6
v 312 46.1 525 562 615
v v 32.6 456 51.3 56.1 60.9
v v v 351 49.0 53.2 574 62.0

included to perform inter-class correlational meta-learning,
object classes are better separated from each other, which
affirms our motivation of leveraging inter-class correlation
to reduce misclassification among similar classes. To further
verify our claim that CAM effectively reduces misclassifica-
tion among similar classes, we select two pairs of similar

Results obtained on Pascal VOC class split 1 under the 2-shot setup.
"GT” denotes ground truth label; "Pred” denotes predicted label.

correlation. When multiple support classes are available
(C >2), CAM can further exploit their inter-class correlation
to boost few-shot detection performance under lower-shot
(<5) settings, especially under 1-shot (+4.8% mAP) and 2-
shot (+5.0% mAP), which shows the benefit of inter-class
correlational meta-learning. No clear performance gain is
observed for 10-shot, which implies that, when more train-
ing samples are available, the detector can already recognize
novel classes and differentiate them from similar classes
without explicitly modeling the inter-class correlation. We
also apply our designed CAM to the commonly used
region-based meta-detector FsDetView [4] and report the
results in Table 5. Its steady performance gain demonstrates
that CAM and the proposed inter-class correaltional meta-
learning strategy can also benefit region-level few-shot ob-
ject detection.

To understand how CAM functions to improve detection
accuracy, we visualize the objects from different classes in
the feature space learned with and without the proposed
CAM with t-SNE [49]. As shown in Fig. 6, with CAM

~ Lred| - cedlmbike| bik Predf - ed h classes (motorbike vs. bike and cow vs. horse) and plot their

Eslar missed|mbike| bike Gt missed| cow |horse ) K A .

o2 confusion matrices in Table 6. We can observe that CAM in-

?.u Lo) mbike| 89 | 247 | 33 cow | 82 | 218 | 29 deed reduces the misclassification by large margins with the

§ B | 10 13 | In % | 3 | 32 exploitation of inter-class correlation. We also observe fewer
e orse missed predictions, which shows that the effective leverage
Prod 4 4 Prod of inter-class correlations also facilitates generalization to

E s lor missed|mbike| bike - missed| cow |horse detect previously missed cases.

< . . .

(D;, O |mbike| 67 | 286 | 16 || cow | 46 | 273 | 10 Number of Classes for Correlational Aggregation. Meta-

g . )

< 2 bike ss | 7 | 324 | |horse| 25 | 23 | 347 DETR receives a fixed number of support classes (C) and

simultaneously aggregates them with query features to

capture the inter-class correlation among different support
classes. With C' > 2, Meta-DETR exploits the inter-class
correlation among different classes. Fig. 5 investigates the
impact of the number of support classes for aggregation. As
the number of support classes C' increases from 1 to 10, the
lower-shot (<5) detection performance first improves and
then drops, while 10-shot performance first saturates and
then drops. This validates the effectiveness of leveraging
inter-class correlation under lower-shot (<5) settings. The
performance gain is considerable under extremely low-shots
like 1-shot and 2-shot, indicating that it is highly beneficial
to explore inter-class correlation when training samples are
too scarce to model a novel class and differentiate it with
other classes. We conjecture that the performance drop with
a large number of support classes (>8) for correlational
aggregation is due to the model’s limited capacity to dif-
ferentiate too many support classes at one go. Based on the
results, we set our method’s number of support classes C' as
5 in all other experiments unless otherwise stated.

Design Choices for Correlational Aggregation Module
(CAM). The proposed CAM’s attention mechanism dif-
fers from the original DETR attention in three aspects: (a)
applying a sigmoid function to attention’s Value in feature
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Fig. 7. Visualization of Meta-DETR’s 10-shot object detection results on various data setups. For simplicity, only detections of novel-class objects are
illustrated. The qualitative experimental results show that Meta-DETR can detect novel objects effectively with very constrained training samples.

TABLE 8
Ablation study on early aggregation vs. late aggregation
CAM'’s Location Novel mAP@0.5
@ Encoder Layers 1 2 3 5 10
1 35.1 49.0 53.2 57.4 62.0
3 27.1 429 50.6 54.0 59.2
6 15.2 31.5 37.7 50.3 53.4

matching, (b) multiplying attention’s output with attention’s
Query in feature matching, and (c) explicitly modelling a
prototype for the ‘background’ class. Among them, (a) and
(b) are designed as a whole with (a) for generating ‘filters’
to remove query features that are irrelevant to the given

support classes and (b) for applying the learned ‘filters’
to the query image features. And (c) enables Meta-DETR
to better handle the ‘no match’ scenario where the query
features do not match any of the support classes. We present
ablation experiments in Table 7 that verify the effectiveness
of the above three modifications.

Early Aggregation vs. Late Aggregation. The proposed
CAM replaces one encoder layer in the transformer. As
shown in Fig. 3, we place CAM ahead of the transformer
encoder (as the first layer of the encoder). Table 8 studies the
impact of the location of CAM in the transformer encoder.
As shown, it is preferable to place CAM at the beginning
stage of the transformer encoder for early aggregation,
which also suggests the importance of learning a deep class-
agnostic predictor.
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Fig. 8. Visualization of some failure cases of Meta-DETR’s 10-shot object detection results. For simplicity, only detections of novel-class objects are
illustrated. White boxes indicate true positives. Red solid boxes indicate false positives. Red dashed boxes indicate false negatives.

TABLE 9

Few-shot object detection and instance segmentation performance on COCO for novel classes

Box Mask
Shot | Method APo.5.0.95 APos APo75 APs APy APp | APos.o9s APos APors APs APy AP
Mask-RCNN-+ft-full [36] 1.3 3.0 1.1 0.3 1.1 2.4 1.3 2.7 1.1 0.3 0.6 2.2
5 Meta R-CNN [3] 35 9.9 1.2 1.2 3.9 5.8 2.8 6.9 1.7 0.3 2.3 4.7
Meta-DETR (Ours) 15.3 24.9 15.4 1.5 12.8 26.0 8.1 16.8 7.1 0.9 5.6 13.7
Mask-RCNN-+ft-full [36] 2.5 5.7 1.9 2.0 2.7 3.9 19 4.7 1.3 0.2 14 3.2
10 | Meta R-CNN [3] 5.6 14.2 3.0 2.0 6.6 8.8 4.4 10.6 3.3 0.5 3.6 7.2
Meta-DETR (Ours) 19.8 31.3 20.4 4.5 174  30.5 10.1 20.8 8.7 1.7 7.6 15.8

5.5 AQualitative Results

In Fig.7, we provide qualitative visualization of Meta-
DETR’s 10-shot object detection results on several sample
images from their respective data setups. Note that we show
the detection of novel classes only since the focus of few-
shot object detection is to detect objects of novel classes.
We show detection results with confidence scores higher
than 0.25 to filter out low-confidence predictions. It can be
observed that the proposed Meta-DETR is able to detect
novel objects effectively even with very limited training
samples.

5.6 Failure Cases and Future Directions

Fig. 8 illustrates typical failure cases of the proposed Meta-
DETR. The most typical failure cases happen while multiple
instances of novel objects are heavily clustered, largely due
to the lack of supervision in such cases and the lack of
a mechanism to discriminate objects’ boundaries. Other
typical failure cases include difficulty in detecting small
objects as well as false negatives with less salient objects,
which are also applicable in general object detectors.
Although the current few-shot object detection perfor-
mance is still far from perfect, our proposed Meta-DETR

establishes a new few-shot object detection paradigm that
is conceptually simple with room for improvement. In our
future work, we will investigate new mechanisms that
can highlight object boundaries and thus help avoid some
failure case as illustrated in Fig. 8. Besides, since we only
explore single-scale features throughout all experiments, an
interesting and promising direction is to exploit multi-scale
features in meta-learning-based few-shot object detection.
By properly designing a dual-scale-selection strategy for
both query and support, we expect it can further improve
the performance of few-shot object detection, especially on
small objects.

5.7 Extension to Few-Shot Instance Segmentation

The proposed Meta-DETR adopts a meta-learning frame-
work which is generic and can be adapted to other down-
stream vision tasks beyond object detection. We validate this
feature by examining how it can be extended to perform
instance segmentation with simple modifications.

As described in [19], the original DETR can be extended
to perform instance segmentation by adding a mask head
on top of the decoder outputs. We similarly introduce an
additional mask head over Meta-DETR to predict objects’
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Fig. 9. Visualization of Meta-DETR’s 10-shot instance segmentation
results on MS COCO. For simplicity, only segmentations of novel-class
objects are illustrated.

masks for few-shot instance segmentation. The additional
mask head takes the output of the transformer decoder
and encoded image features as input and predicts a binary
mask for each object query. It also follows the designed
inter-class correlational meta-learning strategy for better
generalization. To train Meta-DETR to perform few-shot
instance segmentation, we first train it on the previously
mentioned few-shot object detection tasks, and then freeze
all the weights and train only the additional mask head for
instance segmentation.

Experimental Results. We conduct experiments for few-
shot instance segmentation on MS COCO under 5-shot and
10-shot setups. Similarly, the 20 classes shared with Pascal
VOC are chosen as novel classes, and the remaining 60
classes are set as base classes. Note that AP for instance
segmentation is evaluated with mask IoU. As shown in
Table 9, Meta-DETR outperforms compared methods by
large margins. The results demonstrate the superiority and

universality of our Meta-DETR, which can extend to other
instance-level few-shot learning tasks. Note that the com-
pared Meta R-CNN [3] adopts region-level prediction to-
gether with the conventional class-by-class meta-learning
via feature reweighting. The comparison between Meta R-
CNN [3] and our proposed Meta-DETR verifies that the
combination of the image-level prediction and the exploita-
tion of inter-class correlation via correlational meta-learning
can effectively benefit other instance-level few-shot learning
tasks like few-shot instance segmentation. We also provide
qualitative results for instance segmentation in Fig. 9.

6 CONCLUSION

This paper presents a new few-shot object detection
framework, namely Meta-DETR. The proposed framework
achieves (i) pure image-level prediction, which lifts the
constraints caused by novel classes’ inaccurate region pro-
posals, and (ii) effective exploitation of categorical correla-
tion via a inter-class correlational meta-learning strategy,
which reduces misclassification and enhances generaliza-
tion among similar or related classes. Despite its simplicity,
our method achieves state-of-the-art performance over mul-
tiple few-shot object detection setups, outperforming prior
works by large margins. It can also be easily extended to
other instance-level few-shot learning tasks. We hope this
work can offer good insights and inspire further researches
in few-shot object detection and other related topics.
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