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Abstract. Category-level object pose estimation aims to predict the 6D
pose as well as the 3D metric size of arbitrary objects from a known set
of categories. Recent methods harness shape prior adaptation to map the
observed point cloud into the canonical space and apply Umeyama algo-
rithm to recover the pose and size. However, their shape prior integra-
tion strategy boosts pose estimation indirectly, which leads to insufficient
pose-sensitive feature extraction and slow inference speed. To tackle this
problem, in this paper, we propose a novel geometry-guided Residual
Object Bounding Box Projection network RBP-Pose that jointly pre-
dicts object pose and residual vectors describing the displacements from
the shape-prior-indicated object surface projections on the bounding box
towards the real surface projections. Such definition of residual vectors
is inherently zero-mean and relatively small, and explicitly encapsulates
spatial cues of the 3D object for robust and accurate pose regression. We
enforce geometry-aware consistency terms to align the predicted pose and
residual vectors to further boost performance. Finally, to avoid overfit-
ting and enhance the generalization ability of RBP-Pose, we propose an
online non-linear shape augmentation scheme to promote shape diversity
during training. Extensive experiments on NOCS datasets demonstrate
that RBP-Pose surpasses all existing methods by a large margin, whilst
achieving a real-time inference speed.

Keywords: Category-Level Pose Estimation, 3D Object Detection, Scene
Understanding

1 Introduction

Category-level object pose estimation describes the task of estimating the full 9
degrees-of-freedom (DoF) object pose (consisting of the 3D rotation, 3D transla-
tion and 3D metric size) for objects from a given set of categories. The problem

*Authors with equal contributions.
Codes are released at https://github.com/lolrudy/RBP_Pose.
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(a) Previous methods: SPD, SGPA

Umeyama
algorithm

(b) RBP-Pose
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N.L.
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Only for training

Fig. 1. Comparison of RBP-Pose and previous shape prior adaptation meth-
ods. Previous methods [38,2] predict NOCS coordinates (NOCS Coord.) and recover
the pose using the Umeyama algorithm [39]. In comparison, we use NOCS coordi-
nates within our point-wise bounding box projection and predict Shape Prior Guided
Residual Vectors (SPRV), which encapsulates the pose explicitly. Moreover, we pro-
pose Non-Linear Shape Augmentation (N.L. Aug.) to increase shape diversity during
training.

has gained wide interest in research due to its essential role in many applications,
such as augmented reality [34], robotic manipulation [5] and scene understand-
ing [29,50]. In comparison to conventional instance-level pose estimation [14,13],
which assumes the availability of a 3D CAD model for each object of interest,
the category-level task puts forward a higher requirement for adaptability to
various shapes and textures within each category.

Noteworthy, category-level pose estimation has recently experienced a large
leap forward in recent past, thanks to novel deep learning architecture that can
directly operate on point clouds [43,3,44,1]. Thereby, most of these works try to
establish 3D-3D correspondences between the input point cloud and either a pre-
defined normalized object space [43] or a deformed shape prior to better address
intra-class shape variability [38,2]. Eventually, the 9DoF pose is commonly re-
covered using the Umeyama algorithm [39]. Nonetheless, despite achieving great
performance, these methods typically still suffer from two shortcomings. First,
their shape prior integration only boosts pose estimation indirectly, which leads
to insufficient pose-sensitive feature extraction and slow inference speed. Second,
due to the relatively small amount of available real-world data [43], these works
tend to overfit as they are directly trained on these limited datasets.

As for the lack of real labeled data, we further propose an online non-linear
shape augmentation scheme for training to avoid overfitting and enhance the
generalization ability of RBP-Pose. In FS-Net [3], the authors propose to stretch
or compress the object bounding box to generate new instances. However, the
proportion between different parts of the object basically remains unchanged,
as shown in Fig. 4. Therefore, we propose a category-specific non-linear shape
augmentation technique. In particular, we deform the object shape by adjusting
its scale via a truncated parabolic function along the direction of a selected axis.
To this end, we either choose the symmetry axis for symmetric objects or select
the axis corresponding to the facing direction to avoid unrealistic distortions for
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non-symmetric objects. In this way we are able to increase the dataset size while
preserving the representative shape characteristic of each category.

Interestingly, to tackle the former limitation, the authors of GPV-Pose [7]
have proposed to leverage Displacement Vectors from the observed points to
the corresponding Projections on the Bounding box (DVPB), in an effort to
explicitly encapsulate the spatial cues of the 3D object and, thus, improve direct
pose regression. While this performs overall well, the representation still exhibits
weaknesses. In particular, DVPB is not necessarily a small vector with zero-
mean. In fact, the respective values can become very large (as for large objects
like laptops), which can make it very difficult for standard networks to predict
them accurately. Based on these grounds, in this paper we propose to overcome
this limitation by means of integrating shape priors into DVPB. We essentially
describe the displacement field from the shape-prior-indicated projections to-
wards the real projections onto the object bounding box. We dub the residual
vectors in this displacement field as SPRV for Shape Prior Guided Residual
Vectors. SPRV is inherently zero-centered and relatively small, allowing robust
estimation with a deep neural network. In practice, we adopt a fully convolutional
decoder to directly regress SPRV and then establish geometry-aware consistency
with the predicted pose to enhance feature extraction. We experimentally show
that our novel geometry-guided Residual Bounding Box Projection network
RBP-Pose provides state-of-the-art results and clearly outperforms the DVPB
representation. Overall, our main contributions are summarized as follows,

1. We propose a Residual Bounding Box Projection network (RBP-Pose) that
jointly predicts 9DoF pose and shape prior guided residual vectors. We
demonstrate that these nearly zero-mean residual vectors can be effectively
predicted from our network and well encapsulate the spatial cues of the pose
whilst enabling geometry-guided consistency terms.

2. To enhance the robustness of our method, we additionally propose a non-
linear shape augmentation scheme to improve shape diversity during training
whilst effectively preserving the commonality of geometric characteristics
within categories.

3. RBP-Pose runs at inference speed of 25Hz and achieves state-of-the-art per-
formance on both synthetic and real-world datasets.

2 Related Works

Instance-level 6D Pose Estimation. Instance-level pose estimation tries to
estimate the 6DoF object pose, composed of the 3D rotation and 3D trans-
lation, for a known set of objects with associated 3D CAD models. The ma-
jority of monocular methods falls into three groups. The first group of meth-
ods [47,27,26,20,18,16] regresses the pose directly, whereas the second group
instead establishes 2D-3D correspondences via keypoint detection or dense pixel-
wise prediction of 3D coordinates [21,33,31,49,12,30]. The pose can be then ob-
tained by adopting the PnP algorithm. Noteworthy, a few methods [15,6,42]
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adopt a neural network to learn the optimization step instead of relying on
PnP. The last group of methods [36,35] attempt to learn a pose-sensitive latent
embedding for subsequent pose retrieval. As for RGB-D based methods, most
works [19,41,11,10] again regress the pose directly, while a few methods [46,17]
resort to latent embedding similar to [36,35]. In spite of great advance in recent
years, the practical use of instance-level methods is limited as they can typically
only deal with a handful of objects and additionally require CAD models.

Category-level Pose Estimation. In the category-level setting, the goal
is to predict the 9DoF pose for previously seen or unseen objects from a known
set of categories [28,43]. The setting is fairly more challenging due to the large
intra-class variations of shape and texture within categories. To tackle this is-
sue, Wang et al. [43] derive the Normalized Object Coordinate Space (NOCS)
as a unified representation. They map the observed point cloud into NOCS and
then apply the Umeyama algorithm [39] for pose recovery. CASS [1] introduces a
learned canonical shape space instead. FS-Net [3] proposes a decoupled represen-
tation for rotation and directly regresses the pose. DualPoseNet [23] adopts two
networks for explicit and implicit pose prediction and enforces consistency be-
tween them for pose refinement. While 6-PACK [40] tracks the object’s pose by
means of semantic keypoints, CAPTRA [45] instead combines coordinate pre-
diction with direct regression. GPV-Pose [7] harnesses geometric insights into
bounding box projection to enhance the learning of category-level pose-sensitive
features. To explicitly address intra-class shape variation, a certain line of works
make use of shape priors [38,2,22,8]. Thereby, SPD [38] extracts the prior point
cloud for each category as the mean of all shapes adopting a PointNet [32] au-
toencoder. SPD further deforms the shape prior to fit the observed instance and
assigns the observed point cloud to the reconstructed shape model. SGPA [2]
dynamically adapts the shape prior to the observed instance in accordance with
its structural similarity. DO-Net [22] also utilizes shape prior, yet, additionally
harnesses the geometric object properties to enhance performance. ACR-Pose [8]
adopts a shape prior guided reconstruction network and a discriminator network
to learn high-quality canonical representations. Noteworthy, as shape prior in-
tegration only improves pose estimation indirectly, all these methods commonly
suffer from insufficient pose-sensitive feature extraction and slow inference speed.

3 Methodology

In this paper, we aim at tackling the problem of category-level 9DoF pose esti-
mation. In particular, given an RGB-D image with objects from a set of known
categories, our objective is to detect all present object instances in the scene and
recover their 9DoF object poses, including the 3DoF rotation as rotation matrix
R ∈ R3×3, the 3DoF translation t ∈ R3 and 3DoF metric size s ∈ R3.

3.1 Overview

As illustrated in Fig. 2, RBP-Pose consists of 5 modules, responsible for i) input
preprocessing, ii) feature extraction from the input and prior point cloud, iii)
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Fig. 2. An overview of RBP-Pose. RBP-Pose takes RGB-D image and shape prior
as inputs. We perform a non-linear shape augmentation (c) after extracting point cloud
of the object of interest (a). It deforms shape prior (e) and predicts NOCS coordinates
(f) to retrieve DVPB in NOCS (g). Integrating the predicted rotation R, the pre-
computed category mean size SM , we compute the initial DVPB hypotheses (h) as
the input of SPRV decoder. Finally, RBP-Pose predicts pose (d) and SPRV (i) and
enforces consistency between them. During inference, only the Preprocessing, Feature
Extraction and Pose Regression modules are needed.

9DoF pose regression, iv) adaptation of the shape prior given the extracted
features, and, finally, v) Shape Prior Guided Residual Vectors (SPRV) prediction.

Preprocessing. Given an RGB-D image, we first leverage an off-the-shelf object
detector (e.g. Mask-RCNN [9]) to segment objects of interest and then back-
project their corresponding depth values to generate the associated object point
clouds. We then uniformly sample N = 1024 points from each detected object
and feed it as the input Po to the following modules, as shown in Fig. 2 (a).

Feature Extraction. Since 3DGC [24] is insensitive to shift and scale of the
given point cloud, we adopt it as our feature extractor to respectively obtain
pose-sensitive features Fobs and Fprior from Po and a pre-computed mean shape
prior Pr (with M = 1024 points) as in SPD [38]. We introduce a non-linear
shape augmentation scheme to increase the diversity of shapes and promote
robustness, which will be discussed in detail in Sec. 3.5. Finally, Fobs is fed to
the Pose Regression module for direct pose estimation and to the Shape Prior
Adaptation module after concatenation with Fprior.

9DoF Object Pose Regression. To represent the 3DoF rotation, we follow
GPV-Pose [7] and decompose the rotation matrix R into 3 columns rx, ry, rz ∈
R3, each representing a plane normal of the object bounding box. We predict the
first two columns rx, ry along with their uncertainties ux, uy, and calculate the
calibrated plane normals r′x, r

′
y via uncertainty-aware averaging [7]. Eventually,
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Fig. 3. Illustration of DVPB and SPRV. We show DVPB and SPRV of a point
to x+, y+ plane. The target is to predict DVPB in the camera space (purple vectors
in (a)). For better demonstration, we project the point cloud to z+ plane (the blue
plane in (a)) in (b)-(d). Using the predicted coordinates in (b), we recover DVPB in
NOCS (blue vectors in (b)). We then transform it into the camera space and compute
the initial DVPB hypotheses (brown vectors in (c)). RBP-Pose predicts the residual
vector from hypotheses to ground truth DVPB (SPRV, red vectors in (d)).

the predicted rotation matrix is recovered as R′ = [r′x, r
′
y, r

′
x×r′y]. For translation

and size, we follow FS-Net, adopting their residual representation [3]. Specifically,
for translation t = {tx, ty, tz}, given the output residual translation tr ∈ R3 and
the mean PM of the observed visible point cloud Po, t is recovered as t = tr +
PM . Similarly, given the estimated residual size sr ∈ R3 and the pre-computed
category mean size SM , we have s = sr + SM , where s = {sx, sy, sz}.
Shape Prior Adaptation. We first concatenate the feature maps Fobs from
the observed point cloud Po and Fprior from shape prior Pr in a channel-wise
manner. Subsequently, we use two sub-decoders from SPD [38] to predict the
row-normalized assignment matrix Ar ∈ RN×M and the deformation field Dr ∈
RM×3, respectively. Given the shape prior Pr, Dr deforms Pr to reconstruct the
normalized object shape model Mr with Mr = Pr +Dr (Fig. 2 (e)). Further, Ar

associates each point in Po with Mr. Thereby, the NOCS coordinate Co ∈ RN×3

of the input point cloud Po is computed as Co = ArMr (Fig. 2 (f)).
Shape Prior Guided Residual Vectors (SPRV) Prediction. The main
contribution of our work resides in the use of Shape Prior Guided Residual
Vectors (SPRV) to integrate shape priors into the direct pose regression network,
enhancing the performance whilst keeping a fast inference speed. In the following
section we will now introduce this module in detail.

3.2 Residual Bounding Box Projection

Preliminaries. In GPV-Pose [7], the authors propose a novel confidence-aware
point-wise voting method to recover the bounding box. For each observed ob-
ject point P , GPV-Pose thereby predicts its Displacement Vector towards its
Projections on each of the 6 Bounding Box faces (DVPB), as shown in Fig. 3
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(a). Exemplary, when considering the x+ plane, the DVPB of the observed point
P onto the x+ face of the bounding box is defined as,

DP,x+ = (sx/2− ⟨rx, P ⟩+ ⟨rx, tx⟩)rx, (1)

where ⟨∗, ∗⟩ denotes the inner product and, as before, rx denotes the first column
of the rotation matrix R. Thus, each point P provides 6 DVPBs with respect to
all 6 bounding box faces B = {x±, y±, z±}. Notice that, since symmetries lead
to ambiguity in bounding box faces around the corresponding symmetry axis,
GPV-Pose only compute the DVPB on the ambiguity-free faces.

Although GPV-Pose reports great results when leveraging DVPB, it still suf-
fers from two important shortcomings. First, DVPB is not necessarily a small
vector with zero-mean. In fact, the respective values can become very large (as
for large objects like laptops), which can make it very difficult for standard net-
works to predict them accurately. Second, DVPB is not capable of conducting
automatic outlier filtering, hence, noisy point cloud observations may signifi-
cantly deteriorate the predictions of DVPB. On that account, we propose to
incorporate shape prior into DVPB in the form of Shape Prior Guided Residual
Vectors (SPRV) to properly address the aforementioned shortcomings.

Shape Prior Guided Residual Vectors (SPRV). As illustrated in Fig. 2
(e), we predict the deformation field Dr that deforms the shape prior Pr to the
shape of the observed instance with Mr = Pr +Dr. Thereby, during experimen-
tation we made two observations. First, as Pr is outlier-free and Dr is regularized
to be small, similar to SPD [38], we can safely assume that Mr contains no out-
liers, allowing us to accurately recover its bounding box in NOCS by selecting
the outermost points along the x, y and z axis, respectively. Second, since Ar

is the row-normalized assignment matrix, we know that Mr shares the same
bounding box with Co = ArMr, which is assumed to be inherently outlier-free
and accurate. Based on the above two observations, we can utilize Mr and Co

to provide initial hypotheses for DVPB with respect to each point in Po.
Specifically, for a point PC in Co, as it is in NOCS, its DVPB DPC ,x+

(Fig. 3 (b)) can be represented as,

DPC ,x+ = (sMx /2− PC)nx, (2)

where sMx denotes the size of Mr along the x axis and nx = [1, 0, 0]T is the
normalized bounding box face normal. We then transform DPC ,x+ from NOCS
to the camera coordinate to obtain the initial DVPB hypotheses for the corre-
sponding point P in Po (Fig. 3 (c)) as,

DP,x+ = LDPC ,x+rx (3)

where L =
√

s2x + s2y + s2z is the diagonal length of the bounding box. Note

that L and rx are calculated from the category mean size SM and the rotation
prediction of our Pose Regression Module respectively.

Given the ground truth DVPB Dgt
P,x+ and initial DVPB hypotheses DP,x+,

the SPRV of P to the x+ bounding box face (Fig. 3 (d)) is calculated as,

RP,x+ = Dgt
P,x+ −DP,x+. (4)
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The calculation of SPRV with respect to the other bounding box faces in B
follows the same principal. By this means, SPRV can be approximately modelled
with zero-mean Laplacian distribution, which enables effective prediction with
a simple network. In the SPRV Prediction module, we feed the estimated initial
DVPB hypotheses together with the feature map Fobs into a fully convolutional
decoder to directly regress SPRV. As this boils down to a multi-task prediction
problem, we employ the Laplacian aleatoric uncertainty loss from [4] to weight
the different contributions within SPRV according to

Ldata
SPRV =

∑
P∈Po

∑
j∈B

√
2

σsj
|RPj −Rgt

Pj
|+ log(σsj )

Lreg
SPRV =

∑
P∈Po

∑
j∈B

√
2

σ′
sj

|RPj
|+ log(σ′

sj )

LSPRV = Ldata
SPRV + λ0Lreg

SPRV

. (5)

Thereby, Rgt
Pj

refers to the ground truth SPRV as calculated by the provided
ground truth NOCS coordinates and respective pose annotations. Further, σsj ,
σ′
sj denote the standard variation of Laplacian distribution that are utilized

to model the uncertainties. Note that the first term Ldata
SPRV is fully supervised

using the respective ground truth, while Lreg
SPRV is a regularization term that

enforces the SPRV network to predict small displacements. In addition, λ0 is
a weighting parameter to balance the two terms. Note that we do not apply
Gaussian-distribution-based losses. We follow GPV-Pose [7] to supervise other
branches with L1 loss for stability. Thus we adopt Eq. 5 for convenient adjust-
ment of the weight of each term.

3.3 SPRV for Pose Consistency

Since SPRV explicitly encapsulates pose-related cues, we utilize it to enforce
geometric consistency between the SPRV prediction and the pose regression. To
this end. we first employ the predicted pose to estimate DVPB DPose according
to Eq. 1. We then recover DSPRV via adding the predicted SPRV to the initial
hypotheses. Finally, our consistency loss term is defined as follows,

Lcon =
∑
P∈Po

∑
j∈B

|DPose
P,b −DSPRV

P,b |, (6)

where | ∗ | denotes the L1 distance.

3.4 Overall Loss Function

The overall loss function is defined as follows,

L = λ1Lpose + λ2Lshape + λ3LSPRV + λ4Lcon (7)

For Lpose, we utilize the loss terms from GPV-Pose [7] to supervise R, t, s with
the ground truth. For Lshape, we adopt the loss terms from SPD [38] to super-
vise the prediction of the deformation field Dr and the assignment matrix Ar.
Further, LSPRV and Lcon are defined in Eq. 5 and Eq. 6. Finally, λ1, λ2, λ3, λ4

denote the utilized weights to balance the individual loss contributions, and are
chosen empirically.
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Fig. 4. Demonstration of non-linear data augmentation. (I), (II) and (III)
show non-linear data augmentation for bottle, camera and laptop. For the instances
(a), we augment the object shape in our non-linear manner from (b) to (c). FS-
Net [3] adopts the linear bounding box deformation in data augmentation (d), which
can be regarded as a special case of our non-linear shape augmentation.

3.5 Non-Linear Shape Augmentation

To tackle the intra-class shape variations and improve the robustness and gen-
eralizability of RBP-Pose, we propose a category-specific non-linear shape aug-
mentation scheme (Fig. 4). In FS-Net [3], the authors augment the shape by
stretching or compression of the object bounding box. Their augmentation is
linear and unable to cover the large shape variations within a category, since the
proportions between different parts of the object basically remain unchanged
(Fig. 4 (d)). In contrast, we propose a novel non-linear shape augmentation
method which is designed to generate diverse unseen instances, whilst preserv-
ing the representative shape features of each category (Fig. 4 (c)).

In particular, we propose two types of augmentation strategies for categories
provided by the REAL275 dataset [43]: axis-based non-linear scaling transfor-
mation (A1) for camera, bottle, can, bowl, mug (Fig 4 (I, II)) and plane-based
rotation transformation (A2) for laptop (Fig 4 (III)).

As for A1, we deform the object shape by adjusting its scale along the di-
rection of a selected axis. For each point P in the canonical object space, its
deformation scale SA1(P ) is obtained by SA1(P ) = ξ(P∗), where ξ(P∗) is a ran-
dom non-linear function and P∗ is the projection of P on the selected axis. In
this paper, we choose ξ as the parabolic function, thus, we have

SA1(P ) = ξ(P∗) = γmin + 4(γmax − γmin)(P∗)
2, (8)

where γmax, γmin are uniformly sampled random variables that control the upper
and lower bounds of SA1(P ). Exemplary, when selecting y as our augmentation
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axis, the respective transformation function is defined as,

TA1(P ) = {γPx,SA1(P )Py, γPz}, (9)

where γ is the random variable that controls the scaling transformation along x
and z axis. In practice, we select the symmetry axis (y-axis) for bottle, can, bowl
and mug as the transformation axis. Moreover, for camera, we select the axis
that passes through the camera lens (x-axis), to keep its roundish shape after
augmentation. The corresponding transformation function is then defined as in
Eq. 8 and Eq. 9, yet, SA1(P ) is only applied to Px and γ is applied to Py, Pz.

As for A2, since laptop is an articulated object consisting of two movable
planes, we conduct shape augmentation by modifying the angle between the
upper and lower plane (Figure 4 (III)). Thereby, we rotate the upper plane by
a certain angle along the fixed axis, while the lower plane remains static. Please
refer to the Supplementary Material for details of A2 transformation.

4 Experiments

Datasets. We employ the common REAL275 and CAMERA25 [43] benchmark
datasets for evaluation. Thereby, REAL275 is a real-world dataset consisting of 7
scenes with 4.3K images for training and 6 scenes with 2.75K images for testing.
It covers 6 categories, including bottle, bowl, camera, can, laptop and mug. Each
category contains 3 unique instances in both training and test set. On the other
hand, CAMERA25 is a synthetic dataset generated by rendering virtual objects
on real background. CAMERA25 contains 275k images for training and 25k for
testing. Note that CAMERA25 shares the same six categories with REAL275.
Implementation Details. Following [23,43], we use Mask-RCNN [9] to gener-
ate 2D segmentation masks for a fair comparison. As for our category-specific
non-linear shape augmentation, we uniformly sample γmax ∼ U(1, 1.3), γmin ∼
U(0.7, 1) and γ ∼ U(0.8, 1.2). Besides our non-linear shape augmentation, we
add random Gaussian noise to the input point cloud, and employ random ro-
tational and translational perturbations as well as random scaling of the ob-
ject. Unless specified, we set the employed balancing factors {λ1, λ2, λ3, λ4} to
{8.0, 10.0, 3.0, 1.0}. Finally, the parameter λ0 in Eq. 5 is set to 0.01. We train
RBP-Pose in a two-stage manner to stabilize the training process. In the first
stage, we only train the pose decoder and the shape decoder employing only
Lpose and Lshape. In the second stage we train all the modules except the Pre-
processing as explained in Eq. 7. This strategy ensures that our two assumptions
in Sec. 3.2 are reasonable and enables smooth training. Notice that similar to
other works [43,38,2], we train a single model for all categories. Unlike [23,2] that
train with both synthetic and real data for evaluation on REAL275, we only use
the real data for training. We train RBP-Pose for 150 epochs in each stage and
employ a batch size of 32. We further employ the Ranger optimizer [25,52,48]
with a base learning rate of 1e-4, annealed at 72% of the training phase using a
cosine schedule. Our experiments are conducted on a single NVIDIA-A100 GPU.
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Table 1. Comparison with state-of-the-art methods on REAL275 dataset.

Method Prior IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm Speed(FPS)

NOCS [43] 30.1 7.2 10.0 13.8 25.2 5
CASS [1] - - 23.5 - 58.0 -

DualPoseNet [23] 62.2 29.3 35.9 50.0 66.8 2
FS-Net [3] - - 28.2 - 60.8 20

FS-Net(Ours) 52.0 19.9 33.9 46.5 69.1 20
GPV-Pose [7] 64.4 32.0 42.9 - 73.3 20

SPD [38] ✓ 53.2 19.3 21.4 43.2 54.1 4
CR-Net [44] ✓ 55.9 27.8 34.3 47.2 60.8 -
DO-Net [22] ✓ 63.7 24.1 34.8 45.3 67.4 10
SGPA [2] ✓ 61.9 35.9 39.6 61.3 70.7 -

Ours ✓ 67.8 38.2 48.1 63.1 79.2 25

Overall best results are in bold and the second best results are underlined.
Prior denotes whether the method makes use of shape priors. We reimple-
ment FS-Net as FS-Net(Ours) for a fair comparison since FS-Net uses
different detection results.

Table 2. Comparison with state-of-the-art methods on CAMERA25 dataset.

Method Prior IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm

NOCS [43] 83.9 69.5 32.3 40.9 48.2 64.6
DualPoseNet [23] 92.4 86.4 64.7 70.7 77.2 84.7
GPV-Pose [7] 93.4 88.3 72.1 79.1 - 89.0

SPD [38] ✓ 93.2 83.1 54.3 59.0 73.3 81.5
CR-Net [44] ✓ 93.8 88.0 72.0 76.4 81.0 87.7
SGPA [2] ✓ 93.2 88.1 70.7 74.5 82.7 88.4

Ours ✓ 93.1 89.0 73.5 79.6 82.1 89.5

Overall best results are in bold and the second best results are un-
derlined. Prior denotes whether the method utilizes shape priors.

Evaluation metrics. Following the widely adopted evaluation scheme [43,2,23],
we utilize the two standard metrics for quantitative evaluation of the perfor-
mance. In particular, we report the mean precision of 3D IoU, which computes
intersection over union for two bounding boxes under the predicted and the
ground truth pose. Thereby, a prediction is considered correct if the IoU is larger
than the employed threshold. On the other hand, to directly evaluate rotation
and translation errors, we use the 5◦2cm, 5◦5cm, 10◦2cm and 10◦5cm metrics.
A pose is hereby considered correct if the translational and rotational errors are
less than the respective thresholds.

4.1 Comparison with State-of-the-art

Performance on NOCS-REAL275. In Tab 1, we compare RBP-Pose with 9
state-of-the-art methods, among which 4 methods utilize shape priors. It can be
easily observed that our method outperforms all other competitors by a large
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(a)

(c)

(b)

(d)

(e) (f)

Fig. 5. Qualitative results of our method (green line) and SGPA [2] (blue line). Images
(a)-(f) demonstrate 2D segmentation results.

margin. Specifically, under IoU75, we achieve a mAP of 67.8%, which exceeds the
second best method DO-Net [22] by 4.1%. Regarding the rotation and translation
accuracy, RBP-Pose outperforms SGPA [2] by 2.3% in 5◦2cm, 8.5% in 5◦5cm,
1.8% in 10◦2cm and 8.5% in 10◦5cm. Moreover, when comparing with GPV-
Pose [7], we can outperform them by 6.2% in 5◦2cm, 5.2% in 5◦5cm and 5.9% in
10◦5cm. Noteworthy, despite achieving significant accuracy improvements, RBP-
Pose still obtains a real-time frame rate of 25Hz when using YOLOv3 [37] and
ATSA [51] for object detection. Moreover, we present a detailed per-category
comparison for 3D IoU, rotation and translation accuracy of RBP-Pose and
SGPA [2] in Fig. 6. It can be deduced that our method obtains superior results
over SGPA in terms of mean precision for all metrics, especially in rotation.
Moreover, our method is superior in dealing with complex categories with sig-
nificant intra-class shape variations, e.g. camera (green line in Fig. 6).

Performance on NOCS-CAMERA25. The results for CAMERA25 are
shown in Tab. 2. Our method outperforms all competitors for stricter metrics
IoU75, 5

◦2cm, 5◦5cm and 10◦5cm, and is on par with the best methods for IoU50

and 10◦2cm. Specifically, our method exceeds the second best methods for IoU75,
5◦2cm, 5◦5cm and 10◦5cm by 0.7%, 1.4%, 0.5% and 0.5%, respectively.

4.2 Ablation Study

Effect of Shape Prior Guided Residual Vectors. In Tab. 3, we evaluate
the performance of our method under different configurations. From E1 to E3,



RBP-Pose: Residual Bounding Box Projection for Pose Estimation 13

Table 3. Ablation study on DVPB and data augmentation.

DVPB SPRV Con. L. Aug. N.L. Aug. IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm

E1 ✓ 65.8 32.6 43.8 57.9 75.6
E2 ✓ ✓ 66.6 33.4 45.9 59.1 77.5
E3 ✓ ✓ 67.7 36.0 44.5 61.6 77.1
E4 ✓ ✓ ✓ 66.2 34.4 44.8 61.3 77.5
E5 ✓ ✓ 61.3 23.8 29.7 53.8 66.4
E6 ✓ ✓ ✓ 66.2 36.1 47.0 62.2 78.8
E7 ✓ ✓ ✓ 67.8 38.2 48.1 63.1 79.2

DVPB denotes predicting DVPB directly, i.e., the decoder only takes Fobs as input
and outputs DVPB instead of SPRV. SPRV denotes SPRV prediction introduced in
Sec. 3.2. Con. denotes the loss term Lcon. L. Aug. denotes the linear bounding-box-
based shape augmentation from FS-Net [3] and N.L. Aug. denotes our non-linear
shape augmentation.

we compare three variants of RBP-Pose w.r.t the integration of DVPB: remov-
ing the DVPB related modules, predicting DVPB directly and predicting SPRV.
By directly predicting DVPB like in GPV-Pose [7], the mAP improves by 0.8%
under 5◦2cm and 2.1% in 5◦5cm, which indicates that DVPB explicitly encap-
sulates pose information, helping the network to extract pose-sensitive features.
By utilizing shape priors to generate initial hypothesis of DVPB and addition-
ally predicting SPRV, the performance improves 2.6% under 5◦2cm and 2.5%
under 10◦2cm, while the mAP of 5◦5cm and 10◦5cm decreases. In general, by
solely adopting the auxiliary task of predicting SPRV, the translation accuracy
rises while the rotation accuracy falls. This, however, can be solved using our
consistency loss between SPRV and pose. E7 adopts the consistency term in
Eq. 6 based on E3, and boosts the performance by a large margin under all met-
rics. This shows that the consistency term is able to guide the network to align
predictions from different decoders by jointly optimizing them. E4 enforces the
consistency term on DVPB without residual reasoning. Performance deteriorates
since initial DVPB hypotheses in are typically inaccurate. SPRV decoder refines
the hypotheses by predicting residuals, and thus enhances overall performance.

Effect of non-linear shape augmentation. In Tab. 3 E5, we remove the
non-linear shape augmentation and preserve all other components. Comparing
E5 and E7, it can be deduced that the performance degrades dramatically with-
out non-linear shape augmentation, where the mAP of 5◦2cm and 5◦5cm drops
by 15.6% and 18.4%, respectively. The main reason is that we only train the
network on real-world data containing only 3 objects for each category with 4k
images, leading to severe overfitting. The non-linear data augmentation mitigates
this problem and enhances the diversity of shapes in the training data.

Non-linear vs linear shape augmentation. We compare our non-linear
shape augmentation with the linear bounding-box-based augmentation from FS-
Net [3] in Tab. 3 E6 and E7. Our non-linear shape augmentation boosts the mAP
w.r.t. all metrics. Specifically, the accuracy improves by 1.6% for IoU75, 2.1%
for 5◦2cm, 1.1% for 5◦5cm and 0.9% for 10◦2cm. The main reason is that our
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RBP-Pose

SGPA

Fig. 6. Quantitative comparison with SGPA [2] on REAL275 in terms of average
precision in 3D IoU, Rotation and Translation.

non-linear shape augmentation covers more kinds of shape variations than the
linear counterpart, which improves the diversity of training data and mitigates
the problem of overfitting.

4.3 Qualitative Results

We provide a qualitative comparison between RBP-Pose and SGPA [2] in Fig. 5.
Comparative advantage of our method over SGPA is significant, especially in the
accuracy of the rotation estimation. Moreover, our method consistently outper-
forms SGPA when estimating the pose for the camera category, which supports
our claim that we can better handle categories with large intra-class variations.
We discuss Failure Cases and Limitations in the supplemental material.

5 Conclusion

In this paper, we propose RBP-Pose, a novel method that leverages Residual
Bounding Box Projection for category-level object pose estimation. RBP-Pose
jointly predicts 9DoF pose and shape prior guided residual vectors. We illus-
trate that these nearly zero-mean residual vectors encapsulate the spatial cues
of the pose and enable geometry-guided consistency terms. We also propose a
non-linear data augmentation scheme to improve shape diversity of the training
data. Extensive experiments on the common public benchmark demonstrate the
effectiveness of our design and the potential of our method for future real-time
applications such as robotic manipulation and augmented reality.
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