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ABSTRACT 

Prostate cancer is the most dangerous cancer diagnosed in men worldwide. Prostate diagnosis has 

been affected by many factors, such as lesion complexity, observer visibility, and variability. Many 

techniques based on Magnetic Resonance Imaging (MRI) have been used for prostate cancer 

identification and classification in the last few decades. Developing these techniques is crucial and 

has a great medical effect because they improve the treatment benefits and the chance of patients' 

survival. A new technique that depends on MRI has been proposed to improve the diagnosis. This 

technique consists of two stages. First, the MRI images have been preprocessed to make the medical 

image more suitable for the detection step. Second, prostate cancer identification has been performed 

based on a pre-trained deep learning model, InceptionResNetV2, that has many advantages and 

achieves effective results. In this paper, the InceptionResNetV2  deep learning model used for this 

purpose has average accuracy equals to 89.20%, and the area under the curve (AUC) equals to 

93.6%. The experimental results of this proposed new deep learning technique represent promising 

and effective results compared to other previous techniques. 
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1. INTRODUCTION 

The prostate is a muscle-driven mechanical switch between urine and ejaculation 

and an auxiliary gland of the male reproductive system [1]. Prostate cancer (PCa) 

significantly affects societies worldwide and is currently the most prevalent cancer 

among males. It refers to the uncontrolled growth of cells in the prostate. Prostate 

glands (where is the PCa) in young men are small. As one gets older, the prostate 

gland gets bigger. It can restrict urinary flow between the bladder and the urethra 

as it gets bigger. The main challenge of diagnosing PCa is that most men with PCa 

will have no symptoms, especially at the early stages of PCa [2]. 
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Moreover, when PCa advances to higher stages, it can cause men to have poor flow 

and incomplete emptying of urine, which are the same symptoms of prostate 

enlargement. In its higher stages, PCa spreads outside the prostate gland. This 

spread outside the prostate gland has been confirmed to be an important prognostic 

factor for recurrence. Therefore, early diagnosis of PCa is challenging but is crucial 

as it enables physicians to treat PCa before it develops into a fatal disease [3]. 

Urologists recommend starting to screen men at the age of 40. The current two 

initial techniques for early diagnosis of PCa are a digital rectal examination (DRE) 

and prostate-specific antigen (PSA) blood screening. DRE is a physical 

examination in which a physician manually checks the prostate gland through the 

rectum. This technique is highly invasive, and its accuracy is low. PSA screening 

evaluates the concentration of PSA in the blood as the PCa indicator. PSA screening 

has high false positive rates as elevated levels of PSA in the blood can be caused 

due to other diseases such as prostate enlargement or inflammation [4]. If either 

DRE or PSA is abnormal, the physician recommends a prostate biopsy, the 

definitive technique for diagnosing PCa. However, the biopsy is an expensive and 

painful technique that can miss about 35% of clinically significant PCa. The most 

common surgical operation performed in men is surgery for benign prostatic 

hyperplasia, which costs more than a billion dollars annually. 

The difficulty of diagnosing PCa comes from both non-aggressive PCa's and 

aggressive PCA's at their early stages have no symptoms. A combination of the 

DRE, PSA test, and transrectal ultrasound (TRUS)-guided needle biopsy are used 

to diagnose prostate cancer [5]. Prostate cancer diagnosis by MRI will be important 

when there is a great contradiction between the PSA level and the outcomes of the 

TRUS-guided biopsy, which allows physicians to visualize the shape of the prostate 

and identify the suspicious areas within the prostate gland [6].  

PCa detection and localization from MRI data is not easy [7]. Therefore, building 

CAD systems for identifying PCa is still a work in progress [8]. The accuracy, 

speed, and automation of these CAD systems vary. However, some processing 

processes, including prostate segmentation, diagnostic characteristics extraction, 

and deep learning classification, are applied to diagnose PCa [9]. 

The main contribution of this paper is to enhance the accuracy and AUC of 

techniques used to diagnose and detect prostate cancer disease. Firstly, medical 

image preprocessing has been performed to improve the MRI image problems. 

Secondly, three pre-trained models have been applied for prostate cancer 

identification, and the most effective model is the InceptionResNetV2. 

The following paper structure is outlined as follows. Section 2 presents the related 

work on prostate cancer identification. Section 3 introduces the material and 

proposed method used. Section 4 presents the results and discussion. Section 5 



discusses comparison and discussion. Finally, the conclusion and future directions 

have been presented in Section 6. 

2. RELATED WORK 

Many important research improvements have been made around prostate cancer 

detection and identification. This section introduces a summary of previous related 

research on this topic. Table 1 summarizes the method used, strengths, and 

limitations of previously discussed studies. 

Sun et al. [10] used multi-parametric MRI (mpMRI) data and applied the support 

vector machine (SVM) to detect the prostate tumor site. Before radical 

prostatectomy, they recorded 16 patients with in vivo MP-MRI data. The sequences 

used were T2-weighted, diffusion-weighted, and dynamic contrast-enhanced 

imaging. A Gaussian kernel SVM was trained and tested on distinct patient data 

subsets. Leave-one-out cross-validation was applied to optimize the parameters. 

The prediction accuracy was between 70.4 and 87.1 %, and the AUC of the ROC 

was between 0.81 and 0.94 %. 

Bhattacharya et al. [11] employed MRI to diagnose PCa in an automated way. They 

were trained and verified using a 98 men dataset, comprising 74 men with radical 

prostatectomy and 24 with normal prostate MRI. CorrSigNIA was tested on three 

different groups: 55 men with radical prostatectomy, 275 men with targeted 

biopsies, and 15 men with a normal prostate MRI. CorrSigNIA had an accuracy of 

80% in separating men with and without cancer, with a lesion-level ROC-AUC of 

0.81±0.31. 

Polymeria et al. [12] created an AI-based method to autonomously estimate the 

prostate and its tumor in 145 patients' PET/CT scans. Between April 2008 and July 

2015, the algorithm was tested on 285 high-risk patients who were investigated with 

18F-choline PET/CT for primary staging. The prostate gland's tumor fraction and 

the whole tumor's lesion uptake were obtained automatically. A Cox proportional-

hazards regression model was applied to present the relationships between these 

measures, age, PSA, Gleason score, and PCa-specific survival. They discovered 

that total prostate tumor volume (p ¼ 0.008), tumor fraction of the gland (p ¼ 

0.005), total prostate lesion uptake (p ¼ 0.02), and age (p ¼ 0.01) were all linked 

with disease-specific survival, whereas SUVmax (p ¼ 0.2), PSA (p ¼ 0.2), and 

Gleason score (p ¼ 0.8) were not. 

Bleker et al. [13] used MRI scans to develop a radionics technique for extracting 

characteristics from an auto-fixed volume of interest (VOI). They relied on 206 

patients with 262 PZ lesions identified using the mpMRI prostate imaging reporting 

and data system. CS PCa was characterized as Gleason scores greater than 6. To 

extract features, an auto-fixed 12-mm spherical VOI was placed around a pinpoint 

in each lesion. Compared to other techniques, dynamic contrast-enhanced imaging 

(DCE), multivariate feature selection, and extreme gradient boosting (XGB) are 



important. They discovered that the best model with an (AUC) of 0.870 (95% CI 

0.980–0.754) with characteristics from T2-weighted (T2-W) + diffusion-weighted 

imaging (DWI) + DCE. 

Castillo et al. [14] used computer-aided prostate analysis to improve the diagnosis 

of severe PCa that relies on multi-parametric MRI (mpMRI). For significant-PCa 

segmentation and/or classification, they used deep-learning and radiomics-based 

algorithms. Two consecutive patient cohorts (371 individuals) from their center 

were used in this investigation, along with two other datasets. One of these external 

sets was a publically available patient cohort (195 patients), while the other 

contained information from patients from two hospitals (79 patients). One of their 

patient cohorts (271 patients) was used for deep learning and radiomics model 

construction throughout training, while the other three (374 patients) were 

preserved as unseen test sets. The area under the receiver-operating-characteristic 

curve was used to evaluate the models' performance (AUC). While the deep 

learning approach, AUCs achieved 0.70, 0.73, and 0.44. 

Giannini et al. [15] evaluated non-experienced readers' diagnostic skills while 

reporting using a CAD system's likelihood map using multi-parametric MRI. The 

study involved 90 patients (45 with at least one clinically significant biopsy-

confirmed PCa). Patients who had at least one clinically significant lesion (GS > 6) 

exhibited substantially better sensitivity in the CAD-assisted mode (68.7% vs. 

78.1%) (p = 0.018). 

Yuan et al. [16]  trained a deep convolutional neural network with three branch 

methods to detect discriminative features in prostate images and aid doctors in 

automatically detecting PCa. They developed a multi-parametric magnetic 

resonance transfer learning (MPTL) technique for autonomously staging PCa. They 

first created a deep neural network with three branches. They then used the model 

to calculate multi-parametric MRI images (mp-MRI) features such as T2w 

transaxial, T2w sagittal, and obvious diffusion coefficient (ADC). To assess the 

validity and effectiveness of the proposed MPTL model, they tested132 cases from 

our institutional review board-approved patient dataset and 112 instances from the 

PROSTATEx-2 challenge. Their model had a high accuracy of 86.92% for PCa 

classification. 

Sushentsev et al. [17] evaluated the effective score system against multiple MRI-

derived delta-radiomics models (AS). Patients with AS who had biopsy-proven PCa 

and had at least one repeat-targeted biopsy were included in the study. The 

parenclitic networks (PN), least absolute shrinkage and selection operator (LASSO) 

logistic regression, and random forests (RF) methods were used to predict T2WI- 

and ADC-derived delta-radiomics characteristics using baseline and latest 

accessible MRI data. The AUCs were compared using DeLong's test, and standard 

discrimination measures and areas under the ROC curve (AUCs) were determined. 

Their study included 64 patients (27 progresses and 37 non-progresses). The AUC 



for PRECISE (84.4%) was not significantly higher than the AUCs for PN, LASSO 

regression, and RF, which were 81.5 percent, 78.0 percent, and 80.9 percent, 

respectively (p = 0.64, 0.43, and 0.57, respectively). 

Table 1: The comparison between previous methods. 

References Method Strengths Limitations 

Sun et al. [4] The Gaussian kernel SVM 

for detecting prostate tumour 

location. 

An effective method 

for detection. 

Low accuracy in 

prostate cancer 

detection. 

Bhattacharya 

et al.  [5] 

Radiology-pathology fusion-

based algorithm. 

The reduction in biopsy 

samples used for 

aggressive cancer 

detection. 

Low accuracy and 

AUC. 

Polymeria et 

al. [6] 

AI-based algorithm was 

used. 

AI-based 

measurements were 

very important in 

prostate tumor 

detection. 

Less medical images 

effected on results. 

Bleker et al. 

[7] 

Dynamic contrast-enhanced 

feature method and 

multivariate feature selection 

and extreme gradient 

boosting (XGB) was used. 

Effective method in 

prostate cancer 

diagnosis. 

Low accuracy and 

AUC. 

Castillo et al. 

[8] 

Radiomics model and deep 

learning. 

Significant prostate 

cancer identification. 

Low accuracy and 

AUC. 

Giannini et al. 

[9] 

Computer Aided Diagnosis 

and image Interpretation 

Increases the per-

patient sensitivity in 

prostate cancer 

identification. 

Needed dataset with 

specific conditions. 

Yuan et al. 

[10] 

Deep CNN and three 

technologies that were T2w 

transaxial, T2w sagittal, and 

apparent diffusion 

coefficient (ADC) features 

used. 

learned discriminative 

features in prostate 

images and classified 

the cancer accurately. 

Low accuracy in 

detection. 

Sushentsev et 

al. [11] 

The parenclitic networks 

(PN), least absolute 

shrinkage and selection 

operator (LASSO) logistic 

regression, and random 

forests (RF) methods were 

used. 

Effective method in 

detecting prostate 

cancer. 

Low AUC in 

detection. 

 

 

 



3. MATERIAL AND METHODS 

The proposed method for prostate cancer identification has been performed in two 

stages on MRI images [18], [19] as these types of images have evolved their 

capabilities for detecting prostate cancer [20], [21]. This proposed method has been 

dependent on deep learning. Although many systems have generated satisfactory 

results, these systems depend on handcrafted features. There is an alternative 

system that automatically learns the features. Deep learning structures, especially 

convolutional neural networks (CNN), automatically learn multiple levels of 

features from data in a hierarchical way. These structures have produced precise 

results in various computer vision tasks including lesions detection tasks. Figure.1 

illustrates the stage of our proposed method.  

 

Figure 1: Prostate cancer identification framework based on InceptionResnetV2. 

3.1 Preprocessing  

For image preprocessing [22], some techniques are applied to the dataset for image 

enhancement. This image enhancement technology makes the images more suitable 

than the original image. The steps in the preprocessing techniques included noise 

removal and contrast enhancement. 

• Noise Removal 

Image noise is the arbitrary variation in color information or brightness in 

images produced by medical scanners or devices. Image noise is considered 

an undesirable thing during the acquisition of an image. There are many 

reasons for noise in medical images. medical images include some visual 



noise. This noise presence makes images more grainy, mottled, textured, or 

snowy. Medical images have many types of noise, such as salt and pepper 

and Gaussian noise.  

So, a filtering technique has been used to remove noise from images for 

solving noise removal. A median filter has been used for smoothing the non-

repulsive noise without preserved images and blurring edges. This makes 

the images more suitable for MRI image enhancement. The median filter 

applies spatial processing to determine which pixels in medical images have 

been affected by impulse noise. The median filter classifies pixels as noise 

by comparing them with their neighboring pixels. This pixel that is different 

from its neighbor is labeled as an impulse. The median pixel values are used 

to replace the noise pixels. 

• Contrast enhancement 

Contrast Limited Adaptive Histogram Equalization is a version of the AHE 

technique. CLAHE is used to solve the problems of AHE. The AHE causes 

noise over-amplification, so the CLAHE limits this noise. The CLAHE 

divides the medical image into multi subblocks and then performs the 

histogram equalization for each part of the whole image. Figure.2 indicates 

the impact of preprocessing techniques on MRI prostate cancer images. 

3.2 Prostate cancer identification 

Creating a deep neural network from the start to the end is challenging. Weights are 

randomly assigned before the training process, and after that, they are altered 

repeatedly, which depends on the used datasets and the loss function in a large deep 

neural network. The weight change process takes a long time, and because of 

training data paucity, the deep network may also become overfit. 

There are many advantages to applying CNN over traditional neural networks. 

Firstly, CNN [23], [24] contains various numbers of layers than traditional neural 

networks. The layers increase allows CNN to learn high levels of abstraction 

because the first layers learn primitive components, and the last uses these trained 

and learned primitive features to generate high-level features. CNNs are used to 

automatically learn the features. Secondly, CNN takes 2D images and 3D volumes 

directly as inputs and doesn't need to convert them into vectors. Thirdly, the 

connections of the network and the CNNs parameters are fewer than in the 

traditional neural network. 



 

Figure 2: MRI medical images preprocessing. (a) Original image, (b) Image after 

applying a median filter,  and (c) Image after applying CLAHE technique. 

Transfer learning [25], [26] is an important tool that uses a convolutional deep 

neural network model that has been previously trained using a variety of datasets. 

Many models use transfer learning for object recognition and other related 

computer vision tasks, such as InceptionV3and ResNet50 models. This paper 

applies three different CNN models for prostate cancer identification. 

• Inception-ResNet-v2 

Inception-ResNet-v2 [27] is a fusion of two recent networks that are a recent 

version of Inception architecture and residual connections. These models 

are essential for their multi-branch architecture. They have some filters that 

are concatenated together in each branch. The split-transform-merge model 

of the inception is observed as an essential representational ability in its 

dense layers. The Inception-ResNet-v2 uses residual connections with 

better efficiency.  

Inception-ResNet-v2[27], [28] only computes batch-normalization on the 

first traditional layers but not on the summations. This simplification has 

been applied to reduce the consumed memory footprint and increase the 

number of potential inception blocks. Inception-ResNet-v2 is used to 

stabilize the learning and training by scaling down the residuals before 

adding them to previous activation layers.  

4. RESULTS AND DISCUSSION 

To evaluate the proposed scheme performance, python 3.7.6 and PyCharm 2019.3.3 

with NumPy, Keras, SkLearn, and matplotlib libraries have been used for testing 

and validating several experiments. Our system was run on a machine of core i7/4.5. 

It has 16 GB RAM and an NVIDIA GeForce GTX with 4 GB VRAM. The next 

subsections describe the tested dataset and the standard evaluation metrics. Finally, 

comparisons and discussion are proposed. 



4.1 Dataset Description 

The dataset [29] consists of 1528 prostate MRI images in the transverse plane. 

PROSTATEx Dataset and Documentation provided the images and classification. 

This dataset contains 64 patients' MRI images. These patients should have a single 

prostate MRI finding for more accurate training. This dataset aims to train and learn 

a convolutional neural network and other models for classifying new images into 

clinically significant and nonsignificant. 

4.2 Performance evaluation metrics 

Some evaluation metrics have been used for testing the classifier's performance. 

Mathematical formulations have been presented to compute the evaluation metrics. 

TP is the true positive value number that indicates the correct classification of a 

significant person. FP is the false positive number that indicates the false 

classification of a significant person. TN is the true negative value number that 

indicates the correct classification of a nonsignificant person. FN is the false 

negative number that indicates the false classification of a nonsignificant person. 

The significant person that has prostate cancer and nonsignificant hasn't prostate 

cancer. 

Some metrics, such as accuracy, have been used to evaluate this system. Sensitivity 

is the true positive rate (TPR) which indicates positively tested subjects through the 

examination. Specificity is the true negative rate (TNR) which indicates negative 

tests identified correctly, F1-score, Matthews correlation coefficient (MCC), and 

area under the curve (AUC). 

MCC [30] was proposed in 1975 for chemical structure analysis and was developed 

again for machine learning. When the used dataset is unbalanced or if one class is 

more extensive than the other, the accuracy measure cannot be considered reliable. 

The solution to this problem is the MCC. AUC is a standard and essential method 

used in the classifier's evaluation. The AUC is a part of a square unit. AUC is a part 

of a square area whose value ranges from 0 to 1. Any classifier's value should be 

bigger than 0.5. ROC is an essential and great test plotted based on specificity and 

sensitivity.   

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                                                    (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                              (3) 

Specificity =  
𝑇𝑁

𝐹𝑃+𝑇𝑁
                                                                (4) 



F1 −  score = 2 ×
(𝑟𝑒𝑐𝑎𝑙𝑙 ×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
                                         (5) 

MCC =  
(𝑇𝑃∗𝑇𝑁)−(𝐹𝑃∗𝐹𝑁)

√(𝑇𝑃+𝐹𝑃).(𝑇𝑃+𝐹𝑁).(𝑇𝑁+𝐹𝑃).(𝑇𝑁+𝐹𝑁)
                                   (6) 

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅 𝑑(𝐹𝑃𝑅)
1

0
                                                         (7) 

 

5. COMPARISONS AND DISCUSSION 

In this section, the experimental comparisons have been presented that show the 

results. Two models have been trained on the dataset for prostate cancer 

identification, such as InceptionV3 and ResNet50. As we mentioned in the 

proposed method, InceptionResnetV2 has higher accuracy. 

• Inception-V3 Model 

The inceptionV3 model is a new and edited version of the inception-V1 

model. For more model adaption, this model applies many numbers of 

approaches for network optimization. This model has more extensive than 

the Inception-V1 and Inception-V2 models. The Inception-V3 is a deep 

CNN learned and trained directly on a low-configuration computer. It is 

fairly challenging to train and takes a long time, and this problem is solved 

through transfer learning that saves the model's last layer for new categories. 

The parameters of Inception-V3 of the previous layers are kept, and 

Inception-V3 is constructed as the final layer is eliminated through the 

transfer learning technique.  

The Inception-V3 model [31] consists of AvgPool, MaxPool, Convolution, 

Concat Layer, Fully Connected layer, Dropout, and Softmax Function. The 

CNN characterization is provided through the sharing and connectivity of 

the weights, where it computes the outcome of neurons related to present 

local regions from the previous layer. Additionally, it shares the neuron 

weights and corresponds to the kernels at the same layers. In the 

classification part, the fully connected layers take the feature outputs of 

Inception-V3 and custom-generated segmented features. 

• ResNet50 Model 

ResNet50 [32] is a CNN model that has 50 layers. The ImageNet database, 

which has been learned and trained on many images, makes a pre-trained 

version of the network that can be imported. ResNet50 is suggested as a 

solution for the challenges of training the CNN model. The ResNet50 

advantage is that this model's performance doesn't decrease even though the 

architecture is getting deeper. The computation is made lighter, and the 



ability of the training network is better. The ResNet50 model is made by 

skipping connections on two to three layers that contain ReLU and batch 

normalization among the architectures. 

Table 2 and Figure 3 show the comparisons and performance results between the 

three models used for prostate cancer identification. InceptionResnetV2 has the 

highest results, indicating that this model can detect and identify prostate cancer 

and classify the MRI images as significant or nonsignificant. The overall accuracy, 

precision, sensitivity, specificity, F1-score, MCC, and AUC of the proposed method 

based on InceptionResnetV2 are 89.2%, 93.5%, 84.2%, 94.2%, 88.6%, 78.7% and 

93.6 respectively which shows superiority compared with other models.  

Table 2: The performance evaluation of the proposed method and other used models 

for comparisons. 

Network Accuracy Precision Sensitivity Specificity 
F1-

score 
MCC AUC 

InceptionV3 87 92.4 80 93.3 84.7 74.8 89.0 

Resnet50 76.3 89.9 59.2 93.3 71.4 56.9 84.6 

InceptionResnetV2 89.2 93.5 84.2 94.2 88.6 78.7 93.6 

 

 

 

Figure 3: The comparison results of the proposed method and other used models. 

 

 



Figure 4 shows the ROC curve between FPR and TPR for the three deep learning 

models used for identifying and detecting prostate cancer. After applying these 

three models, the InceptionResNetV2 is superior to the two other deep learning 

models.  

 

Figure 4: AUC for three models used for prostate cancer identification. 

Comparison with the previous research is proposed in order to compare the 

proposed scheme performance with different methods on the same dataset. Table 3 

and Figure 5 indicate the comparison that shows superiority compared with the 

state-of-the-art with AUC, which was 936%. 

Table 3: Performance comparison between the proposed approach and other related 

methods based on AUC. 

Methods AUC (%) 

Grebenisan et al. [33] 75.0 

Sobecki et al. [34] 84.0 

Pin et al. [35] 73.0 

Proposed Method 93.6 



 

Figure 5: Performance comparison results between the proposed approach and 

other related methods based on AUC. 

 

6. CONCLUSIONS  

This paper presented a new technique for prostate cancer detection and 

classification into two classes significant and nonsignificant. This technique 

consists of two stages: preprocessing step for MRI images and prostate cancer 

identification. It has depended on MRI scans that have been developed for diagnosis 

improvement. Three different models have been trained for prostate cancer 

classification. The best is InceptionResNetV2, which has 89.2% accuracy and 

93.6% performance, representing promising results of the proposed new deep 

learning technique. In future work, we will try to apply more deep learning 

techniques to increase the accuracy of the proposed system. In addition, we will use 

multi-modalities to evaluate the PC. 
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