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Fig. 1. Left: given the source image and target pose, our model is able to transfer the
pose and generate the target parsing map as required. Note that we have only a single
training stage without independent generation for the target parsing map. However, our
model still synthesizes it precisely by cross attention based style distribution module.
Right: Our model also enables virtual try-on and head(identity) swapping by explicitly
controlling the poses and per-body-part appearance of source and reference images.

Abstract. Controllable person image synthesis task enables a wide range
of applications through explicit control over body pose and appearance.
In this paper, we propose a cross attention based style distribution mod-
ule that computes between the source semantic styles and target pose
for pose transfer. The module intentionally selects the style represented
by each semantic and distributes them according to the target pose. The
attention matrix in cross attention expresses the dynamic similarities
between the target pose and the source styles for all semantics. There-
fore, it can be utilized to route the color and texture from the source
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image, and is further constrained by the target parsing map to achieve a
clearer objective. At the same time, to encode the source appearance ac-
curately, the self attention among different semantic styles is also added.
The effectiveness of our model is validated quantitatively and qualita-
tively on pose transfer and virtual try-on tasks. Codes are available at
https://github.com/xyzhouo/CASD.

Keywords: Person image synthesis, Pose transfer, Virtual try-on

1 Introduction

Synthesizing realistic person images under explicit control of the body pose and
appearance has many potential applications, such as person reID [47,38,6], video
generation [40,16] and virtual clothes try-on [9,34,3,7], etc. Recently, the con-
ditional GAN is employed to transfer the source style into the specified target
pose. The generator connects the intended style with the required pose in its
different layers. E.g., PATN [50], HPT [41], ADGAN [23] insert several repeated
modules with the same structure to combine style and pose features. However,
these modules are usually composed of common operations, such as Squeeze-and-
Excitation (SE) [11] or Adaptive Instance Normalization (AdaIN) [12], which
lacks the ability to align source style with target pose.

In contrast, the 2D or 3D deformation is applied in the task with a clearer
motivation. DefGAN [28], GFLA [26] and Intr-Flow [15] estimate the correspon-
dence between the source and target pose to guide the spread of appearance
features. Although these methods generate realistic texture, they may produce
noticeable artifacts when faced with large deformations. Besides, more than one
training stages are often needed, and the unreliable flow from the first stage
limits the quality of results.

This paper aims for the better fusion on features of both source image and
target pose in a single training stage. Instead of directly estimating the geom-
etry deformation and warping source features to fulfill target pose, we propose
a simple cross attention based style distribution (CASD) module to calculate
between the target pose and the source style represented by each semantic, and
distribute the source semantic styles to the target pose. The basic idea is to
employ the coarse fusion features under target pose as queries, requiring the
source styles from different semantic components as keys and values to update
and refine them. Following ADGAN [23], appearance within each semantic re-
gion is described by a style encoder, which extracts the color and texture within
the corresponding region (such as head, arms, or legs, etc.). The style features
are dynamically distributed by the CASD block for each query position under
the target pose. Particularly, values from each semantic are softly weighted and
summed together according to the attention matrix, so that they are matched
with target pose. The aligned feature can be further utilized to affect the input
to the decoder.

To further improve the synthesis quality, we have some special designs within
CASD block. First, to tightly link styles from different semantics, the self atten-

https://github.com/xyzhouo/CASD
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tion is performed among them, making each style no longer independent with
others. Second, another routing scheme, in the same size with attention matrix,
is also employed for style routing. It is directly predicted from the target pose
without exhaustive comparisons with keys of styles. Third, extra constraint from
target parsing map is incorporated on the attention matrix, so that the attention
head has a clearer motivation. In this way, our attention matrix represents the
predicted target parsing map. Additionally, our model can also achieve virtual
try-on and head(identity) swapping based on reference images by exchanging
the specific semantic region in style features. Fig 1 shows some applications of
our model. The contributions of the paper can be summarized into following
aspects.

– We propose cross attention based style distribution (CASD) module for con-
trollable person image synthesis, which softly selects the source style repre-
sented by each semantic and distributes them to the target pose.

– We intentionally add self attention to connect styles from different semantic
components, and let the model predict the attention matrix based on the
target pose. Moreover, the target parsing maps are used as the ground truths
for the attention matrix, giving the model an evident object during training.

– We can achieve applications in image manipulation by explicit controlling
over body pose and appearance, e.g., pose transfer, parsing map generation,
virtual try-on and head(identity) swapping.

– Extensive experiments on DeepFashion dataset validates the effectiveness
of our proposed model. Particularly, the synthesis quality has been greatly
improved, indicated by both quantitative metrics and user study.

2 Related Work

Human pose transfer is first proposed in [20], and becomes well developed
in recent years due to the advancement in image synthesis. Most of the ex-
isting works need paired training data, which employ the ground truth un-
der target pose during training. Though a few of them are fully unsupervised
[21,5,25,30,44,44,48,27], they are not of our major concern. Previous research
can be characterized into either two- (or multi-) stage or one-stage methods.
The former first generates coarse images or foreground masks, and then gives
them to the second stage generator as input for refinement. In [1], the model
first segments the foreground from image into different body components, and
then applies learnable spatial deformations on them to generate the foreground
image. GFLA [26] pretrains a network to estimate the 2D flow and occlusion
mask based on source image, source and target poses. Afterwards, it uses them
to warp local patches of the source to match the required pose. Li et.al. [15] fit
a 3D mesh human model onto the 2D image, and train the first stage model to
predict the 3D flow, which is employed to warp the source appearance in the
second stage. LiquidGAN [16] also adopts the 3D model to guide the geometry
deformation within the foreground region. Although geometry-based methods
generate realistic texture, they may fail to extract accurate motions, resulting
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in noticeable artifacts. On the other hand, without any deformation operation,
PISE [43] and SPGnet [19] synthesize the target parsing maps, given the source
masks, source poses and target poses as input in the first stage. Then it generates
the image with the help of them in the second stage. These work show that the
parsing maps under target pose have potential to be exploited for pose transfer.

Compared to two-stage methods, the single stage model has light training
burden. Different from [1], DefGAN [28] explicitly computes the local 2D affine
transformation between source and target patches, and applies the deformation
to align source features to the target pose. PATN [50] proposes a repeated pose
attention module, consisting of the computation like SE-Net, to combine features
from the appearance and pose. ADGAN [23] uses a texture encoder to extract
style vectors within each semantic, and gives them to several AdaIN residual
blocks to synthesize the target image. XingGAN [31] proposes two types of cross
attention blocks to fuse features from the target pose and source appearance in
two directions, repeatedly. Although these models design the fusion block of pose
and appearance style, they lack the operation to align source appearance with
the target pose. CoCosNet [44,48] computes the dense correspondences between
cross-domain images by attention-based operation. However, each target position
is only related to a local patch of the source image, which implies that the
correlation matrix should be a sparse matrix, and the dense correlation matrix
leads to quadratic memory consumption. Our model deals with this problem by
an efficient CASD block.

Attention and transformer modules first appear in NLP [33], which en-
large the receptive field in a dynamic way. Non-local network [36] is its first
attempt in image domain. The scheme becomes increasingly popular in vari-
ous tasks including image classification [4,32,17,35], object detection [2,49] and
semantic segmentation [13,46] due to its effectiveness. There are basically two
different ways for it which are self and cross attention. Self attention projects the
queries, keys and values from the same token set, while cross attention usually
obtains keys and values from one set, and queries from another one. The compu-
tation process then becomes the same, measuring the similarity between queries
and keys to form an attention matrix, which is used to weight values to update
query tokens. Based on the repeated attention module, multi-stage transformer
can be built. Note that adding the MLP (FFN) and residual connection between
stages are crucial and become a designing routine, for which we also follows.

3 Method

3.1 Overview Framework

Given a source image Is under the pose Ps, our goal is to synthesize a high
fidelity image Ît under a different target pose Pt. Ît should not only fulfil the
pose requirement, but also have the same appearance with Is. Fig 2 shows the
overview of the proposed generation model. It consists of a pose encoder Ep,
a semantic region style encoder Es and a decoder Dec. Besides, there are sev-
eral cross attention based style distribution (CASD) blocks which are the key
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Fig. 2. Overview architecture of our proposed generator. There are separate pose and
style encoders, with their outputs Fp and Fs being fused by AdaIN ResBlks and Cross
Attention based Style Distribution (CASD) blocks, and giving the pose-aligned feature
Fps as the output. Then, the same Fps is adapted to decoder through AFN ResBlks.
The key component, CASD Block, consists of both self and cross attention, and can
also output the predicted target parsing maps Ŝt.

components in our generator. Before and after the attention, there are several
AdaIN residual blocks and Aligned Feature Normalization (AFN) residual blocks
with the similar design as [24,42]. The former coarsely adapts the source style to
the target pose, while the latter incorporates the pose-aligned feature from the
CASD blocks into the decoder. Both of them are learnable, which change the
feature statistics in their affecting layers.

As is shown in Fig 2, the desired Pt is directly used as the input by encoder
Ep, which describes the key point positions of human body. For each point, we
make a single channel heatmap with a predefined standard deviation to describe
its location. Except the individual point, we additionally adopt straight lines
between selected points to better model the pose structure. There are totally
18 points and 12 lines, so Pt ∈ RH×W×30. To facilitate accurate style extrac-
tion from Is, we follow the strategy in [23], which employs the source parsing
map Ss ∈ RH×W×Ns to separate the full image into regions, so that Es inde-
pendently encodes the styles in different semantics. Ns is the total number of
semantics in the parsing map. During training, the ground truth image It and
its corresponding parsing map St are exploited. Note that Fp ∈ RH×W×C and
Fs ∈ RNs×1×1×C represent the pose and style features from Ep and Es, respec-
tively. They are utilized by the CASD blocks, whose details are introduced in
the following section. Moreover, the CASD block is repeated by multiple times,
e.g. twice, gradually completing the fusion between Fp and Fs, and forming a
better aligned feature Fps. Finally, Fps is given to AFN from the side branch
to take its effect. Besides, our CASD block can also output the predicted target
parsing map Ŝt by constraining the cross attention matrix.
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Fig. 3. Illustrations of the cross attention based style distribution (CASD) block. On
the right, self attention is performed on the source style features Fs, giving the updated
F ′
s as the output. On the left, cross attention is computed between the coarsely aligned

feature Fcrs and the updated style feature F ′
s. The pose Fp also joins the cross attention.

And by constraining the cross attention matrix AM , predicted target parsing maps Ŝt

is generated. Note that α1−3 indicates the learnable scaling factors.

3.2 Pre- and Post-Attention Style injection

Since the source style F i
s ∈ R1×1×C is independently encoded by a shared-

weight encoder Es, where i = 1, 2, · · · , Ns is the semantic index, they may not
appropriate for style injection together. So we first combine F i

s from different
semantic regions through an MLP, and give results to AdaIN ResBlks to roughly
combine Fs with Fp, specifying the coarse fusion Fcrs reflecting the target pose
Pt, which then participates cross attention as queries in the CASD blocks.

After the CASD blocks, we have Fps which is obviously superior to Fcrs,
and is suitable for the utilization by Dec. Instead of giving Fps directly to Dec,
we design an AFN ResBlks to employ it as a conditional feature. Within the
block, an offset β and a scaling factor γ are first predicted. Then, they take
effect through AFN, which performs the conditional normalization according to
β and γ. Note that Fps, β and γ are in the same size.

3.3 Cross Attention based Style Distribution Block

The computation in CASD block includes two stages, which are self attention
and cross attention stages, as is depicted in Fig 3. The two types of attention are
carried out in sequence, and they together align the source style Fs according to
the target pose feature Fp. We describe them in the following two sections.
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Self attention for Style Features The self attention is performed among
F i
s , so that each F i

s of a particular semantic is connected with others F j
s where

j ̸= i. We simplify the classic design on self attention module in transformer [33].
Traditionally, there are three learnable projection heads WQ, WK and WV , and
they are in the same shape WQ,WK ,WV ∈ RC×C . These heads are responsible
for mapping the input tokens Fs into the query Q, key K and value V . In our
application, to reduce learnable parameters, we omit WQ and WK , and directly
use Fs as both query and key. However, we keep WV and it yields V ∈ RNs×C in
the same dimension of Fs. The self attention, computing the update style feature
F att
s , can be summarized into Eq (1).

F att
s = Attention(Q,K, V ) = Softmax(QKT/

√
C)V

Q = Fs, K = Fs, V = FsWV

(1)

Here the attention module essentially compares the similarities of different
semantic styles, so that each F i

s in Fs absorbs information from other style tokens
F j
s . Note that we also follow the common designs in transformer. Particularly,

there is a residual connection between Fs and F att
s , so they are added, and given

to later layers. The final style is denoted by F ′
s, as is shown on the right of Fig

3. Moreover, different from traditional transformer, we employ Layer Instance
Normalization (SW-LIN) proposed in [39] to replace LN for better synthesis.

Cross Attention The cross attention module further adapts the source style
F ′
s into the required pose, shown on the left of Fig 3. Such attention is carried

out across different domains, between the coarse fusion Fcrs output from AdaIN
resblks and the style feature F ′

s. Therefore, different from the previous self atten-
tion, its result Fps has spatial dimensions, and actually reflects how to distribute
the source style under an intended pose. In this module, Fcrs from AdaIN Res-
Blks is treated as queries Q. Specifically, there are totally H×W unique queries.
Each of them is a C-dim vector. F ′

s provides the keys K for comparison with Q
and values V for soft selection.

Here we aggregate the common attention computation as is shown in Eq (2).
F att
ps ∈ RH×W×C is the updated amount on query after the attention, in the

same size with Fcrs.

F att
ps = Attention(Q,Fp,K, V ) = AM · V

=

(
Softmax

(
QKT

√
C

+ Proj(Fp)

))
V

(2)

Note that we set Q = FcrsWQ, K = F ′
sWK and V = F ′

sWV , so the attention
actually combines the features Fcrs with source styles F ′

s. In Eq (2), the first
term in the bracket indicates the regular attention matrix which exhaustively
computes the similarity between every Q-K pair. It is of the shape H ×W ×Ns

and determines the possible belonging semantic for each position. Since there are
projection heads WQ and WK to adjust query and key, the attention matrix is
fully dynamic, which is harmful to model convergence. Our solution is to add the
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second term with the same shape as the first one, forming the augmented atten-
tion matrix AM , and let it participate value routing. Proj(·) is a linear projection
head which directly outputs a routing scheme based only on Fp. Therefore, it
implies that the model is able to predict the target parsing map for each po-
sition, given the encoded pose feature Fp. Some recent works like SPGNet [19]
or PISE [43] has a separate training stage to generate the target parsing map
according to the required pose. Our model has a similar intention, but it is more
convenient with only a single training stage. In the following section, we add a
constraint on the attention matrix to generate the predicted target parsing map.

After the cross attention in Eq (2), we follow the routine in transformer,
which first makes the element-wise summation between F att

ps and Fp, then gives
the result to an FFN, leading to a better pose feature Fps which combines the
source style for the next stage.

3.4 Learning Objectives

Similar to the previous method [50,23], we employ the adversarial loss Ladv,
reconstruction loss Lrec, perceptual loss Lperc and contextual loss LCX as our
learning objectives. Additionally, we also adopt an attention matrix cross-entropy
loss LAMCE and an LPIPS loss LLPIPS to train our model. The full learning
objectives are formulated in Eq (3),

Lfull = λadvLadv + λrecLrec + λpercLperc + λCXLCX

+λAMCELAMCE + λLPIPSLLPIPS

(3)

where λadv, λrec, λperc, λCX , λAMCE and λLPIPS are hyper-parameters con-
trolling the relative importance of these objectives. They are detailed as follows.
Attention Matrix Cross-entropy Loss. To train our model with an evident
object, we adopt cross-entropy loss to constrain the attention matrix AM close
to target parsing map St, which is defined as:

LAMCE = −
H∑
i=1

W∑
j=1

Ns∑
c=1

St (i, j, c) log (AM (i, j, c)) . (4)

where i, j denote the position of spatial dimension in the attention matrix AM ,
and c denotes the position of semantic dimension in attention matrix AM . By
employing this loss in the training process, our model can generate the predicted
target parsing map in a single stage.
Adversarial loss. We adopt a pose discriminator Dp and a style discriminator
Ds to help G generate more realistic result in adversarial training. Specifically,
real pose pairs (Pt, It) and fake pose pairs (Pt, Ît) are feed into Dp for pose

consistency. Meanwhile, real image pairs (Is, It) and fake image pairs (Is, Ît) are
feed into Ds for style consistency. Note that both discriminators are trained with
G in an end-to-end way to promote each other.

Ladv = EIs,It,Pt
[log (Ds (Is, It) ·Dp (Pt, It))]

+EIs,Pt
[log (1−Ds (Is, G (Is, Pt)))

· (1−Dp (Pt, G (Is, Pt)))]

(5)
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Reconstruction and perceptual loss. The reconstruction loss Lrec is used to
encourage the generated image Ît to be similar with ground-truth It at the pixel
level, which is computed as Lrec =∥ Ît − It ∥1. The perceptual loss calculates
the L1 distance between the features extracted from the pre-trained VGG-19

network [29]. It can be written as Lperc =
∑

i ∥ ϕi

(
Ît

)
− ϕi (It) ∥1, where ϕi is

the feature map of the i-th layer of the pre-trained VGG-19 network.
Contextual Loss. We also adopt contextual loss, which is first proposed in
[22], aiming to measure the similarity between two non-aligned images for image
transformation. It is computed in Eq (6).

LCX = − log
(
CX

(
F l

(
Ît

)
, F l (It)

))
(6)

Here F l(Ît) and F l(It) denotes the feature extracted from layer l = relu{3 2, 4 2}
of the pre-trained VGG-19 for images Ît and It, respectively, and CX denotes
the cosine similarity metric between features.
LPIPS Loss. In order to reduce distortions and learn perceptual similarities,
we integrate the LPIPS loss [45], which has been shown to better preserve image
quality compared to the more standard perceptual loss:

LLPIPS =∥ F
(
Ît

)
− F (It) ∥2 (7)

where F (·) denotes the perceptual feature extracted from pre-trained VGG-16
network.

4 Experiments

4.1 Experimental Setup

Dataset. We carry out experiments on DeepFashion (In-shop Clothes Retrieval
Benchmark) [18], which contains 52, 712 high-quality person images with the res-
olution of 256× 256. Following the same data configuration in [50], we split this
dataset into training and testing subsets with 101,966 and 8,570 pairs, respec-
tively. Additionally, we use the segmentation masks obtained from the human
parser [8]. Note that the person ID of the training and testing sets do not overlap.
Evaluation Metrics. We employ four metrics SSIM [37], FID [10], LPIPS [45]
and PSNR for evaluation. Peak Signal to Noise Ratio (PSNR) and Structural
Similarity Index Measure (SSIM) is the most commonly used in image generation
task with known ground truths. The former utilizes the mean square error to
give an overall evaluation, while the latter calculates the global variance and
mean to assess the structural similarity. Meanwhile, Learned Perceptual Image
Patch Similarity (LPIPS) is another metric to compute the distance between
the generations and ground truths in the perceptual domain. Besides, Fréchet
Inception Distance (FID) is employed to measure the realism of the generated
images. It calculates the Wasserstein-2 distance between the distributions of the
generated and real data.
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Fig. 4. Qualitative comparison between our method and other state-of-the-arts. The
target ground truths and the synthesized results from each models are listed in rows.

Implementation Details. Our method is implemented in PyTorch and trained
2 NVIDIA Tesla-A100 GPUs with the batch size being equal to 16. We adopt
Adam optimizer [14] with β1 = 0.5, β2 = 0.999 to train our model for around
330k iterations, using the same epochs with other works [23]. The weights of the
learning objectives are set as: λAMCE = 0.1, λLPIPS = 1, λrec = 1, λperc = 1,
λadv = 5 and λCX = 0.1, without tuning. The number of semantic part isNs = 8,
which includes the ordinary semantics as background, pants, hair, glove, face,
dress, arms and legs. Furthermore, the learning rate is initially set to 0.001, and
linearly decayed to 0 after 115k iterations. Following above configuration, we
alternatively optimize the generator and two discriminators. We train our model
for pose transfer task as described in Sec 3, after the convergence of training,
we use the same trained model for all tasks, e.g., pose transfer, virtual try-on,
head(identity) swapping and parsing map generation.

4.2 Pose Transfer

In this section, we compare our method with several state-of-the-art methods,
including PATN [50] , GFLA [26], ADGAN [23], PISE [43] , SPGNet [19] and
CoCosNet [44]. Quantitative and qualitative results as well as user study are
conducted to verify the effectiveness of our method. All the results are obtained
by directly using the source code and well-trained models published by their
authors. Since CoCosNet uses a different train/test split, we directly uses its
well-trained model on our test set.
Quantitative comparison. The quantitative results are listed in Table 1.
Notably, our method achieves the best performance on most metrics compared
with the other methods, which can be attributed to the proposed CASD block.
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Table 1. Comparisons on metrics for image quality and user study. SSIM, FID, LPIPS
and PSNR are the quantitative metrics for synthesized images. R2G, G2R and Jab are
metrics computed from users’ feedback.

Models SSIM↑ FID↓ LPIPS↓ PSNR↑ R2G↑ G2R↑ Jab↑
PATN [50] 0.6709 20.7509 0.2562 31.14 19.14 31.78 0.26%

GFLA [26] 0.7074 10.5730 0.2341 31.42 19.53 35.07 13.72%

ADGAN [23] 0.6721 14.4580 0.2283 31.28 23.49 38.67 11.17%

PISE [43] 0.6629 13.6100 0.2059 31.33 - - 14.89%

SPGNet [19] 0.6770 12.2430 0.2105 31.22 19.47 36.80 17.26%

CoCosNet [44] 0.6746 14.6742 0.2437 31.07 - - 13.73%

Ours 0.7248 11.3732 0.1936 31.67 24.67 40.52 28.96%

Qualitative comparison. In Fig 9, we compare the generated results from
different methods. It can be observed that our method produces more realistic
and reasonable results (e.g., the second, third and penultimate rows). More im-
portantly, our model can well retain the details from the source image (e.g., the
fourth and last rows). Moreover, even if target pose is complex (e.g., the first
row), our method can still generate it precisely.
User study. While both quantitative and qualitative comparisons can evaluate
the performance of the generated results in different aspects, human pose transfer
tasks tend to be user-oriented. Therefore, we conduct a user study with 30
volunteers to evaluate the performance in terms of human perception. The user
study consists of two parts. (i) Comparison with ground-truths. Following [19],
we randomly select 30 real images and 30 generated images from test set and
shuffle them. Volunteers are required to determine whether a given image is real
or fake within a second. (ii) Comparison with the other methods, we present
volunteers 30 random selected image pairs that include source image, target pose,
ground-truth and images generated by our method and baselines. Volunteers
are asked to select the most realistic and reasonable image with respect to the
source image and ground truth. Note that we shuffle all the generated images
for fairness. The results are shown in the right part of Table 1. Here we adopt
three metrics, namely R2G: the percentage of the real images treated as the
generated images; G2R: the percentage of the generated images treated as real
images; Jab: the percentage of images judged to be the best among all models.
Higher values of these three metrics mean better performance. We can observe
that our model achieves the best results, especially about 11% higher than the
2-nd best one on Jab.

4.3 Ablation Study

In this section, we perform ablation study to further verify our assumptions
and evaluate the contribution of each component in our model. We implement
3 variants by alternatively removing a specific component from the full model
(w/o self-attn, w/oAMp, w/o LAMCE).
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w/o self-attn w/o w/o Source Image Target Pose Target Image Full

Fig. 5. The qualitative results of ablation study. The ground truths and the synthesize
images from each ablation model are listed in columns.

Table 2. Quantitative ablations on each proposed component in the full model. The
performances of the final model are given the last row. In the above three rows, we
intentionally exclude one component from the full model. Details are given in Sec 4.3.

Model SSIM↑ FID↓ LPIPS↓ PSNR↑
w/o self-attn 0.7201 13.2462 0.2017 31.52

w/o AMp 0.7213 12.4265 0.1985 31.48

w/o LAMCE 0.7156 14.7513 0.2126 31.41

Ours-Full 0.7248 11.3732 0.1936 31.67

W/o self-attn. This model removes self attention in CASD blocks, only uses
cross attention, which directly feeds Fs into cross attention as Key and Value.

W/o AMp. The model removes AMp = Proj(Q) in CASD blocks in Eq (2),
which will not let the model predict the attention matrix based on the target
pose.

W/o LAMCE. The model does not adopt LAMCE loss defined in Eq (4) for
training, so it can not be explicitly guided by the target parsing map during
cross attention.

Full model. It includes all components and achieves the best performance on
all quantitative metrics, as is shown Table 5. Meanwhile, it also gives the best
visual results as is shown in Fig 10. It’s shown that by removing any parts of
our proposed model would lead to a performance drop.
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Fig. 6. The visual comparisons with other state-of-the-art methods on virtual try-on.

Table 3. Comparisons of the FID score and user study with other state-of-the-art
methods on virtual try-on and head(identity) swapping tasks.

Method
Upper Cloth Pants Head

FID↓ Jab↑ FID↓ Jab↑ FID↓ Jab↑
ADGAN 14.3720 24.67% 14.4446 29.67% 14.4596 23.58%

PISE 14.0537 22.92% 14.2874 22.25% 14.3647 30.75%

Ours 12.5376 52.41% 12.5456 48.08% 12.6578 45.67%

4.4 Virtual Try-on and Head Swapping

Benefiting from the semantic region style encoder, our model can also achieve
controllable person image synthesis based on reference images by exchanging the
channel feature of specific semantic region in the style features (e.g., upper-body
transfer, lower-body transfer and head swapping) without further training. We
compare our method with ADGAN [23] and PISE [43]. The visual comparisons
are shown in Fig 6. We observe that our model can reconstruct target part and
retain other remaining parts more faithfully. In addition, when transferring the
lower-body, PISE cannot transfer the target pants to the source person, it will
retain the shape of the source person’s pants and only transfer the texture.

For more comprehensive comparisons, quantitative comparison and user study
are also conducted. The results are shown in Table 6. In the user study, we
randomly select 40 results generated by our method and the other compared
methods for each task, and then we invite 30 volunteers to select the most re-
alistic results. Jab is the percentage of images judged to be the best among all
methods.

Table 4. Comparison of per-class IoU with SPGNet on the predicted target parsing
maps.

Model pants hair gloves face u-clothes arms legs Bkg Avg

SPGNet [19] 42.18 66.51 9.36 62.46 67.87 58.46 44.13 84.65 61.89

Ours 49.02 65.87 5.50 67.24 76.72 59.90 50.81 90.28 66.34
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Fig. 7. Failure cases caused by incomprehensible garment (left) or pose (right).

4.5 Target parsing map synthesis

Moreover, to intuitively understand of our CASD blocks, we further show the
predicted target parsing maps in Fig 1. It shows when given the source image
and various target poses, our model can not only transfer the poses, but also
synthesize the target parsing maps, though we do not separately build a model
to do this. We list the Intersection over Union (IoU) metric between predictions
from our method and [8] for all semantics in Table 4. For major semantics,
we achieve higher IoU than SPGNet [19]. Note that our model gives the final
synthesis images and target parsing map in one stage. The synthesized paired
data can be used as training data for segmentation.

5 Limitations

Although our method produces impressive results in most cases, it still fails to
generate incomprehensible garments and poses. As shown in Fig 7, a specific knot
on a blouse fails to generate and a person in a rare pose can not be synthesized
seamlessly. We believe that training the model with more various images will
alleviate this problem.

6 Conclusion

This paper presents a cross attention based style distribution block for a single-
stage controllable person image synthesis task, which has strong ability to align
the source semantic styles with the target poses. The cross attention based style
distribution block mainly consists of self and cross attention, which not only
captures the source semantic styles accurately, but also aligns them to the tar-
get pose precisely. To achieve a clearer objective, the AMCE loss is proposed to
constrain the attention matrix in cross attention by target parsing map. Exten-
sive experiments and ablation studies show the satisfactory performance of our
model, and the effectiveness of its components. Finally, we show that our model
can be easily applied to virtual try-on and head(identity) swapping tasks.
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Appendix

A Network architectures

In this section, we provide the details of network structure. Table 5, 6, are the
network structures of the encoder E, the generator G, respectively. In Conv
and Residual Block, F, K and S respectively represent the output dimension,
convolution kernel size and stride. IN and LN represent instance normalization
and layer normalization, respectively.

B Comparisons with the state-of-the-arts

In Fig 8, We provide additional qualitative comparisons between our method
and other state-of-the-arts(e.g. PATN [50], GFLA [26], ADGAN [23], PISE [43],
SPGNet [19], CoCosNet [44]). Results show that our method can generate more
consistent appearance and pose with the target.

C Visualization of the generated parsing maps

We also provide more visualization results of the generated parsing maps in Fig
9. It is clear that cross attention matrix can accurately predict the target parsing
map regardless of diverse pose and viewpoint changes, revealing the effectiveness
of the proposed cross attention based style distribution module.

D Results of virtual try-on

By exchanging the channel feature of specific semantic region in the style fea-
tures, our model can achieve virtual try-on task. Additional examples of virtual
try-on are shown in Fig 10.
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Table 5. The structure of encoder E. In E, we put Iis into Pre-trained VGG19 network
and take the features of the corresponding layers as side branches, then concat them
together with the main branch. Note that we only show one source style Iis as an
example, where i = 1, 2, · · · , 8 is the semantic index. And all Iis concat together lastly.

Input Iis (256 × 176 × 3)

Intermediate

Layers

Conv(F = 64,K = 7, S = 1),ReLU

Concat(Pre − trained VGG19 conv1 1)

Conv(F = 128,K = 4, S = 2),ReLU

Concat(Pre − trained VGG19 conv2 1)

Conv(F = 256,K = 4, S = 2),ReLU

Concat(Pre − trained VGG19 conv3 1)

Conv(F = 512,K = 4, S = 2),ReLU

Concat(Pre − trained VGG19 conv4 1)

Avg Pooling

Conv(F = 256,K = 1, S = 1)

Output F i
s (1 × 1 × 256)

Table 6. The structure of the generator G. In AdaIN ResBlocks and AFN ResBlocks,
the content in bracket is used as side branch to affect the main branch.

Input Pt (256 × 176 × 30) Fs (1 × 1 × 2048)

Intermediate

Layers

Conv(F = 64,K = 7, S = 1), IN,ReLU Fc(2048),ReLU

Conv(F = 128,K = 4, S = 2), IN,ReLU Fc(256),ReLU

Conv(F = 256,K = 4, S = 2), IN,ReLU Fc(256),ReLU

Fp = Residual Blocks(F = 256,K = 3, S = 1) × 8 Fs′ = Fc(8192),ReLU

Fcrs = AdaIN ResBlock(Fs′)

Fps = CASD (Fcrs,Fp,Fs)

Fps = CASD (Fps,Fp,Fs)

Fp′ = AFN ResBlocks(Fps)

UpSample(scale factor = 2)

Conv(F = 128,K = 5, S = 1),LN,ReLU

UpSample(scale factor = 2)

Conv(F = 64,K = 5, S = 1),LN,ReLU

Conv(F = 3,K = 7, S = 1),Tanh

Output Ît (256 × 176 × 3)
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Fig. 8. Qualitative comparison between our method and other state-of-the-arts. The
target ground truths and the synthesized results from each models are listed in rows.
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Fig. 9. Given the source image, our model is able to transfer the pose as required. The
synthesized person and visualization of the generated target parsing maps are shown.
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Fig. 10. Given the source image and reference images, our model is able to perform
virtual try-on task. The top half is the results of trying on the upper-clothes and the
bottom half is the results of trying on the pants.
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