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Automatically Discovering Novel Visual
Categories with Adaptive Prototype Learning

Lu Zhang†, Lu Qi†, Xu Yang, Hong Qiao, Ming-Hsuan Yang, Zhiyong Liu

Abstract—This paper tackles the problem of novel category discovery (NCD), which aims to discriminate unknown categories in
large-scale image collections. The NCD task is challenging due to the closeness to the real world scenarios, where we have only
encountered some partial classes and images. Unlike other works on the NCD, we leverage the prototypes to emphasize the
importance of category discrimination and alleviate the issue with missing annotations of novel classes. Concretely, we propose a novel
adaptive prototype learning method consisting of two main stages: prototypical representation learning and prototypical self-training. In
the first stage, we obtain a robust feature extractor, which could serve for all images with base and novel categories. This ability of
instance and category discrimination of the feature extractor is boosted by self-supervised learning and adaptive prototypes. In the
second stage, we utilize the prototypes again to rectify offline pseudo labels and train a final parametric classifier for category
clustering. We conduct extensive experiments on four benchmark datasets, and demonstrate the effectiveness and robustness of the
proposed method with the state-of-the-art performance. The source code and trained models will be made available at this github site.

Index Terms—novel category discovery, image recognition, transfer learning.
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1 INTRODUCTION

R ECENTLY, various computer vision tasks such as image
classification [1, 2] and face recognition [3, 4] have

obtained significant advances driven by deep learning. With
the help of large-scale datasets, e.g., ImageNet [5] and
IBUG-300W [6], the trained models of those tasks manifest
state-of-the-art recognition ability in new images. However,
those tasks are usually in the close-set, requiring classifying
images to limited pre-defined categories. It is intrinsically
difficult for trained models to expand the learned knowl-
edge to novel concepts [7, 8] as human beings can effort-
lessly achieve. For example, young children can discover
novel shapes and animals [9, 10] (e.g., triangle and bird)
and differentiate them based on other seen classes [11, 12]
(e.g., circle and dog). This is an innate capability of humans
but a great challenge for deep learning models [12, 13].
Making deep models accommodate to the real world has
drawn increasing attention in the vision community.

The task of novel category discovery (NCD) has been
proposed to solve the open-world problem in recent years.
Given some labelled data of partial categories, it aims at
partitioning unlabelled data into some semantic clusters,
which we could regard as anonymous classes. These clusters
are open-world without the limitation to the predefined cat-
egories. As shown in Figure 1, the NCD task is closer to the
real world scenarios, where we can access enormous data
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Fig. 1. Illustration of the task of novel category discovery. Given limited
labelled images of some known categories, the model needs to automat-
ically separate unlabelled images of novel categories, thus being able to
recognize both old and novel categories in testing data. Images are from
the ImageNet [5] dataset.

but only very few are annotated with limited categories.
Thus, the NCD task should require supervised classification
and unsupervised clustering methods. Inspired by methods
developed for learning to cluster [14, 15] that transfer bi-
nary labels from labelled to unlabelled data, recent NCD
approaches [12, 16–18] usually utilize pair-wise similarity
shared by all categories to produce pseudo-binary labels.
This training pipeline could generate robust instance dis-
crimination that helps separate the novel visual concepts.
However, we show that both instance and category dis-
crimination are essential to discovering the novel categories
in the NCD task. We note that the ability of category
discrimination is more relevant to the NCD task and has
been proven crucial in traditional classification tasks. In this
work, we aim to boost the model ability of both instance
and category discrimination for the NCD task.

We can easily use a more robust self-supervised method
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to improve instance discrimination. For category discrim-
ination, the standard strategy is cross-entropy loss. How-
ever, adopting a similar strategy is not trivial in the NCD
task due to lacking novel class labels. Instead, we propose
utilizing the adaptive prototypes to encode novel category
information, where each prototype represents a class. Dur-
ing training, the class prototypes could be dynamically
updated by adopting more discriminative instance features
with momentum. Specifically, our method has two stages,
including prototypical representation learning (stage I) and
prototypical self-training (stage II).

The aim of stage I is to obtain a robust feature extractor
to serve all images, irrespective of base or novel categories.
We achieve it by the self-supervised learning method DINO
[19] and the module of online prototype learning (OPL).
On the one hand, DINO is a more robust self-supervised
learning method without requiring negative samples. Mean-
while, we present a new data augmentation strategy named
restricted rotation for multi-view construction of symbolic
data (e.g., shape and character). On the other hand, the OPL
is the critical part of stage I to excavate the inherent category
discrimination ability. It can maintain adaptive prototypes
for novel categories, allowing prototype online updates and
then assigning class-level pseudo labels on-the-fly.

In stage II, we empirically find that online pseudo labels
generated in stage I are less effective (i.e., they are unre-
liable for training a classifier over the whole dataset). As
such, in stage II we retrain a parametric classifier for base
and novel categories with three main components: pseudo
labelling, prototypical pseudo label rectification, and joint
optimization. The pseudo labelling leverages the discrim-
inative feature extracted by the model trained in stage I
and then generates pseudo labels by clustering. We then
reuse the angular similarity of prototypes to rectify pseudo
labels further. Finally, we optimize the loss of base data with
human labels and novel data with offline pseudo labels. The
stage II is optionally iterated to refine the classifier decision
boundary and improve recognition accuracy.

Overall, the prototypical representation learning method
in stage I builds a strong feature extractor for non-
parametric classification via clustering. In stage II, a para-
metric classifier is trained by prototypical self-training. The
proposed prototypical learning method facilitates improv-
ing the discrimination ability with online and offline pseudo
labels. To the best of our knowledge, this is the first ap-
proach to focus more on category discrimination and effec-
tively make use of prototypes in the NCD task. Extensive ex-
periments on benchmark datasets including CIFAR10 [20],
CIFAR100 [20], OmniGlot [21], and ImageNet [5] demon-
strate the effectiveness of our method in different settings.
For novel category discovery, we achieve state-of-the-art
performance on the unlabelled set of all datasets. In addi-
tion, our method generalizes better than existing schemes in
the testing set. With the labelled data and “pseudo-labelled”
unlabelled data, our method can recognize new categories
without forgetting the old ones.

2 RELATED WORK

In this section, we first review semi-supervised and self-
supervised learning methods due to close relevance to the

usage of labelled and unlabelled data. Then, we introduce
some methods related to transfer clustering, which moti-
vates our designed two stages and core module of proto-
typical learning.

2.1 Semi-supervised Learning
Semi-supervised learning is typically used to train a model
with a small amount of labelled data and a large amount of
unlabelled data. Its main challenge is effectively leveraging
unlabelled data to improve the model performance.

In the era of deep learning, semi-supervised learning
methods can be broadly categorized as: consistency reg-
ularization [22–25] and self-training [26, 27] (i.e., pseudo-
labelling [28–30]). Consistency regularization methods as-
sume that the model should be less sensitive to the different
perturbations imposed on the inputs. Thus, the model pre-
dictions for the unlabelled data can be utilized as artificial
labels to enforce consistency. Self-training methods first
train the model on the labelled data, and then utilize it to
generate pseudo labels for the unlabelled data. This pseudo-
labelling process may iterate to produce better results. The
idea behind self-training is direct and can be traced back
to decades ago [31, 32] before the emergence of deep learn-
ing. There are also some mixed ideas between consistency
regularization and self-training, such as FixMatch [33] and
ISMT [34]. As the intermediate zone of unsupervised and
supervised learning, semi-supervised learning has recently
witnessed success in combining self-supervised pre-training
and self-training [35–37].

In general, the labelled and unlabelled data in semi-
supervised learning contain the same object categories.
However, unlike semi-supervised learning, the NCD task
requires recognizing unlabelled novel categories that are
not observed in the labelled data. Thus, we need some
potential classes by unsupervised clustering before applying
appropriate semi-supervised methods.

2.2 Self-supervised Learning
Self-supervised learning has recently achieved significant
success in natural language and computer vision without
requiring expensive target labels. The core of self-supervised
learning is designing some pretext tasks to obtain better
representations. For example, generating future tokens [38],
predicting masked tokens [39], and denoising corrupted
tokens [40] are common pretext tasks in the area of natural
language. For computer vision, some works use pretexts
such as colorization [41], rotation prediction [42], and patch
position prediction [43, 44] to learn representative features
for image data.

Most recently, contrastive self-supervised learning has
shown great potential by leveraging both negative and
positive samples, such as InstDis [45], contrastive predic-
tive coding (CPC) [46], AMDIM [47], MoCo [48, 49], Sim-
CLR [35, 50], and InfoMin [51]. These methods usually pull
together two augmented views of the same object (positive
samples) to encourage local invariance while pushing apart
those of different objects (negative samples). This strategy
could prevent the model from mapping all instances to
the same representation, i.e., representational collapse. How-
ever, the contrastive pairs are not easy to be appropriately
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Fig. 2. Overview of the proposed framework. It contains two training stages: prototypical representation learning (stage I) and prototypical self-
training (stage II). First, stage I obtains a robust feature extractor, which could serve for all images with base and novel categories. This feature
extractor is boosted in the ability of instance and category discrimination by self-supervised learning and adaptive prototypes. After that, stage II
utilizes the prototypes again to rectify offline pseudo labels and then train a final parametric classifier for category clustering.

constructed and need a large batch size or memory bank for
storage [52]. To solve this problem, some non-contrastive
approaches are developed with only using positive pairs
but achieving remarkable performance, such as BYOL [53],
SwAV [54], SimSiam [55], DirectPred [52], and DINO [19].
The non-contrastive methods use a siamese-like network to
match two augmented views of the same object. Typically,
one network is updated online, and another is directly con-
structed using the online one. Without contrasting negative
instances, the training process of non-contrastive methods
is more efficient and conceptually simple [52, 55].

With this in mind, we choose the non-contrastive di-
rection and specify appropriate augmentations for different
types of data domains to enhance the instance discrimina-
tion in our proposed method.

2.3 Transfer Clustering

The NCD task can also be considered as a “transfer clus-
tering” problem in [12, 16, 17]. Different from the classic
or deep learning clustering problem, transfer clustering first
learns the appropriate criterion by using the labelled data,
then transfers such knowledge to partition the unlabelled
data with novel categories. Specifically, Hsu et al. [15]
propose to learn the category-agnostic pairwise similarity
with the Kullback–Leibler divergence based contrastive loss
(KCL) on the labelled data. This semantic information is
then transferred to the unlabelled data by training the model
with binary pseudo labels. The [14] improves KCL with a
novel meta classification likelihood (MCL) loss. In [12], the
deep embedded clustering (DEC) [56] is extended to con-
duct joint transfer clustering and representation learning.
On the other hand, AutoNovel [16, 17] utilizes the pretext
task of rotation predictions for self-supervised learning and
transfers knowledge of labelled classes to the clustering of
unlabelled data by using ranking statistics. Jia et al. [18]
extend the noise-contrastive estimation in self-supervised
representation learning to jointly handle labelled and un-
labelled data.

In contrast to existing works that mainly use instance
discrimination to help separate the novel visual concepts,
we show that both instance and category discrimination are

essential. To the best of our knowledge, we are the first to
focus more on category discrimination and creatively make
use of prototypes to alleviate the issues with missing labels
for the NCD task.

3 PROPOSED METHOD

Given some labelled images from base categories, the goal
of novel category discovery is automatically discovering
novel categories in the test image collection [12, 16]. In the
training stage, we have access to the labelled dataDl and the
unlabelled data Du. The images in Dl are annotated by a set
of base categories Cl. Dl = {(xli, yli), i = 1, ..., N l}, where
yli is the corresponding class label for image xli and N l is
the number of labelled data. For the images in unlabelled
data Du, they belong to the novel categories Cu. We are
only aware of the number of novel categories but not the
concrete meaning of each one. Note that the base and novel
categories are disjoint, i.e., Cl ∩ Cu = ∅. In the inference
stage, we should assign one of all categories Cl ∪ Cu to
each image in the test split. Overall, the NCD task targets
to transfer the knowledge learned from the labelled data Dl

and the unlabelled one Du to recognize novel categories
Cu. This process is similar to human beings, where we
could automatically differentiate some new concepts from
the learned knowledge in the past.

Similar to existing schemes, our method mainly consists
of two stages to solve the NCD problem, including forming
a robust feature extractor and an accurate classifier. The
former stage obtains effective features of images in both
base and novel categories, whereas the latter aims to precise
recognition. Instead of using the binary similarity [12, 14–17]
in other NCD works, we are the first to exploit prototypes to
enhance both stages. This prototype could help our model
obtain statistics across each category whatever the base or
novel. For brevity, we name our two stages prototypical
representation learning and prototypical self-training.

3.1 Stage I: Prototypical Representation Learning

The goal of stage I is to obtain a robust feature extractor serv-
ing all images, irrespective of the corresponding categories
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(base or novel). The extracted feature should perform well
in both instance and category discrimination. We adopt the
DINO model and prototype learning to improve discrimi-
nation abilities. The loss function Ls1 of stage I is:

Ls1 = Lins + Lcat, (1)

where the Lins and Lcat are the losses for instance and
category discrimination.

3.1.1 Instance Discrimination

We boost the model ability in instance discrimination by
self-supervised representation learning. In this work, we
train a model using the self-distillation with no labels
(DINO) [19] scheme on labelled and unlabelled data with
uniform sampling by exploiting two properties. First, the
DINO model could be used as the nearest neighbour clas-
sifier for the non-parametric clustering. This property is
consistent with the NCD task, which also requires clus-
tering. Second, the DINO method converges fast by self-
distillation in the training period. The parameters of the
teacher are momentum updated by weighted averaging
several student models in different training iterations. This
procedure is like the popular AdaBoost, which obtains the
most convincing results by voting various weak classifiers.
Therefore, the DINO model could present a high-quality
instance representation even without annotations.

In contrast to the original DINO scheme, we propose the
restricted rotation, a new data augmentation strategy, to sat-
isfy different data types. In DINO or other self-supervised
approaches [50, 54, 57], random cropping is widely utilized
to extract intrinsic information of the image since it estab-
lishes a part-based invariance assumption which is valid for
natural object-centric images like ImageNet. However, this
assumption is not reasonable for symbolic data like the Om-
niGlot. Compared to nature images, the symbolic object has
a minor appearance like the texture and color. Thus it should
require a more abstract understanding of self-supervised
models. In our experiments, we find that random cropping
will destroy the structural information of symbolic data,
leading to a dramatic performance decrease, see Sec. 4.4.1.
To tackle this problem, we design an augmentation strategy
named restricted rotation, which constructs different random
rotated views for a given image in a restricted degree θ. The
proposed approach injects randomness while keeping the
semantic information well for the symbolic data.

We construct an image set V for each input image x. The
set V contains two augmented global views xg1 and xg2 with-
out any rotation, and several rotated and local augmented
views x′. Then we encourage the model to learn the “local-
to-global” [19] and “rotation-to-upright” correspondences
from the image itself by minimizing the following loss:

Lins =
1

N

∑
x∈{xg1 ,x

g
2}

∑
x′∈V
x′ 6=x

H(Pt(x), Ps(x
′)), (2)

whereN is the number of samples in a batch, P is the output
distribution of the DINO head, and H(a, b) = −a log b.

With the above essential representation learning, a
strong baseline for NCD is established (see Sec. 4.4.1). Mean-
while, it can facilitate the category discrimination.
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Fig. 3. Illustration of the online prototype learning (OPL) and pair-wise
angular separation (PAS) in stage I. The prototype p and candidate
feature fφ(xi) are re-projected onto the hypersphere. During training,
OPL provides online pseudo labels for the category discrimination and
gradually updates the prototype with its corresponding candidate fea-
ture. Meanwhile, PAS pushes the prototypes far away from each other
based on the angular similarity to guarantee effective discrimination.

3.1.2 Category Discrimination
Inspired by semi-supervised learning on classification or
detection, the pseudo-training signals on unlabelled data
could improve the recognition performance of the models
due to the consistency with labelled data. Thus we aim to
build a unified classifier for both base and novel categories
on labelled and unlabelled data. For labelled dataDl, we can
easily use cross-entropy loss to encode category information
directly. However, this encoding process is impractical for
the unlabelled data Du without knowing classes. As such,
we leverage prototype learning to encode the information
of novel classes implicitly, thereby generating the pseudo
labels online. In this way, the labelled and unlabelled data
in the same label system would be used in training together.

3.1.2.1 Online Prototype Learning

The online prototype learning (OPL) module is proposed to
provide online pseudo labels for unlabelled data Du, which
can be used to train a cross-entropy criterion simultaneously
with labelled data Dl. Specifically, the OPL constructs a
feature prototype for each novel category and generates
pseudo labels for discriminative training in an online man-
ner. During training, OPL contains the following three steps:
(1) Initializing the prototypes. At the beginning, there are
no well-established classification heads and prototypes for
novel categories which need some initialization. Specifically,
the classification heads of novel categories are initialized
with a uniform distribution weight wc and no bias value
bc = 0 where c denotes the c-th category. For ease of mea-
suring the cosine similarity, class prototypes are initialized
as the L2-normed classifier weights:

pinitc = winit
c /‖winit

c ‖2. (3)

(2) Assigning online pseudo labels. For each batch, we cal-
culate the cosine similarity between the c-th class prototype
pc and features of the i-th unlabelled data fφ(xi) to assign
pseudo labels in an online manner:

yui = argmax
c

cos θ(pc,fφ(xi)). (4)

Then, the pseudo labels yui in the novel category are in-
cluded to train a classifier responsible for both base and
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novel categories. We minimize the standard cross-entropy
loss for classification:

Lcls = −
1

N

N−1∑
i=0

C−1∑
c=0

pc,i log(yc,i), (5)

where C is the number of all categories in Cl ∪Cu, and pc,i
is the probability of the i-th sample for the c-th class, yc,i is
a binary value that denotes if the i-th example belongs to
the c-th class.
(3) Updating online prototypes. After assigning the pseudo
labels to current batch, we can update the corresponding
prototypes using the output features fφ(xi). In particular,
the prototype pc for the novel category c is updated using
the exponential moving average:

pc ← β · pc + (1− β) · fφ(xi), s.t. xi ∈ Du, (6)

where β ∈ [0, 1) is a rate parameter. As the model and its as-
signments become better, the old error-prone features fade,
and recent data batch gradually arrives and plays a more
important role. However, the norm of the prototype may
no longer be unit with this modification. To facilitate the
calculation of cosine similarity, we re-project the prototype
onto a hypersphere with the L2-normalization (as in Eq. 3)
after the update.
Avoid trivial solutions. The methods that jointly learn a
discriminative classifier and assign pseudo labels would
suffer from the problem of trivial solutions [58]. A similar
phenomenon occurs in directly training our model with
OPL. The assignments are collapsed into a single prototype,
thereby leading to the classifier predicting a single class.
Considering the situation, we use a uniform class distri-
bution for initial pseudo labels at the first iteration of the
training epoch.
Pair-wise Angular Separation. With the help of the L2-
normalization (Eq. 3) in the prototype initialization and
update, we could project prototypes onto a hypersphere. In
this non-Euclidean output space, the distance is evaluated
by the angular similarity (i.e., cosine similarity) between
outputs and class prototypes. Recall the goal of obtaining
a discriminative feature extractor in stage I. We encour-
age class prototypes to have significant angular separation
during prototype learning. This idea is intuitive and effec-
tive [59]: the distance between two semantically-unrelated
classes would be pushed away if their corresponding class
prototypes were positioned separately on the hypersphere.

Since there is no optimal separation algorithm for three-
or higher-dimensional unit-hypersphere (known as the
Tammes problem [60]), we optionally approximate the sep-
aration by maximizing the cosine distances of prototypes.
Following [59], we define a cosine similarities loss over each
pairwise prototypes:

Lpas =
1

K

K∑
i=1

max
j∈Cu

Mi,j , M = PP> − 2I (7)

where P ∈ RK×D is the matrix of prototypes, I denotes
the identity matrix in case of self-selection, and M is the
final pairwise prototypes similarities. Different from [59]
which defines class prototypes a priori with large margin
separation, we use data-dependent class prototypes that

are updated by instreaming novel instances. Hence the loss
function can be simultaneously optimized with the learning
process in stage I.

3.1.2.2 Joint Optimization

Finally, the category discrimination loss Lcat is computed
by:

Lcat = Lcls + λLpas, (8)

where the Lcls is the cross-entropy loss for classification
on both Dl with human labels and Du with pseudo labels
generated from the prototype learning; and Lpas is the loss
for pair-wise angular separation.

3.2 Stage II: Prototypical Self-training

While a robust feature extractor has been learned in stage
I, we empirically find the online pseudo labels are of less
quality than offline ones (see Sec. 4.4.2). Therefore, in this
stage, we discard the online classifier of stage I and retrain
a parametric classifier that recognizes both base and novel
categories. Specifically, we utilize offline pseudo labels to
conduct prototypical self-training. The reasons for using
self-training in NCD are two-fold: (1) we do not have
annotations of novel data Du, while we can generate of-
fline pseudo labels via non-parametric recognition based on
stage I; (2) recent approaches on classification, detection or
segmentation [27, 36] achieve improvements in self-training
even after using popular self-supervised pre-training and
supervised learning.

Based on the simple yet effective self-training meth-
ods [27, 28], our prototypical self-training includes three
steps. First, we use the model trained in stage I to generate
pseudo labels on unlabelled data (Sec. 3.2.1). Then, we note
that the loss for pseudo labels would be rectified based on
class prototypes (Sec. 3.2.2). Finally, we retrain the model by
optimizing the classification loss on both human and offline
pseudo labels (Sec. 3.2.3).

3.2.1 Pseudo labelling

Based on the well-trained feature extractor in stage I, we
collect all novel images and use the k-means [61] clustering
method to generate offline pseudo labels at the start of
stage II. In the pseudo labelling on symbolic data, we
observe features typically in the non-flat regions, such as the
alphabets in OmniGlot [21]. Hence we choose the spectral
clustering [62] to separate symbolic data. After clustering,
we obtain cluster labels as offline pseudo labels for all novel
images Du. In addition, the central feature of clusters is re-
positioned as new class prototypes.

3.2.2 Prototypical Pseudo Label Rectification

Next, we use prototypes and angular/cosine similarity to
rectify the self-training from noisy pseudo labels on Du. In-
stead of the hard filtering, i.e., only images whose prediction
confidence of pseudo label higher than a given threshold
are considered in the training, we use the soft weighting for
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TABLE 1
Dataset splits for novel category discovery experiments.

Dataset # labelled cls # unlabelled cls
OmniGlot 964 659
CIFAR10 5 5
CIFAR100 80 20
ImageNet 882 118

label rectification. We formulate the rectified objective with
the angular/cosine similarity as:

Lrect = −
Nu−1∑
i=0

cos θ(pc,fφ(xi))

C−1∑
c=0

pc,i log(yc,i), (9)

s.t. xi ∈ Du.

Note that the class prototype pc is fixed during the training
epoch.

3.2.3 Joint Optimization
We jointly optimize the loss of both base data with human
labels and novel data with offline pseudo labels. For the base
data, we utilize the standard cross-entropy loss:

Lce = −
N l−1∑
i=0

C−1∑
c=0

pc,i log(yc,i), s.t. xi ∈ Dl. (10)

This loss is similar to Eq. 5, but here we only use instances
in the labelled data Dl. Together with the rectified loss Lrect
in Eq. 10 that uses novel categories in the unlabelled data
Du, the overall objective is

Ls2 =
1

Nu +N l
(Lce + Lrect). (11)

After joint optimization, we obtain the enhanced model with
an explicit classification layer. This model can be reused to
generate new offline pseudo labels. That is, the prototypi-
cal self-training procedure can optionally iterate to further
refine the decision boundary of classifiers.

4 EXPERIMENTS

4.1 Datasets and Implementation Details

4.1.1 Datasets
The proposed method is extensively evaluated on four
benchmark datasets: CIFAR10 [20], CIFAR100 [20], Om-
niGlot [21], and ImageNet [5]. Following previous works
[16, 17], the dataset splits for novel category discovery
experiments are shown in Table 1. Next, we briefly introduce
the datasets and describe experimental setups.
CIFAR10 and CIFAR100. There are 10 object classes in
CIFAR10, and each class has 5,000 training and 1,000 testing
images of 32 × 32 resolution. Following [16, 17], CIFAR-10
is separated into labelled and unlabelled subsets. The first 5
categories (i.e., airplane, automobile, bird, cat, deer) are the
labelled set, and the last 5 categories (i.e., dog, frog, horse,
ship, truck) are the unlabelled set. CIFAR100 also contains
50,000 training and 10,000 testing images, but with a total of
100 classes. Each class includes 500 training and 100 testing

images in 32 × 32 resolution. For NCD, the first 80 classes
are selected as labelled data, and the remaining 20 classes
are used as unlabelled data.
OmniGlot. OmniGlot is a challenging dataset of handwrit-
ten characters. It contains a total of 1,623 characters from 50
different alphabets, and each alphabet has 20∼47 characters.
OmniGlot splits 30 alphabets as the “background” set and
20 alphabets as the “evaluation” set. Our experimental
setting for NCD follows [14] and [16]. Specifically, the 30
alphabets in the “background” are set as labelled data,
including 969 characters (classes). The 20 alphabets in the
“evaluation” are set as unlabelled data, which contain 659
characters. The results of the OmniGlot dataset are averaged
across the 20 alphabets in the “evaluation” set.
ImageNet. ImageNet is a large-scale visual dataset that
contains 1,000 classes with about 1,000 images per class.
As in [63], the ImageNet dataset is randomly split into the
882-class and 118-class subsets. Following previous works
[12, 14, 16, 17], we use the 882-class ImageNet as labelled
data, then use three 30-class subsets (∼39k images each
subset) randomly sampled from the 118-class ImageNet as
unlabelled sets. As in [12, 17], the results are averaged over
three 30-class subsets.

4.1.2 Implementation Details
Following previous works [12, 16–18], we use the clustering
accuracy (ACC) that denotes the matching accuracy between
ground-truth labels and clustering assignments to evaluate
the performance of our method. The results are averaged
over 10 runs for all datasets except the ImageNet. Our
method is implemented with PyTorch 1.7.1 and runs on the
NVIDIA 2080Ti GPUs.

In stage I, our method jointly performs instance and
category discrimination on the labelled training data Dl

and unlabelled training data Du with online pseudo la-
bels. Specifically, we train our model for 100 epochs on
the CIFAR10, CIFAR100, OmniGlot, and ImageNet datasets
with the AdamW optimizer [65]. During the first 10 epochs,
the learning rate is linearly warmed up to the base value
determined with the linear scaling rule: lr = 0.0005 ∗
batchsize/256, in which we set batchsize = 256. After that,
the learning rate is decayed with a cosine schedule [19, 66].
For fair comparisons to previous works, we use ResNet-
18 [2] as our backbone. In Eq. 8, we set λ = 0.1 for all
datasets. The embedding dimension of prototypes is set to
512. The data augmentation strategies for different domains
are described in detail in Section 4.4.1.

For stage II, we use two iterations (two epochs for
each iteration) of the self-training for all datasets to further
improve the performance. The learning rate is set to 0.05
and decayed with a cosine schedule as the same in stage I.

4.2 Novel Category Discovery
4.2.1 Comparison with State-of-the-art Methods
We first evaluate the proposed method and compare it with
other state-of-the-art methods for novel category discovery
on the unlabelled training set of CIFAR10 and CIFAR100. Ta-
ble 2 shows that our method achieves 96.0% and 78.9% ACC
on CIFAR10 and CIFAR100, outperforming the previous
works. Note that “k-means”, shown in the first row of Table
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1 epoch 10 epochs 100 epochs

airplane

automobile

bird

cat

deer

dog
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truck

Fig. 4. Visualized features of unlabelled data in CIFAR10 using the t-SNE [64] projection. The 1, 10, and 100 epochs denote the evolution during
the training phase. Colors for class numbers 5-9 refer to ground truths of five novel categories: dog, frog, horse, ship, and truck.

TABLE 2
Comparative performance for the novel category discovery on the

unlabelled training set of CIFAR10 and CIFAR100. “w/ S.S.” means
with self-supervision, “w/ I.L.” denotes with incremental learning.

Method CIFAR10 CIFAR100
k-means [61] 65.5±0.0% 56.6±1.6%

KCL [15] 66.5±3.9% 14.3±1.3%
MCL [14] 64.2±0.1% 21.3±3.4%
DTC [12] 87.5±0.3% 56.7±1.2%

DTC [12] w/ S.S. [16] 88.7±0.3% 67.3±1.2%
AutoNovel [17] 90.4±0.5% 73.2±2.1%

AutoNovel [17] w/ I.L. 91.7±0.9% 75.2±4.2%
WTA-NCD [18] 93.4±0.6% 76.4±2.8%

Ours 96.0±0.4% 78.9±0.9%

2, is our baseline. It represents directly training a model
using Dl and applying clustering on novel categories in Du,
which only obtains 65.5% and 56.6% ACC on CIFAR10 and
CIFAR100, respectively. We also show evaluation results on
the testing set of CIFAR10 and CIFAR100 in Table 3. This
experimental setting contains old and new (i.e., base and
novel) categories that need to be simultaneously recognized
without forgetting. As shown in Table 3, the proposed
method stands out by achieving 97.1%, 93.6%, and 95.3%
ACC on the old, new, and all categories of CIFAR10. In
addiiton, it achieves the best 76.9%, 63.3%, and 74.2% ACC
on the same setting in CIFAR100. Especially, the proposed
method shows greater advantages (about 5%∼7% ACC im-
provements) on the testing set than the unlabelled training
set, demonstrating its robust generalization ability.

Furthermore, we evaluate our method on the more chal-
lenging OmniGlot and ImageNet datasets. The results of
OmniGlot are averaged over the 20 alphabets in the evalua-
tion set, and the results of ImageNet are average over three
random 30-class unlabelled subsets as in previous works
[12, 14, 16, 17]. As shown in Table 4, the proposed method
achieves the best performance with 93.4% and 88.8% ACC
on Omniglot and ImageNet, demonstrating the effectiveness
of our approach.

4.2.2 Qualitative Analysis

Next, we qualitatively analyze the proposed method for
novel category discovery. Figure 4 illustrates the evolution

of instance features of base (0-4) and novel (5-9) categories
in CIFAR10 using the t-SNE [64]. The instance features of
both base and novel categories become more separable and
gradually gather into clusters. Meanwhile, some instances
of the dog (5) and horse (7) are close since they maintain
similar appearances as four-legged mammals. We note that
mining the discrimination of such similar categories is an
interesting problem and worthy of further study.

4.3 Ablation Study

To analyze the contribution of proposed components in two
stages, we conduct several ablation studies on the CIFAR10,
CIFAR100, and OmniGlot datasets.
Instance Discrimination. We compare performances with
and without the instance discrimination module (InstDis) to
validate its effectiveness for the novel category discovery.
As shown in Table 5, InstDis is a basic component for
learning semantic representations of the unlabelled data.
For the CIFAR10, CIFAR100, and OmniGlot datasets, InstDis
significantly boosts the cluster accuracy by 5.0%, 14.2%, and
3.9%, respectively.
Category Discrimination. Table 5 illustrates the effective-
ness of category discrimination (CatDis). As a crucial com-
ponent of the proposed method, CatDis enhances the class-
level discrimination of features and consistently improves
performance for the novel category discovery, i.e., introduc-
ing 3.1%, 6.1%, and 2.2% ACC improvements on CIFAR10,
CIFAR100, OmniGlot respectively, demonstrating the effec-
tiveness of online prototype learning.
Prototypical Self-training. Then we ablate the training
of explicit classifier in prototypical self-training (PST). It
can be observed that PST is a good strategy to further
boost the model’s performance for novel category discovery,
consistently improving 1∼3% (i.e., 96.0% v.s. 93.6%, 78.9%
v.s. 75.6%, 93.4% v.s. 92.0%) ACC on all three datasets.

4.4 Analysis and Discussion

4.4.1 Instance Discrimination

First, we analyze the performance of other state-of-the-art
self-supervised methods for the instance discrimination in
our model. Then we study how the augmentations used
in self-supervised learning affect different image domains,
i.e., the natural and symbolic images.
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TABLE 3
Comparative performance for recognizing both old and new categories on the testing set of CIFAR10 and CIFAR100.

Method
CIFAR10 CIFAR100

old new all old new all
KCL [15] w/ S.S. 79.4±0.6% 60.1±0.6% 69.8±0.1% 23.4±0.3% 29.4±0.3% 24.6±0.2%
MCL [14] w/ S.S. 81.4±0.4% 64.8±0.4% 73.1±0.1% 18.2±0.3% 18.0±0.1% 18.2±0.2%
DTC [12] w/ S.S. 58.7±0.6% 78.6±0.2% 68.7±0.3% 47.6±0.2% 49.1±0.2% 47.9±0.2%

AutoNovel [17] w/ I.L. 90.6±0.2% 88.8±0.2% 89.7±0.1% 71.2±0.1% 56.8±0.3% 68.3±0.1%
Ours 97.1±0.4% 93.8±0.5% 95.4±0.4% 76.9±0.3% 64.0±0.6% 74.3±0.4%

TABLE 4
Comparative performance for the novel category discovery on Omniglot

and ImageNet unlabelled set.

Method OmniGlot ImageNet
k-means [61] 77.2% 71.9%

KCL [15] 82.4% 73.8%
MCL [14] 83.3% 74.4%
DTC [12] 89.0% 78.3%

AutoNovel [17] 89.1% 82.5%
WTA-NCD [18] - 86.7%

Ours 93.4% 88.8%

TABLE 5
Ablation studies of the proposed method. “InstDis” and “CatDis” stand

for instance discrimination and category discrimination in stage I,
respectively. “PST” refers to the prototypical self-training in stage II. All

methods use the same hyperparameters and are evaluated with
clustering accuracy (ACC).

Method CIFAR10 CIFAR100 OmniGlot
Ours w/o InstDis 91.0% 64.7% 89.5%
Ours w/o CatDis 92.9% 72.8% 91.2%
Ours w/o PST 93.6% 75.6% 92.0%
Ours 96.0% 78.9% 93.4%

Alternative self-supervised methods. As discussed in Sec-
tion 3.1.1, DINO [19] is adopted in our method to enhance
the instance discrimination. However, other self-supervised
learning methods can be inserted into our model. Since
DINO is a non-contrastive method, we choose other state-
of-the-art contrastive methods as alternatives, including
SimCLR [50], MoCo [48], and MoCo v2 [49]. In Table 6,
we first compare the learned features of different self-
supervised methods using k-means [61] as the clustering
method. DINO significantly outperforms other alternatives
as it is an effective nearest neighbour classifier without
any fine-tuning or linear classifier [19]. This is a desirable
property for k-means clustering. Then, when combined with
our method, DINO is further improved by 6.7% and 9.3% on
CIFAR10 and CIFAR100, respectively. In addition, SimCLR
and MoCo are also significantly boosted and achieve com-
parable performance, which validates the effectiveness of
our method and its compatibility with other self-supervised
learning methods.
Different domains and augmentations. We consider two
main categories of domains [67], natural (CIFAR10) and

TABLE 6
The performance comparison with different self-supervised learning

methods for the instance discrimination in NCD.

Method CIFAR10 CIFAR100

k-means [61]

SimCLR [50] 85.2% 49.7%
MoCo [48] 77.4% 51.2%

MoCo v2 [49] 81.3% 54.1%
DINO [19] 89.3% 69.6%

Ours

SimCLR [50] 92.1% 61.8%
MoCo [48] 90.9% 62.9%

MoCo v2 [49] 93.8% 65.3%
DINO [19] 96.0% 78.9%

symbolic (Omniglot), for experiments. To systematically
study the impact of data augmentation, we follow SimCLR
[50] to divide augmentations into two types. One type of
augmentation involves geometric/spatial transformation of
data, such as cropping, flipping, and the proposed restricted
rotation. The other type of augmentation involves appearance
transformation, such as color distortion (including color
jittering and dropping, solarization) and Gaussian blur. We
report the performance of different compositions of data
augmentations for both natural and symbolic data in Ta-
ble 7. For symbolic data, the proposed restricted rotation
and appearance transformation contribute a lot to self-
supervised learning. In contrast, geometric transformations
lead to significant performance degradation, since they
would negatively affect the structure of symbolic data. On
the other hand, natural data benefits from the composition
of appearance and geometric transformation, as also noted
in [50]. Unlike symbolic data, natural data do not need
strict structure preservation, hence we do not apply the
restricted rotation to them. In Table 8, we show the set
of augmentations in our implementation for natural and
symbolic datasets, respectively.

4.4.2 Category Discrimination
As online prototype learning plays a crucial role in the
category discrimination of stage I, we analyze the hyperpa-
rameters of prototypes and compare pseudo labels provided
by prototype assignment and k-means.
Hyperparamters of prototypes. In the online prototype
learning module, a representative feature of novel categories
is maintained as the prototype. First, we study how the
embedding dimensions of prototypes affect the performance
on CIFAR10. As shown in Figure 5, the proposed method
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TABLE 7
The performance comparison with different types of data

augmentations in the self-supervised feature learning for both natural
and symbolic datasets. Green and blue colors denote the best two

results.

Dataset Appearance Geometric ACC (%)

OmniGlot
(symbolic)

X 90.2
X R.R. 93.4

X 66.3
X X 88.4
X X + R.R. 91.3

CIFAR10
(natural)

X 79.5
X R.R. 81.7

X 65.9
X X 96.0
X X + R.R. 95.4

TABLE 8
Different sets of augmentations (transformations) in the self-supervised

feature learning for the natural and symbolic domains.

Augmentation for S.S Natural Symbolic
Brightness, contrast, hue,

and saturation adjustment X X

Random cropping X ×
Random left-right flipping X ×

Restricted rotation × X
Color jittering and dropping X X

Gaussian blurring, solarization X X

is stable with different prototype dimensions, and the per-
formances plateau when dimensions are greater than 128.
Next, we show different similarity metrics for the prototype
when assigning online pseudo labels. Compared to the
Euclidean distance and dot product, our cosine similarity
metric achieves the best accuracy on both natural and sym-
bolic datasets, as shown in Table 9.
Prototype assignment and k-means. As two potential ways
to generate pseudo labels in stage I, we compare the
prototype assignment and k-means in Table 10. With the
proposed OPL, the results of k-means become more accu-
rate. Actually, k-means is a simple but effective clustering
method to evaluate the distinctiveness of our feature extrac-
tor in stage I. Table 10 also shows that the “online (proto-
type assignment)” and “offline (k-mean, ours full)” have
comparable accuracy, and the latter slightly outperforms
the former at the end of training. This can be attributed
to that offline pseudo labels could see the whole dataset,
whereas online pseudo labels are generated batch by batch.
Therefore, we use offline pseudo labels provided by “k-
means, ours full” as the bridge between stages I and II. In
addition, we note that only online (prototype-based) pseudo
labels are used to train the discriminative feature extractor in
stage I. This is motivated by two factors: (1) online pseudo
labels are in a more efficient batch-by-batch way, while k-
means need to see the whole dataset to calculate the distance
between every two data instances and conduct an iterative
EM-like process, which is relatively time-consuming; and
(2) the separation constraint of online prototypes, i.e., pair-
wise angular separation, can also contribute to learning

Fig. 5. Illustration of the performance evolution for different embedding
dimensions of the prototype. Experiments are performed on CIFAR10.

TABLE 9
The performance comparison with different similarity metrics for the

prototype when assigning online pseudo labels.

Similarity CIFAR10 OmniGlot
Euclidean 95.4% 91.8%

Dot Product 94.7% 92.0%
Cosine (ours) 96.0% 93.4%

TABLE 10
The performance comparison with online and offline pseudo-labels

after stage I on CIFAR10.

Different pseudo-labels at the end of stage I ACC
Offline (k-means, ours full) 93.6%
Offline (k-means, ours w/o OPL) 91.1%
Online (prototype assignment) 90.5%
Offline (k-means) 65.5%

discriminative representations.

4.4.3 Prototypical Self-training

Based on the discriminative feature extractor in stage I, we
collect all novel images and run the global clustering via
the off-the-shelf methods (e.g., k-means) to generate offline
pseudo labels at the start of stage II (PST). Note that the
clustering method is conducted only once at the beginning
of PST. During the iteration of PST, offline pseudo labels are
provided by the explicit classifier for novel categories.
The number of iterations. We report the performance with
different numbers of iterations in Table 11. At first, the
performance significantly increases with the prototypical
self-training, then it plateaus after two iterations. Hence
we use two iterations of prototypical self-training in our
implementation, as described in Section 4.1.2.
Confusion matrix. We compare the confusion matrices w/
and w/o PST in Figure 6. The accuracy for novel categories
is improved with PST. Similar to the t-SNE visualization
in Figure 4, there is confusion between the dog and horse,
mainly due to their similar shape and appearance. There-
fore, separating similar or fine-grained categories in NCD is
of great interest for future study.
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TABLE 11
The performance evolution for different times of iterations with the PST.

# Iters 0 1 2 3 4
CIFAR10 93.6% 95.6% 96.0% 96.1% 96.0%
OmniGlot 92.0% 92.5% 93.4% 93.3% 93.3%

Fig. 6. Confusion matrix on 5 novel categories of CIFAR10. Left: our
method stage I; Right: our method with PST (stage II).

5 CONCLUSION

In this paper, we propose a novel method to improve the
category discrimination for semantic partition in the NCD
task. Our approach consists of two stages: (1) prototypical
representation learning and (2) prototypical self-training.
Specifically, we leverage the prototype to conduct both
instance and category discrimination at stage I, thereby
obtaining a robust feature extractor to serve all base and
novel images. Then, we train a parametric classifier by
self-training with prototypical rectified pseudo labels at
stage II. Extensive experiments on widely-used benchmark
datasets show that the proposed method achieves state-of-
the-art performance, and demonstrates the effectiveness and
robustness of all modules. In the future, we plan to explore
NCD by including or improving the open-set recognition
and incremental learning, and develop a framework for
discovering more novel concepts in the real world.
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