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Abstract. Supervised deep learning methods for semantic medical im-
age segmentation are getting increasingly popular in the past few years.
However, in resource constrained settings, getting large number of anno-
tated images is very difficult as it mostly requires experts, is expensive
and time-consuming. Semi-supervised segmentation can be an attrac-
tive solution where a very few labeled images are used along with a
large number of unlabeled ones. While the gap between supervised and
semi-supervised methods have been dramatically reduced for classifica-
tion problems in the past couple of years, there still remains a larger
gap in segmentation methods. In this work, we adapt a state-of-the-art
semi-supervised classification method FixMatch to semantic segmenta-
tion task, introducing FixMatchSeg. FixMatchSeg is evaluated in four
different publicly available datasets of different anatomy and different
modality: cardiac ultrasound, chest X-ray, retinal fundus image, and skin
images. When there are few labels, we show that FixMatchSeg performs
on par with strong supervised baselines.

Keywords: sem-supervised learning - semi-supervised segmentation -
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1 Introduction

Almost all of recent studies in medical image segmentation focus on evaluating
existing or developing new Deep Learning (DL) based models. However, there are
not many models that are actually deployed in real-world clinical settings. With
lack of experts, low-resource settings is where DL models could have a higher
impact. But in low-resource settings where annotation costs can be prohibitive,
deploying DL models seems to be even further away as most of the successful
DL models perform very poorly in low data regime. Thus, developing methods
that are accurate and robust with very few labels could help improve the acces-
sibility and quality of healthcare services, especially in Low and Middle-Income
Countries (LMICs).

Medical images usually have smaller number of annotated images compared
to natural images datasets such as ImageNet. Thus, transfer learning is quite
common in medical image segmentation problems where a pre-trained network
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in datasets like ImageNet is fine-tuned in medical images. Pretraining benefits
only up to a certain level, and usually still requires reasonably large number
of labeled medical images for fine-tuning. Since the domain where pretraining
is done is different from the target domain, without strong domain adaptation
methods, it is difficult to increase the improvement brought about by transfer
learning. An attractive alternative is semi-supervised learning, where we have
few labeled images and a large number of unlabeled images of the same domain.

Recently, a number of semi-supervised learning methods have been developed
for classification tasks showing great promise and getting very close to the super-
vised learning performance [1-3]. These recent powerful methods primarily apply
consistency regularization exploiting the smoothness or cluster assumption, i.e.,
same class images lie closely together in a manifold, and different classes are
separated by decision boundaries that lie in low-density regions. However, the
semantic segmentation task has not seen similar success from semi-supervised
learning yet. In medical imaging, consistency regularization under transforma-
tion has been applied in some of the recent works [4-6]. But, most of them
either use student and teacher models or ensemble models, increasing model
complexity. There is a lot of diversity within medical image segmentation task
as there are several modalities with very different properties, anatomy regions
of diverse size and shape, and different levels of texture vs shape bias require-
ment (irregular tumors or lesion vs heart or lungs having regular shape across
samples). It is not clear if the more complex architectures provide better per-
formance across different types of medical imaging datasets or not compared to
simpler approaches such as FixMatch [1]. In resource constrained settings, sim-
pler and smaller models requiring lower computational cost are more attractive.
Therefore, we adapt a simple but powerful end-to-end semi-supervised classifica-
tion network for semantic segmentation of medical images and evaluate it across
different modalities and anatomies.

We introduce FixMatchSeg!, a simple semi-supervised semantic segmenta-
tion method that exploits consistency regularization and pseudo-labeling [7].
It builds upon the recent progress in semi-supervised learning for classification
tasks and adapts state-of-the-art FixMatch [1] to semantic segmentation tasks.
We apply the proposed method on four different publicly available datasets: a)
CAMUS [8] - set of echocardiographic images, b) REFUGE [9]- dataset consist-
ing of retinal fundus images, ¢) ISIC 2017 [10]- dataset of dermoscopic images,
and d) SCR [11] (chest X-ray segmentation on JSRT database [12]) to check the
dataset dependency of the proposed model.

Contributions:

— Adapt a powerful state-of-the-art semi-supervised classification algorithm
and extend it to medical image segmentation,

! We introduced FixMatchSeg on July 2, 2021, the first version of this paper, as part
of a submission to a conference
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— Compare the performance of a semi-supervised model with a strong super-
vised learning baseline with both training from scratch and transfer learning
scenario at different number of labeled images,

— Evaluate on four different publicly available datasets, showing that the pro-
posed method provides results superior to supervised baseline when only few
annotated labels are available.

Vb Supervised Loss
X, Pu(YIXp)
A(a(ub)) Model I)m(y|A((l(llb)))
A(.) Unsupervised Loss
a .
u, 0 o(up) Pm(Yle(uy))

Fig. 1. Block diagram of proposed FixMatchSeg.

2 Related Work

Semi-supervised learning methods may be broadly classified into four categories:
Consistency Regularization, Proxy-label and Entropy Minimization, Generative
Models and Graph-Based Methods [13]. All these different methods have been
explored for medical image segmentation such as consistency regularization in
[14,4, 15,16, 5], proxy-label update for unlabeled images with alternate updates
of network parameters in [17], generative models in [18-21] and graph-based
methods in [22]. These methods have been applied to a wide range of 2D and
3D medical images such as cardiac MRI [17, 21, 16], brain lesion segmentation in
MRI [14, 15], chest X-ray [4], skin lesion [5], retinal fundus images [18].

Several recent semi-supervised semantic segmentation methods for medical
images propose consistency regularization with some sort of transformation con-
sistency. For example, [4] train Siamese network under transformation equivari-
ance, or student-teacher network models are trained with self-ensembling in [15,
16] and with transform consistency in [5]. FixMatch combines consistency regu-
larization and pseudo-labeling to provide a simple yet powerful semi-supervised
method for classification task [1]. Few studies have explored the concept of Fix-
Match by adding discriminator to select pseudo-labels [23] which adds extra
complexity. We introduce FixMatchSeg that provides transformation consistency
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required in semantic segmentation as in the case of [5], but without the complex
teacher-student network. Chaitanya et al. [24] proposed a contrastive learning
method to learn global and local features suitable for medical image segmen-
tation with a small unlabeled dataset. Contrastive self-supervised learning is
complementary to semi-supervised learning, and hence can be used to pretrain
before using semi-supervised approach, such as in [25] which combines SimCLR
with FixMatch and named SelfMatch[26] for classification task.

3 FixMatchSeg

Using the notations of FixMatch [1] for consistency, let X = {(zp,pp) : b €
(1,...,B)} be a labeled data set of size B, where x} is an image and p; is the
corresponding ground truth mask. Let unlabeled batch be represented by a set
U={up:be(1,..,1uB)} where u is a hyperparameter of the model determining
the ratio of the unlabeled data to the labeled data. Thus, we have B labeled
examples and pB unlabeled examples in the training data.

Let p,,(y|x) be the predicted class distribution image for the input image x.
For semantic segmentation loss, we used the widely used soft dice loss DL defined
on [27] combined with boundary loss BL explained in [28]. In this study, both
dice loss and boundary loss have equal contributions in the final loss calculation.

FixMatchSeg uses two types of image augmentations: strong denoted by A
and weak denoted by «. Unlike classification tasks, in semantic segmentation,
the output target is not invariant under geometric transformations such as flips,
affine or elastic distortions that change the shape or location of objects in the im-
age. Thus, for geometric transformation based augmentation, we apply the same
transformation to both input image and mask label. For weak augmentation «,
we chose random rotation and elastic distortions. For strong augmentation A,
we modified the sharpness and contrast of the weakly augmented images and
added Gaussian blur. In order to have the same output target from the weakly
augmented and strongly augmented images, instead of applying strong augmen-
tation directly to the unlabeled image, we applied it to the weakly augmented
version of that image. For the strong augmentation, we did not apply any kind
of geometric or shape-changing transformation, which thus maintains the same
geometrical shape of the objects in both weakly and strongly augmented images.

We have two kinds of losses: supervised loss s and unsupervised loss [,,. We
compute supervised loss using soft dice loss DL and boundary loss BL against
the labeled images, given by,

B
1
5 2 (DL 0y, pm (yl20)) + BL (py, prm (3]2)))
B3

where, pp is the ground truth label and p,, is the predicted mask.

The key idea in FixMatch is to combine consistency regularization and pseudo-
labeling into a single framework in unsupervised loss using weak and strong
augmentations. We followed the same idea in this work but adapt it to work
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for semantic segmentation tasks instead of classification. For each unlabeled in-
put image up, we obtained an artificial label from its weakly augmented version
a(up). For this, we first computed p,,(y|a(up)), which is the model predicted
class distribution map for the weakly augmented unlabeled image. For L class
segmentation problem, each pixel of the image py, (y|o(up)) contains L softmax
output probabilities. We compute pixel-wise max of this image to obtain ¢, and
compute pixel-wise argmaz to obtain pseudo-label, ¢, = argmax|[p, (y|a(us))].
Thus, ¢p is the segmentation output predicted by the model for the weakly aug-
mented unlabeled image. In order to decide whether to use ¢, as a pseudo-label
or not, we first compute the confidence score as the mean of the pixel values of
qp, denoted by g, which gives us the average maximum confidence of the model
in predicting different classes over the whole image. Note that while ¢, is an in-
teger image, G is a scalar number. If the average @ is higher than the confidence
threshold 7, it is considered as a pseudo-label, i.e. ground truth for the strongly
augmented unlabeled image A(a(up)).
Thus, we have unsupervised loss defined as follows:

l, = MLB > 1@ = 7) (DL Gy, pm (Yl A ((ws)))) + BL (Gor pm (4| A (a(up)))))
b=1

Then, the total loss for FixMatchSeg, [ is given by [ =I5 + A\,l,, where A, is
the weight for the unsupervised loss.

4 Implementation Detalils

Datasets: We applied our proposed method in four different medical image
datasets, having different imaging modalities, different anatomical regions and
potentially different requirement of shape vs texture bias for the models.

CAMUS dataset [8]: CAMUS (Cardiac Acquisitions for Multi-structure
Ultrasound Segmentation) dataset contains echocardiograms from 450 patients
in the training set and 50 patients in the test set. We do not have access to
the ground truth of the test set, and the segmentation output images must be
submitted online to obtain the dice scores on this test set. There are four 2-D
echocardiographic images for each patient: two 2-chamber view images and two
4-chamber view images captured during end-systole and end-diastole. In each
image, there are four labels: 0 (background), 1(left ventricular cavity), 2(my-
ocardium) and 3(left atrium cavity). In the experiments, we split the training
set of CAMUS dataset into train, validation, and our test sets with 1000, 400,
and 400 images, respectively.

ISIC 2017 dataset [10]: ISIC 2017 dataset is a collection of dermoscopic
images provided in 2017 during the International Skin Imaging Collaboration
(ISIC) Challenge. There are a total of 2000 images in training set, 150 images in
validation set, and 600 images in test set. We did not make any changes in the
structure of the dataset for our experiments. There are two labels in the ground
truth 0 (Background) and 1 (lesion).
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REFUGE dataset [9] REFUGE dataset is provided by MICCALI challenge
in 2020. It consists of a total of 1200 retinal fundus images, 400 each in training,
validation, and test sets. There are three classes, background optical cup and
optical disc, to be segmented.

SCR dataset [11]: SCR database is a dataset created for chest X-ray seg-
mentation by annotating the radiographs available in the JSRT database. It
has a total of 247 images. This dataset aims to segment the heart, lungs, and
clavicles in the X-ray image.

Network Architecture and Hyperparameters: We used a popular U-Net
[29] architecture with EfficientNet-B4 [30] model as an encoder, which is a strong
baseline for supervised semantic segmentation task and is available in Segmen-
tation Models library 2 The model was implemented in the Python environment
with Pytorch. For optimization, Adam optimizer with the learning rate 0.001
was used. For each experiment, the criteria for early stopping was that valida-
tion loss should not decrease for 9 consecutive epochs. All the images were resized
to 320x320. The batch size is not constant for all experiments, it is dependent
on the labeled to unlabeled example ratio g was chosen. For example, if number
of labeled example is 10 and unlabeled is 100, then in this case we have a batch
size of 11, where there will be one labeled image and 10 unlabeled images. The
confidence threshold 7 was 0.90 for all experiments except those mentioned in
Table 2.

Data Augmentation: We used imgaug library for image augmentation 3. For
weak augmentation, the images were rotated randomly in the range of [—20, 20]
degrees followed by an elastic distortion. For strong augmentation, instead of
original images, the weakly augmented images were taken as input and the sharp-
ness and contrast of the images were modified followed by a Gaussian blurring.

5 Results

Table 1 compares supervised baseline with FixMatchSeg for CAMUS dataset
when using 4, 8, 16, 32, 64, and 100 labeled images. The results show that
FixMatchSeg performs better than the baseline in most cases when few labeled
images are used. We see that usually, the dice score of FixMatchSeg prediction
improves when the number of unlabeled images are increased with increasing p.
For 100 labeled images, we could not use (1 > 10) as we have only 1000 images in
our training set. In our experiment, we have used augmented version of labeled
data as a part of unlabeled data by removing its label. Therefore, we were able to
get results for p = 10. We also compare the results when using transfer learning.
As shown in Table 1, even with pre-trained network, FixMatchSeg provides very
competitive results. Table 2 shows the impact of changing threshold for selecting
pseudo labels for different number of labeled images. We see that at higher

2 https://github.com/qubvel/segmentation_models.pytorch
3 https://github.com/aleju/imgaug
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threshold levels from 80 to 100, the threshold value does not have a significant
effect on the dice scores.

Table 1. DSCs for baseline and FixMatchSeg for different number of labeled images
for CAMUS dataset. For FixMatchSeg, A\,=1, 7= 0.90.

model/labeled examples 4 8 16 | 32 64 | 100
Supervised baseline 0.721(0.795]0.832| 0.875 | 0.896 [0.918
FixMatchSeg (1 = 10) 0.736 [ 0.781 |0.843| 0.852 | 0.904 | 0.911
FixMatchSeg (u = 15) 0.729 (0.807|0.842|0.888(0.906| -
FixMatchSeg (u = 20) 0.72910.801| - - - -
FixMatchSeg (u = 25) 0.756| - - - - -

Supervised (pre-trained) 0.87 | 0.91 | 0.92 | 0.93 | 0.94 | 0.94
FixMatchSeg (pre-trained) (= 9)| 0.88 | 0.91 | 0.91 | 0.92 | 0.93 | 0.95

In Table 3 we compare the results of other state-of-the-art supervised net-
work on CAMUS dataset, using an independent test set whose annotations are
not available to us. To compute the results in this test set, we submitted the
predictions from our model to the website 4, and we were provided with the
results.

We could not compare several models with different parameters with this
test set because we can submit the test result only four times for testing on the
CAMUS website. Among the three supervised models used by Sarah et al. [§],
the performance of U-net 2 is similar to the performance of our semi-supervised
model trained with 100 labeled data.

Table 2. Effect of choice of confidence threshold (7) and number of labeled images in
FixMatchSeg for CAMUS dataset, where pu=9.

labeled examples/T| 80 85 90 95 100
4 0.8769 | 0.8768 | 0.8766 | 0.8772 | 0.8771
8 0.9114 | 0.9106 | 0.9118 | 0.9113 | 0.9122
16 0.92310.9227|0.9219 | 0.9205 | 0.9218
32 0.92140.9263 | 0.9261 | 0.9233 | 0.9246
64 0.9390|0.9371 | 0.9358 | 0.9399 | 0.9411
100 0.9411|0.9430|0.9440|0.9431|0.9447

Table 4 show results of FixMatchSeg in REFUGE, ISIC 2017 and SCR
datasets using 100 labeled examples in each case. Compared to a supervised
baseline, FixMatchSeg performs better in all the datasets. The results also show
that pre-training helps not just the supervised baseline but also semi-supervised

4 http://camus.creatis.insa-1lyon.fr/challenge/#phase/
5ca211272691fe0a9dac46d6
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Table 3. Results on the CAMUS test set submitted and obtained via an online portal
and comparison with other’s model performance in terms of dice score.Here, ED and
ES refers to End-Diastolic and End-Systolic event of heart. The dice score for each indi-
vidual structure is shown below. Segmented 3 cardiac structures are endo:endocardium,
epi: epicardium and la: left atrium cavity.

Supervised training, 1624 labels |Semi-supervised, 100 labels

U-net-1 [8]|ACNNs [8]|U-net-2 [8]| FixMatchSeg (proposed)
ED| ES |ED| ES |ED| ES |ED ES
endo|0.94| 0.91 |0.94| 0.91 |0.92| 0.9 [0.92 0.88
epi |0.96] 0.95 [0.95] 0.95 |0.93] 0.92 |0.94 0.93
la [0.89| 0.92 |0.88| 0.91 |0.85| 0.89 [0.85 0.89

Table 4. DSCs for pretrained and randomly initialized baseline and FixMatch-
Seg forISIC 2017, SCR and REFUGE datasets. Suprand and Suppre refer to base-
lines with randomly initialised weights and pretrained weights respectively. Similarly,
SemiSuprana and SemiSuppr. refer to FixMatchSeg with randomly initialised weights
and pretrained weights respectively. FixMatchSeg, A\, =1, 7= 0.90.

Datasets Suprand|SemiSuprand |Suppre|SemiSuppre
ISIC 2017 (100 labeled, 1000 unlabeled)| 0.72 0.66 0.74 0.76
SCR (100 labeled, 100 unlabeled) 0.84 0.85 0.86 0.87
REFUGE (100 labeled, 400 unlabeled) | 0.50 0.79 0.58 0.85

model FixMatchSeg. The improvement of FixMatchSeg over supervised baseline
is very minor in ISIC 2017 and SCR, but quite significant in REFUGE dataset.

6 Discussion and Conclusion

The evaluation of FixMatchSeg in four different datasets shows some promising
results with few labeled data. Even with the pre-trained network model with
transfer learning, FixMatchSeg looks to be advantageous when we have few
labels in the target domain. However, the results and improvement over baseline
depends on the dataset used and the ratio of labeled and unlabeled images.
In the same dataset, for example in CAMUS, we see that FixMatchSeg results
improve as we increase the unlabled data. However, it remains to be seen how
and when this trend saturates as we keep on increasing the unlabled data.
When we compare ISIC 2017 and REFUGE datasets in Table 4, we see
that although ISIC 2017 has greater proportion of unlabled images compared to
REFUGE, FixMatchSeg improves supervised baseline by a much bigger margin
in REFUGE. This shows that only the number of unlabled image proportion is
not a factor when we compare performance across datasets. What factors impact
the varied improvement in FixMatchSeg for different datasets? We have used the
same set of augmentation for all datasets. Perhaps the interplay of augmentation,
loss functions, pseudolabel threshold, and texture vs shape bias requirement
for different segmentation task are complex that needs further exploration. For
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Input image Ground Truth Predicted mask

Fig. 2. Images with their ground truth and the segmented masks predicted
by FixMatchSeg on CAMUS, REFUGE, SCR and ISIC 2017. The last row
shows the image where the false segmentation mask is predicted because of
a similar shape of both patches in the image.

example, the skin lesions are mostly irregular shaped but texture is curcial while
for heart and lungs datasets, the regular shape plays an important role compared
to texture (see Figure 2). Moreover, there is still an open question on the impact
of the diversity of unlabeled images that gets increased. That is, what happens
if we increase unlabeled data with only those images that are very similar to
each other (a subdomain within a domain) vs images that are diverse in nature
(covering the larger region of the data distribution of the domain)? We will
explore these questions in future work.
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