
Proceedings of Machine Learning Research 182:1–33, 2022 Machine Learning for Healthcare

Debiasing Deep Chest X-Ray Classifiers using
Intra- and Post-processing Methods
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Abstract

Deep neural networks for image-based screening and computer-aided diagnosis have achieved
expert-level performance on various medical imaging modalities, including chest radio-
graphs. Recently, several works have indicated that these state-of-the-art classifiers can
be biased with respect to sensitive patient attributes, such as race or gender, leading to
growing concerns about demographic disparities and discrimination resulting from algo-
rithmic and model-based decision-making in healthcare. Fair machine learning has focused
on mitigating such biases against disadvantaged or marginalised groups, mainly concen-
trating on tabular data or natural images. This work presents two novel intra-processing
techniques based on fine-tuning and pruning an already-trained neural network. These
methods are simple yet effective and can be readily applied post hoc in a setting where the
protected attribute is unknown during the model development and test time. In addition,
we compare several intra- and post-processing approaches applied to debiasing deep chest
X-ray classifiers. To the best of our knowledge, this is one of the first efforts studying de-
biasing methods on chest radiographs. Our results suggest that the considered approaches
successfully mitigate biases in fully connected and convolutional neural networks offering
stable performance under various settings. The discussed methods can help achieve group
fairness of deep medical image classifiers when deploying them in domains with different
fairness considerations and constraints.

1. Introduction

Chest X-ray imaging is an essential tool for screening and diagnosing conditions affecting
the chest and its surrounding, requiring special training for an appropriate interpretation.
There has been an increasing effort in deploying deep neural networks for image-based
screening and computer-aided diagnosis on chest radiographs (Allaouzi and Ahmed, 2019;
Cohen et al., 2020; Bressem et al., 2020) from various datasets (Rajpurkar et al., 2017; Wang
et al., 2019; Johnson et al., 2019), with some models achieving an expert-level performance
(Irvin et al., 2019). However, several works (Larrazabal et al., 2020; Seyyed-Kalantari
et al., 2020, 2021) have shown that these classifiers may be biased, raising ethical concerns
regarding ML systems involved in high-stakes decisions (Char et al., 2018; Wiens et al.,
2019; Obermeyer et al., 2019). For instance, an ICU patient monitoring and management
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Debiasing Deep Chest X-Ray Classifiers

model trained on a dataset containing few patients from minority groups might suffer from
under- or over-detection of events in these groups, leading to alarm fatigue among medical
staff and disparate patient outcomes (Rajkomar et al., 2018).

Figure 1: The intra-processing setting.
A model is trained on centre
1, and debiased on centres 2,
3, and 4 that have different
fairness constraints (A).

Motivated by similar concerns, researchers
have provided many solutions for adjusting mod-
els’ outputs and directly incorporating fairness
into the learning process (Kearns, 2017). In this
paper, we will assess the fairness of neural net-
works from the perspective of classification par-
ity (Corbett-Davies and Goel, 2018): a classifier is
said to be fair if some derivative of its confusion
matrix, for instance, the true positive rate (TPR),
is even across the categories of the protected at-
tribute, such as race or gender. A practical sce-
nario of mitigating bias w.r.t. protected attributes
could be as follows. Consider deploying a predic-
tive neural-network-based model in several clinical
centres with different demographics, e.g. as ex-
plored by Zech et al. (2018) for chest X-ray classi-
fication. The constraints on the bias and protected
attribute of interest might vary across clinical cen-
tres due to different population demographics (see
Figure 1). Therefore, it might be more practical to debias the original model based on the
local data, following an intra- or post-processing approach (Bellamy et al., 2018; Savani
et al., 2020). The setting above is even more relevant with the widespread availability and
use of pre-trained models (Gupta et al., 2018; Raghu et al., 2019; Rasmy et al., 2021).

Several prior works on debiasing classifiers, i.e. minimising bias, have mainly concen-
trated on tabular data or natural images, e.g. by Zafar et al. (2017); Zhang et al. (2018); Kim
et al. (2019a); Reimers et al. (2021), and assumed that bias constraints are known before or
during training. In that case, the model’s inputs could be transformed or reweighed, or bias
constraints could be incorporated directly into the loss function. Another line of work has
focused on a completely model-agnostic approach (Kamiran et al., 2012; Hardt et al., 2016),
adjusting the model’s predictions post hoc and requiring the knowledge of the protected at-
tribute at test time. On the other hand, the intra-processing scenario emerges naturally
when potential biases are unknown or unexplored at the model development time, in other
words, when it is impractical or impossible to train a debiased classifier from scratch, as
described above, and when the protected attribute is unavailable at test time. Nevertheless,
similar to most methods for enforcing classification parity, intra-processing does require the
protected attribute during debiasing. Although some techniques can be applied when the
sensitive attribute is entirely unknown, the current work focuses on a different setting.

We propose two novel intra-processing debiasing techniques based on fine-tuning and
pruning. Furthermore, we compare several previously proposed debiasing approaches ap-
plied to deep chest X-ray classifiers in terms of statistical parity (Besse et al., 2021) and
equality of opportunity (Hardt et al., 2016). We believe that this is one of the first works
comparing debiasing methods on chest X-ray images. We exploit the publicly available
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and widely used MIMIC-CXR (Medical Information Mart for Intensive Care – Chest X-
Ray) dataset (Johnson et al., 2019). Classifiers trained on this dataset have been shown
to be biased w.r.t. various sensitive attributes, such as gender, race, or insurance type
(Seyyed-Kalantari et al., 2020, 2021).

Generalizable Insights about Machine Learning in the Context of Healthcare

The main contributions of this work are as follows. (i) We consider differentiable proxy func-
tions for statistical parity and equality of opportunity and establish their correspondence
to the covariance between the decision boundary of a neural network and the protected at-
tribute. (ii) We introduce simple yet effective intra-processing debiasing procedures based
on minimising the proxy functions via fine-tuning and pruning an already-trained neural
network, which can be effective in a setting where the protected attribute is unknown dur-
ing the model development and test time. (iii) We conduct a comprehensive comparison
among the proposed and well-established debiasing approaches on fully connected and con-
volutional neural networks on several datasets, including chest X-rays, showing that the
compared methods can help achieve group fairness when deploying them in domains with
different fairness considerations and constraints.

2. Preliminaries

Below, we outline the setting considered throughout the paper. We assume that disjoint
training, validation, and test datasets D = {(xi, yi, ai)}i = Dtrain ∪· Dvalid ∪· Dtest are given,
where xi are features, e.g. a p-dimensional vector or an image, yi ∈ {0, 1} is the label,
and ai ∈ {0, 1} is the protected attribute. Attribute ai may be present among the features
in xi or may be completely exogenous. We will use the capital letters X, Y, and A to
refer to the corresponding random variables. Furthermore, let X = {xi}i, Y = {yi}i, and
A = {ai}i. Let fθ(·) denote a neural network parameterised by θ and trained on data points
{(xi, yi)}i from Dtrain. In our experiments (see Section 5), we consider fully connected
and convolutional architectures for fθ(·). If fθ(·) is a multilayer perceptron, θ is given
by weight matrices

{
W in,W 1, ...,W L,W out

}
. We will use zl (x) for the pre-activations

and hl(x) = σ
(
zl(x)

)
for activations in layer 1 ≤ l ≤ L, at the input x, where σ(·)

is an activation function. The output of fθ(·) is given by sigmoid
(
W outhL(x)

)
. For final

classification, a threshold t ∈ [0, 1] on the output is chosen by maximising some performance
measure, e.g. accuracy, on held-out data Dvalid. Thus, for input x, the prediction is
ŷ = 1{fθ(x)≥t}, where 1{·} is the indicator function.

3. Background and Related Work

Classification Parity Many criteria for the fairness of machine learning models have been
considered so far (Corbett-Davies and Goel, 2018). The two most common and practical
classification parity metrics are statistical parity and equality of opportunity. Statistical
parity difference (SPD) (Savani et al., 2020; Besse et al., 2021) is defined as the difference
between the probabilities of positive outcomes, i.e. predictions made by the model fθ(·),
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across the groups of the protected attribute A:

SPD = PX,A

(
Ŷ = 1

∣∣∣A = 0
)
− PX,A

(
Ŷ = 1

∣∣∣A = 1
)
. (1)

On the other hand, the equal opportunity difference (EOD) (Hardt et al., 2016; Savani
et al., 2020) quantifies the discrepancy between the TPRs of the classifier fθ(·):

EOD = PX,Y,A

(
Ŷ = 1

∣∣∣Y = 1, A = 0
)
− PX,Y,A

(
Ŷ = 1

∣∣∣Y = 1, A = 1
)
. (2)

In practice, quantities from Equations 1 and 2 can be evaluated using empirical estimators
on held-out test data.

Debiasing Minimisation of the SPD or EOD is a solvable technical problem. Debiasing,
i.e. the minimisation of bias, often leads to a decrease in the overall predictive performance
of the classifier (Reimers et al., 2021). Therefore, ideally, a debiasing algorithm should
reduce bias µ(·), given by the SPD or EOD, without sacrificing performance ρ(·), e.g.
balanced accuracy (BA) (Brodersen et al., 2010). One can view this problem as an instance
of constrained optimisation (Zafar et al., 2017, 2019; Kim et al., 2019b; Savani et al., 2020),
either minimising the bias subject to performance constraints or vice versa, maximising
performance under bias constraints.

Many debiasing algorithms have been proposed for the setting outlined above. Bellamy
et al. (2018) and Savani et al. (2020) provide a practical taxonomy: (i) pre-processing
algorithms usually reweigh or transform original data, obfuscating protected variables or
attenuating group disparities (Kamiran and Calders, 2011; Zemel et al., 2013; Calmon
et al., 2017; Celis et al., 2020); (ii) in-processing methods incorporate debiasing explicitly
into learning, e.g. using an adversarial loss or regularisation (Kamishima et al., 2012; Zafar
et al., 2017; Zhang et al., 2018; Reimers et al., 2021); (iii) post-processing approaches treat
the biased model as a black-box and merely edit its predictions (Kamiran et al., 2012;
Hardt et al., 2016; Pleiss et al., 2017); last but not least, (iv) intra-processing techniques
are inspired by fine-tuning and achieve parity by changing the model’s parameters post
hoc (Savani et al., 2020). An essential difference between post- and intra-processing are
assumptions about the access to model parameters and the protected attribute at test
time: post-processing adjusts predictions based on the given protected attribute value.

All of the methods mentioned above assume the knowledge of the protected attribute
at some point in the model’s life cycle. Another line of work (Nam et al., 2020a; Lee et al.,
2021), beyond the scope of the current paper, focuses on the setting wherein the source of
bias is entirely unknown, usually resorting to strong assumptions, such as that the bias is
easier to learn than other relevant associations.

Pruning In neural networks, parameter pruning usually refers to removing irrelevant
weights or entire structural elements (Cheng et al., 2017), e.g. filters in convolutional neural
networks. Early works on pruning neural networks, such as optimal brain damage (LeCun
et al., 1990) and optimal brain surgeon (Hassibi and Stork, 1993), leveraged criteria based
on the second derivative of the error function to prune unimportant weights throughout
the training process. Several modern techniques focus on pruning entire structures (Wen
et al., 2016; Molchanov et al., 2017; He et al., 2017), e.g. convolutional filters or channels.
However, the main principle remains the same: parameters are pruned based on some
criterion, and the network is subsequently fine-tuned by backpropagation, if necessary.
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Role of Individual Units in Neural Networks Several works have investigated the
importance and interpretation of individual neurons within deep neural network models, in
contrast to the previous research on attribution, which primarily examined input-output
relationships (Ancona et al., 2019). For instance, Bau et al. (2020) observed the emergence
of single-unit object detectors whose activations are correlated with high-level concepts in
discriminative and generative convolutional neural networks (CNN). Leino et al. (2018);
Dhamdhere et al. (2019); Srinivas and Fleuret (2019); Nam et al. (2020b) introduce new
attribution measures that quantify the influence of individual neurons.

Fairness of Deep Chest X-ray Classifiers Recently, researchers have scrutinised the
fairness of deep classifiers trained on well-known and publicly available chest X-ray datasets
(Johnson et al., 2019; Wang et al., 2019; Irvin et al., 2019). Larrazabal et al. (2020) reported
a consistently lower AUROC for underrepresented genders on imbalanced datasets. In
a multi-centre setting, Zech et al. (2018) observed that the performance of chest X-ray
classifiers was significantly lower on held-out external data, indicating possible bias due to
confounding. Underdiagnosis and TPR disparity were evaluated by Seyyed-Kalantari et al.
(2020, 2021) across three large chest X-ray datasets, showing higher underdiagnosis and
lower TPRs in underserved patient populations.

4. Methods

We introduce novel intra-processing approaches to debiasing classifiers w.r.t. the SPD
and EOD, which build on the work by Savani et al. (2020), who have proposed the intra-
processing setting. For an extended comparison with the related works, see Section 7. Our
techniques are tailored towards differentiable classifiers and neural networks in particular.

4.1. Classification Parity Proxies

The proposed methods focus on the minimisation of classification disparity. In particular,
we minimise the SPD or EOD directly without a need for adversarial training using dif-
ferentiable proxy functions. Given sets of N data points X = {xi}Ni=1, Y = {yi}Ni=1, and

A = {ai}Ni=1, the proxy µ̃ for the SPD is given by

µ̃SPD (fθ(·), X , Y, A) =

∑N
i=1 fθ (xi) (1− ai)∑N

i=1 1− ai
−
∑N

i=1 fθ (xi) ai∑N
i=1 ai

, (3)

and, for the EOD, we have

µ̃EOD (fθ(·), X , Y, A) =

∑N
i=1 fθ (xi) (1− ai) yi∑N

i=1 (1− ai) yi
−
∑N

i=1 fθ (xi) aiyi∑N
i=1 aiyi

. (4)

Notably, Equations 3 and 4 are similar to the objective functions considered by Zafar
et al. (2017, 2019) in the context of fair logistic regression and SVM models. In Ap-

pendix A, we show that Equation 3 corresponds to the empirical estimate Ĉov (A, fθ (X)).
Similarly, Equation 4 corresponds to the empirical estimate of the conditional covariance
Ĉov (A, fθ (X) |Y = 1). The intuition behind the algorithms described in Sections 4.2 and
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4.3 is to fine-tune the given biased neural network and minimise these proxies, thus, re-
ducing the covariance between the protected attribute and decision boundary. The general
debiasing procedure is schematically summarised in Figure 2: an already-trained network is
debiased on held-out validation data, using the classification parity proxies, and can produce
unbiased predictions without the protected attribute at test time.

Figure 2: A summary of the debiasing procedure. (i) A biased model is trained without the
knowledge of the protected attribute. (ii) Using the differentiable classification
parity proxies, the model is debiased by performing pruning or bias gradient
descent/ascent on validation data. (iii) The debiased model is evaluated on test
data and can produce unbiased predictions without the protected attribute.

4.2. Neural Network Pruning for Debiasing

Pruning refers to the procedure of reducing the effective number of parameters in a model.
There has been renewed interest in neural network pruning (Cheng et al., 2017; Blalock et al.,
2020), mainly for compressing models and reducing computational complexity and energy
consumption. Different from the existing work, we propose using pruning to mitigate bias
in neural network classifiers. In particular, we introduce a procedure for pruning individual
units, or neurons, based on their contributions to classification disparity. In fully connected
(FC) layers, a unit is a single component of the (pre-)activation vector; in convolutional
layers, it is a component of the three-dimensional tensor. Below we use a one-dimensional
index j to enumerate units for both FC and convolutional layers.
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Gradient-based Bias Influence Building on the influence-directed explanations pro-
posed by Leino et al. (2018) for measuring the influence of individual neurons in CNNs, we
propose a gradient-based statistic for quantifying the influence of units on the classification
disparity. For a differentiable bias measure µ̃, e.g. Equation 3 or 4, the influence of the j-th
unit in the l-th layer is given by

Sl,j =
1

N

N∑
i=1

∂µ̃ (fθ(·),X ,Y,A)

∂zlj(xi)
, (5)

where zlj(xi) denotes the unit’s pre-activation at input xi. In practice, partial deriva-
tives such as those above can be computed efficiently using automatic differentiation, e.g.
PyTorch’s Autograd module (Paszke et al., 2017). The measure in Equation 5 can identify
the most influential units that need to be pruned. Empirical results in Section 6 suggest
that removing influential units effectively reduces the bias.

Pruning Procedure Algorithm 1 outlines the proposed pruning procedure comprising a
few simple steps. (i) For layer 1 ≤ l ≤ L, the influence Sl,j (see Equation 5) is evaluated
for each unit j on the validation data Dvalid. The memory complexity can be reduced by
evaluating and averaging the influence across mini-batches rather than the entire validation
set. For similar reasons, one may choose to prune only specific layers selectively rather
than all L intermediate layers. (ii) A specified number, determined by the number of steps
B ≥ 1, of the most influential units are pruned. For FC layers, a unit can be pruned by
setting all outgoing weights to 0’s, e.g. for the j-th unit in the l-th layer; this amounts to the
assignment W l

j,· ← 0. For convolutional layers, we implement a dropout-like binary mask
applied to pre-activations (Srivastava et al., 2014). Furthermore, note that the order in
which units are pruned depends on the sign of the initial model’s bias, i.e. whether the bias
needs to be driven down or up towards 0. (iii) The bias µ(·) (see Equations 1 and 2) and
performance ρ(·) of the pruned network are evaluated on the validation set. (iv) Influence
Sl,j is recomputed for the pruned network, and steps (ii)–(iv) are repeated. In the end, an
optimal sparsity level is chosen by returning a pruned network with the lowest bias and the
performance at least % > 0, a hyperparameter determined by the user-specified constraint.

The procedure above greedily removes individual units in the intermediate layers of
the neural network step-by-step based on the criterion given by Equation 5. It returns
a pruned network with minimal bias subject to the performance constraint. We will see
that, in practice, it often allows making few changes to the classifier without retraining from
scratch and sacrificing the predictive performance while reducing the classification disparity.

4.3. Bias Gradient Descent/Ascent

Since the proxies given by Equations 3 and 4 are differentiable w.r.t. θ, one could reduce the
bias directly using gradient descent or ascent, depending on the sign of the bias. Therefore,
another approach we propose is fine-tuning the classifier fθ(·) for a few epochs with a small
learning rate, for instance, using mini-batch gradient descent and Equation 3 or 4 as a loss
function. Algorithm 2 contains the pseudocode for the bias gradient descent/ascent (GD/A)
procedure. This method is at first glance similar to the adversarial debiasing by Zhang et al.
(2018), who apply a discriminator to the network’s output. However, we perform gradient
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Input: Held-out validation set Dvalid = {(xi, yi, ai)}Nvalid
i=1 ; neural network fθ(·) with pa-

rameters θ and L intermediate layers; classification threshold t ∈ [0, 1]; predictive
performance measure ρ(·); bias measure µ(·); differentiable bias proxy µ̃(·); lower
bound on performance % > 0; number of steps B ≥ 1

Output: Pruned and debiased network fθ̃(·) with parameters θ̃

µ0 ← µ
(
1{fθ(·)≥t}, {xi}Nvalid

i=1 , {yi}Nvalid
i=1 , {ai}Nvalid

i=1

)
, where (xi, yi, ai) ∈ Dvalid

Initialise θ̃ ← θ
Given Dvalid and µ̃(·), evaluate Sl,j (see Equation 5) for every unit j in layer 1 ≤ l ≤ L
for b = 0 to B − 1 do

Let τb ← q1−1/B ({sgn (µ0)Sl,j}), where qα(·) denotes the empirical α-quantile

Prune unit j in layer 1 ≤ l ≤ L if sgn (µ0)Sl,j > τb and adjust θ̃ accordingly

t̃← arg maxt′∈[0, 1] ρ
(
1{fθ̃(·),≥t′}, {xi}

Nvalid
i=1 , {yi}Nvalid

i=1

)
µb ← µ

(
1{fθ̃(·)≥t̃}, {xi}

Nvalid
i=1 , {yi}Nvalid

i=1 , {ai}Nvalid
i=1

)
ρb ← ρ

(
1{fθ̃(·)≥t̃}, {xi}

Nvalid
i=1 , {yi}Nvalid

i=1

)
Reevaluate Sl,j for the pruned network fθ̃(·)
θ̃b ← θ̃

end
b∗ ← arg min0≤b≤B−1

ρb≥%
|µb|

return fθ̃b∗ (·)
Algorithm 1: Pruning procedure for debiasing neural networks. Individual units are re-
moved greedily based on their influence, and a network with minimal bias subject to the
specified performance constraint is returned.

descent/ascent on the differentiable bias proxies after the network has been trained and do
not require knowledge of the protected attribute during training.

Similar to Algorithm 1, the weight update direction in bias GD/A depends on the sign
of the initial bias. Likewise, at the end of the algorithm, a fine-tuned debiased network
is returned, minimising the bias with the performance of at least %. This procedure has
several additional hyperparameters, namely, learning rate η > 0, which, in practice, should
be chosen sufficiently small, mini-batch size M ≥ 1, and a maximum number of fine-
tuning epochs E ≥ 1. In our experiments, we observed that, compared to the training of
the original model, relatively few fine-tuning epochs suffice to reduce the bias. Although
Algorithm 2 is based on the mini-batch gradient descent, other optimisation procedures can
be adopted, e.g. batch gradient descent, as long as the procedure supports the evaluation
of the differentiable proxy µ̃(·) on several data points.

5. Experimental Setup

The purpose of our experiments was twofold: (i) test the proposed pruning and bias GD/A
methods on tabular and image data for FC and CNN architectures and (ii) explore the use
of intra- and post-processing to mitigate biases in deep chest X-ray classifiers. Below, we
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Input: Held-out validation set Dvalid = {(xi, yi, ai)}Nvalid
i=1 ; neural network fθ(·) with pa-

rameters θ; classification threshold t ∈ [0, 1]; predictive performance measure ρ(·);
bias measure µ(·); differentiable bias proxy µ̃(·); lower bound on performance % > 0;
learning rate η > 0; number of epochs E ≥ 1; mini-batch size M ≥ 1

Output: Fine-tuned and debiased network fθ̃(·) with parameters θ̃

µ0 ← µ
(
1{fθ(·)≥t}, {xi}Nvalid

i=1 , {yi}Nvalid
i=1 , {ai}Nvalid

i=1

)
, where (xi, yi, ai) ∈ Dvalid

Initialise θ̃ ← θ
for e = 0 to E − 1 do

Draw mini-batch B = {(xi, yi, ai)}Mi=1 without replacement, s.t. B ⊆ Dvalid

µ̃e ← µ̃
(
fθ̃(·), {xi}Mi=1 , {yi}

M
i=1 , {ai}

M
i=1

)
, where (xi, yi, ai) ∈ B

θ̃ ← θ̃ − sgn (µ0) η∇θ̃µ̃e
t̃← arg maxt′∈[0, 1] ρ

(
1{fθ̃(·),≥t′}, {xi}

Nvalid
i=1 , {yi}Nvalid

i=1

)
µe ← µ

(
1{fθ̃(·)≥t̃}, {xi}

Nvalid
i=1 , {yi}Nvalid

i=1 , {ai}Nvalid
i=1

)
ρe ← ρ

(
1{fθ̃(·)≥t̃}, {xi}

Nvalid
i=1 , {yi}Nvalid

i=1

)
θ̃e ← θ̃

end
e∗ ← arg min0≤e≤E−1

ρe≥%
|µe|

return fθ̃e∗ (·)
Algorithm 2: Bias gradient descent/ascent procedure for debiasing neural networks. A
biased classifier is fine-tuned by performing bias gradient descent or ascent on a differentiable
bias proxy function. In the end, a network with minimal bias subject to the specified
performance constraint is returned.

briefly summarise the datasets, pre-processing, compared techniques, and the evaluation
procedure. Further implementation details can be found in Appendix D.

5.1. Datasets

We compared debiasing techniques on tabular and image data (see Table B.1 in Ap-
pendix B). Tabular datasets include several publicly available benchmarks, most of them
part of IBM AIF 360 toolkit (Bellamy et al., 2018). We refer the reader to Quy et al. (2022)
for a thorough exploratory analysis of these datatsets. Furthermore, we applied debiasing
to CNNs trained on the large-scale chest X-ray dataset – MIMIC-CXR (Johnson et al.,
2019). In addition, we performed experiments on synthetic data (see Appendix C).

Adult The Adult Census Income data contains 48,842 instances and includes seven cat-
egorical, two binary, and six numerical features. The task is to predict whether a person’s
annual income exceeds 50,000$ (Kohavi, 1996; Quy et al., 2022). In our experiments, we
focused on the protected attribute “sex”. Note that here and below, we use the term “sex”
to match the reported terminology in the underlying data.

Bank The dataset was collected during phone call marketing campaigns (Moro et al.,
2014; Quy et al., 2022) and comprises 45,211 samples with six categorical, four binary, and
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seven numerical features. The classification task is to predict a deposit subscription by a
potential client. We used “age” as the protected variable.

COMPAS The Correctional Offender Management Profiling for Alternative Sanctions
dataset (Larson et al., 2016; Quy et al., 2022) includes 7,214 samples with 31 categorical,
6 binary, and 14 numerical covariates. The underlying classification problem is predicting
the risk of recidivism. The protected attribute is “race”.

MIMIC-III Medical Information Mart for Intensive Care (MIMIC-III-v1.4) database
consists of information on the admissions of patients who stayed in critical care units at
a large tertiary care hospital (Johnson et al., 2016). It includes demographics, vital sign
measurements, laboratory results, medications, notes, imaging reports, mortality rates, etc.
We used pre-processing routine provided by Purushotham et al. (2018) that retains only
the first admissions of adult patients (> 15 years). Pre-processed data consist of 17 features
from the SAPS-II score. We averaged time-series data for each feature/admission. Our
experiments to predict in-hospital mortality focused on the “age”, “marital status”, and
“insurance type” as protected attributes. For “age”, we grouped subjects ≥ 78 years old
into one category and the rest into another. For “marital status”, the two groups comprised
single and the rest. “Insurance type” was dichotomised by grouping Medicare and Medicaid
into one category (public health insurance) and the rest into another (private), similarly
to Meng et al. (2022). Not all protected attribute groupings are clinically meaningful, and
debiasing might not be relevant in all cases. For instance, insurance type dichotomisation
may be too simplistic since Medicare and Medicaid are distinctively different programs (Alt-
man and Frist, 2015) and should be treated separately in practice. However, we focus on
binary-valued protected attributes and contextualise our analysis in the previous work by
Meng et al. (2022). In a similar vein, debiasing w.r.t. the SPD with “age” as the protected
attribute may not be clinically relevant; however, we included these results for completeness.

MIMIC-CXR MIMIC-CXR is a large dataset of chest X-rays from 227,835 studies of
65,379 patients (Johnson et al., 2019). Each study contains one or more images, usually
frontal and lateral views. We only used frontal view images, resizing them to 224×224 px.
We focused on “sex” and “ethnicity” as protected variables since the groups of these at-
tributes were previously shown to have disparate classification outcomes (Seyyed-Kalantari
et al., 2020, 2021). For each image, one or more labels are reported, comprising 14 binary at-
tributes. For the protected attribute “sex”, male patients formed the privileged and female
patients the unprivileged group. Since the classifiers trained using the following combina-
tions of disease labels, protected attributes, and privileged/unprivileged groups were shown
to have disparate TPRs (Seyyed-Kalantari et al., 2020), we took “enlarged cardiomedi-
astinum” (enlarged CM) as the classification label for the attribute “sex”. For “ethnicity”,
white patients were taken as the privileged, whereas patients with Hispanic/Latino ethnic-
ity as unprivileged group. For this attribute, we chose “pneumonia” as the classification
label. Studies with no findings were used as the negative class in both cases.

5.2. Debiasing Methods

In addition to the proposed pruning and bias GD/A procedures, we applied several other
debiasing methods, focusing on intra- and post-processing approaches. Standard refers
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to the original, potentially biased classifier fθ(·) with the classification threshold t ∈ [0, 1]
chosen to maximise the balanced accuracy on the held-out validation data. We used the
random perturbation procedure (Random) described by Savani et al. (2020) as a base-
line. This method perturbs the parameters of the original network fθ (·) several times by
multiplicative Gaussian noise, distributed as N (1, 0.01). The procedure returns a per-
turbed network maximising the bias-constrained objective proposed by Savani et al. (2020)
on the validation set. ROC refers to the reject option classification post-processing algo-
rithm (Kamiran et al., 2012) that swaps classification outcomes for the subjects from the
underprivileged group who fall within the confidence band around the decision boundary.
Eq. Odds is the equalised odds post-processing method (Hardt et al., 2016). This al-
gorithm adjusts output labels probabilistically to balance the odds across the protected
attribute categories. Lastly, we considered adversarial fine-tuning (Adv. Intra) (Savani
et al., 2020), an intra-processing technique closely related to ours that fine-tunes the biased
classifier via adversarial training. In Appendix E.2, we also compare with the adversarial
in-processing algorithm by Zhang et al. (2018).

5.3. Classification Models and Debiasing Evaluation

For tabular datasets, we used the same FC architecture and training scheme for the classifier
fθ(·) (see Appendix D), following the experimental setup of Savani et al. (2020). For
MIMIC-CXR, we used the VGG-16 (Simonyan and Zisserman, 2015) and ResNet-18 (He
et al., 2016) CNN architectures, initialising them with pre-trained weights. All models were
trained by minimising the binary cross-entropy loss using the Adam optimiser (Kingma and
Ba, 2015). For chest X-ray classifiers, to avoid overfitting, we applied random augmentations
during training, such as centre crop, horizontal flip, translation, and rotation.

For all compared techniques, debiasing was performed only on the validation set (see
Appendix D). The classifiers were trained and debiased repeatedly on the independent
replicates of the train-validation-test split in the manner of Monte Carlo cross-validation.
Classifiers were evaluated on the test data w.r.t. the bias and performance. We used
balanced accuracy to reflect true positive and negative rates equally. For tabular data, the
bias was evaluated in terms of the SPD and EOD. For MIMIC-CXR, we focused on the
EOD rather than SPD since achieving even positive prediction outcomes across the groups
of the protected attributes may not be clinically relevant.

6. Results

In this section, we provide the results of the empirical comparison among several debiasing
techniques, including the proposed pruning and bias GD/A intra-processing algorithms.
Further results and additional experiments on synthetic data, investigating the stability of
pruning and bias GD/A, are discussed in Appendix E.

6.1. Results on Tabular Benchmarks

Tables 1 and 2 contain quantitative results obtained on tabular data: EOD, SPD, and
BA before and after debiasing. Compared to other post- and intra-processing techniques,
pruning and bias GD/A successfully mitigate biases and tend to sacrifice less accuracy on
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(a) Pruning, SPD (b) Pruning, EOD (c) Bias GD/A, SPD (d) Bias GD/A, EOD

Figure 3: Changes in the bias, given by the SPD (a, c) and EOD (b, d), and balanced
accuracy of the neural network during pruning (a, b) and bias gradient de-
scent/ascent (c, d). The results were obtained on MIMIC-III for predicting in-
hospital mortality with the “insurance type” as the protected attribute from 20
train-validation-test splits. Bold lines correspond to the median across 20 seeds.
Note that during the bias GD/A, the model was evaluated three times an epoch.

most datasets. On average, pruning performs slightly worse than GD/A and has larger
variability across seeds. The results for the adversarial fine-tuning are in line with those
reported in the original paper by Savani et al. (2020). Generally, while this method visibly
reduces the bias, it tends to sacrifice the BA more, likely due to minimising a loss function
different from that of the bias GD/A. Interestingly, on Adult dataset, both of our procedures
drastically reduce the BA of the classifier and perform worse than ROC: we attribute this to
the general sensitivity of intra-processing methods (Savani et al., 2020) to initial conditions.
In Appendix E, we explore this phenomenon further on synthetic data. In brief, we observed
that when the bias of the original classifier is high, proposed techniques reduce the accuracy
considerably or fail to reduce the bias, therefore, it may be prudent to retrain the model
from scratch using an in-processing approach or resort to post-processing in such cases.

In addition, we examined changes in the bias and balanced accuracy of the neural
network throughout the process of pruning and bias GD/A. Figure 3 shows the trajectories
of the EOD, SPD, and BA obtained on MIMIC-III data for predicting in-hospital mortality
with the “insurance type” as the protected attribute. Encouragingly, both methods drive the
classification disparity towards zero while not affecting the balanced accuracy of the classifier
significantly. We observed that few pruning steps or fine-tuning epochs, compared to the
training time of the original model (a maximum of 1,000 epochs), were necessary to reduce
the bias, suggesting the viability of fine-tuning an already-trained biased model on the
validation set. Generally, the bias and BA trajectories for pruning featured slightly higher
variance across seeds. An intuitive explanation could be that pruning, compared to GD/A,
explores a relatively limited number of debiased network weight configurations, particularly
for smaller architectures, such as the one in our tabular experiments (see Table D.1). We
observed similar debiasing dynamics on other tabular benchmarks (see Figure E.1).
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Table 1: Bias (a) and balanced accuracy (b) attained before and after debiasing neural
networks trained on nonclinical tabular data. If necessary, debiasing was run
twice for each dataset: for the SPD and EOD separately. The results are reported
as averages followed by standard deviations across 20 train-validation-test splits.
Best results are shown in bold, second-best – in italic, except for Standard.

(a) Bias

Bias
Measure

Method
Adult:
Sex

Bank:
Age

COMPAS:
Race

SPD

Standard -0.32±0.02 0.18±0.04 0.19±0.03
Random -0.04±0.01 0.03±0.04 0.09±0.04
ROC -0.04±0.02 0.08±0.04 -0.01±0.01
Eq. Odds -0.09±0.01 0.06±0.03 0.03±0.06
Adv. Intra -0.03±0.00 0.05±0.03 0.03±0.03
Pruning -0.04±0.05 0.02±0.04 0.02±0.03
Bias GD/A -0.01±0.04 0.04±0.05 0.04±0.04

EOD

Standard -0.14±0.02 0.01±0.04 0.20±0.05
Random -0.07±0.03 0.02±0.04 0.09±0.04
ROC -0.05±0.03 0.04±0.04 -0.01±0.01
Eq. Odds -0.01±0.04 0.04±0.10 0.03±0.06
Adv. Intra -0.09±0.03 0.03±0.06 0.14±0.07
Pruning -0.01±0.03 0.00±0.07 0.04±0.06
Bias GD/A -0.03±0.03 0.02±0.06 0.06±0.06

(b) Balanced accuracy

Bias
Measure

Method
Adult:
Sex

Bank:
Age

COMPAS:
Race

SPD

Standard 0.82±0.01 0.86±0.01 0.65±0.01
Random 0.60±0.01 0.60±0.10 0.60±0.03
ROC 0.79±0.01 0.66±0.10 0.50±0.00
Eq. Odds 0.73±0.02 0.70±0.02 0.60±0.01
Adv. Intra 0.56±0.01 0.61±0.09 0.56±0.04
Pruning 0.56±0.04 0.84±0.01 0.63±0.02
Bias GD/A 0.66±0.01 0.86±0.01 0.64±0.01

EOD

Standard 0.82±0.01 0.86±0.01 0.65±0.01
Random 0.78±0.03 0.86±0.01 0.61±0.03
ROC 0.82±0.01 0.86±0.01 0.50±0.00
Eq. Odds 0.73±0.02 0.70±0.02 0.60±0.01
Adv. Intra 0.78±0.02 0.84±0.01 0.61±0.02
Pruning 0.78±0.02 0.86±0.03 0.62±0.03
Bias GD/A 0.82±0.01 0.86±0.01 0.64±0.01

6.2. Chest X-ray Classification

Last but not least, we applied discussed intra- and post-processing techniques to CNNs
trained on MIMIC-CXR. Table 3 reports the EOD and BA after debiasing across 20 inde-
pendent splits for the two pairs of protected attributes and labels and the two architectures.
For predicting enlarged CM under the protected attribute “sex”, the EOD of the original
classifier is mild for both VGG and ResNet, and most methods successfully reduce it with-
out affecting the BA. Both pruning and bias GD/A achieve the best results on average
alongside the equalised odds post-processing. Surprisingly, adversarial fine-tuning does not
reduce the EOD equally well and leads to a lower BA. We attribute its poorer performance
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Table 2: Bias and balanced accuracy before and after debiasing neural networks trained on
MIMIC-III with age, marital status, and insurance type as protected attributes.

Age Marital Status Insurance Type

Bias
Measure

Method Bias BA Bias BA Bias BA

SPD

Standard -0.28±0.03 0.76±0.01 0.10±0.02 0.76±0.01 -0.19±0.03 0.75±0.01
Random -0.04±0.01 0.64±0.01 0.05±0.01 0.72±0.02 -0.04±0.01 0.67±0.01
ROC -0.05±0.01 0.63±0.01 0.03±0.03 0.75±0.01 -0.05±0.01 0.68±0.01
Eq. Odds -0.01±0.01 0.57±0.02 0.01±0.00 0.57±0.01 -0.01±0.00 0.57±0.01
Adv. Intra -0.04±0.01 0.60±0.02 0.04±0.02 0.67±0.04 -0.03±0.01 0.64±0.02
Pruning 0.00±0.02 0.69±0.02 0.00±0.02 0.73±0.01 0.00±0.02 0.69±0.03
Bias GD/A -0.01±0.02 0.72±0.01 0.01±0.02 0.75±0.01 -0.01±0.02 0.73±0.01

EOD

Standard -0.11±0.04 0.76±0.01 0.08±0.03 0.76±0.01 -0.05±0.04 0.75±0.01
Random -0.05±0.05 0.72±0.03 0.06±0.04 0.74±0.03 -0.04±0.04 0.75±0.01
ROC -0.05±0.06 0.69±0.04 0.03±0.05 0.75±0.01 -0.04±0.04 0.75±0.02
Eq. Odds 0.01±0.04 0.57±0.02 0.01±0.04 0.57±0.01 0.01±0.04 0.57±0.01
Adv. Intra -0.08±0.03 0.71±0.02 0.06±0.04 0.73±0.01 -0.02±0.03 0.72±0.03
Pruning 0.01±0.06 0.73±0.01 -0.02±0.06 0.73±0.02 0.00±0.04 0.74±0.01
Bias GD/A -0.01±0.05 0.75±0.01 0.02±0.05 0.75±0.01 0.00±0.04 0.75±0.01

to overfitting on the validation data (see Table E.1 in Appendix E), likely, due to having
many learnable parameters in the discriminator network. Nevertheless, it is encouraging
that the classifiers trained on the data imbalanced w.r.t. the protected attribute can be
debiased post hoc, without retraining from scratch.

On the other hand, for predicting pneumonia under the protected attribute “ethnicity”,
the average EOD of the original model is significantly higher for both architectures. The
only method which satisfactorily reduces the bias, in this case, is equalised odds. While
pruning and bias GD/A do not hurt the performance, the average EOD after debiasing
is far from zero. However, both techniques still perform better than the näıve random
perturbation baseline. Similar to the results above, adversarial fine-tuning also fails to
debias the network. We see several plausible explanations for the poorer performance of
the proposed methods: (i) overfitting to the small validation set — for pneumonia and
“ethnicity”, it only contains about 1,000 images; (ii) the protected attribute “ethnicity” is
harder to detect from X-rays, compared to “sex”, and it may be prudent to use a post-
processing technique which requires the attribute as input at test time; (iii) the general
sensitivity of the intra-processing to the initial conditions (see Appendix E). Additionally, it
must be noted that the attribute “ethnicity” is self-reported (Seyyed-Kalantari et al., 2020)
and might be noisy and misaligned with the ground truth, introducing another source of
variability into the results.

7. Discussion

The intra-processing methods proposed in this work (see Section 4) offer a simple yet effec-
tive way of fine-tuning neural networks to mitigate classification disparity. The proposed
differentiable bias proxy functions are directly related to the empirical covariance between
the decision boundary and protected attribute (see Appendix A), similar to the loss func-
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Table 3: Equal opportunity difference and balanced accuracy attained before and after
debiasing VGG-16 (a,b) and ResNet-18 (c,d) trained on MIMIC-CXR to pre-
dict (a,c) enlarged cardiomediastinum (with the protected attribute “sex”) and
(b,d) pneumonia (with the protected attribute “ethnicity”).

(a) Enlarged CM, Sex ; VGG-16

Method EOD BA

Standard -0.05±0.02 0.77±0.01
Random -0.03±0.03 0.75±0.01
ROC -0.05±0.02 0.75±0.03
Eq. Odds 0.01±0.03 0.75±0.01
Adv. Intra -0.04±0.03 0.73±0.01
Pruning 0.00±0.02 0.76±0.02
Bias GD/A -0.01±0.04 0.76±0.01

(b) Pneumonia, Ethnicity ; VGG-16

Method EOD BA

Standard -0.14±0.04 0.73±0.02
Random -0.11±0.06 0.71±0.02
ROC -0.07±0.06 0.65±0.06
Eq. Odds 0.00±0.06 0.70±0.01
Adv. Intra -0.13±0.05 0.70±0.02
Pruning -0.09±0.05 0.71±0.03
Bias GD/A -0.08±0.06 0.71±0.02

(c) Enlarged CM, Sex ; ResNet-18

Method EOD BA

Standard -0.05±0.04 0.76±0.01
Random 0.00±0.03 0.73±0.02
ROC -0.05±0.03 0.74±0.04
Eq. Odds 0.01±0.03 0.74±0.01
Adv. Intra -0.04±0.04 0.73±0.02
Pruning -0.01±0.03 0.74±0.02
Bias GD/A 0.00±0.03 0.76±0.01

(d) Pneumonia, Ethnicity ; ResNet-18

Method EOD BA

Standard -0.14±0.05 0.73±0.02
Random -0.06±0.06 0.65±0.04
ROC -0.07±0.04 0.65±0.05
Eq. Odds -0.01±0.06 0.70±0.01
Adv. Intra -0.14±0.03 0.71±0.02
Pruning -0.11±0.05 0.70±0.02
Bias GD/A -0.11±0.05 0.73±0.02

tions considered by Zafar et al. (2017, 2019) in the context of linear classification. There
exist criteria for fairness beyond the SPD and EOD (Corbett-Davies and Goel, 2018). Our
approaches can be readily combined with other parity measures, e.g. the average odds
difference, by deriving proxies similar to those described in Section 4.1.

The presented debiasing techniques differ in several aspects from the related work. While
there have been many efforts to debias neural networks resorting to adversarial training
(Zhang et al., 2018; Kim et al., 2019a; Reimers et al., 2021), these works have mainly focused
on the in-processing setting, where the source of bias is known during training. Notably,
the adversarial in-processing technique by Zhang et al. (2018) is similar to the proposed
bias GD/A (see Section 4.3). Next to the main objective, it maximises the cross-entropy
term for predicting the protected attribute using an adversary defined on the outputs of the
base classifier. The current work offers a different perspective concentrating on the intra-
processing scenario and chest X-ray classification. Moreover, to the best of our knowledge,
neural network pruning or dropout have never been considered from the perspective of
debiasing for group fairness. In particular, it would be interesting to investigate if the
proposed pruning procedure may be augmented with other, non-gradient-based criteria for
evaluating the influence of neurons (cf. Equation 5).

Although model-agnostic post-processing methods, such as ROC (Kamiran et al., 2012)
and equalised odds (Hardt et al., 2016), are applied post hoc, they assume access to the pro-
tected attribute at test time. On the other hand, the methods introduced by Savani et al.
(2020) are most closely related to ours. Random perturbation and layer-wise optimisation
(Savani et al., 2020) are based on computationally expensive zeroth-order optimisation tech-
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niques. While adversarial fine-tuning, similarly to bias GD/A, minimises a differentiable
bias proxy by mini-batch gradient descent, it resorts to adversarial training, has more hyper-
and learnable parameters than our methods, and leverages a different loss function. Fur-
thermore, Savani et al. (2020) focus only on the conventional tabular debiasing benchmarks
and natural images and do not apply their methods to clinical data.

Empirically, we have comprehensively evaluated our and related intra- and post-processing
methods on various tabular and medical image datasets for fully connected and convolu-
tional neural network architectures (see Section 6). In brief, the experiments on tabular data
(see Section 6.1) suggest that the proposed intra-processing approaches effectively reduce
the bias when it is present and offer improved performance over model-agnostic techniques.
We have also demonstrated that pruning and GD/A can reduce the classification disparity
in deep chest X-ray classifiers (see Section 6.2) for VGG-16 and ResNet-18 networks. How-
ever, when the validation set is too small, and the bias of the initial model is too high, it
might be more prudent to retrain the model from scratch or use a post-processing algorithm.

Another contribution of this work is the application to deep chest X-ray classification.
A body of previous literature has identified biases within the state-of-the-art models trained
on large-scale publicly available datasets (Larrazabal et al., 2020; Seyyed-Kalantari et al.,
2020, 2021). However, none of these works has investigated the mitigation of the identified
biases. We believe that the current paper is a valuable contribution to the discussion
on achieving group fairness for medical image classifiers. Moreover, the considered intra-
processing setting may become particularly pertinent to healthcare applications of machine
learning due to the increasing adoption of transfer learning and pre-trained models.

Limitations The current study has several limitations. In particular, the experimental
setup is restricted to few neural network architectures. It would be interesting to explore
other CNN models, such as DenseNet (Huang et al., 2017) and SqueezeNet (Iandola et al.,
2016). For MIMIC-CXR, we have only focused on two protected-attribute-label pairs, and
further investigation is warranted. Furthermore, we have considered binary classification
under a binary-valued protected variable. Therefore, for practical use-cases, it is necessary
to adapt our methods to the multilevel setting and extend them to the bias measures beyond
the SPD and EOD, as explored by Zafar et al. (2019).

8. Conclusion

This work considered differentiable proxy functions for statistical parity and equality of op-
portunity, showing their correspondence to the covariance between the decision boundary
of a neural network and the protected attribute. We proposed two novel intra-processing
debiasing procedures based on neural network pruning and fine-tuning that utilise these
proxies. Our experimental results on tabular data, including MIMIC-III, with fully con-
nected neural networks indicate the viability of the proposed methods, especially compared
to model-agnostic post-processing. Furthermore, we applied our and related techniques to
mitigate disparity in chest X-ray classifiers trained on MIMIC-CXR and demonstrated that
previously reported biases could be reduced without retraining models from scratch.

Future Work In future work, it would be interesting to consider criteria for pruning
beyond the gradient-based influence and study a more general setting with multiple classes
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and protected attribute categories. For tabular data, it could be helpful to investigate the
use of pruning in the input layer to remove “biased” variables directly. The experimental
results on MIMIC-CXR should be extended by more labels and protected attributes.

Code and Data Availability

The code is available at https://github.com/i6092467/diff-bias-proxies. All of the
datasets in our experiments are publicly available.
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Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. Gradient-based attribu-
tion methods. In Explainable AI: Interpreting, Explaining and Visualizing Deep Learning,
pages 169–191. Springer International Publishing, 2019.

David Bau, Jun-Yan Zhu, Hendrik Strobelt, Agata Lapedriza, Bolei Zhou, and Antonio
Torralba. Understanding the role of individual units in a deep neural network. Proceedings
of the National Academy of Sciences, 117(48):30071–30078, 2020.

Rachel K. E. Bellamy, Kuntal Dey, Michael Hind, Samuel C. Hoffman, Stephanie Houde,
Kalapriya Kannan, Pranay Lohia, Jacquelyn Martino, Sameep Mehta, Aleksandra Mo-
jsilovic, Seema Nagar, Karthikeyan Natesan Ramamurthy, John Richards, Diptikalyan
Saha, Prasanna Sattigeri, Moninder Singh, Kush R. Varshney, and Yunfeng Zhang. AI
Fairness 360: An extensible toolkit for detecting, understanding, and mitigating unwanted
algorithmic bias, 2018. arXiv:1810.01943.

Philippe Besse, Eustasio del Barrio, Paula Gordaliza, Jean-Michel Loubes, and Laurent
Risser. A survey of bias in machine learning through the prism of statistical parity. The
American Statistician, pages 1–11, 2021.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is
the state of neural network pruning? In Proceedings of Machine Learning and Systems,
volume 2, pages 129–146, 2020.

Keno K. Bressem, Lisa C. Adams, Christoph Erxleben, Bernd Hamm, Stefan M. Niehues,
and Janis L. Vahldiek. Comparing different deep learning architectures for classification
of chest radiographs. Scientific Reports, 10(1), 2020.

17

https://github.com/i6092467/diff-bias-proxies


Debiasing Deep Chest X-Ray Classifiers

Kay Henning Brodersen, Cheng Soon Ong, Klaas Enno Stephan, and Joachim M. Buhmann.
The balanced accuracy and its posterior distribution. In 20th International Conference
on Pattern Recognition. IEEE, 2010.

Flavio Calmon, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Natesan Ramamurthy,
and Kush R Varshney. Optimized pre-processing for discrimination prevention. In Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017.

L. Elisa Celis, Vijay Keswani, and Nisheeth Vishnoi. Data preprocessing to mitigate bias:
A maximum entropy based approach. In Proceedings of the 37th International Conference
on Machine Learning, volume 119, pages 1349–1359. PMLR, 2020.

Danton S. Char, Nigam H. Shah, and David Magnus. Implementing machine learning in
health care — addressing ethical challenges. New England Journal of Medicine, 378(11):
981–983, 2018.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and
acceleration for deep neural networks, 2017. arXiv:1710.09282.

Shweta Chopra, Nupur Baghel, Shubham Annadate, and Rajalakshmi D. Shanmu-
gasundaram. Fighting algorithmic bias using adversarial networks, 2020. URL
https://github.com/choprashweta/Adversarial-Debiasing/blob/master/CIS_

519_Project_Report%20(4).pdf.

Joseph Paul Cohen, Mohammad Hashir, Rupert Brooks, and Hadrien Bertrand. On the
limits of cross-domain generalization in automated X-ray prediction. In Medical Imaging
with Deep Learning, 2020.

Sam Corbett-Davies and Sharad Goel. The measure and mismeasure of fairness: A critical
review of fair machine learning, 2018. arXiv:1808.00023.

Kedar Dhamdhere, Mukund Sundararajan, and Qiqi Yan. How important is a neuron? In
International Conference on Learning Representations, 2019.

Priyanka Gupta, Pankaj Malhotra, Lovekesh Vig, and Gautam M. Shroff. Using features
from pre-trained TimeNET for clinical predictions. In KHD@IJCAI, 2018.

Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning.
In Advances in Neural Information Processing Systems, volume 29. Curran Associates,
Inc., 2016.

Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal
brain surgeon. In Advances in Neural Information Processing Systems, volume 5. Morgan-
Kaufmann, 1993.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, 2016.

18

https://github.com/choprashweta/Adversarial-Debiasing/blob/master/CIS_519_Project_Report%20(4).pdf
https://github.com/choprashweta/Adversarial-Debiasing/blob/master/CIS_519_Project_Report%20(4).pdf


Debiasing Deep Chest X-Ray Classifiers

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural
networks. In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), 2017.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely
connected convolutional networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally,
and Kurt Keutzer. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and
< 0.5MB model size, 2016. arXiv:1602.07360.

Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silviana Ciurea-Ilcus, Chris Chute,
Henrik Marklund, Behzad Haghgoo, Robyn Ball, Katie Shpanskaya, Jayne Seekins, David
A. Mong, Safwan S. Halabi, Jesse K. Sandberg, Ricky Jones, David B. Larson, Curtis P.
Langlotz, Bhavik N. Patel, Matthew P. Lungren, and Andrew Y. Ng. CheXpert: A large
chest radiograph dataset with uncertainty labels and expert comparison. In 33rd AAAI
Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Arti-
ficial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2019, pages 590–597, 2019.

Alistair E. W. Johnson, Tom J. Pollard, Lu Shen, Li wei H. Lehman, Mengling Feng, Mo-
hammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G.
Mark. MIMIC-III, a freely accessible critical care database. Scientific Data, 3(1), 2016.

Alistair E. W. Johnson, Tom J. Pollard, Nathaniel R. Greenbaum, Matthew P. Lungren,
Chih-ying Deng, Yifan Peng, Zhiyong Lu, Roger G. Mark, Seth J. Berkowitz, and Steven
Horng. MIMIC-CXR-JPG: A large publicly available database of labeled chest radio-
graphs, 2019.

Faisal Kamiran and Toon Calders. Data preprocessing techniques for classification without
discrimination. Knowledge and Information Systems, 33(1):1–33, 2011.

Faisal Kamiran, Asim Karim, and Xiangliang Zhang. Decision theory for discrimination-
aware classification. In 2012 IEEE 12th International Conference on Data Mining, pages
924–929, 2012.

Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. Fairness-aware clas-
sifier with prejudice remover regularizer. In Machine Learning and Knowledge Discovery
in Databases, pages 35–50. Springer Berlin Heidelberg, 2012.

Michael Kearns. Fair algorithms for machine learning. In Proceedings of the 2017 ACM Con-
ference on Economics and Computation, page 1. Association for Computing Machinery,
2017.

Byungju Kim, Hyunwoo Kim, Kyungsu Kim, Sungjin Kim, and Junmo Kim. Learning
not to learn: Training deep neural networks with biased data. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9012–9020,
2019a.

19



Debiasing Deep Chest X-Ray Classifiers

Michael P. Kim, Amirata Ghorbani, and James Zou. Multiaccuracy: Black-box post-
processing for fairness in classification. In Proceedings of the 2019 AAAI/ACM Conference
on AI, Ethics, and Society, pages 247–254. Association for Computing Machinery, 2019b.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd
International Conference on Learning Representations, 2015.

Ron Kohavi. Scaling up the accuracy of naive-Bayes classifiers: A decision-tree hybrid. In
Proceedings of the Second International Conference on Knowledge Discovery and Data
Mining, pages 202–207. AAAI Press, 1996.

Agostina J. Larrazabal, Nicolás Nieto, Victoria Peterson, Diego H. Milone, and Enzo Fer-
rante. Gender imbalance in medical imaging datasets produces biased classifiers for
computer-aided diagnosis. Proceedings of the National Academy of Sciences, 117(23):
12592–12594, 2020.

Jeff Larson, Surya Mattu, Lauren Kirchner, and Julia Angwin. How we ana-
lyzed the COMPAS recidivism algorithm. https://www.propublica.org/article/

how-we-analyzed-the-compas-recidivism-algorithm, 2016. Accessed: 2020.11.02.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. In Advances in Neural
Information Processing Systems, volume 2. Morgan-Kaufmann, 1990.

Jungsoo Lee, Eungyeup Kim, Juyoung Lee, Jihyeon Lee, and Jaegul Choo. Learning debi-
ased representation via disentangled feature augmentation. In Advances in Neural Infor-
mation Processing Systems, 2021.

Klas Leino, Shayak Sen, Anupam Datta, Matt Fredrikson, and Linyi Li. Influence-directed
explanations for deep convolutional networks. In IEEE International Test Conference
(ITC). IEEE, 2018.

Wei-Yin Loh, Luxi Cao, and Peigen Zhou. Subgroup identification for precision medicine:
A comparative review of 13 methods. WIREs Data Mining and Knowledge Discovery, 9
(5), 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th Interna-
tional Conference on Learning Representations, ICLR, 2019.

Chuizheng Meng, Loc Trinh, Nan Xu, James Enouen, and Yan Liu. Interpretability and
fairness evaluation of deep learning models on MIMIC-IV dataset. Scientific Reports, 12
(1), 2022.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convo-
lutional neural networks for resource efficient inference. In 5th International Conference
on Learning Representations, ICLR, 2017.

Sérgio Moro, Paulo Cortez, and Paulo Rita. A data-driven approach to predict the success
of bank telemarketing. Decision Support Systems, 62:22–31, 2014.

20

https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm


Debiasing Deep Chest X-Ray Classifiers

Junhyun Nam, Hyuntak Cha, Sungsoo Ahn, Jaeho Lee, and Jinwoo Shin. Learning from
failure: De-biasing classifier from biased classifier. In Advances in Neural Information
Processing Systems, volume 33, pages 20673–20684. Curran Associates, Inc., 2020a.

Woo-Jeoung Nam, Shir Gur, Jaesik Choi, Lior Wolf, and Seong-Whan Lee. Relative at-
tributing propagation: Interpreting the comparative contributions of individual units in
deep neural networks. Proceedings of the AAAI Conference on Artificial Intelligence, 34
(03):2501–2508, 2020b.

Ziad Obermeyer, Brian Powers, Christine Vogeli, and Sendhil Mullainathan. Dissecting
racial bias in an algorithm used to manage the health of populations. Science, 366(6464):
447–453, 2019.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic dif-
ferentiation in PyTorch, 2017. NIPS 2017 Autodiff Workshop.

Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg, and Kilian Q. Weinberger. On
fairness and calibration. In Proceedings of the 31st International Conference on Neural
Information Processing Systems, pages 5684–5693. Curran Associates Inc., 2017.

Sanjay Purushotham, Chuizheng Meng, Zhengping Che, and Yan Liu. Benchmarking deep
learning models on large healthcare datasets. Journal of Biomedical Informatics, 83:
112–134, 2018.

Tai Le Quy, Arjun Roy, Vasileios Iosifidis, Wenbin Zhang, and Eirini Ntoutsi. A survey
on datasets for fairness-aware machine learning. WIREs Data Mining and Knowledge
Discovery, 12(3), 2022.

Maithra Raghu, Chiyuan Zhang, Jon Kleinberg, and Samy Bengio. Transfusion: Under-
standing transfer learning for medical imaging. In Advances in Neural Information Pro-
cessing Systems, volume 32. Curran Associates, Inc., 2019.

Alvin Rajkomar, Michaela Hardt, Michael D. Howell, Greg Corrado, and Marshall H.
Chin. Ensuring fairness in machine learning to advance health equity. Annals of In-
ternal Medicine, 169(12):866–872, 2018.

Pranav Rajpurkar, Jeremy Irvin, Kaylie Zhu, Brandon Yang, Hershel Mehta, Tony
Duan, Daisy Ding, Aarti Bagul, Curtis Langlotz, Katie Shpanskaya, et al. Chexnet:
Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv preprint
arXiv:1711.05225, 2017.

Laila Rasmy, Yang Xiang, Ziqian Xie, Cui Tao, and Degui Zhi. Med-BERT: pretrained
contextualized embeddings on large-scale structured electronic health records for disease
prediction. npj Digital Medicine, 4(1), 2021.

Christian Reimers, Paul Bodesheim, Jakob Runge, and Joachim Denzler. Conditional ad-
versarial debiasing: Towards learning unbiased classifiers from biased data. In Pattern
Recognition, pages 48–62. Springer International Publishing, 2021.

21



Debiasing Deep Chest X-Ray Classifiers

Yash Savani, Colin White, and Naveen Sundar Govindarajulu. Intra-processing methods
for debiasing neural networks. In Advances in Neural Information Processing Systems,
volume 33, pages 2798–2810. Curran Associates, Inc., 2020.

Laleh Seyyed-Kalantari, Guanxiong Liu, Matthew McDermott, Irene Y Chen, and Marzyeh
Ghassemi. CheXclusion: Fairness gaps in deep chest X-ray classifiers. In BIOCOMPUT-
ING 2021: Proceedings of the Pacific Symposium, pages 232–243. World Scientific, 2020.

Laleh Seyyed-Kalantari, Haoran Zhang, Matthew B. A. McDermott, Irene Y. Chen, and
Marzyeh Ghassemi. Underdiagnosis bias of artificial intelligence algorithms applied to
chest radiographs in under-served patient populations. Nature Medicine, 27(12):2176–
2182, 2021.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In 3rd International Conference on Learning Representations, ICLR,
2015.

Suraj Srinivas and François Fleuret. Full-gradient representation for neural network vi-
sualization. In Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15(1):1929–1958, 2014.

Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, and Ronald M.
Summers. ChestX-ray: Hospital-scale chest X-ray database and benchmarks on weakly
supervised classification and localization of common thorax diseases. In Deep Learning
and Convolutional Neural Networks for Medical Imaging and Clinical Informatics, pages
369–392. Springer International Publishing, 2019.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured
sparsity in deep neural networks. In Advances in Neural Information Processing Systems,
volume 29. Curran Associates, Inc., 2016.

Jenna Wiens, Suchi Saria, Mark Sendak, Marzyeh Ghassemi, Vincent X. Liu, Finale Doshi-
Velez, Kenneth Jung, Katherine Heller, David Kale, Mohammed Saeed, Pilar N. Ossorio,
Sonoo Thadaney-Israni, and Anna Goldenberg. Do no harm: a roadmap for responsible
machine learning for health care. Nature Medicine, 25(9):1337–1340, 2019.

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rogriguez, and Krishna P. Gummadi.
Fairness Constraints: Mechanisms for Fair Classification. In Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics, volume 54, pages 962–
970. PMLR, 2017.

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, and Krishna P. Gum-
madi. Fairness constraints: A flexible approach for fair classification. Journal of Machine
Learning Research, 20(75):1–42, 2019.

22



Debiasing Deep Chest X-Ray Classifiers

John R. Zech, Marcus A. Badgeley, Manway Liu, Anthony B. Costa, Joseph J. Titano, and
Eric Karl Oermann. Variable generalization performance of a deep learning model to
detect pneumonia in chest radiographs: A cross-sectional study. PLOS Medicine, 15(11):
e1002683, 2018.

Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning fair rep-
resentations. In Proceedings of the 30th International Conference on Machine Learning,
volume 28, pages 325–333. PMLR, 2013.

Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell. Mitigating unwanted biases with
adversarial learning. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics,
and Society. ACM, 2018.

23



Debiasing Deep Chest X-Ray Classifiers

Appendix A. Decision Boundary Covariance

In this appendix, we study the relationship between the differentiable bias proxies in Equa-
tions 3 and 4 (see Section 4 of the main text) and the covariance between the decision
boundary of the classifier fθ(·) and the protected attribute A.

Lemma 1 For X = {xi}Ni=1, Y = {yi}Ni=1, and A = {ai}Ni=1 and some classifier fθ(·),
−µ̃SPD (fθ, X , Y, A) ∝ Ĉov (A, fθ (X)).

Proof Recall that the covariance is given by

Cov (A, fθ (X)) = E [Afθ (X)]− E [A]E [fθ(X)] .

Let K =
∑N

i=1 ai and fθ (x) = 1
N

∑N
i fθ (xi), consider an empirical estimate

Ĉov (A, fθ (X)) =
1

N

N∑
i=1

fθ (xi) ai −
K

N2

N∑
i=1

fθ (xi) =
1

N

N∑
i=1

fθ (xi) ai −
K

N
fθ (x). (A.1)

Observe that

−µ̃SPD =

∑N
i=1 fθ (xi) ai∑N

i=1 ai
−
∑N

i=1 fθ (xi) (1− ai)∑N
i=1 (1− ai)

=
1

K

N∑
i=1

fθ (xi) ai −
N

N −K
fθ (x)−

1

N −K

N∑
i=1

fθ (xi) ai =
N

K(N −K)

N∑
i=1

fθ (xi) ai −
NK

K(N −K)
fθ (x).

(A.2)

Note that (A.1) ∝ (A.2) by a factor of N2

K(N−K) , constant in θ.

Lemma 2 For X = {xi}Ni=1, Y = {yi}Ni=1, and A = {ai}Ni=1 and some classifier fθ(·),
−µ̃EOD (fθ, X , Y, A) ∝ Ĉov (A, fθ (X) |Y = 1).

Proof Recall that, by the law of total covariance,

Cov (A, fθ (X) |Y = 1) =E [(A− E [A |Y = 1]) (fθ (X)− E [fθ (X) |Y = 1]) |Y = 1] =

E [Afθ (X) |Y = 1]− E [A |Y = 1]E [fθ (X) |Y = 1] .

Let M =
∑N

i=1 yi, R =
∑N

i=1 aiyi, and fθ (x) = 1
N

∑N
i fθ (xi), consider an empirical

estimate

Ĉov (A, fθ (X) |Y = 1) =

∑N
i=1 fθ (xi) aiyi∑N

i=1 yi
−
∑N

i=1 aiyi∑N
i=1 yi

·
∑N

i=1 fθ (xi) yi∑N
i=1 yi

=

1

M

N∑
i=1

fθ (xi) aiyi −
R

M2

N∑
i=1

fθ (xi) yi.

(A.3)
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Observe that

−µ̃EOD =

∑N
i=1 fθ (xi) yiai∑N

i=1 yiai
−
∑N

i=1 fθ (xi) yi(1− ai)∑N
i=1 yi(1− ai)

=

1

R

N∑
i=1

fθ (xi) yiai −
1

M −R

N∑
i=1

fθ (xi) yi −
1

M −R

N∑
i=1

fθ (xi) yiai =

M

R(M −R)

N∑
i=1

fθ (xi) yiai −
1

M −R

N∑
i=1

fθ (xi) yi.

(A.4)

Note that (A.3) ∝ (A.4) by a factor of M2

R(M−R) , constant in θ.

Appendix B. Datasets

Nonclinical tabular benchmarking datasets used in our experiments (see Section 6.1) are
publicly available in the IBM AIF 360 library (Bellamy et al., 2018). Table B.1 below
summarises all real-world datasets considered throughout the paper.

Table B.1: Summary of the datasets. Ntrain, Nvalid, and Ntest are the sizes of the training,
validation, and test sets, respectively; D is the input dimensionality after pre-
processing; and A is the protected attribute.

Dataset Ntrain Nvalid Ntest D A Architecture

Adult 27,133 9,044 9,045 98 Sex FCNN

Bank 18,292 6,098 6,098 57 Age FCNN

COMPAS 3,700 1,233 1,234 401 Race FCNN

MIMIC-III
21,595 7,199 7,199 43 Age FCNN
21,595 7,199 7,199 44 Marital Status FCNN
21,595 7,199 7,199 44 Insurance Type FCNN

MIMIC-CXR
5,528 3,368 3,426 224×224 Sex CNN
3,984 930 1,122 224×224 Ethnicity CNN

Appendix C. Syntehtic Data

In addition to the real-world data (see Section 5 and Appendix B), we conducted ex-
periments on two synthetic datasets adapted from the literature (for the results, see Ap-
pendix E.3). Below we summarise their generative process.

Synthetic by Loh et al. (2019) Loh et al. (2019) performed extensive simulation exper-
iments comparing subgroup identification methods. Their simulation models are suitable
for benchmarking debiasing algorithms. We adopted one of their synthetic datasets with
the following generative procedure. For N independent data points:

1. Randomly draw features with marginal distributions given byX1, 2, 3, 7, 8, 9, 10 ∼ N (0, 1),
X4 ∼ Exp(1), X5 ∼ Bernoulli(1

2), X6 ∼ Cat(10) and corr (X2, X3) = 0.5 and
corr (Xj , Xk) = 0.5, for j, k ∈ {7, 8, 9, 10}, j 6= k.
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2. Randomly draw the protected attribute A ∼ Bernoulli
(

1
2

)
.

3. Let

logit = log
P(Y = 1)

P(Y = 0)
=

1

2
(X1 +X2 −X5) + 2αA1{X6 (mod 2)=1}, (C.1)

where 1{·} is an indicator function and α > 0 is the parameter controlling the magni-
tude of the correlation between Y and A.

4. Randomly draw the binary classification label Y ∼ Bernoulli
(

exp(logit)
exp(logit)+1

)
.

Although this dataset is relatively simplistic, the simulation allows controlling the magni-
tude of classification disparity in the original classifier. In practice, we observe that the
higher the value of α, the higher the absolute SPD or EOD of the classifier trained on
features X1:10 and labels Y .

Synthetic by Zafar et al. (2017) Zafar et al. (2017) proposed another simple sim-
ulation model for generating datasets with different degrees of disparity in classification
outcomes. We extended their model1 to higher dimensionality and classes that are not
linearly separable. The data generating process is specified below. For N independent data
points:

1. Randomly draw the binary classification label Y ∼ Bernoulli
(

1
2

)
.

2. If Y = 0, randomly draw X̃ ∼ N2

([
−2
−2

]
,

[
10 1
1 3

])
;

otherwise X̃ ∼ N2

([
2
2

]
,

[
5 1
1 5

])
.

3. Let

X̃ ′ =

[
cos(ϑ) − sin(ϑ)
sin(ϑ) cos(ϑ)

]
X̃, (C.2)

where ϑ is the rotation angle controlling the correlation between between Y and A.

4. Let

P (A = 1) =
p
(
X̃ ′ |Y = 1

)
p
(
X̃ ′ |Y = 1

)
+ p

(
X̃ ′ |Y = 0

) .
5. Randomly draw the protected attribute A ∼ Bernoulli (P (A = 1)).

6. Let g(x̃) = Θ2ReLU (Θ1ReLU (Θ0x̃+ b0) + b1) + b2, where Θ0 ∈ Rh×2, Θ1 ∈ Rh×h,
Θ2 ∈ Rp×h and b0 ∈ Rh, b1 ∈ Rh, b2 ∈ Rp are randomly generated matrices and
vectors.

7. Let X = g
(
X̃
)

be a p-dimensional real-valued feature vector.

Similar to the dataset above, this simulation allows controlling the degree of bias by
adjusting the parameter ϑ. In practice, values of ϑ closer to zero result in classifiers with
higher absolute SPDs and EODs.

1https://github.com/mbilalzafar/fair-classification
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Appendix D. Implementation Details

In this appendix, we present further implementation details. For a general overview of the
experimental setup, see Section 5 of the main text.

D.1. Train-validation-test Split

All tabular datasets were split into 60% train, 20% validation, and 20% test instances. For
MIMIC-CXR, we performed a 50%-25%-25% train-validation-test split stratified by patients
to avoid data leakage. To mitigate other sources of variability in the original models, we
balanced the training, validation, and test sets w.r.t. the number of healthy and pathological
cases. Since the prior work (Larrazabal et al., 2020) has investigated imbalance w.r.t. the
protected attribute as a potential cause of bias in deep chest X-ray classifiers, we sampled
the images of patients so that the training set had 75% and 25% from the privileged and
unprivileged groups, respectively. For validation and test sets, the ratio of privileged and
unprivileged groups was 50%-50%.

D.2. Model Development

All experiments and methods were implemented in PyTorch (v 1.9.1) (Paszke et al., 2017).
For all tabular datasets, we used the same architecture and training scheme for the clas-
sifier fθ(·). We trained a fully connected feedforward neural network with ten hidden
layers, 32 units each, ReLU activations, dropout (p = 0.05), and batch normalisation (see
Table D.1). The network was trained for 1,000 epochs with early stopping by minimis-
ing the binary cross-entropy loss using the Adam optimiser (Kingma and Ba, 2015) with
ReduceLROnPlateau learning rate schedule and mini-batch size of 64.

Table D.1: Fully connected neural network architecture used in debiasing experiments
on tabular data (see Section 6.1). nn stands for torch.nn; F stands for
torch.nn.functional; input dim corresponds to the number of features d.

Classifier

1 nn.Linear(input dim, 32)

F.relu()

nn.Dropout(0.05)

nn.BatchNorm1d(32)

2 for l in range(10):

nn.Linear(32, 32)

F.relu()

nn.Dropout(0.05)

nn.BatchNorm1d(32)

3 out = nn.Linear(32, 1)

4 torch.sigmoid()

For MIMIC-CXR, we used classifiers based on the VGG-16 (Simonyan and Zisserman,
2015) and ResNet-18 (He et al., 2016) networks. We initialised classifiers with pre-trained
weights and trained them using the binary cross-entropy loss and the AdamW optimiser
(Loshchilov and Hutter, 2019) with default parameters, a mini-batch size of 32, and an
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initial learning rate of 10−4 with StepLR learning rate schedule. The networks were trained
for a maximum of 20 epochs with early stopping on the validation set.

D.3. Method Implementation

We used the following implementation of the debiasing algorithms:

• Random and Adv. Intra: we used the original implementation by Savani et al.
(2020) available at https://github.com/abacusai/intraprocessing_debiasing.

• ROC and Eq. Odds: we used the implementation available in the AIF 360 toolkit
at https://github.com/Trusted-AI/AIF360.

• Pruning and Bias GD/A: the PyTorch (v 1.9.1) (Paszke et al., 2017) implementation
is available at https://github.com/i6092467/diff-bias-proxies.

D.4. Hyperparameters

Table D.2 provides hyperparameter values for the pruning and bias GD/A. For both al-
gorithms, the most sensitive hyperparameter is the lower bound on performance % (see
Algorithms 1 and 2), which effectively controls the decrease in performance as a result
of debiasing. For MIMIC-III, the same hyperparameter configuration was used across all
protected attributes (“age”, “marital status”, and “insurance type”). For MIMIC-CXR
experiments with VGG-16, we performed pruning only in the convolutional layers. For
ResNet-18, we only pruned the first conv1 block, comprising a single convolutional layer.
During experimentation, we observed little gain from pruning additional downstream layers.

Table D.2: Hyperparameter values used for the (a) pruning and (b) bias GD/A algorithms
throughout the experiments. Herein, “# units” corresponds to the number of
units pruned per step and relates to the hyperparameter B from Algorithm 1.
%SPD and %EOD denote lower bounds on the balanced accuracy for the SPD and
EOD experiments, respectively. For the bias GD/A, η denotes the learning rate;
M is the mini-batch size; and E is the number of epochs.

(a) Pruning

Dataset # Units %SPD %EOD

Adult 1 0.52 0.75

Bank 1 0.80 0.70

COMPAS 1 0.55 0.55

MIMIC-III 1 0.60 0.60

MIMIC-CXR,
Sex

1,500 — 0.65

MIMIC-CXR,
Ethnicity

1,500 — 0.55

(b) Bias GD/A

Dataset η M E %SPD %EOD

Adult 1.0e-5 256 200 0.62 0.80

Bank 1.0e-5 256 200 0.70 0.70

COMPAS 1.0e-5 256 200 0.61 0.58

MIMIC-III 1.0e-5 256 100 0.60 0.60

MIMIC-CXR,
Sex

1.0e-5 32 10 — 0.75

MIMIC-CXR,
Ethnicity

7.5e-6 32 8 — 0.55

For the random perturbation intra-processing, we used multiplicative noise distributed
as N (1, 0.01) and performed 101 perturbations to maximise the constrained objective pro-
posed by Savani et al. (2020) with an upper/lower bound on the bias of ±0.05 and a margin
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of 0.01. The same bias bounds were used for the ROC post-processing procedure. For
adversarial intra-processing, on tabular datasets, we used hyperparameter values from the
original work by Savani et al. (2020): a critic network with three hidden layers, a learning
rate of 10-3, 16 training epochs, a mini-batch size of 64, λ = 0.75, 201 and 101 critic and
actor training steps, respectively. Similarly to the random perturbation, we utilised the
constrained objective with an upper/lower bound on the bias of ±0.05 and a margin of
0.01. Different from the tabular experiments, for MIMIC-CXR and the protected attribute
“sex”, we used a learning rate of 10-4, five training epochs, an upper/lower bound on the
bias of ±0.03, and a margin of 0.02. For MIMIC-CXR and “ethnicity”, we trained networks
for four epochs under the constrained objective with an upper/lower bound of ±0.05, and
a margin of 0.01. We attempted tuning the number of epochs, critic and actor steps, and
λ, however, we did not observe improved results in both MIMIC-CXR experiments.

Appendix E. Further Results

E.1. Further Quantitative Results

Table E.1: Equal opportunity difference and balanced accuracy attained on the validation
set before and after debiasing VGG-16 (a,b) and ResNet-18 (c,d) trained on
MIMIC-CXR to predict (a,c) enlarged cardiomediastinum (with the protected
attribute “sex”) and (b,d) pneumonia (with the protected attribute “ethnicity”).
Test set results can be found in Table 3, Section 6.2.

(a) Enlarged CM, Sex ; VGG-16

Method EOD BA

Standard -0.06±0.03 0.77±0.01
Random -0.02±0.01 0.76±0.01
ROC -0.05±0.01 0.74±0.04
Eq. Odds 0.00±0.01 0.75±0.01
Adv. Intra -0.01±0.01 0.97±0.02
Pruning 0.00±0.03 0.76±0.01
Bias GD/A -0.01±0.02 0.76±0.01

(b) Pneumonia, Ethnicity ; VGG-16

Method EOD BA

Standard -0.14±0.05 0.75±0.01
Random -0.07±0.04 0.73±0.02
ROC -0.05±0.01 0.65±0.06
Eq. Odds 0.00±0.01 0.71±0.02
Adv. Intra -0.06±0.05 0.93±0.05
Pruning 0.01±0.02 0.72±0.03
Bias GD/A 0.00±0.03 0.73±0.02

(c) Enlarged CM, Sex ; ResNet-18

Method EOD BA

Standard -0.06±0.04 0.76±0.01
Random 0.00±0.01 0.74±0.02
ROC -0.04±0.01 0.74±0.04
Eq. Odds 0.00±0.01 0.74±0.01
Adv. Intra 0.00±0.01 0.99±0.02
Pruning 0.00±0.02 0.74±0.02
Bias GD/A 0.00±0.02 0.76±0.01

(d) Pneumonia, Ethnicity ; ResNet-18

Method EOD BA

Standard -0.13±0.05 0.74±0.01
Random -0.01±0.01 0.67±0.04
ROC -0.04±0.01 0.65±0.05
Eq. Odds 0.00±0.01 0.71±0.02
Adv. Intra 0.00±0.00 1.00±0.00
Pruning 0.00±0.03 0.71±0.02
Bias GD/A 0.00±0.03 0.73±0.02

E.2. Comparison with Adversarial In-processing

Since the proposed bias GD/A procedure (see Algorithm 2) bears similarity to the ad-
versarial in-processing method by Zhang et al. (2018), we additionally evaluated models
trained from scratch with an adversary for predicting the protected attribute based on the
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classifier’s output as described by Zhang et al. (2018). The evaluation was performed on
the same datasets (see Table B.1) and with the same setup as in the experiments from the
main body of the paper. Notably, debiased models were trained directly on the training set
and not on the validation data, as for intra- and post-processing. For the tabular datasets,
we used the implementation available in the AIF 360 toolkit (Bellamy et al., 2018). For the
MIMIC-CXR, we adapted the publicly available implementation2 by Chopra et al. (2020).

Table E.2 reports bias and balanced accuracy of the models trained using adversarial
in-processing across all dataset-protected-attribute pairs and network architectures. En-
couragingly, the method by Zhang et al. (2018) performed comparably or slightly worse
on average than pruning and bias GD/A (cf. Tables 1, 2, and 3). For MIMIC-CXR, we
observed a pattern similar to intra-processing where the method failed to remove the bias
associated with the attribute “ethnicity”. Thus, in the latter setting, post-processing, which
adjusts the model’s predictions at test time based on the protected attribute value, is the
only effective family of techniques considered.

Table E.2: Test-set bias and balanced accuracy attained by the networks trained using
adversarial in-processing. Models were trained separately for the SPD and EOD.

Experiment SPD BA EOD BA

Adult,
Sex

-0.02±0.00 0.55±0.01 0.03±0.02 0.79±0.01

Bank,
Age

0.06±0.04 0.69±0.07 -0.04±0.06 0.86±0.01

COMPAS,
Race

0.05±0.04 0.60±0.03 0.07±0.04 0.62±0.02

MIMIC-III,
Age

-0.04±0.02 0.68±0.04 0.06±0.03 0.70±0.02

MIMIC-III,
Marital Status

0.02±0.03 0.74±0.02 0.00±0.04 0.73±0.01

MIMIC-III,
Insurance Type

-0.02±0.02 0.71±0.03 0.07±0.03 0.72±0.02

MIMIC-CXR,
Sex, VGG-16

— — 0.00±0.03 0.75±0.01

MIMIC-CXR,
Sex, ResNet-18

— — -0.01±0.13 0.72±0.03

MIMIC-CXR,
Ethnicity, VGG-16

— — -0.13±0.05 0.71±0.03

MIMIC-CXR,
Ethnicity, ResNet-18

— — -0.13±0.07 0.71±0.02

In summary, the results above suggest that, despite relying on the smaller validation
set and resorting to editing the model’s parameters post hoc, for the considered datasets,
intra-processing methods achieve the model’s bias and performance that are comparable to
those of the network retrained from scratch on the original training set. This experiment
further supports the viability of the intra-processing approach adopted by us.

2https://github.com/choprashweta/Adversarial-Debiasing
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E.3. Sensitivity to Initial Conditions

As observed before (see Section 6.1), the performance of the classifier debiased using pruning
or bias GD/A can vary considerably, for instance, for the Adult dataset (see Table 1). To
investigate the sensitivity of the proposed methods to initial conditions, particularly, to
the degree of bias within the original classifier, we performed further experiments on two
synthetic datasets described in Appendix C. We trained and debiased FC neural networks
(see Table D.1) while varying the correlation between the label and protected attribute.
Intuitively, we expect debiasing to be less effective when the bias of the classifier is high.

For the dataset by Loh et al. (2019), we trained and debiased classifiers under different
values of the parameter α ∈ [0.0, 2.5] (see Equation C.1). The resulting SPD varies between
approximately 0.0 to 0.4, and the EOD is between 0.0 and 0.5. Table E.3(a) shows changes
in the BA and SPD of the original classifier and the network obtained after pruning and
bias GD/A. Notably, both methods exhibit similar patterns. For α ∈ [0.0, 1.5], debiased
classifiers retain a BA of approximately 0.63, which corresponds to an unbiased performance
and reduce the bias to zero with low variance. In contrast, for α > 1.5, the variance of the
disparity across seeds increases considerably, e.g., for α = 2.5, pruning yields an SPD of
0.01±0.13. Similar patterns occur when debiasing w.r.t. the EOD (see Table E.3(b)).

For the dataset by Zafar et al. (2017), we varied the value of the parameter ϑ ∈ [0.7, 1.2]
(see Equation C.2). Tables E.3(c-d) contain the results across the range of rotation angles.
Analogously to the synthetic dataset by Loh et al. (2019), we observe either a decrease in
the BA or an increase in the residual bias for lower values of the parameter ϑ, i.e. under a
higher initial bias. In summary, while proposed techniques successfully mitigate disparity,
when the bias of the original classifier is relatively high, debiasing may either fail or lead to
a considerable decrease in predictive performance.
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Table E.3: Changes in the balanced accuracy and bias of the original and debiased classifier,
given by the SPD (a, c) and EOD (b, d) across varying simulation parameters
for the synthetic datasets by Loh et al. (2019) (a-b) and Zafar et al. (2017)
(c-d). Averages and standard deviations are reported across ten independent
simulations.

(a) Synthetic by Loh et al. (2019), SPD

α Standard,
BA

Pruning,
BA

Bias GD/A,
BA

Standard,
Bias

Pruning,
Bias

Bias GD/A,
Bias

0.1 0.63±0.00 0.63±0.01 0.62±0.01 -0.05±0.02 0.01±0.02 0.00±0.02
0.5 0.64±0.01 0.63±0.02 0.64±0.01 -0.22±0.02 -0.02±0.03 -0.02±0.02
1.0 0.68±0.01 0.63±0.02 0.66±0.01 -0.35±0.03 0.00±0.01 -0.02±0.03
1.5 0.71±0.01 0.63±0.02 0.66±0.03 -0.39±0.03 0.03±0.05 -0.01±0.04
2.0 0.73±0.01 0.63±0.04 0.56±0.07 -0.39±0.03 -0.03±0.10 0.03±0.08
2.5 0.73±0.00 0.65±0.03 0.57±0.07 -0.41±0.03 0.01±0.13 0.04±0.09

(b) Synthetic by Loh et al. (2019), EOD

α Standard,
BA

Pruning,
BA

Bias GD/A,
BA

Standard,
Bias

Pruning,
Bias

Bias GD/A,
Bias

0.1 0.63±0.00 0.62±0.01 0.62±0.01 -0.04±0.02 0.01±0.02 0.01±0.02
0.5 0.64±0.01 0.63±0.01 0.64±0.01 -0.22±0.02 -0.01±0.03 -0.02±0.02
1.0 0.68±0.01 0.64±0.01 0.66±0.01 -0.39±0.05 -0.01±0.02 -0.03±0.02
1.5 0.71±0.01 0.63±0.01 0.64±0.03 -0.45±0.04 0.02±0.04 -0.01±0.03
2.0 0.73±0.01 0.63±0.03 0.63±0.02 -0.47±0.04 0.01±0.05 0.00±0.04
2.5 0.73±0.00 0.62±0.05 0.64±0.05 -0.50±0.05 0.04±0.11 -0.04±0.08

(c) Synthetic by Zafar et al. (2017), SPD

ϑ Standard,
BA

Pruning,
BA

Bias GD/A,
BA

Standard,
Bias

Pruning,
Bias

Bias GD/A,
Bias

1.2 0.87±0.00 0.84±0.03 0.87±0.00 -0.03±0.01 -0.01±0.02 -0.01±0.01
1.1 0.87±0.00 0.72±0.04 0.83±0.03 -0.13±0.01 0.01±0.02 -0.03±0.04
1.0 0.87±0.00 0.58±0.03 0.74±0.04 -0.23±0.02 -0.09±0.03 -0.02±0.04
0.9 0.87±0.00 0.58±0.04 0.66±0.04 -0.33±0.01 -0.11±0.04 -0.02±0.03
0.8 0.87±0.00 0.62±0.06 0.59±0.02 -0.42±0.01 -0.18±0.08 -0.02±0.03
0.7 0.87±0.00 0.60±0.04 0.57±0.02 -0.49±0.01 -0.18±0.07 -0.03±0.03

(d) Synthetic by Zafar et al. (2017), EOD

ϑ Standard,
BA

Pruning,
BA

Bias GD/A,
BA

Standard,
Bias

Pruning,
Bias

Bias GD/A,
Bias

1.2 0.87±0.00 0.76±0.06 0.87±0.00 -0.05±0.01 -0.01±0.01 -0.01±0.01
1.1 0.87±0.00 0.76±0.04 0.86±0.02 -0.09±0.01 -0.01±0.01 -0.03±0.03
1.0 0.87±0.00 0.74±0.04 0.86±0.01 -0.12±0.02 0.00±0.03 -0.05±0.03
0.9 0.87±0.00 0.73±0.04 0.84±0.02 -0.16±0.02 -0.03±0.04 -0.05±0.02
0.8 0.87±0.00 0.77±0.06 0.83±0.03 -0.20±0.02 -0.05±0.06 -0.07±0.05
0.7 0.87±0.00 0.75±0.05 0.83±0.03 -0.23±0.02 -0.05±0.07 -0.09±0.03
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E.4. Further Qualitative Results

(a) Adult, Pruning,
SPD

(b) Adult, Pruning,
EOD

(c) Adult, Bias GD/A,
SPD

(d) Adult, Bias GD/A,
EOD

(e) Bank, Pruning,
SPD

(f ) Bank, Pruning,
EOD

(g) Bank, Bias GD/A,
SPD

(h) Bank, Bias GD/A,
EOD

(i) COMPAS, Pruning,
SPD

(j ) COMPAS, Pruning,
EOD

(k) COMPAS, Bias
GD/A, SPD

(l) COMPAS, Bias
GD/A, EOD

Figure E.1: Changes in the bias, given by the SPD (a, c, e, g, i, k) and EOD (b, d, f,
h, j, l), and balanced accuracy of the neural network during pruning (a,
b, e, f, i, j ) and bias gradient descent/ascent (c, d, g, h, k, l). The results
were obtained on Adult (top), Bank (middle), and COMPAS (bottom) from 20
train-test splits. Bold lines correspond to the median across 20 seeds. During
the bias GD/A, the model was evaluated several times an epoch. Notably, both
procedures reduce bias without a considerable effect on accuracy.

33


	1 Introduction
	2 Preliminaries
	3 Background and Related Work
	4 Methods
	4.1 Classification Parity Proxies
	4.2 Neural Network Pruning for Debiasing
	4.3 Bias Gradient Descent/Ascent

	5 Experimental Setup
	5.1 Datasets
	5.2 Debiasing Methods
	5.3 Classification Models and Debiasing Evaluation

	6 Results
	6.1 Results on Tabular Benchmarks
	6.2 Chest X-ray Classification

	7 Discussion
	8 Conclusion
	A Decision Boundary Covariance
	B Datasets
	C Syntehtic Data
	D Implementation Details
	D.1 Train-validation-test Split
	D.2 Model Development
	D.3 Method Implementation
	D.4 Hyperparameters

	E Further Results
	E.1 Further Quantitative Results
	E.2 Comparison with Adversarial In-processing
	E.3 Sensitivity to Initial Conditions
	E.4 Further Qualitative Results


