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Abstract—Arbitrary neural style transfer is a vital topic with
great research value and wide industrial application, which
strives to render the structure of one image using the style of
another. Recent researches have devoted great efforts on the
task of arbitrary style transfer (AST) for improving the styl-
ization quality. However, there are very few explorations about
the quality evaluation of AST images, even it can potentially
guide the design of different algorithms. In this paper, we first
construct a new AST images quality assessment database (AST-
IQAD), which consists 150 content-style image pairs and the
corresponding 1200 stylized images produced by eight typical
AST algorithms. Then, a subjective study is conducted on our
AST-IQAD database, which obtains the subjective rating scores
of all stylized images on the three subjective evaluations, i.e.,
content preservation (CP), style resemblance (SR), and overall
vision (OV). To quantitatively measure the quality of AST image,
we propose a new sparse representation-based method, which
computes the quality according to the sparse feature similarity.
Experimental results on our AST-IQAD have demonstrated the
superiority of the proposed method. The dataset and source code
will be released at https://github.com/Hangwei-Chen/AST-IQAD-
SRQE

Index Terms—Arbitrary style transfer (AST), Image quality
assessment (IQA), Content preservation (CP), Style resemblance
(SR), Overall vision (OV), Sparse coding, Sparse feature similar-
ity.

I. INTRODUCTION

A. Background

STYLE transfer is a process that strives to render natu-
ral images with particular style characteristics from one

image (e.g., the style image) while synchronously maintain-
ing the detailed structure information of the content image.
Such unique technique not only builds a bridge between the
computer vision and appealing artworks, but also gets rid
of the dilemma that it would take a long time for a well-
trained artist to draw an image in a special style [1]. As
shown by an example in Fig. 1, style transfer model can
automatically generate a new stylized image based on the
content and style of an image. Additionally, style transfer also
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Fig. 1. An example of style transfer model that generates a stylized image.

plays an important role in many computer vision tasks, such
as person re-identification [2], semantic segmentation [3], and
image reconstruction [4].

As customary, style transfer is commonly cast as the study
of the texture generation [5]. Early works [6] cope with the
texture generation using local statistics or similarity measures
on the pixel values. Recently, the field of Neural Style
Transfer (NST) was ignited by the groundbreaking work of
Gatys et al. [7], which is the process of using Convolutional
Neural Network (CNN) to perform image translation and
stylization. Then, lots of follow-up studies were conducted
on the NST algorithm based on the deep neural network in
order to promote the transfer efficiency and generation effects.
Meanwhile, NST also has rapidly evolved from single-style to
infinite-style models, also known as Arbitrary Style Transfer
(AST) [8]–[20]. With the ability of utilizing one model to
transfer arbitrary artistic style, AST has become a hot topic
on computer vision, which could promote the creation of
artworks and social communication. However, lacking of a
good quantitative evaluation makes it difficult to measure the
merits and drawbacks of the AST algorithms. It is therefore
necessary to study and eventually evaluate the AST images.

B. Style Transfer Techniques

Mathematically, the style transfer model can be described
as a translation process [21]:

IAB ∈ B :MA 7−→B(IA). (1)

where IA is the input content image from a source domain A
to a target domain B, MA 7−→B is a mapping that generates
image IAB ∈ B indistinguishable from style image IB ∈ B on
the target domain given the input source image IA ∈ A.

Following the growth of neural networks, numerous NST
methods have been proposed to study the problem of style
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transfer. According to the optimization ways adopted in the
NST task, the existing NST methods can be divided into two
categories: Image-Optimization-Based Online Neural Methods
[8], [9] and Model-Optimization-Based Offline Neural Meth-
ods [12]–[20]. The former category could produce appeal-
ing stylized results through the iterative image optimization
process, while the latter uses generated models with feed-
forward networks to produce special style patterns. Particu-
larly, considering the efficiency issue, it is more meaningful to
design the Model-Optimization-Based Offline Neural Methods
in practice.

The AST method is one of the Model-Optimization-Based
Offline Neural Methods, which can accept an arbitrary artistic
style as input and produce stylized results in a single feed-
forward network once upon the model is trained. Thus, the
AST has received substantial attention due to the increasing
scientific and artistic values. In below, we review the details
of the AST studies. For more comprehensive introduction,
readers can refer to the survey [1].

1) Non-Parametric Methods: The common idea of the
non-parametric methods [10], [11] is to seek the similarities
between the patches in content and style images and swap
them. Chen et al. [10] realized AST for the first time that
developed a Style-Swap operation to swap the feature patches
of content images with the best matching style feature patches.
Another work by Gu et al. [11] also proposed a patch-based
method considering the matching of both global statistics and
local patches. However, if the structures of content image
and style image are largely different, these methods cannot
efficiently protect the shape with unsatisfactory style patterns.

2) Parametric Methods: The characteristic of these para-
metric methods [12]–[19] is to optimize a target function that
reflects the similarity between the input and stylized images.
These parametric methods [12]–[14], utilize the Gram-based
VGG perceptual loss to produce stylization with a few mod-
ifications. Li et al. [12] proposed a linear transform function
(LST) from content and style features for stylization. Li et
al. [13] performed a pair of feature transforms, whitening and
coloring (WCT), for feature embedding within a pre-trained
encoder-decoder module. Huang et al. [14] proposed a novel
adaptive instance normalization (AdaIN) layer that adjusts the
mean and variance of the content input to match the style input.
Another promising trend in parametric methods is to integrate
attention mechanism into the deep neural network. Yao et al.
[15] first considered multi-strokes with self-attention mech-
anism. Parket al. [16] introduced Style-Attentional Network
(SANet) to match content and style features for achieving good
results with evident style patterns. Denget al. [17] proposed a
multi-adaptation module that takes the global content structure
and local style patterns into account. In addition, Zhang et
al. [18] introduced a multi-modal style transfer (MST) via
efficient graph cuts algorithms, which explicitly considers the
matching of semantic patterns in content and style images.
Inspired by MST, Chen et al. [19] developed a structure-
emphasized multimodal style transfer (SEMST) model, which
can flexibly match the content and the style clusters based on
the cluster center norm.

C. Image Quality Assessment of AST

1) Motivations: Notwithstanding the current state-of-the-
art methods have shown successful stream in style transfer,
arbitrary style transfer image quality assessment (AST-IQA)
has been a long-standing problem and relatively unexplored
in the community. Nevertheless, with the exception of a
few quantitative protocols [22], [23], almost all researches
evaluate the stylization quality in a qualitative way (e.g., by
side-by-side subjective vision comparisons or different user
studies), which suffers from the following limitations. First,
the stylization examples displayed for qualitative comparison
are limited in number and often carefully selected to favor
the cases where the algorithm works well. In other words, the
results of these presentations are not comprehensive enough.
Second, the selected observers often lack sufficient experience
and expertise in art, which makes qualitative evaluation less
convincing. Thus, it is practical and necessary to propose a
reliable metric to quantitatively assess the stylization quality.

2) Challenges: Different from the traditional IQA tasks
[24]–[29] that usually focus on general distortions generated
by various stimuli, the AST-IQA is closely related to aesthetics
and poses serious challenges in both subjective and objective
assessment.

Subjective assessment: The first challenge is how to design
and conduct a human subjective study that can obtain reliable
ground truth labeling on a set of stylized images [30]. To
our best knowledge, there is no publicly available database
for AST-IQA. The most related benchmarks are the non-
photorealistic rendering (NPR) benchmarks [31], [32], which
are used for testing stylization algorithms without human opin-
ion scores. Currently, there is no quality assessment standard
for measuring the performance of style transfer, since the AST-
IQA is a highly subjective task, e.g., different subjects tend to
have various ideas towards the same stylized result, especially
for the style evaluation.

Objective assessment: Once the subjective dataset is ob-
tained, the next challenge is how to design a metric that
can automatically evaluate the perceptual quality of the AST
images closely consistent to human vision. In several image
style transfer works [21], [33], [34], some Full-reference (FR)
metrics (e.g., SSIM [35]) have been used to evaluate the
similarity between the structures of the content and stylized
images. However, strictly speaking, evaluating the AST quality
is not a classic FR-IQA task. Straightforwardly applying the
traditional FR-IQA strategy to the field of style transfer is
problematic, since the stylized image has different content
detailed information with the source and style images, and the
ground truth image is unavailable for the stylized image (i.e.,
completely different with fidelity evaluation in the tradition
IQA tasks). Although the general No-reference (NR) metrics
(e.g., NIQE [28], TCLT [36] and BRISQUE [37]) have made
great progress in the tradition IQA tasks without ground truth,
they are also not applicable to AST-IQA because stylized im-
ages are closely related to aesthetics rather than naturalness. In
addition, it is necessary for AST-IQA to fully take the original
information of content and style images into account. Recent
works target to address these challenges using some objective
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Fig. 2. Taxonomic structure of our source images.

metrics from the perspective of different quality factors. Yeh et
al. [22] proposed a metric with two factors (i.e., effectiveness
and coherence) where the former factor is a measure of the
extent to which the style was transferred, and the latter is
a measure of the extent to which the transferred image is
decomposed into the content objects. Wang et al. [23] first
decomposed the quality of style transfer into three quantifiable
factors, i.e., the content fidelity (CF), global effects (GE) and
local patterns (LP), which cover the main aspects considered
by different types of existing NST methods. However, these
metrics either focus on the limited factors of style transfer
quality (e.g., lacking of fine-grained quality factors), or are
simple in quality pooling, which cannot effectively match the
aesthetic perception of human observers in practice.

D. Overview of Our Work
In this paper, to resolve the above challenges, we carry out

an in-depth investigation for AST-IQA from both subjective
and objective perspectives. With the popularization of art
education, a majority of people with similar background can
make similar perceptual judgments about some basic elements
in artistic painting (e.g., color tone, brush stroke, distribution
of objects, and contents). Benefitted from the above condi-
tions, to address the challenge in subjective assessment, we
decompose the quality of AST into three quality factors that
are easier to understand, namely content preservation (CP),
style resemblance (SR), and overall vision (OV). These quality
factors are assigned own preference labels by participants
according to the knowledge in style transfer, intuition in vision
and feed-back from the surveys. To address the challenge in
objective assessment, as suggested by the recommendation
system [38], we regard the problem as a data-driven modeling
of user preference [39], and conduct quantitative evaluation
of AST-IQA using sparse representation to dig intrinsic repre-
sentation for content and style images. To sum up, the major
contributions of our work are summarized as follows:

Content Style

(b)(a) (c) (d) (e) (g)(f) (h) (i) (j)

Fig. 3. Examples of content and style images in the AST-IQAD database. (a)
Portraits. (b) Building. (c) Nature. (d) Animal. (e) Daily life. (f) Contemporary
art. (g) Modern art. (h) Renaissance art. (i) Chinese art. (j) Others.

1) To carry out in-depth studies on perceptual quality
assessment of AST stylized images from both subjective and
objective aspects, we build a new AST images database named
AST-IQAD, which consists 150 content-style image pairs and
the corresponding 1200 stylized images produced by eight
typical AST algorithms. Each stylized image contains the
subject-rated CP, SR and OV scores. To our knowledge, it is
the first large-scale AST image database with human opinion
scores. Therefore, it can serve as a benchmark to objectively
evaluate the existing AST methods and potentially guide the
design of different AST methods.

2) We proposed a new sparse representation-based image
quality evaluation metric (SRQE) for AST-IQA, which can
quantitatively evaluate the quality factors of CP, SR, and OV.
To be more specific, in the training phase, we learn multi-
scale style and content dictionaries to represent the style char-
acteristic and structure of the stylized images. In the quality
estimation phase, the sparse feature similarities are further
exploited to compute the qualities of CP and SR respectively,
and the OV quality is obtained by combining the SR and CP
qualities. Extensive experiments are conducted on our AST-
IQAD dataset and the experimental results demonstrate the
proposed method can well evaluate the AST quality.

The rest of this paper is organized as follows. Section II
illustrates the details of AST-IQAD. Section III introduces the
proposed method in detail. The experimental results are shown
and discussed in Section IV. Finally, conclusions are drawn in
Section V.

II. AST-IQAD DATABASE

To investigate quality assessment of AST images, we con-
struct a new arbitrary style transfer database (AST-IQAD)
for quality assessment, which includes 1200 stylized images
generated by eight typical AST methods, and conduct a
subjective quality evaluation study on the AST-IQAD database
to capture the human option scores. To our knowledge, it is
the first large-scale database for AST-IQA, and it can provide
a better resource to evaluate and advance state-of-the-art style
transfer algorithms. We will introduce the details of the AST-
IQAD database in the following parts.
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Fig. 4. Examples of AST images produced by different algorithms.

A. Source Images
Since the essence of style transfer is to migrate the color

tone and stroke pattern from the source to target image while
retaining the content structure information of the target image.
To provide deeper and intuitive information, the selected
source images should have clear and reasonable structures.
Thus, we set up a hierarchical taxonomic system (shown in
Fig. 2) for source image (the content images) and target images
(the style images), respectively. Both content and style images
are labeled with five categories.

1) Content Images: We collect 75 high quality images with a
resolution of 512×512 pixels from the NPRgeneral benchmark
[31] and other famous photography websites. According to the
criteria of coverage [31], the content images are comprised
of five categories (i.e., animal, portrait, building, nature, and
daily life) with a wide range of characteristics (e.g., contrast,
texture, edges and meaningful structures). Examples of the
selected content images in the database are shown in Fig. 3.

2) Style Images: We select 126 style images from some
artwork websites and WikiArt. WikiArt is the largest art ency-
clopedia in the visual arts from all over the world. Since these
original style images are not provided with high resolution,
all style images are set to the same resolution of 512 × 512
in line with the content images. These style images cover five
categories including contemporary art, modern art, renaissance
art, Chinese art, and others. Examples of style images in the
AST-IQAD dataset are also shown in Fig. 3.

3) Content-Style Image Pairs: Pairing content images with
appropriate and diverse style images can make the AST results
more aesthetically pleasing. In our work, we provide two
‘Paired’ and ‘Unpaired’ mechanisms [40] for each content
image, in which ‘Paired’ means that the content and the style
images are semantically consistent (e.g., the same source of

Fig. 5. Subjective interface in the experiment.

birds), while ‘Unpaired’ means that the content and the style
images are the representations of different sources (e.g., the
style images may be regular patterns or texture decorations).
In total, we use 75 content images and 126 style images
(including reused style images) to generate 150 content-style
image pairs. Then, eight AST algorithms are conducted on the
content-style image pairs to generate the AST images. More
information of the image pairs can be found in our database.

B. Arbitrary Style Transfer Algorithms

Different with traditional IQA databases that stimulated with
different distortion stimuli, the testing images in our databases
are generated from different AST methods. The eight rep-
resentative AST methods used in the database are listed in
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TABLE I
DESCRIPTION OF AST ALGORITHMS USED IN THE DATABASE.

Types Methods Descriptions

Gram-based
WCT [13] Whitening and coloring transforms
AdaIN [14] Adaptive instance normalization
LST [12] Linear style transfer

Attention-based
AAMS [15] Attention-aware Multi-stroke

style transfer
MANet [17] Multi-adaptation networks
SANet [16] Style-attentional networks

Graph-based MST [18] Multimodal style transfer via
graph cuts

Cluster-based SEMST [19] Structure-emphasized multimodal
style transfer

Quality Choice criterion
Examples Source 

Images√ ×

CP

Ignoring the color and texture
information, the structure and
semantic information of the
content image are more clearly
preserved in the results.

SR

Ignoring the content information,
the color and stroke
characteristics of the style image
are more completely transferred
to the result.

OV

Depending on the type of style
image, the style characteristics
and content structure are better
balanced in the result image.

Content

Style

Fig. 6. Preference criteria for the AST-IQA task.

Table I, including AAMS [15], AdaIN [14], MANet [17],
LST [12], WCT [13], MST [18], SEMST [19], SANet [16].
These algorithms cover a wide variety of techniques, including
Gram-based, Attention-based, Graph-based and Cluster-based
methods. As a result, we can obtain 1200 style-transferred
images from 150 content-style image pairs. As shown by
the examples of style-transferred images in Fig. 4, we have
the following observations: 1) In the Gram-based methods,
LST [12] and AdaIN [14] can well preserve the content
information but may suffer from wash-out artifacts. On the
contrary, WCT [13] is impressive in color and texture making
the “painting taste” more intense while fails to preserve
the main content structures. 2) The attention-based methods
have distinct content structures and rich style patterns but
may produce unpleasing visual artifacts. For example, SANet
[16] and MANet [17] methods produce unpleasing eye-like
artifacts, and AAMS [15] introduces imperceptible dot-wise
artifacts. 3) The stylized results of MST [18] and SEMST
[19] are similar and produce both visible content and proper
stylization.

C. Human Subjective Study

Due to the different rating standards across different ob-
servers and the influence of visual content [41], the subjective
quality scores evaluated by absolute category rating are im-
precise, biased, and inconsistent, while the preference label,
representing the relative quality of two images, is generally

precise and consistent for the task. For this consideration, we
adopt the pairwise comparison (PC) approach which aims to
provide a binary preference label between a pair of stylized
images.

The experiment was carried out in an indoor laboratory
with low ambient illumination calibrating in accordance with
the ITU-R BT.500-13 recommendations [42]. The subjective
software interface (as shown in Fig. 5) is displayed at a 23-inch
true color (32bits) LCD monitor with the screen resolution
of 1920 × 1080 pixels. The ratio of background illumination
behind the display to the image peak luminance is 0.15.
The viewing distance is approximately six times the image
height. In the interface specific to the AST task, participants
are simultanesously shown two stylized images along with a
style-content image pair, and are required to vote on three
preferences for content preservation (CP), style resemblance
(SR), and overall vision (OV). The detailed descriptions of
preference criteria are summarized in Fig. 6.

A total number of 45 subjects aged from 18 to 30, in-
cluding experts and students from the Faculty of Art, and
under-graduate students with experience in image processing,
were participated in the subjective study. For each content-
style image pair producing eight AST results, we have 28
pairwise comparisons in the subjective ranking study. In total,
4200 pairwise comparisons from 150 content-style pairs are
involved in the subjective study. To reduce the possible fatigue
effect, we divide the experiment into three sub-sessions (each
sub-session contains 15 subjects), in which each participant
would take part in one sub-session completing 1400 PC voting.
The content images presented in each sub-session included
most of the scene types, and were displayed in a random order
to reduce the possible memory interference. After completing
every 200 pair comparisons, each subject was encouraged to
look away to relax their eyes and asked to rest for about 15
minutes. Each participant took about six hours (including rest
periods) to complete the whole subjective experiment. As a
result, we can get 63,000 votes on each subjective evaluation.

D. Subjective Data Analysis

1) Global Ranking of AST Algorithms: To derive global
ranking of the AST algorithms from the corresponding PC
results, we adopt the Bradley-Terry [43] model to estimate
the subjective score for each algorithm. The probability that
the i-th method is favored over the j-th method is defined as:

P (i � j) = eui

eui + euj
(2)

where ui and uj are subjective scores prefered for the i-th
and the j-th methods, respectively. Then, the negative log-
likelihood for the B-T scores u ∈ Rnast , where nast is the
number of AST algorithms, can be jointly expressed as:

L(u) = − log

nast∏
i=1

nast∏
j=1,j 6=i

P (i � j)Wij

 (3)

where Wij is the (i, j)-th element in the winning matrix
W ∈ Znast×nast , representing the number of times that the
i-th method is preferred over the j-th method. By setting the
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Fig. 7. Average B-T scores of different AST algorithms at each subjective
evaluation.

CP SR OV

(a) (b) (c)

Fig. 8. Cumulative probability distribution curves of B-T scores at each
subjective evaluation.

derivative of L(u) in Eq. (3) to zero to solve the optimization
problem [44], the final B-T scores u are obtained via zero
mean normalization, served as the ground truth subjective
rating scores.

We can get a B-T score for each AST result in each sub-
session by applying the B-T model. Fig. 7 shows the average
B-T scores of different AST methods for three subjective eval-
uations (i.e., CP, SR, and OV). A higher B-T score indicates
a better performance. From the figure, some interesting obser-
vations could be drawn: 1) The B-T scores of different AST
algorithms show various trends on the subjective evaluations
of CP, SR and OV, which indicate that different methods have
specific advantages. 2) For the CP evaluation, LST [12], which
receives the best ranking, has shown significant advantage
in maintaining structure information over other methods by
a large margin. WCT [13] performs worst in the CP test
due to treating diverse image regions in an indiscriminate
way. 3) For the SR evaluation, SANet [16] performs best on
average, attributed to the attention mechanism that generates
more local style details. However, AAMS [15], which is also
based on self-attention mechanism, does not perform well
because the multi-stroke pattern generates imperceptible dot-
wise artifacts. In addition, WCT [13] shows the competitive
advantage, which indicates the effectiveness of whitening and
coloring transformations. 4) For the OV evaluation, attention-
based methods (e.g., SANet [16] and MANet [17]) rank
top-2 on performance. It is not surprising because attention-
based algorithms pay more attention to those feature-similar
areas in the style image for stylizing a content image region.
Furthermore, we plot the cumulative probability distribution
curves of the B-T scores obtained from all AST results in
Fig. 8. The AST method corresponding to the rightmost curve
performs better because it accumulates higher B-T scores.

2) Correlation of B-T Scores: This part analyzes the correla-
tion of B-T scores between the subjective evaluation of CP and
SR, SR and OV, and CP and OV, as shown in Fig. 9. Taking SR
and CP as an example, the method above (below) the diagonal
indicates better performance in CP (SR), and vice versa. From
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Fig. 9. Correlation of B-T scores between the subjective evaluations of CP
and SR, SR and OV, and CP and OV.
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Fig. 10. Convergence analysis on the number of votes and image pairs at
each subjective evaluation.

the Fig. 9 (a), it is observed that the SANet [16] method has
achieved a better consistency in SR and CP evaluation, and
the WCT [13] method shows excellent performance in SR but
fails to sufficiently maintain the content structure. In addition,
the correlation phenomena observed in Fig. 9 (b) and (c) also
reveal the complex relationship between OV and CP (or SR).

3) Convergence Analysis: To demonstrate that the scale of
the subjective study is large enough to support performance
evaluation, we further analyze the convergence from the per-
spectives of the number of subject votes and images pairs.

Number of votes: We randomly sample λ (λ = 5000,
15000, 25000. . . , 55000) votes from a total of 63,000 voting
results, and calculate the B-T scores for each AST algorithm.
To avoid the possible bias, we repeat this process 1000 times
with different samples of votes. Fig. 10 (a)-(c) show the mean
and standard deviation of B-T scores for each sample on
three subjective evaluations. It is observed that as the number
of votes grows, the B-T scores tend to be stable, which
demonstrates that the number of votes is sufficiently large for
performance evaluation.

Number of images pairs: Similar to the above convergence
analysis, we randomly sample µ (µ = 5, 25, 50, 75, 100,
125) content-style image pairs from our dataset and then
plot the means and the standard deviations in Fig. 10 (d)-
(f). Obviously, as the number of images pairs grows, standard
deviation of B-T Scores decreases, which indicates that the
B-T scores obtained from the subjective study are stable.

Overall, the above two kinds of convergence analysis
demonstrate the reliability of the subjective rating scores.

III. OBJECTIVE QUALITY EVALUATION

In this paper, we propose a new sparse representation-based
image quality evaluation metric (SRQE) for AST-IQA, as
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shown in Fig. 11. The process is composed of two phases:
multi-scale dictionary training and quality estimation. In the
training phase, the multi-scale style and content dictionaries,
learnt from the training databases via sparse representation,
are utilized to build style representation for style images and
capture inherent structures for the content images, respectively.
In the quality estimation phase, the quality of SR (or CP) is
obtained by estimating the sparse feature similarity between
the stylized image and the style (or content) image. Finally,
the OV quality is acquired by combining the SR quality and
CP quality together. In what follows, we elaborate on each
step of the proposed method.

A. Style Feature Extraction

1) Selection of Training Database: As show in Fig. 12 (a),
we re-collected 100 new style images, covering a wide variety
of categories, as training images for dictionary learning. Note
that there is no overlap between these images and the above
collected style images (in the Section II-A) to ensure the com-
plete independence of the training and test data. In addition, to
avoid overfitting, we augment the training database by evenly
partitioning the whole images. The impacts of the number of
image blocks and training database will be discussed in the
following Section IV-B.

2) Gram-Based Feature: The work in [7] demonstrated that
the correlations between convolution responses at the same
layer (i.e., Gram matrices) yielded effective texture synthesis
and can effectively grasp the image style. Additionally, sparse

representation technique shows great prospects in image visual
style analysis [45]. Inspired by this, we construct a style
perception model based on sparse representation, while in-
corporating high-level perceptual information (Gram matrices)
extracted from deep neural network.

In this paper, we resort to compute gram matrices from style
images using a pre-trained VGG network of the state-of-the-
art full-reference IQA model (DISTS) [46] which has superior
performance in evaluating texture similarity. Assumed that the
feature map of a sample style image Is at layer l of DISTS
[46] is denoted as Fl(Is) ∈ RC×H×W , where C is the number
of channels, and H and W represent the height and width of
the feature map, the Gram-based representation is computed
from the feature map Fl(Is)

′ ∈ RC×(HW ) aggregated from
the Fl(Is) ∈ RC×H×W :

G
(
Fl(Is)

′)
=
[
Fl(Is)

′] [
Fl(Is)

′]T (4)

In the implementation, we use the first to fifth VGG
network layers of DISTS [46] to produce a set of Gram-
based representations at different layers, namely {Gl ∈
RC×C , l = 1, 2, . . . , L}, where L=5 denotes the highest
layer and C ∈ {64, 128, 256, 512, 512} correspond to the
numbers of feature maps at each layer.

After the above processing, each Gram-based representation
then generates a Gram-based style feature vector gl ∈ RC×1
through averaging each row, described as:

gl = Gl · xl. (5)

xl = [xl1, x
l
2, . . . , x

l
C
]
T
. (6)
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(a) (b)

Fig. 12. Some of the images of the training databases used in the paper. (a)
Style training database. (b) Content training database.

where xl1 = . . . = xlC = 1/C
Finally, numerous style feature vectors at the same layer

extracted from different style images are used to form a
style matrix SM. As a result, we can obtain five differ-
ent style matrices (corresponding to five layers) SMl =
[{gl}1, {gl}2, . . . , {gl}N l ] ∈ RC×N l

. All style matrices will
be used for the subsequent style dictionary learning.

3) Multi-Scale Style Dictionary Learning: Using the above
style matrices SMl = [{gl}1, {gl}2, . . . , {gl}N l ] ∈ RC×N l

as input, we learn multi-scale style dictionary SDl by seeking
a sparse representation for each style feature vector gl under
specific sparsity constraint τ . Each style sub-dictionary SD =
[sd1, sd2, . . . , sdU ] ∈ RC×U contains U basic elements.
Formally, the process of multi-scale style dictionary learning
can be formulated as:〈

SDl, α̂i

〉
= argmin

N∑
i=1

∥∥∥{gl}i − SDlαi

∥∥∥2
2

s.t. ∀i, ‖αi‖0 ≤ τ
(7)

where ‖·‖2 is the l2-norm operator, ‖·‖0 denotes the l0-norm
that counts the number of non-zero elements in a vector, and
αi is the sparse coefficient vector of {gl}i. Typically, both
SDl and αi are unknown in this stage. We resort to the
online dictionary learning (ODL) algorithm implemented in
the SPArse Modeling Software [47] to solve this NP-hard
problem. Details of dictionary learning can refer to [47].

B. Content Feature Extraction

1) Selection of Training Database: Since the essence of the
proposed content evaluation model is to restore the structure
information of the source content images and stylized images
based on dictionary learning, we only select natural images to
construct the content dictionary. Refer to [48], we randomly
select ten natural images from the TID 2013 [49] database and
NPRgeneral [31], which have different scenes in the images,
as shown in Fig. 12 (b).

2) DoG Response Feature: As known, human visual per-
ception is highly sensitive to the edge information, the major
objects in the painting emphasized by the artists often con-
tain distinct edges in most cases [39]. Intuitively speaking,
the outline of the main objects largely reflects the content
information of artworks. Inspired by this, the edge information,
as the significant component in painting content, needs to be
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Fig. 13. An example of DoG multi-scale space.

deeply investigated for evaluating the CP quality. Furthermore,
an outstanding painting will be appreciated by humans in
local details and global perception. Thus, it is necessary to
utilize multi-scale strategy to better describe the content of
the painting from coarse to fine level of detail [50]. As shown
in Fig. 13, the multi-scale Difference of Gaussian (DoG)
is applied to represent the content feature [51], which can
properly simulate the receptive field of retinal cells. First, the
DoG signals, DoG(x, y), at different scales can be computed
by:

DoG(x, y) = |Rσ,kσ(x, y)⊗ I(x, y)| . (8)

where I(x, y) denotes the pixel location (x, y) of the input
image, the symbol ⊗ denotes the convolution operation, and
Rσ,kσ(x, y) is defined as the difference between two Gaussian
kernel with nearby scales σ and kσ:

Rσ,kσ(x, y) =
1

2πσ2
exp(−x

2 + y2

2σ2
)

− 1

2πk2σ2
exp(−x

2 + y2

2k2σ2
)

(9)

where σ and k are used to control the scales of DoG. Refer
to [48], we set k = 1.6, and σ ∈ {0, 1, 1.6, 2.56, 4.096} in
the experiment. Here, σ = 0 denotes the original scale.

Once the DoG signals at the current octave are computed,
the last scale-space image was selected as the new input and
was down-sampled by a factor of two to repeat the above
process, thereby producing a set of DoG signals with a variety
of octaves and scales, namely {DoGz,o(x, y)}, where z ∈
{1, . . . , Z} denotes the z-th scale, and o ∈ {1, . . . , O} denotes
o-th octave.

After the above processing, each DoG signal is partitioned
into numerous patches with size of 8 × 8, subtracted by the
mean value. In the implementation, 1000 overlapped patches
having rich details and structures are selected as training sam-
ples. Then, these patches are vectorized into column vectors
to form a content matrix CM, CM = [y1, . . . ,yk] ∈ RT×K ,
based on which the subsequent overcomplete content dictio-
nary is learned. Each patch yk ∈ RT×1 contains T pixels and
k = 1, . . . ,K. Here, K = 1000.

3) Multi-Scale Content Dictionary Learning: Similar to the
above multi-scale style dictionary learning, the multi-scale
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content dictionary CDz,o can be learned from multi-scale
content matrices CMz,o. Each content sub-dictionary CD =
[cd1, cd2, . . . , cdU ] ∈ RC×U contains V basic elements. In
the experiment, we set V = 256. Similarly, the process of
multi-scale content dictionary learning can be formulated as:〈

CDz,o, β̂i

〉
= argmin

K∑
i=1

‖yi −CDz,oβi‖22

s.t. ∀i, ‖βi‖0 ≤ τ
(10)

where βi is the sparse coefficient vector of yi. Note that we
also apply the ODL algorithm to solve Eq. (10)

C. Feature Similarity Measurement

Through the above efforts, we obtain two types of over-
complete multi-scale dictionaries, containing U and V basic
atoms as the column vectors in SDl and CDz,o, respectively.
Thus, each style feature vector gl (or content patch yk) can
be sparsely represented as a linear combination of basic atoms
contained in SDl (or CDz,o).

1) Style Sparse Coefficients Estimation: Given the testing
stylized image It and style image Is, we can obtain two
Gram-based representations using the DISTS network, denoted
as Gl

t ∈ RC×C and Gl
s ∈ RC×C . Then, the style sparse

coefficient vectors can be estimated by a weighted linear
combination of previously learnt dictionary elements, i.e.,

sl = Gl
s × (SDl)

+
(11)

tsl = Gl
t × (SDl)

+
(12)

where (SDl)
+

denotes the generalized inverse matrices of
(SDl).

2) Content Sparse Coefficients Estimation: For the testing
stylized image It and the source content image Ic, after the
same processing steps as in the training phase, we can obtain
patch vectors yz,oc from Ic and its corresponding patch vectors
yz,ot from It. Similarly, the content sparse coefficient c and tc
can be computed by:

cz,o = yz,oc × (CDz,o)
+ (13)

tcz,o = yz,ot × (CDz,o)
+ (14)

where (CDl)
+

denote the generalized inverse matrices of
(CDl).

3) Sparse Feature Similarity Measure: From the above
estimation phase, we generate the sparse coefficients
sl, cz,o, tsl, tcz,o on style, content and stylized images. Con-
sidering that these sparse coefficients are represented as a
linear combination of basis vectors, meaning that the similarity
between the style feature vectors or content patches can be
directly measured using their sparse coefficient vectors. Thus,
the style and content similarities are respectively defined as:

SSl
[
Gl
s,G

l
t

]
=

2
〈
sl, tsl

〉
+ η

‖sl‖2 ·
∥∥tsl∥∥

2
+ η

(15)

CSz,o [yz,oc ,yz,ot ] =
2 〈cz,o, tcz,o〉+ η

‖cz,o‖2 · ‖tc
z,o‖2 + η

(16)

where 〈·〉 calculates the inner product, η is a constant with
a small value added to prevent the denominator to be zero.
The SS measures the style similarity between the style and
the stylized image, and CS measures the content similarity
between the content and the stylized image.

D. Final Quality Pooling

To measure the final quality between a stylized image and
its corresponding content and style images, we need to pool
the above spare feature similarities into a single score. In our
pooling strategy, we first pool the style and content sparse
feature similarities into SR and CP scores across all scales
or octaves, and then combine the scores to measure the OV
quality score. First, the SR quality score Qstyle is defined as:

Qstyle =

L∏
l=1

(SS)
l (17)

Then, the CP quality score Qcontent is defined as:

Qcontent =
1

Z2

O∏
o=1

(
Z∑
z=1

(CS)
z,o

)
(18)

where Z and O denote the number of scales and octaves.
Finally, the OV quality Qoverall is calculated by combining

Qstyle and Qcontent into a score:

Qoverall = (Qcontent)
ω1 · (Qstyle)

ω2 (19)

where the parameters ω1 and ω2 are used to adjust the relative
importance of the two portions. In this paper, we set ω1

= 0.4 and ω2 = 0.6 based on the performance analyses in
Section IV-C. Of course, there is a large room to manipulate
the importance weights for better quality prediction. A more
meaningful practice may be to explore the proper combination
of Qstyle and Qcontent that best fits human subjective study.

IV. EXPERIMENTAL RESULTS

A. Evaluation Criteria

Similar to [52]–[54], four criteria are adapted to measure
the performance of different methods: the Spearman Rank
order Correlation Coefficient (SRCC), Kendall Rank-order
Correlation Coefficient (KRCC), Pearson Linear Correlation
Coefficient (PLCC), and Hit Rate (HITR). Specifically, the
SRCC and KRCC measure the prediction monotonicity. PLCC
is utilized to evaluate the prediction linearity after fitting a
five-parameter logistic function:

f(x) = κ1

(
1

2
− 1

1 + exp(κ2(x-κ3))

)
+κ4 · x+κ5 (20)

where x and f(x) represent the objective and mapped scores
respectively, and {κi|i = 1, 2, . . . , 5} are the five parameters
to be fitted. Additionally, HITR can measure the classification
accuracy [52], defined as:

HITR = Ri/Rn (21)

where Ri denotes the number of correct judgments in PC, and
Rn is the total number of PC. Considering that the subjective
experiments are based on PC within the same group of images,
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TABLE II
PERFORMANCE COMPARISON OF CP AND SR FOR THE PROPOSED METHOD WITH DIFFERENT TRAINING DATABASES.

Evaluation Dictionary Database Training images Training samples for each sub-dictionary SRCC KRCC HITR PLCC

CP

Dict. I TID 2013 10 1000 (patches) 0.7906 0.6773 0.8376 0.8637
Dict. II NPRgeneral 10 1000 (patches) 0.7903 0.6783 0.8383 0.8637
Dict. III TID 2013+NPRgeneral 40 4000 (patches) 0.7900 0.6774 0.8379 0.8638
Dict. IV Proposed 10 1000 (patches) 0.7921 0.6807 0.8393 0.8635

SR
Dict. I TAD66K-art 100 400, 400, 900, 1600, 1600 (vectors) 0.6034 0.4827 0.7386 0.6236
Dict. II TAD66K-art 400 1600, 1600, 3600, 6400, 6400 (vectors) 0.6028 0.4816 0.7378 0.6227
Dict. III Proposed 100 400, 400, 900, 1600, 1600 (vectors) 0.6062 0.4886 0.7412 0.6278
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so that the ground truth (B-T scores) are only meaningful
within the same group. Therefore, these criteria are computed
respectively for each group from the same source image.
Then, the average value of all 150 groups is reported as the
final performance score. A superior metric should have higher
criteria values (with a maximum of 1).

B. Parameter and Training Database Setting

Since the fundamental of proposed quality metrics (i.e.,
Qstyle, Qcontent and Qoverall ) is the dictionary operating in a
multi-scale framework with several parameters, it makes sense
to explore the influences of parameters and training databases

on the performance evaluation. Therefore, this subsection first
tunes the multi-scale dictionaries parameters, and then changes
the type and number of images in the training databases.

1) Parameters in Qcontent: For multi-scale content dictio-
nary, we first visualize the influence of different combinations
of scale and octave with at most 10 scales and 5 octaves
on the performance of Qcontent in Fig. 14. It shows that the
performance is greatly affected by the number of octaves while
slightly affected by the number of scales. The reason is that
the CP evaluation is more concerned with semantic structural
changes rather than detail fidelity. As shown in the Fig. 13,
octave adjustment causes large structural changes, while scale
adjustment mainly affects small detail information. Here, we
set the number of octaves O = 4 and the number of scales Z
= 3, which can achieve the best performance. In addition, we
show the performance of tuning the patch size and the number
of basis vectors in Fig. 15. From the results, we can observe
that the optimal performance is obtained by selecting patch
size 6 and the number of basis vectors 256. Therefore, we set
T = 36 (patch size = 6) and V = 256 in this work.

2) Parameters in Qstyle: For multi-scale style dictionary,
since the Gram-based style feature vector of each layer is
fixed, we only test the effect of the number of basis vectors.
As shown in Fig. 16, the evaluation accuracy varies relatively
slight over the numbers of basis vectors, which indicates that
the Qstyle does not highly depend on the training configura-
tions. In this paper, we set U ∈ {256, 256, 512, 1024, 1024}.

3) Training database: In addition to the parameters in the
dictionary, the selection of the training database is also worth
analyzing, which can validate whether the performance is
dependent on a particular training database. To this end, we
train several overcomplete content and style dictionaries based
on different training images respectively. The training images
are selected from the TID 2013 [49], NPRgeneral [31], and
TAD66K [55]. The implementation details and performance
results are listed in Table II. Note that the number of train-
ing samples is maintained consistent for each content sub-
dictionary, while the training samples (i.e., Gram-based style
feature vectors) of style sub-dictionaries are set to a different
number to match the size of the Gram matrix. The results
represent that the performance with different dictionaries are
quite similar. This demonstrates that the proposed method is
insensitive to the selection of the training databases.
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TABLE III
THE IMPACTS OF DIFFERENT POOLING STRATEGY ON THE PERFORMANCE OF THE PROPOSED METHOD.

Pooling
strategy

Multiplication (c, d)=(1,0) Summation (c, d)=(0,1) Combination (w1, w2, w3, w4)=( 0.4, 0.6, 0.4, 0.6)
(w1, w2) (w3, w4) (c, d)

(0.5,0.5) (0.6,0.4) (0.8,0.2) (0.4,0.6) (0.2,0.8) (0.5,0.5) (0.6,0.4) (0.8,0.2) (0.4,0.6) (0.2,0.8) (0.5,0.5) (0.6,0.4) (0.8,0.2) (0.4,0.6) (0.2,0.8)
SRCC 0.5980 0.5666 0.5053 0.6077 0.4495 0.5637 0.5397 0.4892 0.5990 0.4894 0.5985 0.5997 0.5984 0.5968 0.6046
KRCC 0.4746 0.4493 0.3920 0.4855 0.3563 0.4502 0.4254 0.3792 0.4760 0.3989 0.4779 0.4793 0.4784 0.4754 0.4836
HITR 0.7362 0.7243 0.6964 0.7410 0.6776 0.7248 0.7124 0.6900 0.7367 0.6938 0.7374 0.7381 0.7376 0.7360 0.7400
PLCC 0.6668 0.6500 0.5792 0.6510 0.4704 0.6445 0.6168 0.5593 0.6561 0.5277 0.6581 0.6584 0.6578 0.6575 0.6551

C. Analysis of Pooling Methods

As mentioned above, there is a complex relationship be-
tween OV and other quality factors (e.g., Qstyle and Qcontent).
Hence, it is meaningful to analyze the impacts of different
pooling methods on the performance results. In this connec-
tion, we refer to the experimental settings [56] making a
modification to Equation (19):

Qoverall = c× (Qcontent
ω1)× (Qstyle

ω2)+

d× (ω3Qcontent + ω4Qstyle)
(22)

where c and d are utilized to balance the significance of
the summation and multiplication pooling items, ω1, ω2, ω3

and ω4 are set to balance the importance of different quality
factors. The performance of the three pooling strategy (i.e.,
multiplication(c=1, d=0), summation (c=0, d=1) and combi-
nation) are listed in the Table III. From the results, we can
find that both multiplication and summation strategies achieve
the optimal performance when (ω1, ω2) and (ω3, ω4) are set as
(0.4, 0.6), but the performance of multiplication is better than
that of summation. Based on the optimal weight setting for
the quality factors, the combination pooling strategy obtains
similar results among the five (c, d) combinations. In summary,
different pooling strategies generate significant impacts on the
performance, in contrast, the multiplication pooling strategy
with parameter (ω1=0.4, ω2=0.6) obtains the optimal results.
As a consequence, we employ this multiplication pooling
strategy as the final pooling method in this work.

D. Performance Test on Different Quality Factors

For the performance test on the CP, SR and OV quality
evaluations, we compare the proposed SRQE with existing
IQA metrics, including two categories: (1) Fourteen state-of-
the-art general-purpose FR-IQA metrics: SSIM [35], FSIM
[26], MS-SSIM [57], IW-SSIM [25], Peak Signal-to-Noise
Ratio (PSNR), MAD [58], VIF [24], VSI [27], GMSD [59],
UQI [60], IFC [61], RFSIM [62], DISTS [46] and LPIPS
[63]. (2) Eight state-of-the-art general-purpose NR-IQA met-
rics: NIQE [28], TCLT [36], BMPRI [64], BLIINDS-II [65],
BRISQUE [37], UNIQUE [66], WaDIQaM [67], TReS [68].
For the traditional learning-based models, we randomly divide
the each individual dataset into two non-overlapping subsets
(80% for training and 20% for testing). Then, we resort to
the support vector regression (SVR) to train the models and
report the average results after training-testing process 1000
times. For the deep learning-based methods, we divide the
data set into five fixed subsets with non-overlapping contents,

and use four subsets for training and one subset for testing
at each time to ensure that each image has been tested. For
the methods that are training-free or require specific variance
of human opinions, we directly report the performance results
using the pre-trained model.

1) Performance Test on CP: Although the evaluation of
CP between the stylized images and source content images
is not a classic FR-IQA problem, since the stylized im-
age targets to maintain the structure information of source
content image, the structure measurement module commonly
included in existing FR-IQA methods is relatively suitable
for comparison. As a consequence, we compare the proposed
Qcontent with the state-of-the-art general-purpose FR-IQA
metrics. In addition, we also utilize the NR-IQA method to
establish the functional mapping from the stylized images to
the CP quality scores. Each content subset conducts the same
training-testing strategies described above. The performance
compassion results are listed in Table IV, where the top
three metrics are highlighted in bold. It can be seen that
the traditional general-purpose FR-IQA metrics perform better
than NR-IQA metric. It is reasonable since the purpose of
CP evaluation is to measure the content structure similarity
between the stylized and the original content images. Thus,
ignoring the content image and directly extracting features
from the stylized image for regression not only lacks enough
useful information, but also has no practical significance. Our
Qcontent achieves the best performance for all dataset on
the three most important ranking-related performance criteria:
SRCC, KRCC and HITR, but is inferior to MS-SSIM [57]
on PLCC. The reason is that MS-SSIM [57] also applies the
multi-scale feature extraction strategy to simulate the visual
characteristics of humans appreciating art works from different
scales.

2) Performance Test on SR: To our best knowledge, there
is no related methods for evaluating the quality of stylized
images on SR. Although SR evaluation cannot be taken as
a classical FR/NR-IQA issue, we are curious about how the
performance of these methods in AST-IQA task, especially
given the lack of comparison methods. Thus, we report the
performance comparison results in Table V. It is clear that
the above FR-IQA methods are not suitable for quantitative
evaluation of SR, because of the difference in contents between
the stylized images and the style images. DISTS [46] obtains
the better performance among these FR-IQA metrics, since
it is designed to evaluate structural and texture (related to
style) similarities, allowing for slight pixel misalignment. In
addition, although the NR-IQA method can map the stylized
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TABLE IV
PERFORMANCE COMPARISON ON CP EVALUATION. ‘*’ INDICATES THAT THE METHOD IS RE-TRAINED ON THE AST-IQAD.

Method
Portrait Building Nature Animal Daily Life All

SRCC KRCC HITR PLCC SRCC KRCC HITR PLCC SRCC KRCC HITR PLCC SRCC KRCC HITR PLCC SRCC KRCC HITR PLCC SRCC KRCC HITR PLCC

NR-IQA

NIQE 0.0490 0.0290 0.5145 0.0258 0.0565 0.0623 0.5310 0.0376 0.0534 0.0699 0.5357 0.0899 0.0506 0.0446 0.5226 0.0529 0.0907 0.0687 0.5357 0.1158 0.0601 0.0549 0.5281 0.0644
TCLT 0.2546 0.1957 0.5964 0.4184 0.2941 0.2344 0.6131 0.3564 0.3009 0.2252 0.3340 0.6119 0.2398 0.1800 0.5881 0.3812 0.1131 0.0643 0.5321 0.2986 0.2405 0.1799 0.5721 0.3577

BMPRI* 0.4887 0.3942 0.6966 0.5327 0.4549 0.3485 0.6752 0.5678 0.3672 0.2741 0.6373 0.4255 0.3927 0.2916 0.6452 0.4874 0.4608 0.3414 0.6725 0.5631 0.4396 0.3347 0.5274 0.6678
BLIINDS-II* 0.3912 0.3225 0.6623 0.4455 0.5610 0.4397 0.7201 0.6399 0.5066 0.3961 0.6970 0.5973 0.4626 0.3609 0.6814 0.5418 0.5660 0.4467 0.7206 0.6983 0.5491 0.4361 0.7180 0.6493
BRISQUE* 0.4276 0.3387 0.6701 0.4734 0.4633 0.3728 0.6868 0.4872 0.5033 0.4033 0.7025 0.5615 0.3467 0.2667 0.6320 0.4179 0.4987 0.3921 0.6950 0.5330 0.5557 0.4415 0.7202 0.6247

FR-IQA

SSIM 0.6282 0.5178 0.7607 0.7314 0.6664 0.5537 0.7750 0.7639 0.5884 0.4781 0.7381 0.7315 0.6460 0.5306 0.7643 0.7444 0.7561 0.6164 0.8060 0.8450 0.6570 0.5393 0.7688 0.7632
FSIM 0.7141 0.5895 0.7952 0.7688 0.7154 0.5947 0.7976 0.7738 0.6642 0.5496 0.7750 0.7861 0.6924 0.5688 0.7833 0.7800 0.7903 0.6668 0.8321 0.8776 0.7153 0.5939 0.7967 0.7973

MS-SSIM 0.7923 0.6706 0.8357 0.8613 0.7809 0.6637 0.8321 0.8716 0.7349 0.6070 0.8024 0.8557 0.7504 0.6404 0.8190 0.8597 0.8208 0.7000 0.8488 0.9163 0.7759 0.6563 0.8276 0.8729
IW-SSIM 0.7736 0.6564 0.8286 0.8658 07272 0.6063 0.8048 0.8522 0.6953 0.5714 0.7857 0.8357 0.6984 0.5760 0.7869 0.8296 0.7748 0.6477 0.8226 0.8866 0.7339 0.6115 0.8057 0.8540

PSNR 0.4150 0.3296 0.6655 0.5268 0.5389 0.4270 0.7119 0.6447 0.4570 0.3613 0.6798 0.5806 0.5860 0.4780 0.7381 0.6917 0.6766 0.5450 0.7690 0.7660 0.5347 0.4282 0.7129 0.6420
MAD 0.6867 0.5705 0.7857 0.7673 0.7227 0.6117 0.8048 0.8073 0.6793 0.5616 0.7798 0.8031 0.7369 0.6117 0.8048 0.8246 0.7834 0.6547 0.8250 0.8616 0.7218 0.6020 0.8000 0.8128
VIF 0.7384 0.6088 0.8060 0.7843 0.6248 0.5061 0.7536 0.7455 0.5909 0.4640 0.7321 0.7505 0.6769 0.5424 0.7714 0.7567 0.7214 0.5828 0.7917 0.8137 0.6705 0.5408 0.7710 0.7701
VSI 0.5960 0.4793 0.7417 0.7295 0.7114 0.5875 0.7929 0.7779 0.7290 0.5926 0.7952 0.8044 0.6706 0.5473 0.7726 0.8128 0.7480 0.6257 0.8119 0.8513 0.6910 0.5665 0.7829 0.7952

GMSD 0.5941 0.4846 0.7440 0.6587 0.5801 0.4589 0.7298 0.6156 0.6047 0.4878 0.7440 0.6719 0.5527 0.4401 0.7190 0.6676 0.7422 0.6167 0.8071 0.8014 0.6148 0.4976 0.7488 0.6830
UQI 0.3682 0.2771 0.6405 0.4520 0.5323 0.4384 0.7179 0.6610 0.3949 0.2895 0.6440 0.4883 0.5045 0.3969 0.6976 0.5998 0.5265 0.4137 0.7060 0.6109 0.4653 0.3631 0.6812 0.5624
IFC 0.7411 0.6112 0.8071 0.7945 0.6601 0.5395 0.7702 0.7597 0.6008 0.4760 0.7381 0.7541 0.6730 0.5401 0.7702 0.7589 0.7214 0.5805 0.7905 0.8179 0.6793 0.5494 0.7752 0.7770

RFSIM 0.5878 0.4797 0.7405 0.5645 0.6485 0.5249 0.7619 0.6080 0.5606 0.4495 0.7238 0.5468 0.6932 0.5520 0.7750 0.6538 0.7802 0.6546 0.8238 0.7234 0.6541 0.5321 0.7650 0.6193
DISTS 0.6323 0.5084 0.7548 0.7409 0.7773 0.6611 0.8298 0.8765 0.6389 0.5020 0.7500 0.7939 0.6734 0.5380 0.7679 0.8265 0.7795 0.6549 0.8262 0.8695 0.7003 0.5729 0.7857 0.8215
LPIPS 0.6625 0.5383 0.7714 0.7600 0.7166 0.5863 0.7940 0.7954 0.7325 0.6305 0.8143 0.7931 0.6728 0.5463 0.7714 0.7792 0.7935 0.6633 0.8333 0.8721 0.7156 0.5929 0.7969 0.7999

AST-IQA Qcontent 0.7871 0.6707 0.8357 0.8280 0.7953 0.6973 0.8464 0.8788 0.7528 0.6285 0.8131 0.8507 0.7750 0.6617 0.8298 0.8517 0.8502 0.7454 0.8714 0.9084 0.7921 0.6807 0.8393 0.8635

TABLE V
PERFORMANCE COMPARISON ON SR EVALUATION. ‘*’ INDICATES THAT THE METHOD IS RE-TRAINED ON THE AST-IQAD.

Criteria
Methods NR-IQA FR-IQA AST-IQA

NIQE TCLT BMPRI* BLIINDS-II* BRISQUE* RFSIM IFC MAD VIF SSIM IW-SSIM MS-SSIM LPIPS DISTS Qstyle

SRCC 0.3845 0.2019 0.4479 0.4162 0.4885 0.0016 0.1008 0.2769 0.1744 0.3093 0.1243 0.3252 0.2471 0.4233 0.6062
KRCC 0.3075 0.1396 0.3483 0.3301 0.3952 0.0001 0.0725 0.2146 0.1196 0.2300 0.0978 0.2425 0.1955 0.3327 0.4886
HITR 0.6538 0.5702 0.6744 0.6641 0.6975 0.5002 0.5360 0.6076 0.5590 0.6145 0.5469 0.6202 0.5971 0.6631 0.7412
PLCC 0.4295 0.2183 0.5169 0.4651 0.5254 0.0135 0.0890 0.3389 0.1634 0.3270 0.1314 0.3925 0.2608 0.4654 0.6278

images to SR quality scores with powerful learning machines,
it lacks practical relevance. In addition, it is also doubtful
whether the NR-IQA method can maintain high performance
when testing more diverse images that are not included in
training. Compared with other methods, our Qstyle achieves
the best performance, since it builds a strong association (e.g.,
style pattern and brush stoke) with AST.

3) Performance Test on OV: Since there is no ground
truth for stylized image to directly compare on OV evalu-
ation, instead of using the FR-IQA methods, we utilize the
CP/SR quality score of the FR-IQA method for performance
comparison, which is beneficial to analyze and explore the
contribution of the CP/SR quality components on the overall
quality OV. Additionally, we also perform NR-IQA on the OV
quality evaluation task, which will be useful to understand how
challenging this task is for the existing NR-IQA metrics. The
performance comparison results of all methods are shown in
Table VI. In the table, the subscript ”SR/CP” represents the
quality scores generating from the SR/CP evaluation. From
the results, we observe that: 1) All CP and SR quality score
generated by vanilla FR metrics have weak correlation with
the overall quality OV. It indicates that OV quality evaluation
is a complex process where multiple factors need to be con-
sidered. 2) The learning-based NR-IQA methods show good
performance results, in particular, transformer-based TReS
[68] achieves competitive results with our Qoverall. Obviously,
utilizing deep neural network to perform AST-IQAD task
is a promising way. 3) It can be seen that Qoverall has a
higher performance than Qstyle or Qcontent alone, which also
demonstrates the effectiveness of our pooling strategy. As an
unsupervised learning method based on sparse representation,
our Qoverall can stably evaluate OV quality scores and achieve
the best performance on three criteria via properly combining
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Fig. 17. Statistical significance analyses. (a)-(c): AUC values of different
method on CP, SR, and OV evaluation, respectively. (e)-(f): two-sample t-
test results (statistical significance matrix) on CP, SR, and OV evaluation,
respectively.

the Qstyle and Qcontent. Actually, as discussed in Section IV-
C, there still leaves a large space for improving the evaluation
accuracy via proper importance weights and combination
strategies.

E. Statistical Analysis

In the above experiments, the proposed SROE demonstrates
a better correlation between the prediction scores and ground
truth. We further adopt the hypothesis testing approach based
on t-statistics [69] to prove that our SRQE is statistically better
than other metrics. Specifically, we first calculate the area
under curve (AUC) values (i.e., the area covered by receiver
operating characteristic (ROC)) with 95% confidence interval
(CI) for all image pairs (from PC in the subjective study).
A higher value of AUC indicates better performance of the
method. Next, we carry out the two-sample t-test between the
pair of AUC values with 95% CI. We show the results of
the AUC values and statistical significance of difference in
Fig. 17, where the white/gray/black square manifests that the
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TABLE VI
PERFORMANCE COMPARISON ON OV EVALUATION. ‘*’ INDICATES THAT

THE METHOD IS RE-TRAINED ON THE AST-IQAD. THE SUBSCRIPT
”SR/CP” OF FR-IQA METHODS REPRESENT THE QUALITY SCORE

GENERATING FROM THE SR/CP EVALUATION.

Type Method SRCC KRCC HITR PLCC

NR-IQA

NIQE 0.2615 0.2078 0.6036 0.3041
TCLT 0.0189 0.0177 0.5081 0.0601

BMPRI* 0.3705 0.2832 0.6413 0.4739
BLIINDS-II* 0.3259 0.2467 0.6228 0.4201
BRISQUE* 0.4124 0.3179 0.6577 0.4685
UNIQUE 0.2038 0.1507 0.5776 0.3063

WaDIQaM* 0.3779 0.2840 0.6421 0.4183
TReS* 0.5993 0.4816 0.7398 0.6779

FR-IQA

UQICP 0.3252 0.2365 0.6176 0.3626
IFCCP 0.3976 0.2955 0.6483 0.5015
VIFCP 0.3970 0.2927 0.6469 0.5032
VSICP 0.3714 0.2744 0.6369 0.4477

PSNRCP 0.3275 0.2386 0.6188 0.3791
MADCP 0.3482 0.2501 0.6250 0.4122
SSIMCP 0.3495 0.2530 0.6267 0.4268
SSIMSR 0.1890 0.1512 0.5757 0.1930
FSIMCP 0.3749 0.2773 0.6388 0.4399
GMSDCP 0.2814 0.2062 0.6033 0.3250
RFSIMCP 0.3585 0.2616 0.6300 0.2968
RFSIMSR 0.0254 0.0209 0.5095 0.0204
DISTSCP 0.3626 0.2681 0.6340 0.4875
DISTSSR 0.4695 0.3693 0.6829 0.5169

MS-SSIMCP 0.4258 0.3201 0.6598 0.5174
MS-SSIMSR 0.2625 0.2063 0.6033 0.3334
IW-SSIMCP 0.4177 0.3089 0.6550 0.5258
IW-SSIMSR 0.1238 0.0988 0.5486 0.1285

AST-IQA
Qcontent 0.4520 0.3439 0.6724 0.5163
Qstyle 0.2313 0.1779 0.5886 0.2310
Qoverall 0.6077 0.4855 0.7410 0.6510

StyleContent (α = 0) α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1
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Fig. 18. Robustness analysis of the proposed Qstyle and Qcontent in content
and style trade-off application.

method in row is significantly better/indistinguishable/worse
than the method in column. It can remark from the results that
our SRQE performs significantly better than all competitors,
indicating the superiority of our SRQE method.

Style1 Style2Content

2：12：0 2：2 1：2 0：2
Style1 Style2

(a) (b)

Fig. 19. Robustness analysis of the proposed Qstyle and Qcontent in style
interpolation application.

F. Robustness Analysis

In this subsection, we present the robustness of our proposed
Qstyle and Qcontent in two AST applications (i.e., content-style
trade-off and style interpolation) which are included in many
AST methods.

1) Content-style trade-off: This application can adjust the
degree of stylization. Three style degree groups with smooth
changes generated by MANet [17] are presented in Fig. 18.
When α = 1, the fully stylized image is obtained. Fig. 18 (a)-
(b) present Qcontent and Qstyle results with different degrees
of stylization. It can be seen that as α increases from 0 to
1, the Qcontent (or Qstyle) value is consequently decreasing
(or increasing) gradually which indicates that our Qstyle and
Qcontent can effectively capture the changes in the style
patterns and content structure of the image.

2) Style interpolation: This application is to merge multiple
style images into a single generated result. Here, we also
utilize MANet [17] to generate a group of stylized images
with different interpolations, and then use Qstyle (or Qcontent)
to evaluate SR (or CP) of the stylized images. As shown in
the Fig. 19 (a), with the continuous decline of the weights for
the specific styles, the Qstyle value is consequently decreasing
gradually which indicates that our Qstyle can clarify style
characteristics and accurately evaluate SR even under the
interference of multiple styles. Fig. 19 (b) presents that our
Qcontent predicts a set of slowly decreasing quality values as
the style changes from Style1 (Line drawing) to Style2 (Xieyi).
It is reasonable because the Line drawing pays more attention
to the maintenance of structure and shape than Xieyi. The
results of the above predictions prove the robustness of our
method.

G. Ranking Capability

1) Performance Test on Rank-n accuracy: To comprehen-
sively compare the performance of the IQA metrics, we also
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Fig. 20. Rank-n accuracy on the three quality factors.

A Content/style

Method SEM LST MST MANet AdaIN SANet AAMS WCT
SR* 1 2 3 4 5 6 7 8
OR* 2 4 5 3 6 1 8 7

B Content/style

Method WCT MST AdaIN SANet AAMS MANet LST SEM
SR* 1 2 3 4 5 6 7 8
OR* 6 7 5 1 8 3 4 2

Fig. 21. Some typical failure ranking of our method on the OV evaluation.
SR* denotes the subjective ranking, and OR* denotes the objective ranking.

focus on the performance of Rank-n accuracy [70]. Given the
eight stylized images for each Content-Style image pair, the
rank-n accuracy is the percentage of the objective scores where
the subjective-rated best one is within their top n positions.
The results are presented in Fig. 20. We can observe that
the proposed method achieves a fairly good performance in
the SR, CP and OV ranking accuracy tests. Since one of
the most important applications of AST-IQA metric is to
guide the generation of stylized images, the proposed method
is a promising tool for automatic selection of the optimal
transferring result from a set of candidates.

2) Failure Ranking Analysis: As aforementioned, we
demonstrate the ranking capability of the proposed method on
the three quality factors. However, in some special situations,
the proposed method encounters challenges to achieve the
expected ranking results. As shown in Fig. 21, we present two
groups of representative failure rankings on the OV evaluation,
which can be divided into two categories. In the first category,
our method fails to capture extraneous artifacts, as shown in
Fig. 21 (A). We select the stylization produced by SANet
[16] as the optimal result, which produces unpleasing eye-
like artifacts (zoom in for greater clarity) due to the fine-
grained nature. The reason behind this lies in that our method
mainly uses global sparse representation and ignores the local
extraneous artifacts. In the second category, our method fails
to effectively balance the importance of quality factors, as
show in Fig. 21 (B). Actually, the CP and SR do not always
complement each other. A non-realistic style leads to lower
content retention in the final stylization result. Obviously, there
is a large room to manipulate the importance weights for
the quality factors. Overall, how to further dig the aesthetic
information behind the stylization and propose a better strategy
to balance different quality factors are the key issues to be
explored in the future work.

V. CONCLUSION

In this paper, we first constructed a new database (AST-
IQAD) to collect the subject-rated scores on the three quality

factors of content preservation (CP), style resemblance (SR),
and overall vision (OV). Then, a new sparse representation-
based method (SRQE) is proposed to predict the human per-
ception toward different stylized results. Experimental results
show that our proposed method produces very promising
AST-IQA results compared with existing general-purpose IQA
methods. Overall, our new database creates a reliable platform
to evaluate the performance of different AST algorithms and
our method is helpful for guiding the design of different
algorithms. In our future work, we will further mine the
aesthetic information behind the stylization and propose a
better strategy to balance different quality factors.
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