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Abstract

We expose a strong connection between good 2-query locally testable codes (LTCs) and high
dimensional expanders. Here, an LTC is called good if it has constant rate and linear distance. Our
emphasis in this work is on LTCs testable with only 2 queries. These are are harder to construct
than general LTCs, and are of particular interest to theoretical computer science.

The connection we make between 2-query LTCs and high dimensional expanders is done by
introducing a new object called a sheaf that is put on top of a high dimensional expander. Sheaves
are vastly studied in topology. Here, we introduce sheaves on simplicial complexes. Moreover, we
define a notion of an expanding sheaf that has not been studied before.

We present a framework to get good infinite families of 2-query LTCs from expanding sheaves
on high dimensional expanders, utilizing towers of coverings of these high dimensional expanders.
Starting with a high dimensional expander and an expanding sheaf, our framework produces an
infinite family of codes admitting a 2-query tester. If the initial sheaved high dimensional expander
satisfies some conditions, which can be checked in constant time, then these codes form a family of
good 2-query LTCs.

We give candidates for sheaved high dimensional expanders which can be fed into our framework,
in the form of an iterative process which (conjecturally) produces such candidates given a high
dimensional expander and a special auxiliary sheaf. (We could not verify the prerequisites of our
framework for these candidates directly because of computational limitations.) We analyze this
process experimentally and heuristically, and identify some properties of the fundamental group of
the high dimensional expander at hand which are sufficient (but not necessary) to get the desired
sheaf, and consequently an infinite family of good 2-query LTCs.
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1 Introduction
Locally Testable Codes. A locally testable code (LTC) is an error correcting code admitting
a randomized algorithm — called a tester — which, given access to a word, can decide with high
probability whether it is close to a codeword or not by querying just a few (i.e. O(1)) of its letters.
More formally, the tester must accept all codewords, and the probability of rejecting a word outside
the code is at least proportional to its Hamming distance from the code. Thus, upon transmitting
a codeword along a noisy channel, the receiver can probe just a few letters to assess whether the
codeword was significantly corrupted or not, and decide accordingly whether to decode it, or ask for
retransmission. The probability of rejecting a word which is very far from the code (i.e. of relative
Hamming distance ≥ η) is the called (η-)soundness of the LTC.

LTCs also play a major role in the construction of probabilistically checkable proofs (PCPs),
as almost all known PCPs include them as building blocks. The length of such PCPs is related
to various properties of the LTC, e.g., its distance, rate and the efficiency of the the testing; see
[Gol11] for a survey.

A family of LTCs is called good if the codes in that family have constant rate and linear distance.

2-Query LTCs. A subclass of LTCs of particular importance is the 2-query LTCs, i.e., LTCs
admitting a tester probing just two letters; the alphabet size may be large. Such LTCs admit an
even stronger connection to PCPs, and also to the Unique Games Conjecture (UGC). However, they
are also known to be somewhat constrained. Indeed, by [BSGS03], there are no 2-query LTCs with
linear distance and constant rate on a binary alphabet, and likewise for linear 2-query LTCs on any
finite field alphabet. See [KR16, KR12] for further restrictions.

Some Notable Constructions of LTCs. LTCs are generally difficult to construct for the reason
that random low-density parity check (LDPC) codes are usually not locally testable. Rather, the
parity checks should be designed to admit redundancy. 2-query LTCs are even harder to come by.

Some notable examples of LTCs include Reed–Muller codes, which have linear distance and
polylogarithmic message length [FS95], [RS96], and the LTCs of Ben-Sasson–Sudan [BSS08] and
Dinur [Din07], which have linear distance and inverse poly-logarithmic rate. It was further studied
how the group under which a code is invariant affects its local testability. With respect to that, it
was shown that affine invariant codes with the so called “single orbit” property are locally testable
[KS08]. Dinur, Evra, Livne, Lubotzky and Mozes [DEL+21] and Panteleev and Kalachev [PK21]
have recently and independently of each other constructed infinite families of LTCs with constant
(large) query size, linear distance and constant rate.1 (Panteleev and Kalachev also constructed
good LDPC quantum codes in op. cit.)

Local-Testability Follows From an Underlying High-Dimensional Expander. The past
decade had seen an emerging trend of using high-dimensional expanders for constructing locally
testable codes and other property testers, e.g., [KL14], [KKL16], [EK17], [DDHR20], [KO21] to
name just a few. Loosely speaking, these works share a common theme: one uses a 2-dimensional
object, e.g., a 2-dimensional simplicial complex, or a 3-layer partially ordered set, in order to define
a code. One then relates expansion properties of the object at hand to the testability of the code,
making use of the 3 layers of the object (vertices, edges and triangles in the case of a simplicial
complex). See [KO21] for an aximatization of this approach.

Despite the extensive research, so far, the prototypical high dimensional expanders did not
give rise to LTCs with linear distance and constant rate. It was particularly expected that the
Ramanujan complexes of Lubozky, Samuels and Vishne [LSV05a] (see also Li [Li04] and Sarveniazi

1An earlier version of this paper was written and circulated independently of these works.
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[Sar07]), which are often considered as the prototype of high dimensional expanders, should give
rise to LTCs. For comparison, the recent LTCs constructed in [DEL+21] and [PK21] use special
square complexes, which do not seem to admit higher-dimensional analogues.

1.1 Main Contributions

This work concerns with the construction of 2-query LTCs basing on high-dimensional expanders,
e.g. Ramanujan complexes. Our contributions are the following.

A Framework for Constructing Good 2-Query LTCs from Expanding Sheaves on High
Dimensional Expanders. We present a general framework — called the tower paradigm —
for constructing 2-query LTCs from high dimensional expanders, e.g. Ramanujan complexes, by
introducing a new piece of data: a sheaf on the expander at hand.

In more detail, our framework takes as input (constant sized) initial data consisting of a “small”
high dimensional expander and a sheaf. We also assume that the “small” high dimensional expander
admits an infinite family of coverings, which is the case for many known high-dimensional expanders.
Using the constant-sized initial data and the coverings, we construct an infinite family of codes
(with length tending to ∞) admitting a natural 2-query tester. We then show that if the constant
sized initial data satisfies a list of conditions, which can be verified by a finite (constant sized)
computation, then the entire infinite family of codes is a family of 2-query LTCs with linear distance
and constant rate; see §2.5 for more details and Theorem 11.1 for a precise statement.

This result consists of two components of independent interest. The first is a new local-to-
global principle which allows us to show that a 2-query code arising from an expanding sheaf on a
high-dimensional expander is locally testable and has linear distance by means of local conditions
(Theorem 8.1, Corollary 8.15, Remark 8.16); this is a vast generalization of [KKL16], [EK17],
[KM18] which moreover works under milder assumptions. The second is a rate conservation method
(Theorem 10.3), used to maintain a constant rate among the infinite family of codes we construct.

Examples of 2-Query LTCs With Linear Distance and Conjectural Constant Rate. We
construct candidates for the constant-sized initial data — consisting of a (constant sized) expander
and an expanding sheaf — required for our framework. To that end, we first construct sheaved
high-dimensional expanders fulfilling the conditions guaranteeing testability and linear distance.
Then, we present an iterative process which takes such a sheaf and modifies it to create a new sheaf
which, conjecturally, also satisfies the conditions guaranteeing a constant rate. This gives rise to
explicit infinite families of 2-query LTCs with linear distance and conjectural constant rate. See
§2.7 for an explicit example of how such a family of codes might look like, and Theorem 12.11 and
Remark 12.12 for precise statements. While verifying that each such family has constant rate could
be done in a finite (constant sized) computation involving the initial data, doing so is presently not
possible due to computational limitations.

The iterative process works by artificially creating or eliminating cohomology classes (in the
cohomology of the sheaf); see §12.1. We analysed it using computer simulations, and identified
conditions involving the fundamental group of the expander and the sheaf to modified which,
once met, guarantee that the process outputs a modified sheaf satisfying all the requirements
(Conjecture 12.8). We also justify these conditions with a heuristic theoretical argument. They are
not necessary for the success of the process, though.

We remark that our 2-query LTCs do not violate the restrictions proved in [BSGS03] since they
are not linear and use a very large alphabet Σ = Fm2 . If we treat each letter in the alphabet Σ as an
m-letter string in F2, then they become linear codes over the alphabet F2. We further note that the
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soundness of the codes does not depend on the alphabet size. In addition, our LTCs are not lifted
codes, in contrast to the presently known LTCs.

Some Implications to Quantum Codes. Our framework can also be used to construct infinite
families of other low-query LTCs (non-linear, with large alphabet) and (linear) quantum CSS codes
whose X-side is locally testable and has linear distance. Our rate conservation method applies in
these contexts, but securing the required conditions on the initial data is still out of reach.

1.2 Conceptual and Methodological Contributions

Exposing a Connection Between 2-Query LTCs and High Dimensional Expansion. Our
results expose a strong relation between 2-query LTCs and high dimensional expanders. Connections
between general local testability and high-dimensional expansion was studied previously, but in this
work, we show that high dimensional expansion is moreover related to a stronger notion of local
testability, namely, to 2-query locally testable codes. This connection was already glimpsed on in
the work of the second author and Lubotzky [KL14] under the broader connection between high
dimensional expansion (coboundary expansion) and general local testability. Alas, the only 2-query
LTC obtained in that work had to have two codewords (a sting of 1s and a string of 0s), and so it
was not regarded as a true LTC. In this work we show that by using sheaves, we can (conjecturally)
get good 2-query LTCs from high dimensional expanders, namely, the intrinsic barrier that high
dimensional expanders can not give 2-LTCs with satisfactory rate is overcome.

Introducing Sheaves on Simplicial Complexes and Expanding Sheaves. Loosely speaking,
a sheaf is a layer of linear algebra data that is put on top of a simplicial complex. Sheaves are
vastly studied in topology and algebraic geometry. Here, we introduce a discrete variation of the
topological definition: sheaves on simplicial complexes. Moreover, we define a notion of an expanding
sheaf that has not been studied before in topology, nor elsewhere.

Utilizing Coverings of High Dimensional Expanders as a Way to Reduce Obstructions
and Getting New Examples. We use coverings of high dimensional expanders, and more
specifically towers of coverings, both in our framework for getting good 2-query LTCs and in finding
initial data to feed into the framework.

When establishing the tower paradigm, we use coverings to obtain new examples of expanding
sheaves from existing ones, generating infinitely many examples from a single base example. Specifi-
cally, given a “big” simplicial complex covering a “small” one and a sheaf on the small complex,
we can construct a sheaf on the big complex by pulling back the sheaf on the small complex along
the covering map. Pullback of sheaves is a well-known construction in topology. At the basis of
our framework lies the observation that the pullback of a sheaf inherits many properties, e.g., local
expansion conditions, from the original sheaf.

Our second use of coverings is in applying our framework, as they allows us to reduce obstructions.
In more detail, the conditions on the initial data for our framework which guarantee constant rate
depend on the dimension of the first cohomology space. Loosely speaking, the larger it is, the further
away we are from satisfying these conditions. We use coverings together with the pushforward
construction from topology to create sheaves of dimension that is significantly larger than the
dimension of the obstructing cohomology space. For certain coverings of high dimensional expanders
arising form number theory, this approach results in expanding sheaves of arbitrarily large dimension,
but such that the obstruction to rate conservation remains constant, ultimately becoming negligible
in dimension to the sheaf. It is those sheaves that we feed into our iterative process, which
(conjecturally) eliminates the relatively small obstruction.
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2 Overview of The Main Results
We now survey the main results of the paper. In §2.1, we give some relevant background on
high dimensional expanders. We then introduce sheaves on simplicial complexes in §2.2, and the
important notion of expanding sheaves in §2.3. Next, in §2.4, we discuss coverings of high dimensional
expanders and highlight their important role in our framework for obtaining good 2-query LTCs
from expanding sheaves on high dimensional expanders. The framework itself, called the tower
paradigm, is then presented in §2.5. In §2.6, we present a method which conjecturally produces
the constant-sized initial data (consisting of a sheaved high-dimensional expander) required for our
framework; here we use coverings once more. Lastly, in §2.7, we give an explicit family of 2-query
LTCs which arises from our framework. This family has linear distance and we conjecture that, for
an appropriate choice of parameters, it has constant rate.

The outline of the paper is given in §2.8.

2.1 High Dimensional Expanders

Of the various flavors of high dimensional expansion which have emerged in the past two decades —
all of which generalize expansion in graphs — the two most relevant for our purpose are coboundary
expansion and cosystolic expansion.

Some History. Coboundary expansion originated in the works of Linial–Meshulam [LM06] and
Meshulam–Wallach [MW09] on the cohomology of random simplicial complexes, and the work of
Gromov [Gro10] on the minimum amount of overlapping forced by mapping a simplicial complex to
Rn. Cosystolic expansion is a more relaxed version of coboundary expansion developed in [DKW18],
[KKL16], [EK17] in order to extend the reach of Gromov’s methods.

The first connections between high dimensional expansion and property testing were observed
and studied in [KL14].

Cochains, Cocycles and Coboundaries. Let X be a simplicial complex.2 We write X(i) to
denote the set of i-dimensional faces of X, e.g., X(0), X(1) and X(2) stand for the vertices, edges
and triangles of X, respectively. The simplicial complex X also has a single empty face, of dimension
−1.

Let i ∈ N∪ {−1, 0}. Recall that an i-cochain on X with coefficients in F2 is an assignment of an
element in F2 to each i-face of X, i.e., a vector f ∈ FX(i)

2 . We set Ci = Ci(X,F2) = FX(i)
2 and write

the x-coordinate of f ∈ Ci as f(x). As usual, the i-th coboundary map di : Ci → Ci+1 is defined by

(dif)(y) =
∑

x is an i-face of y
f(x) (2.1)

2All simplicial complexes are assumed to be finite, unless indicated otherwise.
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for all f ∈ Ci, y ∈ X(i + 1). A standard computation shows that di+1 ◦ di = 0. The spaces of
i-coboundaries and i-cocycles are now defined as

Bi = Bi(X,F2) = im di−1 and Zi = Zi(X,F2) = ker di, (2.2)

respectively, where d−2 = 0 by convention. We have Bi ⊆ Zi ⊆ Ci because di ◦ di−1 = 0, and the
quotient space Zi/Bi is the i-th cohomology space Hi(X,F2).3

Expansion of Cochains is a Form of Local Testability of The Cocycle Code. Given
a simplicial complex X, we may regard the i-cocycles Zi = Zi(X,F2) as a linear code inside
Ci = Ci(X,F2) = FX(i)

2 . This code is called the i-cocycle code, and it admits a natural (i+ 2)-query
tester: given f ∈ Ci, choose a face y ∈ X(i+ 1) uniformly at random and accept f if (dif)(y) = 0
(cf. (2.1)). By definition,4 this tester makes Zi into an an ε-testable code inside Ci if and only if

∥dif∥Ham
dHam(f, Zi) ≥ ε ∀ f ∈ Ci − Zi, (2.3)

where ∥ · ∥Ham and dHam denote the normalized Hamming norm and distance (in FX(i)
2 or FX(i+1)

2 ),
respectively. As for the distance of Zi, since Bi typically contains vectors with small support (unless
i = 0), the best we could for is the existence of δ > 0 such that

∥g∥Ham ≥ δ ∀ g ∈ Zi −Bi. (2.4)

Conditions (2.3) and (2.4) can also be viewed as statements concerning the expansion of i-
cochains under di. When both of these conditions hold, X is said to be an (ε, δ)-cosystolic expander
in dimension i.5 If moreover Zi = Bi (equivalently Hi(X,F2) = 0), then X is said to be an
ε-coboundary expander in dimension i (the parameter δ plays no role as Zi −Bi = ∅). Thus, X is
an ε-coboundary expander if and only if the code Bi ⊆ Ci is ε-testable with respect to the natural
tester.
Expansion in Dimension 0: The Case of Graphs. Since the 0-cocycle code Z0 of a simplicial
complex X is determined by its underlying graph, we might as well assume that X is a graph. In
this case, if f ∈ C0(X,F2) has support A ⊆ X(0), then the support of d0f is precisely the set of
edges leaving A. Note further that B0 ⊆ FX(0)

2 consists of exactly two vectors, namely (0, . . . , 0)
and (1, . . . , 1). Consequently, X is an ε-coboundary expander in dimension 0 if and only if X is an
ε-expander in usual sense, i.e.,

|E(A,X(0)−A)|
min{|A|, |X(0)−A|} ≥ ε

|X(1)|
|X(0)| ∀ ∅ ̸= A ⊊ X(0). (2.5)

Similarly, a graph X is an (ε, δ)-cosystolic expander in dimension 0 if and only if each connected
component of X is an ε-expander consisting of at least δ-fraction of the vertices in X.

Shifting back our point of view to codes, we also note that X is an (ε, δ)-cosystolic expander
if and only if the code Z0 ⊆ FX(0)

2 is ε-testable with respect to its natural 2-query tester and has
relative distance ≥ δ. On the other hand, the message length of Z0 is meager — it is the number of
connected components of X, thus bounded from above by 1

δ .
3What we have defined here is the reduced cohomology of X with F2-coeffients, denoted H̃i(X,F2) later in the

paper and elsewhere. The ordinary, non-reduced, cohomology is defined in the same manner with the difference that
the empty face of X is ignored, i.e., one sets C−1 = 0 and d−1 = 0.

4Definitions concerning codes are recalled in Section 7.
5Warning: The cosystolic expansion considered later in this work and also in other sources involves weights on the

faces of X, which we have suppressed here for simplicity. See §5.3 for details.
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Expansion in Higher Dimensions. In contrast to the case of 0-cocycle codes, if i > 0, then the
code Zi = Zi(X,F2) may have constant rate, but its distance is typically small, becuase Bi usually
contains vectors of small support. However, in this case, the code Zi can be enriched into a quantum
CSS code. Moreover, if X is an (ε, δ)-cosystolic expander in dimension i, then the X-side of this
quantum CSS code is ε-testable and has relative distane ≥ δ; see [EK17], or §7.4 for a generalization.

Intrinsic Barrier to Good ‘Ordinary’ Cocycle Codes. The last two paragraphs demonstrate
an intrinsic difficulty in trying to construct good LTCs from high dimensional expanders: either
the rate or the distance are small. We will see below that sheaves allow us to bypass this natural
limitation.

Before we move to present sheaves, we recall an important method for obtaining “global” local
testability from “local” local testability in the context of cocycle codes coming from high dimensional
expanders. A generalization of this method to sheaves will play a major role in our new framework
for constructing good 2-LTCs from high dimensional expanders.

Local Local-Testability Implies Global Local-Testablity. We have seen that the testability
of the 0-cocycle code of X, i.e., the cosystolic expansion of X in dimension 0, is determined directly
by the expansion of its underlying graph.

For higher dimensions, the most prominent method for proving that a simplicial complex X is a
good cosystolic expander in a desired dimension i ∈ {1, . . . ,dimX − 2} is a local-to-global principle
established in [KKL16] for i = 1 and [EK17] in general.

Recall that the link of a simplicial complex X at a face z ∈ X is Xz = {x− z | z ⊆ x ∈ X}. If
z ̸= ∅, the link Xz is called a proper link of X. The main result of [EK17] states that if each of the
proper links Xz is a good coboundary expander in a range of dimensions, and if the underlying
graph of X is a sufficiently good expander, then X is an (ε, δ)-coboundary expander in dimension i
with ε, δ depending on the implicit expansion constants. In fact, by Oppenheim’s Trickling Down
Theorem [Opp15, Theorem 1.4], we can replace the expansion condition on the underlying graph
of X with requiring that X is connected and all its proper links are sufficiently good coboundary
expanders in dimension 0. The main theorem of [EK17] can therefore be summarized as: good
coboundary expansion at the links (informally called “local” local-testablity) implies cosystolic
expansion (informally called “global” local-testability). Among our main results is a generalization
of this principle to sheaves.

2.2 Sheaves on Simplicial Complexes

Loosely speaking, a sheaf is a layer of linear-algebra data put on top of a simplicial complex.
We comment about the relation between our sheaves and related notions, e.g., sheaves on

topological spaces, Jordan and Livne’s local systems [JL97, §2] and Friedman’s sheaves on graphs
[Fri15] at the end.

Sheaves on Graphs. Let F be a field. An F-sheaf on a graph X consists of

(1) an F-vector space F(x) for every x ∈ X(0) ∪X(1), and

(2) a linear map resFe←u : F(u)→ F(e) for every edge e ∈ X(1) and vertex u ∈ X(0) with u ⊆ e.

The maps resFe←u are called restriction maps.
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Examples. The most basic example of an F-sheaf on a graph X is obtained by taking F(x) = F
for all x ∈ X(0) ∪X(1) and setting all the restriction maps to be idF.

A more interesting example that will be revisited later can be constructed as follows: Let X be
a k-regular graph. Given v ∈ X(0), we write E(v) to denote the set of edges containing v. For every
v ∈ X(0), choose n(v) ∈ {0, 1, . . . , k} and an injective linear transformation Tv : Fn(v) → FE(v) ∼= Fk,
and write Cv = imTv. Using this data, we define an F-sheaf on X by setting

• F(v) = Fn(v) for each vertex v ∈ X(0),

• F(e) = F for each edge e ∈ X(1), and

• resFe←v = Proje ◦ Tv for every edge e ∈ X(1) and vertex v ⊆ e, where Proje : FE(v) → F is the
projection onto the e-coordinate.

We shall see below (§2.3) that if all the Cv are good codes, then this example gives rise to a good
0-cocycle code. In fact, this is a sheaf-theoretic variation on the famous expander codes of Sipser
and Spielman [SS96]; their presentation in [Mes18] demonstrates the similarity.

Sheaves on Simplicial Complexes. Sheaves on simplicial complexes are defined in the same
manner as sheaves on graphs, with the difference that one needs to impose an extra assumption.
Formally, an F-sheaf F on X consists of

(1) an F-vector space F(x) for every nonemtpy face x ∈ X, and

(2) a linear map resFy←x : F(x)→ F(y) for every pair of nonempty faces x, y ∈ X with x ⊊ y,

subject to the requirement resFz←y ◦ resFy←x = resFz←x whenever x ⊊ y ⊊ z. This requirement is
vacuous if X is a graph, but is very restrictive if dimX > 1. Figure 1 illustrates of the data of a
sheaf on a 2-dimensional simplicial complex, the arrows representing the restriction maps; the extra
requirement means that the diagram of vector spaces on the right commutes.

Figure 1: A simplicial complex X (left) and the data of a sheaf F on X (right).

For the sake of simplicity, we henceforth consider only F2-sheaves, and call them sheaves for
brevity.

As with graphs, one can fix an F2-vector space V and define a sheaf FV on X (denoted VX later
on) by taking FV (x) = V for every face x ∈ X − {∅} and setting all the restriction maps to be the
identity. Such sheaves are called constant. More sophisticated examples will be considered (and
needed) below.
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Augmented Sheaves. It is sometimes convenient to modify the definition of a sheaf on X by
requiring that F(x) and resFy←x are also defined when x is the empty face; we call this extended
structure an augmented sheaf. Two examples of this kind will be important for our discussion.

The first is F+
F2

, obtained by taking F(x) = F2 for all x ∈ X (including the empty face) and
setting all the restriction maps to be idF2 . Replacing F2 with a general F2-vector space V gives the
constant augmented sheaf F+

V (also denoted V+ later on).
The second example is obtained by restricting a sheaf F on X to a proper link. Formally, given

a nonempty z ∈ X, let Fz denote the augmented sheaf on Xz defined by Fz(x) = F(x ∪ z) and
resFz

y←x = resFy∪z←x∪z for all x, y ∈ Xz with x ⊊ y.

Cochains, Cocycles and Coboundaries Similarly to §2.1, given a sheaf (resp. augmented sheaf)
F on a simplicial complex X and i ∈ N∪{0} (resp. i ∈ N∪{0,−1}), we can construct vector spaces
of i-cochains, i-cocycles and i-coboundaries with coefficients in F . The only difference is that we
evoke the restriction maps of F when defining di. Specifically, put Ci = Ci(X,F) = ∏

x∈X(i)F(x)
and define di : Ci → Ci+1 by

(dif)(y) =
∑

x is an i-face of y
resFy←x(f(x)) (2.6)

for every f ∈ Ci and y ∈ X(i+ 1); cf. (2.1).6 The vector spaces of i-coboundaries and i-cochains
are defined as in (2.2) and denoted Bi(X,F) and Zi(X,F), respectively, and the i-th cohomology
group of F is Hi(X,F) = Zi(X,F)/Bi(X,F).

If we take F to be the constant augmented sheaf F+
F2

, then this recovers Ci(X,F2), Zi(X,F2)
and Bi(X,F2) considered in §2.1.

Related Notions to Sheaves. The sheaves we have defined here are inspired by sheaves on
topological spaces, which are ubiquitous to topology and algebraic geometry, see [MLM94, Chapter II]
or [Ive86], for instance. In fact, our sheaves can be reinterpreted as sheaves on certain topological
spaces (associated to the simplicial complex at hand) in such a way that the cohomology spaces
remain the same; see Appendix A. In contrast, augmented sheaves and their cohomology do not fit
nicely into this setting.

The local systems on graphs defined by Jordan and Livne [JL97, §2] can be viewed as R-sheaves
in which all the restriction maps are isomorphisms. The cohomology theory developed in op. cit.
then agrees with ours.

Friedman’s sheaves on graphs [Fri15] are defined like our sheaves, but with the restriction maps
going from the edges to the vertices. From the perspective of our work, they should perhaps be
called co-sheaves, or sheaves valued in the opposite category of F-vector spaces. They admit a
homology theory, rather than a cohomology theory.

2.3 Expanding Sheaves

Having introduced sheaves on simplicial complexes, which are discrete versions of the sheaves
commonly studied in topology, we turn to present the new concept of an expanding sheaf, which has
not been previously studied in a topological context. Expanding sheaves will play a pivotal role in
our framework for constructing good 2-query LTCs.

Henceforth, X is a simplicial complex and F is a sheaf or an augmented sheaf on X.
6In order to generalize this to F-sheaves with F a field of characteristic not 2, one should be introduce signs to

(2.6); see §4.2.
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Expansion of Sheaves. Given f ∈ Ci = Ci(X,F), let supp f = {x ∈ X(i) : f(x) ̸= 0}. The
normalized Hamming norm of f is ∥f∥Ham = | supp f |

|X(i)| , and normalized Hamming distance between
f, g ∈ Ci is dHam(f, g) := ∥f − g∥Ham.

With this notation at hand, the notions of cosystolic expansion and coboundary expansion
recalled in §2.1 extend verbatim to sheaves. That is, the sheaf F , or a sheaved complex (X,F),
is said be an (ε, δ)-cosystolic expander in dimension i if (2.3) and (2.4) hold for cocycles with
coefficients in F , and an ε-cosystolic expander in dimension i if Hi(X,F) = 0 (equiv. Bi = Zi) and
(2.3) holds.

The situation considered in §2.1 now arises as the special case where F is the constant augmented
sheaf F+

F2
. Note, however, that we have shifted the focus from the expansion of the simplicial

complex X to the expansion of the sheaf F . Indeed, F may have poor expansion even when X is
an excellent high-dimensional expander (e.g., take all the restriction maps to be 0).

Considering the expansion of (augmented) sheaves also illuminates an important condition which
was transparent in the case of F+

F2
: coboundary expansion in dimension −1. Suppose that F is an

augmented sheaf such that there is m ∈ N with F(v) = Fm2 for all v ∈ X(0), and put Σ = Fm2 . Then
d−1 : C−1 → C0 is an F2-linear map from F(∅) to ΣX(0). By definition, the augmented sheaf F is
an ε-coboundary expander in dimension −1 if and only if d−1 is injective, and its image in ΣX(0) is
a code with relative distance ≥ ε.

0-Cocycle Codes and 2-Query LTCs. Suppose now that F is a sheaf with F(v) = Fm2 for
every vertex v ∈ X(0), where m ∈ N fixed, and put Σ = Fm2 . Then C0 = C0(X,F) = ΣX(0), and we
may regard Z0 = Z0(X,F) as a code inside ΣX(0); we call Z0 a 0-cocycle code. There is a natural
2-query tester for Z0: given f ∈ C0, choose an edge e ∈ X(1) uniformly at random and accept f if

resFe←u(f(u)) = resFe←v(f(v)),

where u and v are the vertices of e, cf. (2.6). As in §2.1, F is an (ε, δ)-coboundary expander in
dimension 0 if and only if the code Z0 ⊆ ΣX(0) is ε-testable with respect to this tester, and has
relative distance ≥ δ (note that B0 = 0). The rate of Z0 is |X(0)|−1 dimF2 H0(X,F). Note that we
may also view Z0 as code inside (Fm2 )X(0) = FX(0)×{1,...,m}

2 — the alphabet being F2 — in which
case, we get a 2m-query ε-testable linear code with relative distance ≥ δ

m ; the rate remains the
same.

The 2-query LTCs that we will construct arise as 0-cocycle codes of sheaves with good cosystolic
exansion in dimension 0.

Higher-Cocycle Codes and Quantum CSS Codes. We can similarly consider the space of
i-coycles Zi = Zi(X,F) as a code inside Ci = Ci(X,F) when i > 0. If F(x) = Σ := Fm2 for every
x ∈ X(i), then the alphabet can be taken to be Σ, and this code has an (i+ 2)-query tester. Such
codes have different potential applications depending on whether Bi(X,F) = 0 or Bi(X,F) ̸= 0.
(The situation Bi = 0 with i > 0 is impossible if we only consider F2-valued cocycles as in §2.1, but
is possible for general sheaves, e.g., if F(x) = 0 for all x ∈ X(i− 1).)

If Bi = 0, then, as in the case i = 0, the code Zi is ε-testable with relative distance ≥ δ if and
only if F is an (ε, δ)-cosystolic expander in dimension i; its rate is |X(i)|−1 dimF2 Hi(X,F). See
§9.3 for an example of an infinite family of good 1-cocycle codes. (We do not know if this is a family
of LTCs.)

If, on the other hand, Bi ̸= 0, then by viewing Zi(X,F) as a linear codes inside Ci(X,F) with
alphabet F2, we can enrich it into a quantum CSS codes over the alphabet F2; see §7.4 for details.
The rate of this quantum CSS code is again |X(i)|−1 dimF2 Hi(X,F), and if F is an (ε, δ)-coboundary
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expander in dimension i, then its X-side has relative distance ≥ δ and is ε-testable (up to scaling of
the constants).

Local Local-Testablity Implies Global Local-Testibility: a Sheafy Version. Let (X,F)
be a sheaved simplicial complex. Our first main result (Theorem 8.1; see also Corollary 8.15,
Remark 8.16) is a generalization of the local-to-global principle of Evra–Kaufman [EK17] recalled
in §2.1. In more detail, given i ∈ {0, . . . ,dimX − 2}, we show that if for every z ∈ X − {∅}, the
augmented sheaf Fz is a good coboundary expander in a range of dimensions, and the underlying
graph of Xz is a sufficiently good expander (“local” properties of X and F), then F is an (ε, δ)-
cosystolic expander in dimension i (a “global” property of F) with ε and δ depending on the
suppressed expansion constants. This also extends the main result of [KM18] which, in our
terminology, addresses the special case of constant sheaves.

Our proof is more efficient than [EK17] and [KM18] in the sense that it makes milder assumptions
on the expansion of Xz and Fz, and at the same time produces larger expansion constants ε and δ.
We also show that the LTCs arising as i-cocycles codes of sheaves to which our theorem applies
admit a linear-time decoding algorithm able to correct a linear number of errors (up to a vector in
Bi(X,F) if i > 0), see Proposition 7.8.

A Side-Application: Sheafy Expander Codes. We return to discuss the sheaf-variation of
expander codes defined on page 9, focusing on its 0-cocycle code.

Recall that X is a k-regular graph, and we used codes Cv ⊆ FE(v)
2 to define a sheaf F on X.

Suppose that all the Cv have a common dimension m and relative distance ≥ ε. Then, writing
Σ = Fm2 , we have C0(X,F) = ΣX(0). Moreover, our assumption on the distance of the Cv says
that, for every v ∈ X(0), the augmented sheaf Fv (on the link Xv) is an ε-coboundary expander in
dimension −1. In other words, “locally”, F has good coboundary expansion in dimension −1.

Since X is merely 1-dimensional (rather than 2-dimensional), this is not enough to apply our
Theorem 8.1 to assert that F is a good cosystolic expander in dimension 0, or equivalently, that
Z0(X,F) ⊆ ΣX(0) is an LTC with linear distance. Indeed, the code Z0(X,F) is usually not
testable if m > k

2 , because removing one of its defining constraints (i.e., removing an edge from
X) will typically enlarge Z0(X,F). Also, even if X were the 1-dimensional skeleton of a triangle
complex Y , it is usually not possible to extend F in a non-redundant way to Y . Indeed, if F
could be extended to a sheaf on Y , then for any triangle t = {u, v, w} ∈ Y (2), we would have
resFt←{u,v} ◦ resF{u,v}←{u} = resFt←{u} = resFt←{u,w} ◦ resF{u,w}←{u}. A simple linear-algebra argument
now shows that if Cu contains a word f ∈ FE(u)

2 with f{u,v} ≠ f{u,w}, then resFt←{u,v} and resFt←{u,w}
must be 0.

Testability aside, if the second eigenvalue of the adjacency matrix of X is λk (λ ∈ [−1, 1]), then
we can still infer that Z0(X,F) ⊆ ΣX(0) has relative distance at least ε− λ, see §9.1. If instead we
view Z0(X,F) as a linear code inside FX(0)×{1,...,m}

2 , then the relative distance is ≥ ε−λ
m . Since by

dimension considerations, the rate of Z0(X,F) is at least (1− k
2m) (with respect to either alphabet),

we conclude that the code Z0(X,F) is good if ε > λ and m > k
2 . These bounds are similar to the

expander codes of [SS96] (see also [Mes18]). Note, however, that Z0(X,F) is not a lifted code, and
thus not an expander code in the sense of [SS96].

2.4 Utilizing Coverings

Coverings of high dimensional expanders play an important role in our framework for getting good
2-query LTCs from sheaved high dimensional expanders. Broadly speaking, coverings allow us
to produce many expanding sheaves from a single example, and in a different context, provide
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an “inflation” effect that reduces obstructions. The former will facilitate our framework while the
latter would be useful to applying it. We now recall what are coverings, and explain why they are
important in our framework.

Henceforth, all simplicial complexes are assumed to be connected.
Coverings of Simplicial Complexes. Let X and Y be (connected) simplicial complexes. Recall
that a simplicial map p : Y → X is called a covering map if for every nonempty face z ∈ Y , the
restriction of p to the link Yz defines an bijection between Yz and the link Xp(z). Equivalently, p is a
covering map if it induces a covering map of topological spaces between the topological realizations
of Y and X. In this case, the connectivity of X implies that the number of faces in Y mapping to a
nonempty face x ∈ X is independent of x; this common number is called the degree of p. We say
that p is a double covering, or that Y is a double covering of X (via p), if the degree of p is 2. In
this case, |Y (i)| = 2|X(i)| for all i ∈ N ∪ {0}.

It is a standard fact from algebraic topology that there is a one-to-one correspondence between
the (connected) coverings of X (considered up to isomorphism over X) and subgroups of the
fundamental group π1(X). This restricts to a bijection between the degree-d coverings of X and the
index-d subgroups of π1(X).
Pulling Back a Sheaf Along a Covering. If p : Y → X is a covering map, and F is a sheaf on
X, then we can define a sheaf p∗F on Y by pulling back F along p, i.e., by setting

p∗F(y) = F(p(y)) and resp
∗F
y′←y = resFp(y′)←p(y)

for all y, y′ ∈ Y with y ⊊ y′. The sheaf p∗F called the pullback of F along p : Y → X.
Since p is a covering map, it restricts to an isomorphism Yz → Xp(z) for every nonempty

z ∈ Y . Under this isomorphism, the restriction of p∗F to Yz, i.e. (p∗F)z, is just Fz. Thus, up to
isomorphism, the sheaves p∗F and F have the same restrictions to proper links.
Local Local-Testability Lifts Along Coverings. Let p : Y → X be a covering map and let
F be a sheaf on X. Recall that our Theorem 8.1 says that if the pairs (Xz,Fz)z∈X−{∅} satisfy
some expansion conditions (informally called “local” local-testability), then (X,F) will be an
(ε, δ)-cosystolic expander in dimension i (“global” local-testability). Since p∗F and F have the same
restrictions to proper links up to isomorphism, once the assumptions of Theorem 8.1 are satisfied
for F , they are also satisfied for p∗F , meaning that p∗F is also an (ε, δ)-cosystolic expander in
dimension i.

We apply this observation in the following context: Let m ∈ N, Σ = Fm2 , and suppose that
F(v) = Fm2 = Σ for all v ∈ X(0). If (X,F) satisfies the conditions of Theorem 8.1 with i = 0,
then for every covering p : Y → F , we have that p∗F(u) = Σ for all u ∈ Y (0), and p∗F is an
(ε, δ)-cosystolic expander in dimension 0 with ε, δ > 0 independent of Y, p. Consequently, for every
covering p : Y → X, the code Z0(Y, p∗F) ⊆ ΣY (0) is ε-testable and has relative distance ≥ δ.
Otherwise said, the family of codes {Z0(Y, p∗F) ⊆ ΣY (0)}Y,p with p : Y → X ranging over the
coverings of X is a family of 2-query LTCs with linear distance.
Rate Conservation in Coverings. We continue to assume that p : Y → X is a covering map
and F is a sheaf on X with F(v) = Fm2 = Σ for all v ∈ X(0). Similarly to the situation with
testability and distance, we would like to be able to guarantee that “pullback code” Z0(Y, p∗F) has
roughly the same rate as Z0(X,F).

Suppose that p : Y → X is of degree ℓ and factors as a composition of double coverings
Y = Xr → Xr−1 → · · · → X0 = X (thus ℓ = 2r). In Theorem 10.3, we show that in this special
case, we have dimZ0(Y, p∗F) = Θ(ℓ), i.e., the rate of Z0(Y, p∗F) is constant, provided that

dim H1(X,F) < dim H0(X,F).
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We call this result rate conservation. In particular, if {Xr}r≥0 is an infinite tower of connected
double coverings of X0 = X, i.e., each Xr is a double covering of Xr−1, and if Fr is the pullback of
F to Xr, then the family of codes {Z0(Xr,Fr) ⊆ ΣXr(0)}r≥0 has constant rate.

The integer dim H0(X,F)− dim H1(X,F) can be considered as measuring the obstruction to
rate conservation. Indeed, we can apply rate conservation precisely when it is positive, and the larger
it is, the larger the rate of Z0(Y, p∗F) will be for p : Y → X as above. We will see in §2.6 that if F
is sheaf on X such that dim H1(X,F) is significantly smaller than m (recall that Σ = Fm2 = F(v)
for v ∈ X(0)), then there is a way to modify F in order to (conjecturally) decrease dim H1(X,F)
even further, thus achieving the threshold for rate conservation.

We also remark that, as stated here, rate conservation is specific to double coverings, F2-sheaves
and 0-cocycle codes. If one wishes to replace F2 with another field of characteristic p > 0, then the
requirement that each Xr is a double covering of Xr−1 should be replaced by Xr → Xr−1 being
Galois covering of degree p, i.e., that π1(Xr) is a normal subgroup of index p in π1(Xr−1). In order
to apply rate conservation to i-cocycle codes with i > 0, one needs to add the extra hypothesis
Hi−1(X,F) = 0.

2.5 The Tower Paradigm: A Framework for Constructing Good 2-Query LTCs
from Expanding Sheaves

We now put together the observations of §2.4 to give a method — the tower paradigm — for
constructing an infinite family of LTCs with linear distance and constant rate from auxiliary finite
initial data. This method overcomes the intrinsic barrier in constructing cocycle codes with linear
distance and constant rate noted in §2.1.
The Initial Data. The initial data consists of an integer m ∈ N, a 2-dimensional simplicial
complex X, and a sheaf F on X such that F(v) = Fm2 for all v ∈ X(0). We write Σ = Fm2 ; this will
be the alphabet of the 2-query LTCs that will be constructed from these data.
Requirements on The Initial Data. The initial data (X,F) is required to satisfy the following
three requirements:

(t1) There is a sequence of (connected) simplicial complexes {Xr}r≥0 such that X0 = X and Xr is
a double covering of Xr−1 for all r ∈ N. We call {Xr}r≥0 a tower of double coverings of X.

(t2) For every nonempty z ∈ X, the sheaf Fz (on the link Xz) is a good coboundary expander and
the underlying graph of Xz is a sufficiently good expander; see condition (t2) of Theorem 11.1
for a precise statement. Informally, this means that X is a high-dimensional expander, and F
satisfies “local” local-testability.

(t3) dim H0(X,F) > dim H1(X,F).

Note that conditions (t2) and (t3) can be verified for a given (X,F) by a finite computation.
Condition (t1) does not involve the sheaf F , and can be readily arranged by using existing
constructions of high-dimensional expanders, e.g., [LSV05a] or [KO18].
The Induced Family of Good 2-Query LTCs Using the initial data (X,F) and the tower of
double coverings {Xr}r≥0, we define an infinite family of codes on the alphabet Σ = Fm2 as follows:
Denote by Fr the pullback of F along the covering map Xr → X0 = X. Then Zr := Z0(Xr,Fr) is
a code inside C0(Xr,Fr) = ΣXr(0). Writing nr = |Xr(0)| = 2r|X(0)|, this defines a family of codes

{Zr ⊆ Σnr}r∈N

with length tending to infinity.
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Theorem 2.1 (Informal; see Theorem 11.1). If conditions (t1)–(t3) hold, then the codes {Zr ⊆ Σnr}r∈N
together with their natural 2-query testers form an infinite family of 2-query LTCs with constant
rate and linear distance. Moreover, they admit a linear-time decoding algorithm.

As explained in §2.4, condition (t2) and our local-to-global principle (Theorem 8.1) imply that
this is a family of 2-query LTCs with linear distance, and condition (t3) allows us to apply rate
conservation (Theorem 10.3) to conclude that the rate of the family is constant.

We remark that the soundness of the LTCs {Zr ⊆ Σnr}r∈N depends only on the expansion of X
and the coboundary expansion of the restriction of F to the proper links of X. It does not depend
on the alphabet size |Σ| = 2m.

2.6 Finding Initial Data for The Tower Paradigm

It remains to find examples of initial data for the tower paradigm which satisfy all three requirements
(t1)–(t3). While we demonstrate that every two of these conditions can be met (see §14.2), finding
sheaved high-dimensional expanders satisfying all three is surprisingly difficult, and unfortunately
remains open. Instead, we construct candidates satisfying conditions (t1) and (t2), and conjecturally
also (t3).

More precisely, we introduce an iterative process which takes a sheaved high dimensional expander
satisfying (t1) and (t2) and modifies its sheaf. We show that if the process ends quickly enough,
then the resulting sheaf will satisfy (t3) as well. We conjecture that the process will terminate
quickly when performed on examples coming from number theory (Conjecture 12.9), hence our
aforementioned candidates. Moreover, we identify conditions, phrased by means of representations
of the fundamental group of the high-dimensional expander at hand, which imply that the process
terminates after just 1 step. What this means in practice is that if one could find an arithmetic
group with a finite-dimensional F2-representation satisfying certain conditions (see assumption (1)
in Theorem 12.11 and the following comment), then they would give rise to initial data for the
tower paradigm, and thus to an infinite family of good 2-query LTCs. There exist arbitrarily large
finite groups with representations meeting these conditions.

We now explain in broad strokes how our candidates for initial data for the tower paradigm are
constructed. An example of how the resulting family of codes may look like is given in §2.7.

The Tower. In order to construct the tower {Xr}r≥0, we fix an affine building Y of dimension
d ≥ 2, e.g., the affine building of SLd+1(Qp) (see [AB08, §6.9]). Informally, Y is a highly-symmetric
d-dimensional infinite simplicial complex. Each of the Xr is obtained as a finite quotient Γr\Y ,
where Γr is a group acting freely on Y . By choosing the groups {Γr}r≥0 to be a decreasing sequence
Γ0 ≥ Γ1 ≥ Γ2 ≥ . . . such that [Γr−1 : Γr] = 2 for all r ∈ N, the Xr arrange naturally into an infinite
tower of double coverings of X = X0. (The covering map Xr = Γr\Y → Γr−1\Y = Xr−1 sends Γry
to Γr−1y.) See §13.4 for particular examples of Y , {Γr}r≥0. Algorithms for constructing certain
quotients Γr\Y explicitly can be found in [LSV05a], for instance.

Choosing X := X0 to be a quotient of an affine building Y by a group Γ0 also means that its
proper links are spherical buildings, which are known to be excellent expanders. This guarantees the
that the expansion assumptions on the proper links Xz mentioned in (t2) will hold automatically as
soon as Y is thick enough. (For example, the thickness of the affine building of SLd+1(Qp) is p+ 1.)
It also has the advantage that π1(X) = Γ0 is an arithmetic group; a fact that will be put to use
later on.

Assuming that X = X0 and the tower {Xr}r≥0 have been chosen, we set to look for a sheaf F for
which conditions (t2) and (t3) hold. We do this in two stages. First, a certain locally constant sheaf
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F is chosen. Then, the sheaf F is modified to produce a sheaf F satisfying (t2) and conjecturally
(t3).

Locally Constant Sheaves. A sheaf G on X is called locally constant if for every v ∈ X(0),
the augmented sheaf Gv is (isomorphic to) a constant augmented sheaf on Xv. This is equivalent
to all the restriction maps of G being isomorphisms. Since X is connected, this means that there
is m ∈ N ∪ {0}, denoted dimG and called the dimension of G, such that m = dimG(x) for all
x ∈ X − {∅}. Locally constant sheaves are abundant: every n-dimensional F2-representation of
π1(X) gives rise to an n-dimensional locally constant sheaf on X, with the trivial representation
corresponding to the constant sheaf FF2 .

Locally Constant Sheaves as Initial Data for The Tower Paradigm. We are interested in
locally constant sheaves because condition (t2) is satisfied for any locally constant sheaf F on the
X we chose. Indeed, if z ∈ X − {∅}, then Fz is a constant sheaf on the spherical building Xz. It
was shown in [LMM16] and [KM18] (see also [FK21]) that such sheaves are excellent coboundary
exapnders in all dimensions (no matter how thick Y is), which means that (t2) holds.

The reason why we do not apply the tower paradigm to locally constant sheaves is because it
turns out that conditions (t1) (an infinite tower of double coverings) and (t3) (rate conservation)
cannot hold simultaneously for such sheaves (Proposition 11.4). What we suggest to do instead is
taking a special locally constant sheaf on X and modifying it slightly so that is satisfies (t3) as well.

We explain the modification process and the choice of the special sheaf separately.

Modifying Locally Constant Sheaves. Let F be a locally constant sheaf on X of a large
dimension m. We think of F as varying with m as it goes to ∞, but ultimately, both F and m will
be fixed and regarded as “small”.

We just observed that F satisfies (t2) but not (t3). In §12.1, we present an iterative process
that takes F as input and outputs a modified sheaf F which satisfies (t3). If the iterative process
terminates quickly, and if h := dim H1(X,F)− dim H0(X,F) + 1 is very small compared to dimF ,
then we can show that the output sheaf F is “very close” to the original F , to the extent that it
also satisfies the local expansion condition (t2). If that is indeed the case, then (X,F) can serve as
initial data for the tower paradigm.

Note that h quantifies how “far” we are from being able to apply rate conservation. Informally,
the iterative process eliminates this obstruction when its size is negligible to dimF .

In more detail, F is constructed as the quotient of F by a “tiny” non-locally constant subsheaf
C, chosen to artificially increase dim H0(X,F/C) and decrease dim H1(X,F/C). To construct C,
we choose a “tiny” subspace E ⊆ Z1(X,F) and let C be the smallest subsheaf of F such that
E ⊆ C1(X, C); see Construction 9.4 or §12.1. The subsheaf C has the feature that C(v) is 0 for
every vertex v ∈ X(0) while (typically) C(x) ̸= 0 for faces x of dimension > 0. In particular,
F(v) = F(v)/0 ∼= Fm2 =: Σ for all v ∈ X(0). We show in §12.1 that elements in E ∩B1(X,F) give
rise to “new” classes in H0(X,F) while elements in E which map to a nonzero class in H1(X,F)
eliminate that class in H1(X,F). In total, we expect to get

dim H0(X,F)− dim H1(X,F) = dim H0(X,F)− dim H1(X,F) + dimE.

That is, by passing from F to F , we increase dim H0(X,−) − dim H1(X,−) by dimE. If this
prediction works, then we could choose E such that dimE = dim H1(X,F) − dim H0(X,F) + 1
and get dim H0(X,F) > dim H1(X,F), i.e., (t3) would hold for F . However, passing from F to F
may result in “new” cohomology classes in H1(X,F). We can eliminate these classes by enlarging
E further and repeat this process until there are no more excess cohomology classes in H1(X,F);
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this is formalized in Construction 12.2. The resulting sheaf F always satisfies (t3), although not
necessarily (t2).

However, we show that if dimE ≪ dimF when the process ends — which is what we mean by
saying that the process ends quickly —, or if we simply terminate the process when dimE ≪ dimF ,
then, with high probability, F still satisfies the necessary local expansion condition (t2); see
Corollary 12.5 (which builds on Theorem 9.5).
Condition for The Modification Process to End Quickly. We simulated the iterative
modification process for sheaves on 3-dimensional tori, small 2-dimensional 3-thick Ramanujan
complexes and other examples.7 Through the simulations, we came out with formulas that predict
the growth of the subspace E when more and more cohomology classes are eliminated. This is
formalized in Conjecture 12.6, which, loosely speaking, says that the growth of E is governed by
the cup product bilinear map ∪ : H1(X,F2)×H1(X,F)→ H2(X,F) (see §4.6). In particular, our
analysis suggests that:

Conjecture 2.2. (Simplified; see Conjecture 12.8) If F is a sheaf on X such that the linear map
α ⊗ f 7→ α ∪ f : H1(X,F2) ⊗F2 H1(X,F) → H2(X,F) is injective and H0(X,F) ̸= 0, then, once
applied to F , the modification process stops after one step (i.e., there are no “new” cohomology
classes in H1(X,F) in the above sense) with high probability. More precisely, when the modification
process ends, we have dimE = dim H1(X,F)− dim H0(X,F) + 1

This conjecture (more precisely, the finer Conjecture 12.8) is supported by all of our simulations.
Since the universal covering of X is contractible (it is an affine building), F corresponds to a
representation ρ : Γ0 = π1(X)→ GLm(F2), and the assumption on F is equivalent to saying that
H1(Γ0,F2)⊗F2 H1(Γ0, ρ)→ H2(Γ0, ρ) is injective and ρ has nontrivial invariant vectors. We do not
know if there is an arithmetic group with an F2-representation satisfying this condition, but there
are arbitrarily large 2-groups for which this holds (see the MathOverflow answer [24]).

We also make a bolder conjecture which predicts that the modification process ends quickly if
the affine building Y which covers X is sufficiently thick.

Conjecture 2.3. (Simplified; see Conjecture 12.9) There are d, q ∈ N (d ≥ 2) and a function
f : N ∪ {0} → N such that if X is covered by a q-thick affine building of dimension d and F
is a sheaf on X, then applying the modification process to F results in a subspace E such that
dimE ≤ f(dim H1(X,F)) with high probability.

Finding a Locally Constant Sheaf to Modify Using Coverings. If we take Conjectures 2.2
and 2.3 for granted, all that remains in order to find initial data for the tower paradigm is to find
a sheaf F on X such that dim H1(X,F) ≪ dimF . (In order to use Conjecture 2.2, we also need
to require that the additional assumption of that conjecture holds for F .) This sheaf would be
modified into a quotient sheaf F satisfying (t2) and (t3).

We show in Theorem 12.10 that there exist finite simplicial complexes X covered by arbitrarily
thick affine buildings such that X admits locally constant sheaves F of arbitrarily large dimension
which satisfy dim H1(X,F) = 0.8 In particular, the requirement dim H1(X,F)≪ dimF can be met.
Alternatively, we could start with any locally constant sheaf G on X, and replace it by Gs := G ×Fs
for some large s ∈ N in order to increase dimGs without affecting dim H1(X,Gs) = dim H1(X,G).

The idea behind the construction is to once more utilize coverings. Let p : X ′ → X be a
covering of degree m, and let F be the pushforward of the the constant sheaf FF2 on X ′ along p

7The Python code of the simulations was written by the first named author and is attached to the arXiv version of
this paper.

8This forces dim H1(X, F) = 0 if X has an infinite tower of double coverings (Proposition 11.4).
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(see §4.3). The sheaf F is locally constant of dimension m and has the additional property that
Hi(X,F) ∼= Hi(X,FF2) = Hi(X ′,F2) (Lemma 4.11). We now put into use the fact that π1(X) is an
arithmetic group. Using deep facts about such groups, we show in Theorem 13.1, that if the covering
building Y is carefully chosen, then X ′ can be chosen to satisfy dim H1(X ′,F2) = O(1) as m grows.
This is already enough if we want sheaves F satisfying dim H1(X,F) = O(1) as a function of dimF ,
and a more sophisticated construction of this flavor achieves dim H1(X,F) = 0. (Note that this
holds despite the fact that X has an infinite tower of double coverings, which means in particular
that H1(X,F2) ̸= 0.) More generally, it is expected that if Serre’s Conjecture on the congruence
subgroup property (Conjecture 13.11) holds, then for every affine building Y of dimension ≥ 2, one
could choose X ′ with dim H1(X ′,F2) = O(logm), and thus get dim H1(X,F) = O(log dimF).

Conclusion. We construct candidates for initial data for the tower paradigm as follows: We
choose a simplicial complex X covered by a sufficiently thick affine building of dimension ≥ 2, and
such that X admits an infinite tower of double coverings (condition (t1)). Using other coverings of
X, we find a locally constant sheaf F such that dim H1(X,F)≪ dimF ; the pair (X,F) satisfies
(t2). We then apply an iterative process to modify F into a quotient sheaf F = F/C. However,
we terminate the process if C becomes “close” to F in dimension, in order to keep the validity of
(t2) for (X,F). If the process terminated on its own, then (X,F) also satisfies (t3). In this case,
(X,F) are initial data for the tower paradigm, and therefore give rise to an infinite family of good
2-query LTCs; their common alphabet is Σ := Fm2 for m = dimF . (The soundness of the testing is
independent of m, however.)

Our Conjecture 2.3 predicts that the modification process will indeed terminate on its own.
Alternatively, our Conjecture 2.2, that is supported by computer simulations, says that this will also
be the case if F satisfies an additional property concerning the cup product. See Theorem 12.11
and Remark 12.12 for precise statements.

2.7 Explicit 2-Query LTCs with Linear Distance and Conjectural Constant Rate

We finish with giving an example of an infinite family of 2-query LTCs with linear distance and
conjectural constant rate that arises from our framework. Sheaves are not explicitly mentioned, but
are needed for the proofs.

For the example, we use the Ramanujan complexes constructed by Lubotzky, Samuels and
Vishne in [LSV05a, §9] as a black box, making reference only to the auxiliary finite field Fq used
in op. cit., which we assume to be of characteristic 2. Alternatively, it is also possible to use the
simplicial complexes from Theorem 13.1 below; this has the advantage of not replying on Serre’s
Conjecture on the congruence subgroup property, and the disadvantage of not having an efficient
algorithm to explicitly construct the complexes.

Fix d ≥ 3. The construction in op. it. gives an explicit infinite sequence of d-dimensional
simplicial complexes, each mapping into the former:

· · · → Xr → · · · → X2 → X1 → X0,

and which can be refined into a tower of double coverings of X0.

Constructing The Codes From Initial Data. Suppose that the following finite set of initial
data is provided (note that this data is fixed and does not grow with the parameter r):

(1) m ∈ N,

(2) a linear transformation Te,u : Fm2 → Fm2 for every edge e = {u, v} ∈ X0(1),
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(3) a subspace Ce ⊆ Fm2 for every edge e ∈ X0(1).

The integer m is the same constant m from §2.6. While it is fixed, it will be convenient to think of
it as growing.

Once the data (1)–(3) is provided, we construct an infinite family of codes {Cr ⊆ Σnr}r∈N on
the alphabet Σ := Fm2 as follows. Write nr = |Xr(0)| and identify Σnr with ΣXr(0). We write the
v-coordinate of f ∈ ΣXr(0) as f(v). Then f ∈ Cr if for every edge e = {u, v} ∈ Xr(1) with image
e0 = {u0, v0} in X0, we have

Te0,u0(f(u)) + Te0,v0(f(v)) ∈ Ce0 . (2.7)

A 2-query tester for Cr is given by choosing e ∈ Xr(0) uniformly at random and accepting the given
f ∈ Σnr if (2.7) holds.
Construction of The Initial Data. Provided Conjecture 2.3 holds, a possible choice for the
initial data of m, {Te,v}e,v and {Ce}e can be as follows. One chooses another simplicial complex X ′
that is a degree-m covering of X0, e.g., one of the Xr. The size of m needs to be sufficiently large
relative to X0, but is otherwise fixed (i.e. independent of r). Given a face x ∈ X0 − {∅}, we number
the faces in X ′ mapping onto x as x̂1, . . . , x̂m. Thus, for every edge e = {u, v} ∈ X0(1), there is a
unique permutation σe,u : {1, . . . ,m} → {1, . . . ,m} such that ûi ∈ êσ(i) for all i ∈ {1, . . . ,m}. We
take Te,u : Fm2 → Fm2 to be the linear transformation given by

Te,u(α1, . . . , αm) = (ασ−1
e,u(1), . . . , ασ−1

e,u(m)).

To construct the spaces {Ce}e∈X0(1), we view FX
′(1)

2 as the space C1(X ′,F2) of 1-cochains on X ′

with F2-coefficients (see §2.1). We then take

Ce = {(h(ê1), . . . , h(êm)) |h ∈ E} ⊆ Fm2 ,

where E is a subspace of C1(X ′,F2) corresponding to the space with same name constructed in the
iterative process of §2.6 (or formally in Construction 12.2). We terminate the process when dimE
becomes close to m to guarantee that dimE ≪ m.

For the sake of simplicity, we only explain what E would be if the process were to end after 1
step (which is not the case here, see §12.2). Let z1, . . . , zt ∈ Z1(X ′,F2) be 1-cocycles representing a
basis of H1(X ′,F2). Then, after one step of the process, E will be the F2-span of z1, . . . , zt. The
next steps of the process add more vectors to E. We would like to choose m be enough in advance
so that dimE ≪ m. It is expected that if Serre’s Conjecture on the congruence subgroup property
(Conjecture 13.11) holds, then t = dim H1(X ′,F2) grows logarithmically in m. (However, choosing
X0 and X ′ to be X and one of the X ′r from Theorem 13.1 guarantees t = O(1) as m grows.)
Validity of The Construction. Provided that our assertion on the logarithmic growth of
dim H1(X ′,F2) holds, we have the following:

Theorem 2.4 (informal; see Theorem 12.11, Remark 12.12). Under the previous assumptions, there
is q0 ∈ N such that if q ≥ q0, then, with probability 1− o(1) as m→∞, we have the following:

(i) The family {Cr ⊆ Σnr}r∈N is a family of 2-query LTCs with linear distance. The soundness
of the testing does not depend on m. If Conjecture 2.3 holds, then the codes in the family have
constant rate.

(ii) There is η > 0 such that each Cr admits a linear-time decoding algorithm able to correct up to
ηnr errors.
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In particular, there is m0 = m0(q) such that for every m ≥ m0, there is a choice of E for which
both (i) and (ii) hold.

The dependence on the logarithmic growth of dim H1(X ′,F2) can be avoided by replacing the
Ramanujan complexes of [LSV05a] with the complexes from Theorem 13.1 below, but we still rely
on Conjecture 2.3 for having constant rate.

2.8 Organization of The Paper

The paper is divided into three chapters and includes two appendices.
Chapter I sets the foundations for the connection between expanding sheaves and codes: The

preliminary Section 3 recalls necessary facts about simplicial complexes. The subject matter of
Section 4 is sheaves on simplicial complexes, their cohomology, and associated tools such as the
pushforward and pullback constructions. In Section 5, we introduce and discuss coboundary and
cosystolic expansion of sheaves. Section 6 concerns with the notion of a locally minimal cochain
and the expansion of such cochains as a mean to get cosystolic expansion. In Section 7, we explain
how sheaves give rise to codes with a tester and quantum CSS codes, and formalize the connection
between the expansion of the sheaf and various properties of the code.

Chapter II presents the tower paradigm: Section 8 presents a local-to-global principle which
allows us to establish cosystolic expansion of sheaves from information about their restrictions to
proper links. This principle is applied to some examples of cocycle codes in Section 9. In Section 10,
we prove our rate conservation result. Section 11 puts the previous results together to give the tower
paradigm, a framework for constructing an infinite family of good 2-query LTCs from a sheaved
high-dimensional expander.

Finally, Chapter III concerns with constructing sheaved complexes which can serve as candidates
for the initial data of the tower paradigm. In Section 12, we introduce an iterative process which
takes special locally constant sheaves as input and produces the desired candidates. Section 13
concerns with constructing simplicial complexes covered by affine buildings with some special
properties, e.g., an infinite tower of double coverings. These examples are then used in Section 14 to
construct the locally constant sheaves required for the iterative process, as well as other examples of
interest.

Appendix A explains the connection between sheaves on simplicial complexes as defined here and
the familiar sheaves on topological spaces. Appendix B shows that the sheaf cohomology we define
in this work by elementary means is actually a right derived functor and thus (from a mathematical
point of view) deserves the name “cohomology”.
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Chapter I

Foundations

3 Preliminaries
If not indicated otherwise, throughout this work, simplicial complexes are finite, and vector spaces
are finite dimensional. We always let X denote a simplicial complex and F a field.

3.1 Simplicial Complexes

As usual, a simiplicial complex X with vertex set V = V (X) is a nonempty set consisting of finite
subsets of V such that {v} ∈ X for all v ∈ V and every subset of a set in X is also in X. Elements
of X are the faces of X and elements of V (X) are the vertices of X. A face with k + 1 vertices is
said to be of dimension k, or a k-face. The set of k-faces of X is denoted X(k). Faces of dimension
1 are called edges, faces of dimension 2 are called triangles, and so on. Note, however, that a 0-face
and a vertex are not the thing — the 0-face corresponding to a vertex v ∈ V (X) is the singleton
{v}. The dimension of X, denoted dimX, is the maximal k ∈ {−1, 0,∞} ∪ N for which X(k) ̸= ∅.

A graph is a 1-dimensional simplicial complex. The underlying graph of a simplicial complex X
is X(≤ 1) := X(−1) ∪X(0) ∪X(1).

If (Y,≤) is a partially ordered set, we will say that Y is a simplicial complex if there is an
isomorphism of partially ordered set (Y,≤) ∼= (X,⊆) with X a simplicial complex. We then ascribe
all the notation involving X to Y via this isomorphism; the choice of the isomorphism will always
be be inconsequential.

The topological realization of a simplicial complex X is denoted |X|. We ascribe topological
properties of |X| to X, e.g., X is said to be connected if |X| is connected. This condition is
equivalent to saying that the underlying graph of X is connected.

Given A ⊆ X and z ∈ X, we write

A⊇z = {x ∈ A : x ⊇ z} and A⊆z = {x ∈ A : x ⊆ z}.

In particular, X(k)⊇z (resp. X(k)⊆z) is the set of k-faces containing (resp. contained in) z. We
further let

Az = {x− z |x ∈ A⊇z}.

The set Xz is a simplicial complex known as the link of X at z. Note that X∅ = X; when z ̸= ∅, we
call Xz a proper link of X. We say that X is strongly connected if all the links of X are connected.

Given 0 ≤ i < j, we define the (i, j)-degree of X to be

Di,j(X) = max{#X(j)⊇z | z ∈ X(i)},
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i.e., the largest possible number of j-faces containing a fixed i-face. The degree of X is D(X) =
D0,dimX(X). If every face of X is contained in a d-face, then the degree of X is related to the
(i, j)-degree by

Di,j(X) ≤
(d+1
j+1

)
Di,d(X) ≤

(d+1
j+1

)
D(X). (3.1)

An ordered face in X is a face x ∈ X together with a total ordering of its vertices. Ordered
faces will be written as tuples of vertices, e.g. x = (v0, . . . , vi), which indicates that v0 < · · · < vi.
We let Xord denote the set of ordered faces in X, and Xord(k) the subset of ordered k-faces. If
x ∈ Xord(k), then we write xi for the ordered face obtained from x = (v0, v1, . . . , vk) by removing
the vertex vi. We shall freely regard ordered faces as non-ordered faces by forgetting the ordering.
If x = (u0, . . . , ui), y = (v0, . . . , vj) ∈ Xord are ordered faces such that x ∩ y = ∅ and x ∪ y ∈ X
(here we regarded x, y as non-ordered faces), then the concatenation xy denotes the ordered face
(u0, . . . , ui, v0, . . . , vj).

3.2 Weights

Recall that a simplicial complex X is called pure of dimension d (d ≥ 0), or a d-complex for short,
if every face of X is contained in a d-face. In this case, following [LMM16], [EK17], [KM18] and
other sources, we define the canonical weight of a k-face x ∈ X(k) to be

w(x) = wX(x) =
(d+1
k+1

)−1|X(d)|−1|X(d)⊇x|.

Given A ⊆ X(k), we also write w(A) = ∑
x∈Aw(x). The weight w(x) is the probability of obtaining

x by choosing a d-face y ∈ X(d) uniformly at random and then choosing a k-face of y uniformly at
random. This readily implies that w(X(k)) = 1 for all −1 ≤ k ≤ d, and

w(X(ℓ)⊇x) =
(ℓ+1
k+1

)
w(x) (3.2)

for all −1 ≤ k ≤ ℓ ≤ d and x ∈ X(k).

Example 3.1. If X is a k-regular graph with n vertices, then X has 1
2nk edges and so the canonical

weight function of X is given by

w(x) =


1 x = ∅
1
n x ∈ X(0)
2
kn x ∈ X(1).

Suppose that X is a d-complex and let z ∈ X(i). Then the link Xz is a (d− 1− i)-complex. It is
straightforward to check that the canonical weight functions of X and Xz are related by the formula

wX(x) =
(k+1
i+1

)
wX(z)wXz (x− z), (3.3)

which holds for all x ∈ X(k)⊇z and k ≥ i.

3.3 Coverings

Let X and Y be simplicial complexes. A morphism of simplicial complexes from Y to X is a function
f : V (Y ) → V (X) such that f(y) := {f(v) | v ∈ y} ∈ X for all y ∈ Y . The morphism f : Y → X
is dimension-preserving if dim f(y) = dim y for all y ∈ Y , and a covering map if f is onto and it
induces a bijection from Y⊇y to X⊇f(y) for all y ∈ Y (0). The latter is equivalent to saying that
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the continuous map |f | : |Y | → |X| is a covering map of topological spaces. Covering maps are
dimension-preserving.

If there exists a covering map f : Y → X, we say that Y covers X. In this case, if Y is a
d-complex if and only if X. In addition, if Y is connected, then Y is strongly connected if and only
if X is.

A covering f : Y → X is said to be of degree e if |f−1(v)| = e for every e ∈ V (X); we then write
deg f = e or [Y : X] = e (suppressing f). In this case, for every non-empty face of X, there are
exactly e faces in Y which map to it under f . If X is connected and f : Y → X is a covering, then
the size of |f−1(v)| is independent of v, so every covering of a connected simplicial complex has a
well-defined degree. A covering map of degree 2 is called a double covering.

Let G be a group. A G-Galois covering of simplicial complexes consists of a covering map
p : Y → X and G-action G× Y → Y such that

(1) for every g ∈ G, the map v 7→ gv : V (Y )→ V (Y ) is an automorphism of Y ,

(2) p(gy) = p(y) for all y ∈ Y , and

(3) for every x ∈ X, the action of G on Y restricts to an action on p−1(x), and G acts simply and
transitively on p−1(x).

We will often simply say that p : Y → X is a G-Galois covering, suppressing the G-action.
Condition (3) implies that a G-Galois covering must be of degree |G|. The converse is false,

however — X may admit coverings of degree |G| which cannot be realized a G-Galois coverings.
In more detail, if both X and Y are connected and p : Y → X is a covering map, then, by fixing
a base point y ∈ |Y |, we may realize π1(X) := π1(|X|, p(y)) as a subgroup of π1(Y ) = π1(|Y |, y).
The covering p : Y → X can be realized as a G-Galois covering if and only if π1(Y ) is a normal
subgroup of π1(X). In this case, G ∼= π1(X)/π1(Y ), and the evident map G→ Aut(Y/X) := {f :
Y → Y : p ◦ f = p} is an isomorphism.

Example 3.2. (i) Let C2 denote the cyclic group with two elements. Every double covering
p : Y → X is C2-Galois in an unique way. Simply let the nontrivial element of C2 act on Y by
sending v ∈ V (Y ) to the over vertex of Y mapping to p(v).

(ii) If p : Y → X is a covering map and Y is contractible (and hence connected), then |Y | must
coincide with the universal covering of |X|. This means that p : Y → X is Galois with Galois group
Aut(Y/X) ∼= π1(X).

(iii) Let G be any group, let Y denote the disjoint union of |G| copies of X and give it the
G-action permuting these copies. Let p : Y → X be the map which restricts to the identity on
each copy of X. Then p : Y → X is a G-Galois covering called the trivial G-Galois covering of
G. Note that Y is not connected if |G| > 1. Moreover, the evident map G→ Aut(Y/X) is not an
isomorphism if |G| > 2.

3.4 Skeleton and Spectral Expansion

Let X be a d-complex. Given a set of 0-faces S ⊆ X(0), we write E(S) for the set of edges in
X having both of their 0-faces in S. Recall from [KM18, Definition 2.5] that X is said to be an
α-skeleton expander (α ∈ [0,∞)) if for every S ⊆ X(0), we have

w(E(S)) ≤ w(S)2 + αw(S),

where w is the canonical weight function of X defined in §3.2. The complex X is considered more
skeleton expanding the smaller α is.
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Let C0(X,R) denote the R-vector space of functions f : X(0)→ R. Following [Opp15], [FK21,
§2A] and similar sources, we define the weighed adjacency operator of X to be the linear operator
A : C0(X,R)→ C0(X,R) defined by (Af)(x) = ∑

e∈X(1)⊇x

w(e)
2w(x)f(e−x) (f ∈ C0(X,R), x ∈ X(0)).

For example, if X is a k-regular graph, then A is the usual adjacency operator of X scaled by a factor
of 1

k . Let C0
◦ (X,R) denote the subspace of C0(X,R) consisting of functions f with ∑

v∈X(0) f(v) = 0.
Given an interval I ⊆ [−1, 1], we say that the underlying weighted graph of X is a spectral I-expander
if the spectrum of A : C0

◦ (X,R)→ C0
◦ (X,R) is contained in I.1

It follows readily from the Weighted Expander Mixing Lemma [FK21, Theorem 3.3(ii)] that if
the underlying weighted graph of X is a [−1, λ]-spectral expander for some λ ∈ [0, 1], then X is a
λ-skeleton expander.

Given k ∈ {−1, 0, . . . , d − 1} and a d-complex X, we say that X is a k-local [−1, λ]-spectral
expander (resp. k-local α-skeleton expander) if, for every z ∈ X(k), the underlying weighted graph
of Xz is a [−1, λ]-spectral expander (resp. Xz is an α-skeleton expander).

3.5 Buildings

Buildings are possibly-infinite connected simplicial complexes which have certain remarkable struc-
tural properties. They will play a role in some of the examples we consider later on. Contrary to our
standing assumption that simplicial complexes are finite, buildings can be infinite if not otherwise
stated.

We omit the techincal definition of a buidling, which can be found in [AB08], for instance, and
satisfy with recalling here some facts about buildings needed for this work. We shall only consider
buildings Y admitting a strongly transitive action in the sense of [AB08, §6.1.1], and the word
“building” will always mean a “building admitting a strongly transitive action”. This means that
there is a group G acting on Y and satisfying the transitivity properities listed in op. cit..

To every building Y one can attach a Coxeter diagram T = T (Y ), called the type of Y , which
is a finite undirected graph whose edges are given labels from the set {3, 4, 5, . . . } ∪ {∞}. The
complex Y is pure of dimension |V (T )| − 1. In fact, there is a labeling t : V (Y )→ V (T ) such that
every face in Y consists of vertices with different labels. Coxeter diagrams appearing on the list
in [AB08, p. 50] are called spherical, whereas the ones described in [AB08, Remark 10.33(b)] are
called affine. We call Y spherical or affine if T is spherical or affine, respectively. If Y is spherical,
then |Y | is homotopy equivalent to a bouquet of spheres of dimension dimY . If Y is affine, then Y
is contractible. Finite buildings are spherical.

It will be convenient to treat any nonemtpy 0-dimensional simplicial complex as a spherical
building of dimension 0 with Coxeter diagram consisting of a single point.2

Let Y be a d-dimensional building. If z ∈ Y is a face of dimension ≤ d − 1, then the link Yz
is also a building. If Y is spherical or affine and z ̸= ∅, then Yz is spherical (in both cases). The
building Y is called q-thick (3 ≤ q ∈ N) if every x ∈ Y (d− 1) is contained in at least q d-faces.

Example 3.3. Let F be a field and let n ∈ N. Write An(F) for the incidence complex of nontrivial
subspaces of Fn+1. That is, the vertices of An(F) are the nonzero proper subspaces of Fn+1 and
its faces are the sets of vertices which are totally ordered by inclusion. Then An(F) is an (n− 1)-
dimenional spherical building. Its type is An — the Coxeter diagram consisting of a single path
with n vertices and having all edges labeled 3. If |F| ≥ q, then An(F) is (q + 1)-thick.

1Caution: The spectral expansion of the underlying weighted graph of X takes into account the canonical weight
function of X and therefore depends on the higher-dimensional faces of X.

2The correct analogue of a 0-dimensional building with a strongly transitive action a Moufang set, but this will not
be needed in this work.
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When n = 2, the graph A2(F) is nothing but the incidence graph of points and lines in the
2-dimensional projective space over F.

We refer the reader to [AB08, §6.9] and [AN02] for the description of some affine buildings.
More generally, Bruhat and Tits [BT72] (see also [Tit79]) showed that one can attach to every
almost-simple simply-connected algebraic group G over a local field F an affine building Y equipped
with a strongly transitive action by the group G = G(F ). For example, given a prime number p,
the group G can be taken to be SLn(Qp) (with G = SLn, F = Qp), in which case the corresponding
affine building is the one described in [AB08, §6.9]. It has type Ãn−1 (a cycle graph on n vertices
with all edges labeled 3), dimension n− 1 and it is (p+ 1)-thick. Moreover, it is locally finite, i.e.,
every nonempty face is contained in finitely many faces.

We will be particularly interested in finite spherical buildings, and finite simplicial complexes
X admitting a covering map f : Y → X with Y being an affine building. (In the latter case, |Y |
is the universal covering of |X|, because |Y | is contractible.) Such complexes X are good spectral
expanders, and by §3.4, also good skeleton expanders. Formally:
Theorem 3.4 ([FK21, Theorem 7.2]). Let q ∈ {3, 4, 5, . . . } and let X be a (finite) simplicial complex
such that one of the following holds:

(1) X is a finite q-thick spherical building of dimension d ≥ 1.

(2) There is a covering map f : Y → X such that Y is a q-thick affine building of dimension
d ≥ 2.

Let L denote the set of edge labels appearing in the Coxeter diagram of the building mentioned in
(1) or (2), and let m = max(L ∪ {2}).3 Write d = dimX and suppose that q ≥ d2(m− 2). Then
the underlying graph of X is a [−1, α]-spectral expander (and thus X is an α-skeleton expander) for

α =
√
m− 2

√
q − (d− 1)

√
m− 2

.

The Ramanujan complexes of [LSV05b] and [Li04] are simplicial complexes covered by affine
buildings of type Ãn. However, the spectral (resp. skeleton) expansion of their underlying weighted
graph is much better than the bound provided by Theorem 3.4. We demonstrate this in the
2-dimensional case.
Proposition 3.5. Let Y be the affine building of SL3(F ), where F is a local non-archimedean field,
and let q denote the number of elements in the residue field of F . (The thickness of Y is q+ 1.) If X
is a simplicial complex covered by Y and moreover a Ramanujan complex in the sense of [LSV05b]
(see also [CSŻ03]), then the underlying weighted graph of X is a [−1, 3q

q2+q+1 ]-spectral expander.

Proof. The links of X are spherical buildings of the form A2(Fq) (notation as in Example 3.3). This
means that every vertex is contained in 2(q2 + q + 1) edges and (q + 1)(q2 + q + 1) triangles. Now,
in the notation of [LSV05b], the weighted adjacency operator of X is 1

2(q2+q+1)(A1 +A2). When X
is Ramanujan, the joint spectrum of (A1, A2) was computed in [LSV05b, Theorem 2.11]. It follows
from that computation that the underlying graph of X is a [−1, 3q

q2+q+1 ]-spectral expander.

4 Sheaves
In this section we introduce sheaves on simplicial complexes and various related notions. Until the
end of the section, simplicial complexes are allowed to be infinite, and F denotes a field.

3We have m ≤ 8 if (1) holds and m ≤ 6 if (2) holds, see [AB08, Chapter 9].
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4.1 Sheaves on Simplical Complexes

Let X be a simplicial complex. A sheaf F on X consists of

(1) an abelian group F(x) for every x ∈ X − {∅}, and

(2) a group homomorphism resFy←x : F(x)→ F(y) for all ∅ ≠ x ⊊ y ∈ X,

subject to the condition
resFz←y ◦ resFy←x = resFz←x (4.1)

for all ∅ ≠ x ⊊ y ⊊ z ∈ X. We also say that (X,F) is a sheaved simplicial complex. Elements of
F(x) are called x-sections, and the homomorphisms resFy←x are called restriction maps. If there is
no risk of confusion, we will often abbreviate resFy←x f (f ∈ F(x)) to resy←x f , f |x→y or f |y. Note
that condition (4.1) is vacuous if dimX ≤ 1.

An augmented sheaf F on X is defined similarly, except we also include the empty face ∅. That
is, F(∅) and resFy←∅ are defined, and (4.1) is required to told with x = ∅ as well. We may regard
any sheaf F as an augmented sheaf by setting F(∅) = 0 and resFy←∅ = 0 for all y ∈ X − {∅}, so all
the statements we prove for augmented sheaves also apply to sheaves.

A sheaf of F-vector spaces, or an F-sheaf for short, on X is a sheaf F on X such that F(x) is an
F-vector space for all x ∈ X −{∅} and the restriction maps of F are F-linear. One can define in the
same manner (augmented) sheaves of groups, rings, modules, sets, and so on.

Example 4.1. Let X be a simplicial complex.
(i) Given an abelian group A, we define a sheaf FA on X by setting FA(x) = A for all x ∈ X−{∅}

and resFA
y←x = idA for all ∅ ≠ x ⊊ y ∈ X. The sheaf FA is called the constant sheaf associated to A.

Abusing the notation, we will usually denote FA simply as A, or AX .
(ii) Continuing (i), one can also define an augmented sheaf F ′A on X by setting F ′A(x) = A and

resF
′
A

y←x = idA for all x, y ∈ X with x ⊊ y. We call F ′A the constant augmented sheaf on X and
denote it by A+ when X is clear from the context.

(iii) Fix arbitrary abelian groups (Ax)x∈X and set F(x) = Ax and resFy←x = 0 ∈ HomZ(Ax, Ay)
for all x, y. Then F is an augmented sheaf on X (albeit, not a very interesting one). If A∅ = 0,
then we may regard F as a sheaf.

(iv) If F and G are sheaves on X, then one can form the product sheaf F × G defined by
(F × G)(x) = F(x)× G(x) and resF×Gy←x = resFy←x× resGy←x.

(v) Let F be a sheaf on X. Suppose that we are given subgroups G(x) ⊆ F(x) for all x ∈ X−{∅}
such that resFy←x(G(x)) ⊆ G(y) for all ∅ ̸= x ⊊ y ∈ X. Then the collection {G(x)}x∈X−{∅} can be
made into a sheaf G on X by setting resGy←x = resFy←x |G(x). We call such G a subsheaf of F .

(vi) If G is a subsheaf of F , then we define the quotient sheaf F/G by setting (F/G)(x) =
F(x)/G(x) and resF/Gy←x(f + G(x)) = (resFy←x f) + G(y) for all x ∈ X − {∅} and f ∈ F(x).

(vii) Let F be an F-sheaf on X and let K be a field extension of F. The base change of F from
F to K is the K-sheaf FK on X determined by FK(x) = F(x)⊗F K and resFK

y←x = resFy←x⊗ idK.

Examples (iii)-(vii) generalize verbatim to augmented sheaves.

Example 4.2. Let X be a connected simplicial complex and let F be a field. Then every represen-
tation ρ : π1(X)→ GLn(F) gives rise to an F-sheaf F = Fρ. To define it, we must first introduce
some general notation.

Write Γ = π1(X) and let π : Y → X be the universal covering of X. Then we can (non-
canonically) identify Γ with the group of deck transformations of π : Y → X (i.e., the group
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of automorphisms g : Y → Y satisfying π ◦ g = π). Then Γ acts freely on Y via simplicial
automorphisms, and for every non-empty x ∈ X, the preimage π−1(x) is an orbit under Γ.

For every nonempty x ∈ X, choose some representative

x̂ ∈ π−1(x);

equivalently, {x̂ |x ∈ X − {∅}} is a set of representatives for Γ\(Y − {∅}). Suppose that ∅ ≠ x ⊊
x′ ∈ X. Then it may not be the case that x̂ ⊆ x̂′. However, since π : Y → X is a covering, there is
a unique y ∈ Y such that x̂ ⊆ y and π(y) = x′ = π(x̂′). This means that there is a unique element
γ ∈ Γ such that γy = x̂′. We denote this γ by

γ(x′, x).

It is routine to check that if ∅ ≠ x ⊊ x′ ⊊ x′′ ∈ X, then we have

γ(x′′, x′)γ(x′, x) = γ(x′′, x). (4.2)

Now, given a representation ρ : Γ = π1(X)→ EndF(V ), where V is an F-vector space, we may
define an F-sheaf F = Fρ on X by setting

• F(x) = V for all ∅ ≠ x ∈ X, and

• resFx′←x = ρ(γ(x′, x)) : V → V for all ∅ ≠ x ⊊ x′ ∈ X.

It follows readily from (4.2) that F is a sheaf. While F(x) = V for every x ∈ X − {∅}, in general,
F is not the constant sheaf VX of Example 4.1(i). (In fact, F is isomorphic to VX if and only if ρ is
the trivial representation of Γ on V .)

If F and G are two sheaves on X, then a morphism φ : F → G consists of a collection of abelian
group homomorphisms {φx : F(x)→ G(x)}x∈X−{∅} which are compatible with the restriction maps,
namely,

φy ◦ resFy←x = resGy←x ◦φx
for all ∅ ≠ x ⊆ y ∈ X. The collection of all morphisms from F to G forms an abelian group
with addition given by φ+ φ′ = (φx + φ′x)x∈X−{∅} The composition of φ with another morphism
ψ : G → H is ψ ◦ φ := (ψx ◦ φx)x∈X−{∅}. We call φ an isomorphism if each φx is an isomorphism.
If there is an isomorphism φ : F → G, we say that F and G are isomorphic and write F ∼= G.

Given a morphism φ : F → G of sheaves on X, its kernel, kerφ, is the subsheaf of F determined
by (kerφ)(x) = ker(φx : F(x) → G(x)), its image, imφ, is the subsheaf of G determined by
(imφ)(x) = im(φx : F(x) → G(x)), and its cokernel, cokerφ, is the sheaf G/ imφ. We call φ
injective (resp. surjective) if kerφ is the zero subsheaf of F (resp. imφ = G).

Morphisms of augmented sheaves, their kernels, images and cokernels are defined in the same
manner, by including the empty face.

Morphisms of sheaves of F-vector spaces (resp. rings, groups, etc.) are defined similarly with the
extra requirement that each φx is F-linear (resp. a ring homomorphism, a group homomorphism,
etc.). The kernel, image and cokernel of a morphism of F-sheaves are F-sheaves as well.

Remark 4.3. The class of sheaves (resp. F-sheaves) on X together with the morphisms just defined
is an abelian category, denoted Sh(X). Similarly, augmented sheaves on X also form an abelian
category.

For the relation between the sheaves defined here and the well-known notion of a sheaf on a
topological space, see Appendix A.

27



4.2 Sheaf Cohomology

Sheaf cohomology generalizes ordinary cohomology of simplicial complexes with coefficients in an
abelian group. It is defined as follows.

Let F be an augmented sheaf on a simplicial complex X. Recall (§3.1) that Xord denotes the
set of ordered faces in X. For every k ∈ N ∪ {−1, 0}, define

C̃k(X,F) =
∏

x∈Xord(k)
F(x)

(we forget the ordering of x in the expression “F(x)”). Given f ∈ C̃i(X,F) and x ∈ Xord(k), we
write the x-coordinate of f as f(x) ∈ F(x). The group of F-valued k-cochains is

Ck(X,F) = {f ∈ C̃k(X,F) : f(πx) = sgn(π)f(x) for all π ∈ Σ{0,...,k}, x ∈ Xord(k)},

where the the permutation group Σ{0,...,k} acts on Xord(k) by permuting the vertex ordering of every
ordered k-face x = (v0, . . . , vk).

The coboundary map dk = dFk : Ck(X,F)→ Ck+1(X,F) is defined by

(dkf)(y) =
k+1∑
i=0

(−1)i resy←yi f(yi),

where the ordered face yi is obtained from y = (v0, . . . , vk+1) by removing vi. It is routine to check
that dkf is in Ck+1(X,F) and dk+1 ◦ dk = 0. The latter is equivalent to saying that

0→ C−1(X,F) d−1−−→ C0(X,F) d0−→ C1(X,F) d1−→ · · ·

is a cochain complex. Note that C−1(X,F) = 0 if F is a sheaf. The F-valued k-cocycles and
F-valued k-coboundaries are

Zk(X,F) = ker dk and Bk(X,F) = im dk−1,

respectively, with the convention that d−2 = 0. The k-th cohomology group of F is

Hk(X,F) := Zk(X,F)/Bk(X,F).

The cohomology class represented by f ∈ Zk(X,F) is denoted [f ] or [f ]F .
If F is a sheaf (i.e. F(∅) = 0), then B0(X,F) is 0 by definition, and thus H0(X,F) = Z0(X,F).

The elements of Z0(X,F) consist of families (f(x))x∈X(0) ∈
∏
x∈X(0)F(x) such that f({u})|{u,v} =

f({v})|{u,v} for every edge {u, v} ∈ X(1). They are called the global sections of F .

Example 4.4. (i) Let F be the augmented sheaf constructed in Example 4.1(iii). Then Hk(X,F) =
Ck(X,F) ∼=

∏
x∈X(k)F(x), because dk = 0 for all k.

(ii) If F and G are sheaves on X, then we have a canonical isomorphism Ck(X,F × G) ∼−→
Ck(X,F)× Ck(X,G), which restricts to isomorphisms Zk(X,F × G) ∼−→ Zk(X,F)× Zk(X,G) and
Bk(X,F × G) ∼−→ Bk(X,F)×Bk(X,G); the details are left to the reader. Consequently, there is a
canonical isomorphism Hk(X,F × G) ∼= Hk(X,F)×Hk(X,G).

Remark 4.5. Fix a linear ordering L on the vertices of X. Then L induces an ordering on the
vertices of every face x ∈ X; we write xL to denote x endowed with this ordering. We can now identify
Ck(X,F) with CkL(X,F) := ∏

x∈X F(x) by mapping f ∈ Ck(X,F) to (f(xL))x∈X(k) ∈ CkL(X,F).
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It is straightforward to check that under this identification, the coboundary map dk corresponds to
dk,L : CkL(X,F)→ Ck+1

L (X,F) determined by

(dk,Lf)(y) =
∑

x∈X(k)⊆y

[y : x]L resy←x f(x) (4.3)

where y ∈ X(k + 1) and [y : x]L := (−1)i for the unique i ∈ {0, . . . , k + 1} such that xL is obtained
from yL = (v0, . . . , vk+1) by removing vi. Consequently, the cohomology of F can be computed
using the the cochain complex

0→ C−1
L (X,F) d−1,L−−−→ C0

L(X,F) d0,L−−→ C1
L(X,F) d1,L−−→ C2

L(X,F) d2,L−−→ . . .

Since for x ∈ X(k), the factor F(x) occurs once in CkL(X,F) and (k + 1)! times in C̃k(X,F), it is
sometimes convenient to use CkL(X,F) instead of Ck(X,F). The disadvantage of defining Hk(X,F)
using the chain complex C•L(X,F) is the ostensible dependency on L.

If F is augmented F2-sheaf, then the factor [y : x] in (4.3) has no effect, and can be removed.
As a result, dk,L is independent of L, so the isomorphism Ck(X,F) ∼= CkL(X,F) = ∏

x∈X(k)F(x) is
also independent of L.

By comparing the description of Hk(X,F) in Remark 4.5 and the definition of the singular
cohomology of |X| with coefficients in an abelian group A, we see that the cohomology of the
constant (augmented) sheaf associated to A (Example 4.1) is isomorphic to the (reduced) singular
cohomology of |X| with coefficents in A. We record this observation in the following corollary.

Corollary 4.6. Let A be an abelian group regarded as a constant sheaf on X (see Example 4.1),
and let i ≥ 0. Then Hi(X,A) ∼= Hi(|X|, A), where the right hand is the singular cohomology of |X|
with coefficients in A. Likewise, Hi(X,A+) ∼= H̃i(|X|, A), where the right hand side denotes the
reduced singular cohomology of |X| with coefficients in A.

As usual, a short exact sequence of sheaves on X is a diagram

0→ F φ−→ G ψ−→ H → 0

of sheaves on X such that φ is injective, ψ is surjective, and imφ = kerψ. In this case, there is a
long cohomology exact sequence of abelian groups

0→H0(X,F) φ∗−→ H0(X,G) ψ∗−→ H0(X,H) δ0−→ (4.4)

H1(X,F) φ∗−→ H1(X,G) ψ∗−→ H1(X,H) δ1−→ · · · .

The map φ∗ : Hi(X,F) → Hi(X,G) is defined by sending the cohomology class represented by
f ∈ Zi(X,F) to the one represented by (φx(f(x))x∈Xord(i) ∈ Zi(X,G), and ψ∗ is defined similarly.
The map δi : Hi(X,H)→ Hi+1(X,F) is defined as follows: Given γ ∈ Hi(X,H) represented by some
h ∈ Zi(X,H), the surjectivity of ψ implies that there is g ∈ Ci(X,G) such that h(x) = ψx(g(x))
for all x ∈ Xord(i). Using the exactness, one can show that there exists a unique f ∈ Zi+1(X,F)
such that φyf(y) = (dig)(y) for all y ∈ Xord(i+ 1), and we define δiγ := [f ]F . The proof that δi is
well-defined and (4.4) is exact is standard and left to the reader.

Remark 4.7. As expected, the functors {Hi(X,−)}i≥0 are the right derived functors of the left-exact
functor H0(X,−) from the category of sheaves on X to abelian groups, see Appendix B.
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Remark 4.8. Given a short exact sequence of augmented sheaves 0→ F → G → H → 0 on X, one
can define a long exact sequence similar to (4.4), but starting at H−1(X,F) instead of H0(X,F).
We omit the details.

If F is an F-sheaf on X, then the cohomology groups Hi(X,F) are F-vector spaces. When F is
clear from the context, we shall often write

hi(F) = hi(X,F) := dimF Hi(X,F).

Lemma 4.9. Let F be an F-sheaf on X and let K be a field extension of F. Then dimF Hi(X,F) =
dimK Hi(X,FK) for all i ∈ N ∪ {0} (notation as in Example 4.1(vii)).

Proof. This follows by observing that the cochain complex C•(X,FK) is isomorphic to the cochain
complex obtained by tensoring C•(X,F) with K.

4.3 Pushforward and Pullback

Throughout, let u : Y → X denote a morphism of simplicial complexes (see §3.3). Given a sheaf
G on Y , there is a natural way of “pushing it” along u to a sheaf on X, and conversely, given a
sheaf F on X, there is a natural way of “pulling it back” along u to a sheaf on Y . We now explain
these constructions. They will be extremely useful later on for producing new examples of sheaved
complexes from old ones.

Let F be a sheaf on X. The pullback or inverse image of F along u : Y → X is the sheaf u∗F
on Y defined by

u∗F(y) = F(u(y)) and resu∗Fy′←y = resFu(y′)←u(y)

for all ∅ ≠ y ⊊ y′ ∈ Y , with the convention that resFy←y = idF(y).

Example 4.10. If AX is the constant sheaf on X associated to the abelian group A (Example 4.1(i)),
then u∗AX is the constant sheaf on Y associated to A, that is, u∗AX = AY .

Now let G be a sheaf on Y and suppose that u : Y → X is dimension preserving, i.e., dim y =
dim u(y) for all y ∈ Y . Given x ∈ X, we write u−1(x) for the set {y ∈ Y : u(y) = x}. Our
assumption on u implies that if x′ ∈ X, y′ ∈ u−1(x′) and x is a face of x′, then there exists a unique
face y of y′ such that u(y) = x; we denote this face y by y′(x). With this notation at hand, we
define pushforward or direct image of a sheaf G along u to be the sheaf u∗G on X determined by

(u∗G)(x) =
∏

y∈u−1(x)
G(y) and resu∗Gx′←x((fy)y∈u−1(x)) = (resGy′←y′(x)(fy′(x)))y′∈u−1(x′)

where ∅ ̸= x ⊊ x′ ∈ X and (fy)y∈u−1(x) ∈ u∗G(x) = ∏
y∈u−1(x) G(y). It routine to check that the

sheaf condition (4.1) is satisfied for u∗G.
One can also define the pushforward u∗G without assuming that u is dimension preserving. This

construction is more involved and explained in Appendix A.3; we will not make use of it in this
work.

The following lemma relates the cohomology of G and u∗G. It can be regarded as a version of
Shapiro’s Lemma for sheaf cohomology.

Lemma 4.11. Let u : Y → X be a dimension-preserving morphism of simplicial complexes and let
G be a sheaf on Y . Then, for all i ≥ 0, there is an isomorphism Hi(Y,G) ∼= Hi(X,u∗G) which is
natural in G.
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Proof. It is enough to prove that the cochain complexes C•(Y,G) and C•(X,u∗G) are naturally
isomorphic, i.e., that there is are isomorphisms ti,G : Ci(Y,G) → Ci(X,u∗G) such that ti+1,G ◦
dGi = du∗Gi ◦ ti,G and ti,G′ ◦ φ∗ = φ∗ ◦ ti,G for every morphism of sheaves on Y , φ : G → G′.
The desired isomorphism ti,G is the restriction of the identification C̃i(Y,G) = ∏

y∈Xord(i) G(y) ∼=∏
x∈Xord(i)

∏
y∈u−1(x) G(y) = ∏

x∈Xord(i) u∗G(x) = C̃i(X,u∗G) to Ci(Y,G). It is routine to check that
it satisfies all the requirements.

4.4 Restricting Sheaves to The Links

Let X be a simplicial complex and let z ∈ X(i). Recall (§3.1) that Xz denotes the link of X at z.
Every augmented sheaf F on X restricts to an augmented sheaf Fz on Xz by setting Fz(x) = F(x∪z)
and resFz

y←x = resFy∪z←x∪z. (This is how augmented sheaves arise naturally from sheaves!)

Example 4.12. Let A be an abelian group and let A+ denote the associated augmented sheaf on
X (Example 4.1(ii)). Then (A+)z is the augmented sheaf on Xz associated to A.

Suppose now that z ∈ Xord(i), namely, we are also given an ordering on the vertices of z. With
this extra data, it possible to take a cochain f ∈ Ck(X,F) (i ≤ k) and restrict it to a cochain
fz ∈ Ck−i−1(Xz,Fz) by setting

fz(x) = f(xz) ∀x ∈ Xz,ord(k − i− 1).

Conversely, given g ∈ Ck−i−1(X,Fz), there exists a unique cochain gz ∈ Ck(X,F) such that

gz(xz) = g(x) ∀x ∈ Xord(k − i− 1),

and gz(y) = 0 for all y ∈ Xord(k) with z ⊈ y. Clearly, (gz)z = g.

Lemma 4.13. In the previous setting, we have (dk−i−1g)z = dk(gz). In particular, if g is a cocycle
(resp. coboundary), then so is gz.

Proof. Let x ∈ Xord(k + 1). We need to show that (dk−i−1g)z(x) = dk(gz)(x). If z ⊈ x as sets,
then (dk−i−1g)z(x) = 0 = dk(gz)(x), so assume that z ⊆ x as sets. By reordering the vertices of
x, we may assume that x = yz for some y ∈ Xord(k − i). Then (dk−i−1g)z(x) = (dk−i−1g)(y) =∑k−i
j=0(−1)j resx←z∪yj g(yj). On other hand, since gz(xj) = 0 if z ⊈ xj , we have dk(gz)(x) =∑k+1
j=0(−1)j resx←xj g

z(xj) = ∑k−i
j=0(−1)j resx←z∪yj g(yj), so (dk−i−1g)z(x) = dk(gz)(x).

Let P be a property of sheaved simplicial complexes (written “(X,F) is P” when it holds), and
let (X,F) be a sheaved simplicial complex. We will say that (X,F) is a k-local P if (Xz,Fz) is P
for all z ∈ X(k). If P also makes reference to a particular dimension i (as in “X is P in dimension
i”), we will say that (X,F) is a k-local P in dimension i if (Xz,Fz) is P in dimension i− k − 1 for
all z ∈ X(k).

4.5 Locally Constant Sheaves

Let X be a simplicial complex. A sheaf F on X is called constant if there is an abelian group A such
that F is isomorphic to the constant sheaf A on X (Example 4.1(i)). Similarly, an augmented sheaf
F ′ on X is called constant if F ′ ∼= A+ for some abelian group A. If F (resp. F ′) has the additional
structure of an F-sheaf, we further require A to be an F-vector space and the isomorphism F → A
(resp. F ′ → A+) to be F-linear.

A sheaf F on X is called locally constant if Fz is a constant augmented sheaf on Xz for every
z ∈ X − {∅}. Every constant sheaf is locally constant, but the converse is false in general.
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Lemma 4.14. A sheaf F on a simplicial complex X is locally constant if and only if all the
restriction maps resFy←x (∅ ≠ x ⊊ y ∈ X) are isomorphisms.

Proof. If ∅ ≠ x ⊊ y ∈ X and F is locally constant, then resFy←x is equal to resFx

y−x←∅, which is an
isomorphism because Fx is constant. Conversely, if all the restriction maps of F are isomorphisms
and z ∈ X − {∅}, take A = F(z) and note that (resx∪z←z)x∈Xz : A+ → Fz is an isomorphism of
augmented sheaves.

Example 4.15. (i) Let X be a cycle graph on n vertices. Fix an edge e ∈ X(1) and a 0-face
z ⊆ e. Define an R-sheaf F on X by setting F(x) = R for every x ∈ X − {∅}, resFy←x = idR for
(y, x) ̸= (e, z) and resFe←z = − idR. By Lemma 4.14, F is a locally constant sheaf. However, F is
not constant. Indeed, one readily checks that Z0(X,F) = 0. However, if F were constant, then it
would be isomorphic to the constant sheaf RX , and Z0(X,R) ∼= R.

(ii) Generalizing (i), we can construct locally constant sheaves on any graph X. Simply take
an abelian group A, set F(x) = A for all x ∈ X − {∅} and choose each restriction map resFy←x
(∅ ≠ x ⊊ y ∈ X(1)) to be some automorphism of A. As in (i), sheaves obtained in this manner are
often not constant.

(iii) If u : Y → X is a covering map and F is a locally constant sheaf on Y , then the pushforward
u∗F is a locally constant sheaf on X. The sheaf u∗F may be non-constant even when F is.

(iv) Suppose that X is connected and let ρ : π1(X)→ GLF(V ) be representation of π1(X) on
an F-vector space V . Then F-sheaf Fρ constructed in Example 4.2 is locally constant. Moreover, it
can be shown that Fρ is constant if and only if ρ is a trivial representation (i.e., ρ(γ) = idV for all
γ ∈ π1(X)).

Remark 4.16. Locally constant R-sheaves on graphs are equivalent as a category to the local
sysetms on graphs introduced by Jordan and Livne [JL97].

Let F be a locally constant F-sheaf on X. If X is connected, then Lemma 4.14 implies that all
the vector spaces {F(x)}x∈X−{∅} have the same dimension. When the latter holds, we denote this
common dimension by

dimF

and call it the dimension of F .

Lemma 4.17. Let X be a connected simplicial complex and let F be a locally constant F-sheaf on
X. Then dim H0(X,F) ≤ dimF .

Proof. Fix some 0-face x0 ∈ X. It is enough to show that any 0-cocycle f ∈ Z0(X,F) is uniquely
determined by f(x0). Indeed, if y ∈ X(0) is another 0-face, then there exists a sequence of
0-faces x0, x1, . . . , xn = y in X such that xi−1 ∪ xi ∈ X(1) for all i. Since f ∈ Z0(X,F), we
have resxi∪xi−1←xi−1 f(xi−1) = resxi∪xi−1←xi f(xi) for all i ∈ {1, . . . , n}. The restriction maps are
isomorphisms (Lemma 4.14), so f(y) is uniquely determined by f(x0).

Remark 4.18. It is not difficult to see that a every n-dimensional locally constant sheaf F on
a connected simplicial complex X gives rise to a group homomorphism π1(X) → GLn(F). The
converse is also true: every representation ρ : π1(X)→ GLn(F) gives rise to an n-dimensional locally
constant F-sheaf on X, and if the universal covering of X is contractible, then all locally constant
sheaves are obtained in this manner, up to isomorphism. Moreover, in this case, Hi(X,F) and the
group cohomology Hi(π1(X), ρ) are isomorphic. We omit the details as they will not be needed here.
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4.6 The Cup Product

The cup product is a well-known operation on cohomology groups in topology. We now present the
analogous notion for sheaves on simplicial complexes, which will be needed only for Section 12 below.
For the sake of simplicity, we shall restrict the discussion to the cup-product action of Ci(X,F) on
Cj(X,G) where G is an F-sheaf.

As before, X is a simplicial complex. We fix, once and for all, a linear ordering L on V (X) and
use it to identify Cj(X,G) with ∏

x∈X(j) G(x) for any sheaf G as in Remark 4.5. If v0, . . . , vi are the
vertices of x ∈ X(i) and v0 < · · · < vi, then we shall denote the ordered face xL simply as v0v1 · · · vi.

Let G be an F-sheaf on X. For every α ∈ Ci(X,F) and g ∈ Cj(X,G), the cup product of α and
g is the element α ∪ g ∈ Ci+j(X,G) defined by:

(α ∪ g)(v0v1 · · · vi+j) = α(v0 · · · vi)g(vi · · · vi+j).

The properties of the cup product that we shall need are summarized in the following proposition.

Proposition 4.19. Let G be an F-sheaf on X, and let f, g ∈ Cj(X,G), α ∈ Ci(X,F), β ∈ Ck(X,F).
Then:

(i) ∪ : Ci(X,F)× Cj(X,G)→ Ci+j(X,G) is an F-bilinear pairing.

(ii) di+j(α ∪ f) = diα ∪ f + (−1)iα ∪ djf .

(iii) (α ∪ β) ∪ f = α ∪ (β ∪ f).

Moreover, if G′ is another F-sheaf on X and φ : G → G′ is a morphism, then:

(v) φ∗(α ∪ g) = α ∪ φ∗g, where φ∗ : Cr(X,G)→ Cr(X,G′) is the map induced by φ (see §4.2).

Proof. Everything is straightforward except for (ii). To prove (ii), suppose that x = v0 · · · vi+j+1 is
an ordered (i+ j + 1)-face. Then

di+j(α ∪ f)(x) =
i+j+1∑
t=0

(−1)t(α ∪ f)(v0 · · · v̂t · · · vi+j+1)

=
i∑
t=0

(−1)tα(v0 · · · v̂t · · · vi+1)f(vi+1 · · · vi+j+1) + (−1)i+1α(v0 · · · viv̂i+1)f(vi+1 · · · vi+j+1)

+ (−1)iα(v0 · · · vi)f(v̂ivi+1 · · · vi+j+1) +
i+j+1∑
t=i+1

(−1)tα(v0 · · · vi)f(vi · · · v̂t · · · vi+j+1)

= diα(v0 · · · vi+1)f(vi+1 · · · vi+j+1) + (−1)iα(v0 · · · vi)djf(vi · · · vi+j+1)
= ((diα) ∪ f + (−1)iα ∪ (djf))(x).

(Here, v̂t means that we omit vt.) As this holds for all x, (ii) follows.

Proposition 4.19(ii) implies readily that the bilinear pairing

[α] ∪ [g] 7→ [α ∪ g] : Hi(X,F)×Hj(X,G)→ Hi+j(X,G),

also called the cup product, is well defined. It can further be shown that this pairing is independent
of the ordering on V (X).
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5 Coboundary and Cosystolic Expansion
In this section we introduce expanding sheaves. In fact, we shall consider two types of expansion —
coboundary expansion and cosystolic expansion — and both make use of an auxiliary norm on the
sheaf.

5.1 Norms on Abelian Groups

Recall that a seminorm on an abelian group A is a function ∥ · ∥ : A → R such that ∥a∥ ≥ 0,
∥a∥ = ∥ − a∥ and ∥a+ b∥ ≤ ∥a∥+ ∥b∥ for all a, b ∈ A. If ∥a∥ = 0 implies a = 0, we say that ∥ · ∥ is
norm on A. In this case, (x, y) 7→ ∥x− y∥ : A×A→ R is a translation-invariant metric on A.

A seminorm ∥ · ∥ : A → R is bounded if sup{∥a∥ | a ∈ A} < ∞. All norms and seminorms in
this work are assumed to be bounded.

If ∥ · ∥A is a seminorm (resp. norm) on A and B is a subgroup of A, then the restriction
of ∥ · ∥A to B is a seminorm (resp. norm) on B. The map ∥ · ∥A/B : A/B → R defined by
∥a+B∥A/B = infb∈B ∥a+ b∥A is a seminorm on A/B, called the quotient seminorm. If ∥ · ∥A is a
norm and B is finite, then ∥ · ∥A/B is a norm.

Example 5.1. (i) The discrete norm on an abelian group A maps all nonzero elements of A to 1
and the zero element to 0.

(ii) The Hamming norm on Fn sends v ∈ Fn to the number of its non-zero coordinates. More
generally, if V is a finite dimensional F-vector space with a finite basis B, then the Hamming norm
on V relative to B sends the vector v = ∑

b∈B αbb to the number of nonzero αb-s.

5.2 Normed Sheaves

Let F be an augmented sheaf on a simplicial complex X. A norm on F is a collection ∥·∥ = {∥·∥x}x∈X
of norms ∥ · ∥x : F(x)→ R. We also say that (F , ∥ · ∥) is a normed augmented sheaf. In this case,
the mass of x ∈ X (relative to F and ∥ · ∥) is defined as m(x) = sup{∥f∥x | f ∈ F(x)}; it is finite
by our standing assumption that all norms are bounded. For A ⊆ X, we write m(A) = ∑

x∈Am(x)
and let m(i) = m(X(i)).

In this work, we will be concerned with the following examples of normed augmented sheaves.

Example 5.2 (Weighted support norm). Suppose that X is a d-complex (i.e., pure of dimension d)
and let w denote the canonical weight function on X (see §3.2). Let F be an augmented sheaf on
X. The weighted support norm of F is the norm ∥ · ∥ws = {∥ · ∥ws,x}x∈X , where ∥ · ∥ws,x : F(x)→ R
is defined by ∥f∥ws,x = w(x) if f ̸= 0 and ∥f∥ws,x = 0 otherwise. Provided that F(x) ̸= 0, the mass
of x is just w(x). Consequently, if F(x) ̸= 0 for all x ∈ X(i), then m(i) = w(X(i)) = 1.

The weighted support norm will be the default norm on every sheaf we consider, and will be
denoted simply as ∥·∥ when there is no risk of confusion. The following norms, however, are more
useful for coding theory applications of sheaves.

Example 5.3 (Normalized Hamming norm). The normalized Hamming norm on an augmented
sheaf F is the norm ∥·∥Ham = {∥ · ∥Ham,x}x∈X , where ∥ · ∥Ham,x : F(x)→ R is defined by ∥f∥Ham,x =

1
|X(dimx)| if f ̸= 0 and ∥f∥Ham,x = 0 otherwise. This is the norm used in Section 2. If F(x) ̸= 0 for
all x ∈ X(i), then m(i) = 1.

Example 5.4 (Hamming norm relative to a basis). Suppose that F is an augmented F-sheaf, i.e.,
an augmented sheaf of F-vector spaces. A basis for F is a collection B = {B(x)}x∈X such that B(x)
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is an F-basis of F(x) for all x ∈ X. Let ∥ · ∥B,x denote the Hamming norm on F(x) relative to the
basis B(x) (Example 5.1(ii)). Then ∥ · ∥B := {∥ · ∥B,x}x∈X is a norm on F called the Hamming
norm relative to the basis B = {B(x)}x∈X . Writing m = mB for the corresponding mass function,
we have m(x) = dimF(x) and m(i) = ∑

x∈X(i) dimF(x) = dimCi(X,F).

Every norm ∥ · ∥ on F induces a norm on Ck(X,F), also denoted ∥ · ∥, given by

∥f∥ = ∥f∥Ck =
∑

x∈X(k)
∥f(x)∥x,

where in the expression f(x), we regard x as an ordered cell by arbitrarily ordering its vertices.
The mass of all i-faces, m(i), is nothing but sup{∥f∥ | f ∈ Ci(X,F)}. For example, if ∥ · ∥ is the
weighted support norm, then we have ∥f∥ ≤ 1 for all f ∈ Ci(X,F).

Example 5.5. (i) Let X be d-complex with weight function w = wX , let F an augmented sheaf on
X and let f ∈ Ci(X,F). Then, relative to the weighted support norm ∥ · ∥ws (Example 5.2), we
have

∥f∥ws = w(supp f),

where supp f := {x ∈ X(k) : f(x) ̸= 0}. (This explains the name “weighted support”.) By contrast,
with respect to the normalized Hamming norm ∥·∥Ham (Example 5.3), we have

∥f∥Ham = | supp f |
|X(k)| .

Suppose further that there is an abelian group Σ such that F(x) ∼= Σ for all x ∈ X(i). Let us fix a
linear ordering on V (X) and use it identify Ci(X,F) with ∏

x∈X(i)F(x) ∼= ΣX(i) as in Remark 4.5.
Then the norm ∥·∥Ham : Ci(X,F)→ R coincides with the normalized Hamming norm on ΣX(i).

(ii) Let F be an augmented F-sheaf on X with a basis B, and let ∥ · ∥B denote the associated
Hamming norm (Example 5.4). Again, fix a linear ordering on V (X) and use it to identify Ck(X,F)
with ∏

x∈X(k)F(x) as in Remark 4.5. Then, under this identification, ∥ · ∥B is the Hamming norm
of ∏

x∈X(k)F(x) relative to the basis ⊔
x∈X B(x).

The norms ∥·∥ = ∥ · ∥ws, ∥·∥Ham, ∥ · ∥B of Examples 5.2–5.4 are proportional under mild
assumptions on X and F .

Proposition 5.6. Let X be a d-complex, let k ∈ {−1, 0, . . . , d}, and let F be an augmented sheaf
on X. Put Q = Dk,d(X) (see §3.1). Then,

(i)
(d+1
k+1

) |X(d)|
|X(k)|Q

−1∥f∥ ≤ ∥f∥Ham ≤
(d+1
k+1

) |X(d)|
|X(k)|∥f∥ for all f ∈ Ck(X,F). Furthermore,

(d+1
k+1

)−1 ≤
|X(d)|
|X(k)| ≤ Q.

If F is an augmented F-sheaf, B is a basis of F , and N = max{dimF(x) |x ∈ X(k)}, then we
moreover have

(ii)
(d+1
k+1

)
|X(d)|Q−1∥f∥ ≤ ∥f∥B ≤

(d+1
k+1

)
|X(d)|N∥f∥ for all f ∈ Ck(X,F).

Proof. (i) The inequality
(d+1
k+1

)−1 ≤ |X(d)|
|X(k)| ≤ Q follows readily from the fact that every d-face

contains exactly
(d+1
k+1

)
k-faces and every k-face is contained in at most Q d-faces.

Let x ∈ X(k). It is enough to show that for all g ∈ F(x), we have
(d+1
k+1

) |X(d)|
Q|X(k)|∥g∥ws,x ≤

∥g∥Ham,x ≤
(d+1
k+1

) |X(d)|
|X(k)|∥g∥ws,x. This is clear if g = 0, so assume g ≠ 0. Then ∥g∥ws,x = w(x)
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whereas ∥g∥Ham,x = 1
|X(k)| . The definition of w(x) in §3.2 implies that

(d+1
k+1

)−1|X(d)|−1 ≤

w(x) ≤
(d+1
k+1

)−1|X(d)|−1Q. Thus,
(d+1
k+1

) |X(d)|
Q|X(k)|w(x) ≤ 1

|X(k)| =
(d+1
k+1

) |X(d)|
|X(k)| ·

(d+1
k+1

)−1|X(d)|−1 ≤(d+1
k+1

) |X(d)|
|X(k)|w(x), which is what we want.

(ii) As in (i), it is enough to show that for all x ∈ X(k) and g ∈ F(x) − {0}, we have(d+1
k+1

)
|X(d)|Q−1w(x) ≤ ∥g∥B(x) ≤

(d+1
k+1

)
|X(d)|Nw(x). We observed that

(d+1
k+1

)−1|X(d)|−1 ≤ w(x) ≤(d+1
k+1

)−1|X(d)|−1Q. Since 1 ≤ dimF(x) ≤ N , it follows that
(d+1
k+1

)
|X(d)|Q−1w(x) ≤ 1 ≤ ∥g∥B(x) ≤

N ≤
(d+1
k+1

)
|X(d)|Nw(x), as required.

5.3 Coboudary and Cosystolic Expansion

Let (F , ∥ · ∥) be a normed augmented sheaf on a simplicial complex X and let m be its mass
function. Let k ∈ N ∪ {0,−1}. The norm ∥ · ∥Ck induces seminorms on Ck(X,F)/Bk(X,F) and
Ck(X,F)/Zk(X,F), which we denote by ∥ · ∥Ck/Bk and ∥ · ∥Ck/Zk , respectively. The subscripts will
be dropped when there is no risk of confusion.

Definition 5.7. Let ε, δ ∈ [0,∞). We say that (X,F , ∥ · ∥) is an ε-coboundary expander in
dimension k if

(B) ∥dkf∥Ck+1m(k) ≥ ε∥f +Bk(X,F))∥Ck/Bkm(k + 1) for all f ∈ Ck(X,F).

We say that (X,F , ∥ · ∥) is an (ε, δ)-cosystolic expander in dimension k if

(C1) ∥dkf∥Ck+1m(k) ≥ ε∥f + Zk(X,F)∥Ck/Zkm(k + 1) for all f ∈ Ck(X,F), and

(C2) ∥f∥Ck ≥ δm(k) for all f ∈ Zk(X,F)−Bk(X,F).

When X is a d-complex, we say that the pair (X,F) is an ε-coboundary expander, resp. (ε, δ)-
cosystolic expander, in dimension i if this holds for (X,F , ∥·∥) with ∥·∥ being the weighted support
norm of (X,F) (Example 5.2). Thus, (X, (F2)+) is an ε-coboundary expander in dimension i if and
only if X is an ε-coboundary expander in dimension i in the sense of Lubotzky, Meshulam and
Mozes [LMM16, Definition 1.1].

Remark 5.8. The following properties of coboundary and cosystolic expansion are important to
note:

(i) The triple (X,F , ∥ · ∥) is an ε-coboundary expander in dimension k if and only if it is an
(ε, δ)-cosystolic expander in dimension k and Hk(X,F) = 0.

(ii) Scaling the norms {∥ · ∥x}x∈X(k) by the same constant c ∈ R+ does not affect the coboundary
and cosystolic expansion in dimension k, and likewise for the for the norms {∥ · ∥x}x∈X(k+1). More
generally, let ∥·∥′ be another norm on F , and suppose that there are constants uk, vk, uk+1, vk+1 ∈ R+
such that ui∥f∥x ≤ ∥f∥′x ≤ vi∥f∥x for all i ∈ {k, k + 1}, x ∈ X(i) and f ∈ F(x). If (X,F , ∥ · ∥) is
an (ε, δ)-cosystolic expander (resp. ε-coboundary expander) in dimension k, then (X,F , ∥ · ∥′) is a
(ukuk+1
vkvk+1

ε, uk
vk
δ)-cosystolic expander (resp. ukuk+1

vkvk+1
ε-coboundary expander) in dimension k.

(iii) If F vanishes on X(k) or on X(k + 1), equivalently if m(k) = 0 or m(k + 1) = 0, then
conditions (B) and (C1) hold with any ε ∈ R+.

Remark 5.9. The normalization by m(k) and m(k + 1) in (B), (C1) and (C2) is made in order
to keep ε and δ around the interval [0, 1]. However, it is possible for ε to exceed 1. Indeed,
writing ∆n for the n-dimensional simplex, it is easy to check that the coboundary expansion of
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(∆n, (F2)+, ∥ · ∥ws) in dimension 0 is n+2−(n mod 2)
n .4 In contrast, if (X,F , ∥ · ∥) is an (ε, δ)-cosystolic

expander in dimesion k and Zk(X,F) ̸= Bk(X,F), then δ cannot exceed 1.
If we use the weighted support norm, then the coboundary expansion in dimension k cannot

exceed k + 2 by the following lemma.

Lemma 5.10. Let (X,F) be a sheaved d-complex, let k ∈ {−1, . . . , d−1} and suppose that F(x) ̸= 0
for all x ∈ X(k + 1). Then the coboundary expansion of (X,F) in dimension k is at most k + 2.

Proof. It is enough to show that ∥dkf∥m(k) ≤ (k + 2)∥f∥m(k + 1) for all f ∈ Ck(X,F). Our
assumptions imply that m(k + 1) = 1 and m(k) ≤ 1. Using this and (3.2), we get

∥dkf∥m(k) ≤ w(supp(dkf)) ≤ w(
⋃

x∈supp f
X(k + 1)⊇x)

≤
∑

x∈supp f
w(X(k + 1)⊇x) = (k + 2)

∑
x∈supp f

w(x) = (k + 2)∥f∥m(k + 1).

The meaning of begin an ε-coboundary expander in −1 has been worked out in the Overview
section, page 11. We recommend to recall it at this point.

5.4 Some Examples of Coboundary Exapnders

Only a few concrete examples of good coboundary expanders in dimension > 0 are known; see
[FK21] for survey. We now recall some of these examples which will be needed in this work.

In contrast, examples of infinite families of cosystolic expanders of the form (X,A+, ∥ · ∥ws) (A is
an abelian group) with D(X) uniformly bounded appear in [KKL16] (dimX = 2, A = F2), [EK17]
(A = F2) and [KM18]. We shall give more examples in Sections 8 and 9.

We begin with noting that if the underlying weighted graph of a d-complex X is a good spectral
expander in the sense of §3.4, then (X,A+) is a good coboundary expander in dimension 0 (w.r.t.
to ∥ · ∥ws) for any abelian group A.

Theorem 5.11 ([FK21, Corollary 5.3]). Suppose that X is d-complex (d ≥ 1) whose underlying
weighted graph is a [−1, λ]-expander (in the sense of §3.4) for some λ ∈ [−1, 1]. Then (X,A+) is a
(1− λ)-coboundary expander in dimension 0 for every abelian group A.

Next, we recall that finite buildings (see §3.5) have large (i.e. bounded away from 0) coboundary
expansion once endowed with certain sheaves. The following theorem summarizes results from
[LMM16], [KM18] and [FK21].

Theorem 5.12. Let d ∈ N ∪ {0} and q ∈ N. Let X be finite d-dimensional q-thick finite building
with Coxeter diagram T and let A be an abelian group. Let L denote the set of edge labels occurring
in T and put m = max({2} ∪ T ).5

(i) There exists ε > 0, depending only on d, such that (X,A+) is an ε-coboundary expander in
dimensions −1, 0, . . . , d− 1.

(ii) (X,A+) is a (1−
√
m−2√

q−(d−1)
√
m−2)-coboundary expander in dimension 0 if q > (d− 1)2(m− 2),

and a 1-coboundary expander in dimension −1 in general.
4As for higher dimensions k ∈ {1, . . . , n − 1}, Gromov [Gro10] and Meshulam–Wallach [MW09] showed that

(∆n, (F2)+, ∥ · ∥ws) is an n+1
n−k

-coboundary expander in dimension k.
5If q ≥ 3, then m ≤ 8; see [AB08, Chapter 9].
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Proof. The assertions about coboundary expansion in dimension −1 and the case where dimX = 0
are straightforward. As for the rest, (i) is proved in [LMM16] for A = F2 and in [KM18], for general
A, and (ii) is [FK21, Corollary 7.4].

Theorem 5.13 ([FK21, Corollary 7.6]). Let d, q,X,m,A be as in Theorem 5.12 and assume that
q > (d− 1)2(m− 2). Let {Ax}x∈X(0) be subgroups of A such that for every subset S ⊆ X(0) with
|S| ≤ ⌈2

3 |X(0)|⌉, the summation map
⊕

x∈S Ax → A is injective. Define a subsheaf C of A+ by
C(y) = ∑

v∈y A{v}. Then (X,A+/C, ∥ · ∥supp) is a ε-coboudary expander in dimension 0 for

ε = 2d
5d+ 2 −

(4d3 + 4d)
√
m− 2

(5d+ 2)(√q − (d− 1)
√
m− 2)

− 14d2 + 4d
(5d+ 2)(q + d− 1) = 2d

5d+ 2 −Od,m(q−1/2).

The theorems we just recalled concern with coboundary expansion with respect to the weighted
support norm (Example 5.2), but they can be adapted to the Hamming norms of Examples 5.3
and 5.4 by means of Proposition 5.6 and Remark 5.8(ii).

6 Locally Minimal Cochains
Locally minimal cochains were introduced in [KKL16] and [EK17] for the augmented sheaf (F2)+,
and in [KM18] for general constant augmented sheaves as a mean to establish cosystolic expansion.
In this section, we extend this notion to all sheaves, and explain how to derive lower bounds on the
cosystolic expansion of a sheaved d-complex (X,F) from lower bounds on the expansion of locally
minimal cochains.

We work exclusively with the weighted support norm (Example 5.2), which we denote by ∥·∥.

6.1 Minimal and Locally Minimal Cochains

Let (X,F) be a sheaved d-complex and let k ∈ {0, . . . , d}. A cochain f ∈ Ck(X,F) is called minimal
if ∥f∥Ck = ∥f + Bi(X,F)∥Ck/Bk (see §5.3). Given z ∈ X of dimension i ∈ {0, . . . , k − 1}, we say
that f is locally minimal at z if for every g ∈ Ck−i−2(Xz,Fz), we have ∥f + dk−1(gz)∥ ≥ ∥f∥, where
gz is defined as in §4.4 and the vertices of z are given some ordering (the ordering has no effect as g
can vary). We say that f is locally minimal if it is locally minimal at every z ∈ X(0)∪· · ·∪X(k−1).

Clearly, every minimal cochain is locally minimal. Also, vacuously, all 0-cochains are locally
minimal.

Proposition 6.1. Let (X,F) be a sheaved d-complex, let k ∈ {0, . . . , d} and let f ∈ Ck(X,F).
Then:

(i) f is locally minimal at z ∈ Xord(i) (0 ≤ i < k) if and only if fz ∈ Ck−i−1(Xz,Fz) is minimal.

(ii) If f is locally minimal at some z ∈ X(0) ∪ · · · ∪X(k − 1), then f is locally minimal at every
w ∈ X(0) ∪ · · · ∪X(k − 1) containing z. In particular, f is locally minimal if and only if it is
locally minimal at every 0-face of X.

Proof. (i) Let g ∈ Ck−i−2(Xz,Fz). The equivalence follows readily once noting that

∥f − dk−1(gz)∥ = ∥f − (fz)z)∥+ ∥(fz)z − dk−1(gz)∥ = ∥f − (fz)z)∥+
(k+1
i+1

)
wX(z)∥fz − dk−i−2g∥Xz ,

where here, ∥·∥Xz is the weighted support norm of Fz and the second equality follows from (3.3)
(ii) Choose orderings on z and w such that w = uz for some u ∈ Xord(j− i− 1). Then, regarding

Xw as the link of u in Xz, we have (fz)u = fw. By (i), fz is minimal, hence locally minimal at u.
Applying (i) again, we see that fw = (fz)u is minimal, so f is locally minimal at w.
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Given a minimal cochain, we can produce more minimal cochains by annihilating some of its
entries.

Lemma 6.2. Let (X,F) be a sheaved d-complex, let k ∈ {0, . . . , d} and let f, g ∈ Ck(X,F). Assume
f is minimal. If supp g ⊂ supp f and g(x) = f(x) for all x ∈ Xord(k) with x ∈ supp g, then g is
minimal.

Proof. Let b ∈ Bk(X,F). We need to prove that ∥g∥ ≤ ∥g − b∥. Our assumptions on g imply that
∥g∥ = ∥f∥ − ∥f − g∥. As f is minimal, ∥f∥ − ∥f − g∥ ≤ ∥f − b∥ − ∥f − g∥ ≤ ∥g − b∥, hence the
lemma.

The following lemma shows that, under mild assumptions on X, every (k + 1)-cochain f is
equivalent modulo Bk(X,F) to a locally minimal cochain f ′ := f − dkg, and moreover, that the
k-cochain g used for “correcting” f can chosen so that its norm is proportional to that of f .

Lemma 6.3. Let (X,F) be a sheaved d-complex of degree Q = D(X) (see §3.1). Let k ∈
{−1, . . . , d− 1} and f ∈ Ck+1(X,F). Then there exists g ∈ Ck(X,F) such that:

(i) f − dkg is locally minimal,

(ii) ∥g∥ ≤ (k+1)Q
d+1

(d+1
k+2

)
∥f∥,

(iii) ∥f − dkg∥ ≤ ∥f∥.

Proof. We define sequences f0, . . . , fr ∈ Ck+1(X,F) and g0, . . . , gr ∈ Ck(X,F) by induction as
follows: Take f0 = f and g0 = 0. Assume that fn and gn have been defined. If fn is locally minimal,
we stop and let r = n. Otherwise, k ≥ 0 and by Proposition 6.1(ii), there exist x ∈ X(0) and
g ∈ Ck(Xx,Fx) such that ∥fn − dk(gx)∥ < ∥fn∥. Take fn+1 = fn − dk−1(gx) and gn+1 = gx.

We claim that g := g0 + · · ·+ gr satisfies the requirements. Indeed, by construction, f − dkg = fr
is locally minimal and satisfies ∥f − dkg∥ = ∥fr∥ < · · · < ∥f0∥ = ∥f∥. Furthermore, since
the norm of any (k + 1)-cochain in Ck+1(X,F) is an integral multiple of

(d+1
k+2

)−1|X(d)|−1 (see
Example 5.2), we have r ≤

(d+1
k+2

)
|X(d)| · ∥f∥. On the other hand, each gn is supported on the

k-faces containing a particular vertex v ∈ X(0) and therefore satisfies ∥gn∥ ≤ w(X(k)⊇v) =(k+1
1

)
w(v) ≤

(k+1
1

)
|X(d)|−1(d+1

1
)−1

Q = |X(d)|−1 (k+1)Q
d+1 (the first equality is (3.2)). Consequently,

∥g∥ ≤ r|X(d)|−1 (k+1)Q
d+1 ≤ (k+1)Q

d+1
(d+1
k+2

)
∥f∥.

6.2 Expansion of Small Locally Minimal Cochains

We continue to assume that (X,F) is a sheaved d-complex. Let k ∈ {0, . . . , d− 1} and α, β ∈ R+.
We say that (X,F) β-expands α-small locally minimal k-cochains if for every locally minimal
f ∈ Ck(X,F) such that ∥f∥ < α, we have ∥dkf∥ ≥ β∥f∥. We say that (X,F) β-expands α-small
locally minimal k-cocycles if this condition holds for all locally minimal f ∈ Zk(X,F).

Proposition 6.4. Let (X,F) be a sheaved d-complex of degree Q = D(X) (see §3.1), let k ∈
{0, . . . , d− 2}, and let α, α′, β, β′ ∈ R+. Suppose that

(1) F(x) ̸= 0 for all x ∈ X(k) ∪X(k + 1) ∪X(k + 2),

(2) (X,F) β-expands α-small locally minimal k-cocycles, and

(3) (X,F) β′-expands α′-small locally minimal (k + 1)-cocycles.
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Then (X,F) is a (min{α′, d+1
(k+1)Q

(d+1
k+2

)−1}, α)-cosystolic expander in dimension k. If only (1) and
(2) are assumed, then ∥f∥ ≥ α for every f ∈ Zk(X,F)−Bk(X,F).

Proof. We need to verify conditions (C1) and (C2) of §5.3 for δ = α and ε = min{α′, d+1
(k+1)Q

(d+1
k+2

)−1}.
Note that m(k) = m(k + 1) = m(k + 2) = 1 by condition (1).

We begin with (C2). Suppose that f ∈ Zk(X,F) − Bk(X,F). We need to show that
∥f +Bk(X,F)∥Ck/Bk ≥ α. Choose a minimal f ′ ∈ f + Bk(X,F). Then f ′ is locally minimal
and nonzero. If ∥f ′∥ < α, then by (2), we would have 0 = ∥dkf ′∥ ≥ β∥f ′∥ > 0, a contradiction.
Thus, ∥f +Bk(X,F)∥Ck/Bk = ∥f ′∥ ≥ α.

We turn to (C1). Let f ∈ Ck(X,F). If ∥d0f∥ ≥ α′, then ∥d0f∥ ≥ α′∥f∥ ≥ ε∥f∥, as required.
Otherwise, ∥d0f∥ < α′. We apply Lemma 6.3 to d0f to get g ∈ Ck(X,F) such that dkf − dkg is
a locally minimal (k + 1)-cochain, ∥g∥ ≤ (k+1)Q

d+1
(d+1
k+2

)
∥dkf∥ and ∥dkf − dkg∥ ≤ ∥dkf∥ < α′. The

latter and (3) imply that 0 = ∥dk+1(dkf − dkg)∥ ≥ β′∥dkf − dkg∥, so dk(f − g) = 0, or rather,
g ∈ f + Zk(X,F). This means that ∥f + Zk(X,F)∥Ck/Zk ≤ ∥g∥ ≤ (k+1)Q

d+1
(d+1
k+2

)
∥dkf∥, and by

rearranging, we get

∥dkf∥ ≥
d+ 1

(k + 1)Q
(d+1
k+2

)−1∥f + Zk(X,F)∥Ck/Zk ≥ ε∥f + Zk(X,F)∥Ck/Zk ,

which is what we want.

We will give a criterion for sufficiently small locally minimal cochains to expand in Section 8.

7 Locally Testable Codes and Quantum CSS Codes Arising from
Sheaves

We now explain how sheaved complexes which are good cosystolic expanders give rise to locally
testable codes and quantum CSS codes. We further show that if the sheaved complex in question
expands small locally minimal cochains, then there is an efficient decoding algorithm.

7.1 Conventions

As usual, a code of length n on a finite alphabet Σ consists of a pair C = (C,Σn) such that C is
a subset of Σn; we often simply say that C is a code inside Σn. Given f, g ∈ Σn, the Hamming
distance and the noramlized Hamming distance of f from g are

DHam(f, g) = #{i ∈ {1, . . . , n} : fi ̸= gi} and dHam(f, g) = 1
n
DHam(f, g),

respectively. The distance of C is ∆(C) := max{DHam(f, g) | f, g ∈ C, f ̸= g} and the relative
distance of C is δ(C) := 1

n∆(C) = max{dHam(f, g) | f, g ∈ C, f ̸= g}. The message length of C is
log|Σ| |C| and its rate is the message length divided by n, i.e., log|Σn| |C|.

If Σ is a finite field F (resp. an abelian group), then the code C is said to be linear (resp. abelian)
if C is an F-subspace (resp. subgroup) of Σn. In this case, δ(C) = min{∥f∥Ham | f ∈ C − {0}},
where ∥f∥Ham = dHam(f, 0) is normalized Hamming norm of f ∈ Σn. In the linear case, the message
length of C is dimFC.

A family of codes {(Ci,Σni)}i∈I is said to be good there are ρ, δ ∈ (0, 1] such that each Ci has
rate ≥ ρ and relative distance ≥ δ. When the latter holds, we also say that the codes {(Ci,Σni)}i∈I
have linear distance (indeed, ∆(Ci) ≥ δni for all i ∈ I).
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Let (C,Σn) be a code and let η ∈ [0, 1]. A decoding algorithm for (C,Σn) able to to correct up to
ηn errors, or an η-fraction of errors, is an algorithm which takes a word f ∈ Σn with dHam(f, C) < η
and outputs some g ∈ C with dHam(f, g) < η. If η ≤ 1

2δ(C), then g is uniquely determined by f .

7.2 Cocycle Codes

We use the following general notation throughout the rest of this section:

• X is a simplicial complex of dimension d,

• F is a finite field with q elements,

• F is an F-sheaf on X,

• B is an F-basis of F , i.e., a collection B = {B(x)}x∈X−{∅} such that B(x) is an F-basis of
F(x).

• ∥·∥, ∥·∥Ham and ∥ · ∥B denote the weighted support norm, the normalized Hamming norm, and
the (non-normalized) Hamming norm of F w.r.t. B, respectively (see Examples 5.2, 5.3, 5.4).

We associate the following parameters to with the above data:

• Q = D(X) and P = Dk,d(X) (see §3.1),

• Mk = Mk(F) = max{dimF(x) |x ∈ X(k)}, and M = M(F) = max{M0, . . . ,Md}.

We fix a linear ordering on V (X) and use it to identify Ck := Ck(X,F) with ∏
x∈X(k)F(x); see

Remark 4.5. We abbreviate Zk(X,F) to Zk and Bk(X,F) to Bk.

Let k ∈ {0, . . . , d}. We use the data of X,F , B, k to construct a linear code as follows: The
ambient space of the code will be Ck = ∏

x∈X(k)F(x), which identify with FdimCk using the basis⊔
x∈X(k)B(x), and the set of code words will be Zk. Thus, (Zk, Ck ∼= FdimCk) is a linear code with

alphabet F.

Definition 7.1. The linear code (Zk(X,F), Ck(X,F) ∼= FdimCk) is the linear k-cocycle code of
(X,F , B).

If there exists m ∈ N such that dimF(x) = m for all x ∈ X(k), then we may identify F(x) with
Σ := Fm for every x ∈ X(k), so that Ck = ΣX(k). This allows us to view Zk as an abelian code
inside ΣX(k) (rather than FdimCk), the alphabet being Σ.

Definition 7.2. The abelian code (Zk(X,F), Ck(X,F) ∼= ΣX(k)) is the k-cocycle code of (X,F).

Henceforth, whenever we refer to the k-cocycle code of (X,F), we tacitly assume that there
exists m ∈ N such that dimF(x) = m for all x ∈ X(k).

The rate of the k-cocycle code (Zk, Ck) is dimZk/dimCk; this is independent of whether we
view (Zk, Ck) as a linear code with alphabet F, or an abelian code with alphabet Σ. Since Bk

typically contains k-cochains with small support, the distance of (Zk, Ck) is poor unless Bk = 0,
e.g., if k = 0, or F(x) = 0 for all x ∈ X(k − 1).
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7.3 Locally Testable Codes

Let C = (C,Σn) be a code on a finite alphabet Σ. Recall that a randomized algorithm Φ which
takes a word f ∈ Σn and decides whether to accept or reject f is called a t-query µ-tester (t ∈ N,
µ ∈ R+) if Φ queries up to t letters from from f , accepts all words f ∈ C, and the probability
of rejecting a word g ∈ Σn − C is at least µdHam(g, C). In this case, we call (C,Σn,Φ) a t-query
µ-testable code. We also say that (C,Σn,Φ) is a code with a tester if we wish to make no reference
to t and µ.

A family of codes with testers (Ci,Σni ,Φi)i∈I is a family of locally testable codes (LTCs) if there
are t ∈ N and µ ∈ R+ such that each (Ci,Σni ,Φi) is a t-query µ-testable code.

Remark 7.3. The quality of a tester Φ for a code (C,Σn) can also be measured by means of
soundness and tolerance. Recall that Φ, or the triple (C,Σn,Φ), is said to have c-soundness at least
ε (c ∈ [0, 1

2 ], ε ∈ [0, 1]) if Φ rejects an f ∈ Σn satisfying dHam(f, C) > cdist(C) with probability at
least ε. It has c-tolerance at least ε if Φ accepts an f ∈ Σn satisfying dHam(f, C) ≤ c dist(C) with
probability at least ε. Thus, a t-query µ-testable code of relative distance δ has c-soundness ≥ cδµ
and 0-tolerance 1 (i.e., the tester is perfect).

Keeping the notation of §7.2, we fix k ∈ {0, . . . , d− 1}, and assume throughout that there exists
m ∈ N such that dimF(x) = m for all x ∈ X(k). We further let Σ = Fm.

The k-cocycle code of (X,F), namely (Zk, Ck ∼= ΣX(k)), admits a natural (k + 2)-query tester
Φ = Φ(X,F , k): given f ∈ Ck, choose y ∈ X(k + 1) uniformly at random6 and accept f if∑
x∈X(k)⊆y

resy←x f(x) = 0.

Definition 7.4. The triple (Zk, Ck,Φ) is called the k-cocycle code-with-tester of (X,F).

When there is no risk of confusion, we will refer to (Zk, Ck,Φ) simply as the k-cocycle code
(X,F).

Remark 7.5. The tester Φ can also be viewed as a tester for the linear k-cocycle code of (X,F , B).
From this point of view, Φ queries (k + 2)Mk letters. One can use this observation to adapt the
following discussion to linear k-cocycle codes.

The distance and the testability of (Zk, Ck,Φ) are tightly related to the coboundary expansion
of (X,F , ∥·∥Ham), where ∥·∥Ham is the normalized Hamming norm of F (Example 5.3). This is
expressed in the following proposition, which is immediate from the definitions, see §5.2–5.3.

Proposition 7.6. With notation as in §7.2, suppose that dimF(x) = m for all x ∈ X(k). Let
(Zk, Ck,Φ) be the k-cocycle code on the alphabet Σ = Fm associated to (X,F), and let ε, δ ∈ R+.
Suppose that Bk = 0 (e.g., if k = 0) and F(x) ̸= 0 for all x ∈ X(k) ∪X(k + 1). Then the following
conditions are equivalent:

(a) (X,F , ∥·∥Ham) is an (ε, δ)-coboundary expander in dimension k;

(b) (Zk, Ck,Φ) is a (k + 2)-query ε-testable code with relative distance ≥ δ.

We can also relate the distance and testability of (Zk, Ck,Φ) to the coboundary expansion of
(X,F) relative to the weighted support norm ∥ · ∥. We loose a factor of P = Dk,d(X) in the process.

6For the applications considered in this paper, it is better to choose y ∈ X(k + 1) according to the distribution
induced by the canonical weight function of X (§3.2). Using this distribution improves the testability by a factor
of Q = D(X) in Proposition 7.7, but makes statements more cumbersome elsewhere, so we stick to the uniform
distribution.
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Proposition 7.7. Keep the assumptions of Proposition 7.6 and suppose further that X is a d-
complex. If (X,F) is an (ε, δ)-coboundary expander in dimension k, then (Zk, Ck,Φ) a (k+1)-query
ε
P 2 -testable code with relative distance ≥ δ

P . Conversely, if (Zk, Ck,Φ) a (k + 1)-query ε-testable
code with relative distance δ, then (X,F) is an ( ε

P 2 ,
δ
P )-coboundary expander.

Proof. This follows from Remark 5.8(ii), Proposition 5.6(i) and Proposition 7.6.

We have seen in Proposition 6.4 that if (X,F) expands small locally minimal k-cocycles and
(k + 1)-cocycles, then (X,F) is a good coboundary expander in dimension k, and so the associated
k-cocycle code (Zk, Ck,Φ) is an LTC. We now show that these stronger assumptions also guarantee
that (Zk, Ck,Φ) has a linear-time decoding algorithm. The weaker assumption that small locally
minimal k-cocycles expand is enough to bound the distance of (Zk, Ck,Φ) from below.

Proposition 7.8. With notation as in §7.2, suppose that X is a d-complex, dimF(x) = m for all
x ∈ X(k) and F(x) ̸= 0 for all x ∈ X(k) ∪X(k + 1) ∪X(k + 2). Let (Zk, Ck,Φ) be the k-cocycle
code of (X,F), put n = |X(k)| (the length of the code) and let β, β′, γ, γ′ ∈ R+.

(i) If Bk = 0 and (X,F) β-expands γ-small locally minimal k-cocycles, then δ(Zk) ≥ γ
P .

(ii) If, in addition, (X,F) β′-expands γ′-small locally minimal (k + 1)-cocycles, then (Zk, Ck,Φ)
is 1

P 2 min{ d+1
(k+1)Q

(d+1
k+2

)−1
, γ′}-testable and has a decoding algorithm able to correct up to

1
(k+2)P min{( (k+1)Q

d+1
(d+1
k+2

)
+1)−1γ, γ′}-fraction of errors in O(2(d+1

k+2)QQ4M2
k+1m·n) = OM,Q,d,k(n)

operations.

Here and elsewhere in this work, we assume that operations in F are performed in time O(1).
Elements of F(x) are represented as vectors in FB(x) via the basis B(x), and the restriction maps
resFy←x : F(x) → F(y) are represented by the corresponding B(y) × B(x)-indexed matrix. The
complexity of evaluating resFy←x therefore depends on the number of nonzero entries in this matrix,
which is O(MdimxMdim y). Recall that our assumptions imply Mk = m.

Proof. (i) Let f ∈ Zk − {0} = Zk − Bk. By Proposition 6.4, ∥f∥ ≥ γ, and by Proposition 5.6(i),
this means that ∥f∥Ham ≥

(d+1
k+1

) |X(d)|
|X(k)|P

−1γ ≥ γ
P .

(ii) By Proposition 6.4(i), (X,F) is a (min{ d+1
(k+1)Q

(d+1
k+2

)−1
, γ′}, γ)-cosystolic expander. The

assertion about the testability is therefore a consequence of Proposition 7.7. It remains to show
that (Zk, Ck) has a decoding algorithm as claimed.

Write η := 1
(k+2)P min{( (k+1)Q

d+1
(d+1
k+2

)
+ 1)−1γ, γ′}. Let f ∈ Ck and assume that there is f0 ∈ Zk

with ∥f − f0∥Ham < η. We claim that the output of the algorithm in Figure I.1 is f0.
To see this, observe that by Proposition 5.6(i), ∥f − f0∥ <

(d+1
k+1

)−1
P |X(k)|
|X(d)|η ≤ Pη. Since f0 ∈ Zk,

this means that

∥dkf∥ = ∥dk(f − f0)∥ ≤
∑

x∈supp(f−f0)
w(X(k + 1)⊇x) =

∑
x∈supp(f−f0)

(k + 2)w(x)

= (k + 2)∥f − f0∥ < (k + 2)Pη ≤ γ′,

where in the second equality we used (3.2). By applying Lemma 6.3 to dkf , we get g ∈ Ck

such that dkf − dkg is locally minimal, ∥g∥ ≤ (k+1)Q
d+1

(d+1
k+2

)
∥dkf∥ < (k+1)Q

d+1
(d+1
k+2

)
(k + 2)Pη and

∥dkf − dkg∥ ≤ ∥dkf∥ < γ′. Moreover, by comparing the proof of Lemma 6.3 with the algorithm in
Figure I.1, we see that the output f ′ is in fact f − g (for a suitable choice of vertices in the proof).
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Figure I.1: Decoding Algorithm

1. f ′ ← f

2. L← empty queue

3. B ← boolean array indexed by X(0)

4. For each z ∈ X(0):

(4a) L.push(z)

(4b) B[z]← True // z is in L

5. While L is not empty:

(5a) z ← L.pop(), order the vertices of z arbitrarily

(5b) B[z]← False // z is not in L

(5c) Search for h ∈ Ck−1(Xz,Fz) with ∥(dkf ′)z − dk−1h∥ < ∥(dkf ′)z∥; set h = 0 if
there is no such h.

(5d) If h ̸= 0:

i. f ′ ← f ′ − hz.
ii. For every z′ ∈ X(0) adjacent to z with B[z′] = False:

A. L.push(z′)
B. B[z′]← True // z′ is in L

6. Return f ′.

Since dkf − dkg is γ′-small and locally minimal, we have 0 = ∥dk(dkf − dkg)∥ ≥ β′∥dkf − dkg∥, so
dkf − dkg = 0, and it follows that f ′ = f − g ∈ Zk. Now,

∥f ′ − f0∥ ≤ ∥f − f ′∥+ ∥f − f0∥ = ∥g∥+ ∥f − f0∥ < (k + 2)Pη · ((k + 1)Q
d+ 1

(d+1
k+2

)
+ 1) ≤ γ.

Since f ′ − f0 ∈ Zk (because f ′, f0 ∈ Zk) and (X,F) β-expands γ-small cochains, Proposition 6.4
tells us that f ′ − f0 ∈ Bk = 0, so f ′ = f0, as required.

We proceed with analyzing the time complexity of the algorithm in Figure I.1. The proof of
Lemma 6.3 tells us that the loop (5) cannot be executed more than

(d+1
k+2

)
|X(d)| = O(|X(k)|P ) =

O(Qn) times (see (3.1)). In order to perform the instruction (5c), we have to enumerate on O(qQm)
possible h-s. For each h, the computation of ∥(dkf ′)z − dk−1h∥ takes O(QmMk+1) operations, so
naively, (5c) requires O(qQmQmMk+1) operations. However, it is better to enumerate on subsets
E ⊆ Xz(k) and look for some h such that (dkf ′)z−dk−1h vanishes on E by solving the linear system
of equations {(dk−1h)(x) = (dkf ′)(x ∪ z)}x∈E . This allows us to perform (5c) by solving at most
2|Xz(k)| ≤ 2D1,k+1(X) ≤ 2(d+1

k+2)Q systems of at most Mk+1|Xz(k)| = O(Mk+1Q) linear equations in at
most m|Xz(k − 1)| = O(mQ) variables, which amounts to O(2(d+1

k+2)QQ3M2
k+1m) operations. The

remaining actions inside the loop (5) are negligible by comparison, so the instructions (5a)–(5d)
require O(2(d+1

k+2)QQ3M2
k+1m) operations. The total time complexity of the algorithm is therefore

O(2(d+1
k+2)QQ4M2

k+1m · n).
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7.4 Quantum CSS codes

We proceed with explaining how sheaved complexes give rise to quantum CSS codes. We refer the
reader to [LLZ21, §1, §2.2, §2.3, Lemma 13] for a survey of these codes and their significance to
quantum computing.

For every m ∈ N, we endow Fm with the standard symmetric bilinear form ⟨f, g⟩ = ∑m
i=1 figi,

where fi is the i-th coordinate of f ∈ Fm. Given A ⊆ Fm, we write A⊥ = {f ∈ Fm : ⟨f,A⟩ = 0}.
For the purposes of this work it is convenient to define a quantum CSS code as a quintet

C = (CX , CZ ,Fn,ΦX ,ΦZ) such that CX and CZ are subspaces of Fn, ΦX is a set of vectors
generating C⊥X , ΦZ is a set of vectors generating C⊥Z , and C⊥X ⊆ CZ (equivalently, C⊥Z ⊆ CX).
In particular, CX and CZ are linear codes inside Fn, the alphabet being F. The rate of C is
1
n(dimCX − dimC⊥Z ) = 1

n(dimCZ − dimC⊥X) and its relative distance is min{dX , dZ}, where
dX = min{∥w∥Ham |w ∈ CX − C⊥Z } and dZ = min{∥w∥Ham |w ∈ CZ − C⊥X}; we call dX and dZ the
relative X- and Z-distance, respectively. (The distance and message length of C are obtained from
the relative distance and rate by multiplying by n, respectively.)

Given η ∈ [0, 1], a decoding algorithm for the X-side of C = (CX , CZ ,Fn,ΦX ,ΦZ) able to
correct up to an η-fraction of errors is a decoding for (CX ,Fn) able to correct to up to η-fraction of
errors. Note that if f ∈ Fn satisfies dHam(f, CX) < η, then there could be numerous x ∈ CX with
dHam(f, x) < η, because C⊥Z may (and often does) contain short vectors. However, if 2η is smaller
than the relative X-distance, then the coset x+ C⊥Z is uniquely determined.

We use the generating set ΦX to define a natural tester for the linear code CX ⊆ Fn: given
f ∈ CX , choose ϕ ∈ ΦX uniformly at random, and accept f if ⟨f, ϕ⟩ = 0. Abusing the notation, we
denote this tester by ΦX . Likewise, we use the set ΦZ to define a tester for CZ ⊆ Fn. Let q ∈ N
and µ ∈ R+. We say that C = (CX , CZ ,Fn,ΦX ,ΦZ) is a q-query µ-testable quantum CSS code, if
this holds for both linear codes (CX ,Fn,ΦX) and (CZ ,Fn,ΦZ). If this holds only for (CX ,Fn,ΦX),
we say that C is one-sided q-query µ-testable quantum CSS code.

Let X,F , B, d be as in §7.2, and let k ∈ {1, . . . , d − 1}. Write n = dimCk and identify
Ck = Ck(X,F) with Fn via the basis ⊔

x∈X(k)B(x). Then Zk = Zk(X,F) is a linear code inside
Fn. We enrich Zk into a quantum CSS code as follows.

Put CX = Zk. For every x ∈ X − {∅}, we identify F(x) with FB(x) via the basis B(x). Under
this identification, the standard bilinear form on FB(x) corresponds to a nondegnerate bilinear form
on F(x)×F(x)→ F, denoted ⟨·, ·⟩x. The standard bilinear form on Ck = Fn can now be written
as ⟨f, g⟩ = ∑

x∈X(k) ⟨f(x), g(x)⟩x for f, g ∈ Ck = ∏
x∈X(k)F(x). For every ∅ ̸= x ⊊ y ∈ X, define

res′x←y : F(y)→ F(x) to be the dual of resy←x : F(x)→ F(y) relative to the bilinear pairings on
F(x) and F(y), that is, res′y←x is determined by the condition

〈
res′y←x f, g

〉
y

= ⟨f, resx←y g⟩x for
all f ∈ F(x), g ∈ F(y). For i ∈ {1, . . . , d}, the i-th boundary map ∂i : Ci → Ci−1 is defined by

(∂if)(y) =
∑

x∈X(i)⊇y

[x : y]L res′y←x f,

for all f ∈ Ck and y ∈ X(i− 1); the coefficient [x : y]L is as in Remark 4.5.7 One readily checks
that ∂i is the dual of di−1 : Ci−1 → Ci relative to the bilinear pairings on these vector spaces, i.e.,

⟨∂if, g⟩ = ⟨f, di−1g⟩ (7.1)
7If one does not wish to choose a linear ordering on V (X) and identify Ci(X, F) with

∏
x∈X(i) F(x) as in Remark 4.5,

then the formula is given by (∂if)(y) =
∑

z∈X(i)y
res′y←x f(yz), where y ∈ Xord(i − 1).

45



for all f ∈ Ci, g ∈ Ci−1. Since didi−1 = 0, we have ∂i−1∂i = 0, with the convention that ∂0 = 0. As
expected, the k-cycles and k-boundaries with coefficients in F are defined to be the subspaces of Ci
given by

Zi = Zi(X,F ;B) = ker di and Bi = Bi(X,F ;B) = im di−1,

respectively. Set CZ = Zk.
We now define subsets ΦX ⊆ (Zk)⊥ and ΦZ ⊆ (Zk)⊥ as follows. For every y ∈ X(k + 1) and

b ∈ B(y), define ϕy,b ∈ Ck to be the unique vector for which ⟨f, ϕy,b⟩ = ⟨dkf(y), b⟩ for all f ∈ Ck,
and let ΦX be the set of all ϕy,b. Similarly, for every z ∈ X(k − 1) and b ∈ B(z), define ϕ′z,b ∈ Ck

to be the unique vector for which
〈
f, ϕ′z,b

〉
= ⟨∂kf(z), b⟩ for all f ∈ Ck, and let ΦZ be the set of all

ϕ′z,b. It is clear that ΦX generates (Zk)⊥ and ΦZ generates (Zk)⊥. The following lemma says that
C⊥X ⊆ CZ , and thus C := (CX , CZ , Ck,ΦX ,ΦZ) is a quantum CSS code.

Lemma 7.9. In the previous notation, (Zk)⊥ = Bk and (Zk)⊥ = Bk.

Proof. It is enough to prove that B⊥k = Zk and (Bk)⊥ = Zk. We have f ∈ B⊥k if and only if
⟨f, ∂k+1g⟩ = 0 for all g ∈ Ck+1, or equivalently ⟨dkf, g⟩ = 0 for all g ∈ Ck+1. Since the bilinear
form on Ck+1 is nondegenerate, the latter is equivalent to dkf = 0. This proves that B⊥k = Zk. The
equality (Bk)⊥ = Zk is shown similarly.

Definition 7.10. We call (CX = Zk, CZ = Zk, C
k,ΦX ,ΦZ) defined above the k-cocycle quantum

CSS code associated to (X,F , B).

At this point, it is convenient to introduce an analogue of cosystolic expansion which uses
boundary maps instead of coboundary maps. Let ε, δ ∈ R+ and let ∥ · ∥ be a norm on F with mass
function m (see §5.2). We say that (X,F , ∥ · ∥) is an (ε, δ)-systolic expander, if

(S1) ∥∂kf∥m(k) ≥ ε∥f + Zk(X,F)∥Ck/Zk
m(k − 1) for all f ∈ Ck(X,F), and

(S2) ∥f∥ ≥ δm(k) for all f ∈ Zk(X,F)−Bk(X,F).

The following proposition relates the cosystolic and systolic expansion of (X,F , ∥ · ∥B) to the
code-theoretic properties of the k-cocycle quantum CSS code associated to (X,F , B). Adapting the
result to use the weight-support norm instead of ∥ · ∥B can be done using Proposition 5.6(ii) and
Remark 5.8(ii), and is left to the reader.

Proposition 7.11. Let X,F , B, d,Q, P be as in §7.2, let k ∈ {1, . . . , d − 1} and let C :=
(CX , CZ , Ck,ΦX ,ΦZ) be the k-cocycle quantum CSS code associated to (X,F , B). Then:

(i) C is a quantum CSS code, its rate is 1
n dim Hk(X,F), and the testers ΦX and ΦZ query

(k + 2)Mk and Dk−1,k(X)(d+ 1− k)Mk letters, respectively.

(ii) (X,F , ∥ · ∥B) is an (ε, δ)-cosystolic expander and an (ε, δ)-systolic expander in dimension k if
and only if C has relative distance ≥ δ and is ε-testable.

(iii) (X,F , ∥ · ∥B) is an (ε, δ)-cosystolic expander in dimension k if and only if C has relative
X-distance ≥ δ and is one-sided ε-locally testable.

(iv) Suppose that F(x) ̸= 0 for all x ∈ X(k)∪X(k+1)∪X(k+2) and there are β, β′, γ, γ′ ∈ R+ such
that (X,F) β-expands γ-small k-cocycles and β′-expands γ′-small (k+1)-cocycles. Then the X-
side of C admits an error correcting algorithm able to correct up to 1

(k+2)PMk
min{( (k+1)Q

d+1
(d+1
k+2

)
+

1)−1γ, γ′}-fraction of errors in OM,Q,d,k(n) operations.
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Proof. (i) It is straightforward to see that every ϕy,b ∈ ΦX is supported on at most (k + 2)Mk

coordinates. Let z ∈ X(k − 1). Then z is contained in at most Dk−1,k(X) d-faces. This means
that every ϕ′z,b ∈ ΦZ is supported at most Dk−1,k(X)Mk coordinates. The assertion about the rate
follows from Lemma 7.9.

(ii) and (iii) are immediate from the definitions.
(iv) is shown as in Proposition 7.8 with two differences. First, we use part (ii) of Proposition 5.6

instead of part (i). In particular, writing η := 1
(k+2)PMk

min{( (k+1)Q
d+1

(d+1
k+2

)
+ 1)−1γ, γ′}, the assump-

tion ∥f − f0∥B ≤ ηn ≤ ηMk|X(k)| gives ∥f − f0∥ ≤
(d+1
k+1

)−1 |X(k)|
|X(d)|PMkη ≤ PMkη, and extra Mk is

carried throughout the computations. Second, instead of asserting that f ′ = f0, we only conclude
that f0 − f ′ ∈ Bk ⊆ (Zk)⊥ = C⊥Z .

The subject matter of Section 8 is the construction of cosystolic expanders, which in turn give
rise to LTCs. Unfortunately, we do not know of analogous results for systolic expansion, so our
results only give rise to quantum CSS codes whose X-side is an LTC with linear distance, and a
priori no information on the Z-side.
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Chapter II

The Tower Paradigm

In this chapter we provide a method for constructing good infinite families of LTCs from a single
sheaved complex (X,F), called the tower paradigm. Broadly, the idea is to assume that X admits
an infinite tower of double coverings · · · → X2 → X1 → X0 = X, and take the cocycle codes
associated to the sheaved complexes {(Xr, u

∗
rF)}∞r=0, where ur : Xr → X is the composition

Xr → Xr−1 → · · · → X0 = X. We show that if (X,F) satisfies a list of conditions, then this family
of codes is a good family of LTCs. Specifically, the main result of Section 8 — a local-to-global
principle for cosystolic expansion of sheaves — provides the conditions on (X,F) that would secure
linear distance and testability for the codes, and the main result of Section 10 — rate conservation

— gives conditions on (X,F) that are sufficient for the rate of the codes to be constant. We pack
these results together in Section 11 to give the tower paradigm. The intermediate Section 9 gives
examples of cocycle codes to which the local-to-global principle of Section 8 can be applied.

8 A Local-to-Global Principle for Cosystolic Expansion
Let (X,F) be a sheaved connected d-complex. The purpose of this section is to prove the following
theorem, which provides local condition on (X,F) guaranteeing that (X,F) is a good cosystolic
expander in dimension k (see §5.3), and moreover, expands small locally minimal k-cochains and
(k + 1)-cochains (see §6.2). By saying that the conditions are local we mean that they involve only
the links (Xz,Fz) with z ∈ X − {∅}.

Following the convention set in §4.4, we say that (X,F) is an i-local ε-coboundary expander in
dimension k (−1 ≤ i ≤ k) if (Xz,Fz) is an ε-coboundary expander in dimension k − i− 1 for all
z ∈ X(i). Recall also (§3.4) that X is said to be an i-local [−1, λ]-spectral expander (−1 ≤ i ≤ d−2)
if the underlying weighted graph of Xz is a [−1, λ]-spectral expander for all z ∈ X(i). Likewise for
α-skeleton expansion.

Theorem 8.1. Let k ∈ N ∪ {0}, Q ∈ N, ε0, . . . , εk, ε
′
0, . . . , ε

′
k+1 and λ ∈ R+. Put

ε = min
{(k + 2)εi
k + 1− i

∣∣∣∣i ∈ {0, . . . , k}} and ε′ = min
{(k + 3)ε′i
k + 2− i

∣∣∣∣i ∈ {0, . . . , k + 1}
}
,

and suppose that
λ ≤ 1

d min{( ε
(k+1)222k+6 )2k

, ( ε′

(k+2)222k+8 )2k+1
, 1}

Let (X,F) be a sheaved strongly connected d-complex with d ≥ k + 2 such that:

(1) (X,F) is an i-local εi-coboundary expander in dimension k for all i ∈ {0, . . . , k}.
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(2) (X,F) is an i-local ε′i-coboundary expander in dimension k + 1 for all i ∈ {0, . . . , k + 1}.

(3) X is a (d− 2)-local [−1, λ]-spectral expander.

(4) D(X) ≤ Q, i.e., every vertex of X is belongs to at most Q d-faces,

(5) F(x) ̸= 0 for all x ∈ X(k) ∪X(k + 1) ∪X(k + 2).

Then:

(i) (X,F) ε
2 -expands ( ε

(k+1)222k+6 )2k+1−1-small locally minimal k-cochains.

(ii) (X,F) ε′

2 -expands ( ε′

(k+2)222k+8 )2k+2−1-small locally minimal (k + 1)-cochains.

(iii) (X,F) is a (min{( ε′

(k+2)222k+8 )2k+2−1, d+1
(k+1)Q

(d+1
k+2

)−1}, ( ε
(k+1)222k+6 )2k+1−1)-cosystolic expander

in dimension k.

This theorem is an immediate consequence of the following theorem and Proposition 6.4.

Theorem 8.2. Let k ∈ N ∪ {0}, let ε0, . . . , εk ∈ R+, and set

ε := min
{(k + 2)εi
k + 1− i

∣∣∣∣i ∈ {0, . . . , k}} and λ = 1
d

min
{(

ε

(k + 1)222k+6

)2k

, 1
}
.

Let (X,F) be a sheaved strongly connected d-complex with d ≥ k + 1 such that:

(1) (X,F) is an i-local εi-coboundary expander in dimension k for all i ∈ {0, . . . , k}.

(2) X is a (d− 2)-local [−1, λ]-spectral expander.

(3) F(x) ̸= 0 for all x ∈ X(k + 1).

Then (X,F) ε
2 -expands ( ε

(k+1)222k+6 )2k+1−1-small k-cochains.

Before setting to prove Theorem 8.2, a few remarks are in order.

Remark 8.3. (i) Theorems 8.2 and 8.1 were proved for the constant sheaf F2 (Example 4.1(ii)) in
[EK17], with different constants, and this was extended to all constant sheaves in [KM18]. As in
these sources, the proof of Theorem 8.2 uses machinery of heavy faces1. However, we use a different
summation argument that makes milder assumptions and gives explicit and asymptotically better
expansion constants.

(ii) By Lemma 5.10, the value of ε (resp. ε′) in Theorems 8.1 and 8.2 cannot exceed k + 2 (resp.
k + 3). We do not know if there exist examples approaching this upper bound.

(iii) In Theorem 8.2, condition (2) and the assumption that X is connected can be replaced with
the milder assumption that X is an i-local αi-skeleton expander for for all i ∈ {−1, . . . , k − 1} and
αi ≤ Θk(ε2k−1−i). Condition (3) of Theorem 8.1 can be similarly relaxed. See Theorem 8.11 and
the following corollaries for the precise requirements on the αi, and Corollary 8.15 for a version
of Theorem 8.1 where the upper bounds on the αi are optimized for k = 0. Our methods cannot
increase the order magnitude of the required i-local skeleton expansion of X (as a function of
ε0, . . . , εk) beyond Θk(ε2k−1−i); see Remark 8.17.

1Called fat faces in [EK17] and [KM18].
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(iv) Let (X,F) be a sheaved strongly connected d-complex and let p : Y → X be a covering
map such that Y is connected (and hence strongly connected). Recall (§4.3) that p∗F denotes
the pullback of F to Y . Then, for every y ∈ Y − {∅}, the map p restricts to an isomorphism
Yy ∼= Xf(y), and under this isomorphism we have (p∗F)y = Ff(y). This means that the assumptions
of Theorem 8.1 (resp. Theorem 8.2) hold for (X,F) if and only if they hold for (Y, p∗F).

The proof of Theorem 8.2 will be given in §8.2, after some after some preliminary results have
been established in §8.1. Examples of sheaved complexes satisfying the assumptions of Theorem 8.1
are given in Section 9, and further examples will be given in Section 14.

8.1 Heavy Faces

Fix a sheaved d-complex (X,F). Unless indicated otherwise, k ∈ {0, . . . , d}, f ∈ Ck(X,F) and
h⃗ = (h−1, h0, . . . , hk−1) ∈ (0, 1]{−1,...,k−1}. Recall from §3.2 that w = wX : X → R+ denotes the
canonical weight function of X.

Generalizing [KM18, §3.3] and [EK17, §3.2], we define for every i ∈ {−1, . . . , k} a set Ak(f, h⃗) ⊆
X(k) as follows: Set Ak(f, h⃗) = supp f . Assuming Ai(f, h⃗) was defined, let Ai−1(f, h⃗) consist of the
faces x ∈ X(i− 1) such that

w(Ai(f, h⃗)⊇x) ≥ hi−1w(X(i)⊇x).

In other words, x ∈ Ai−1(f, h⃗) if at least hi−1-fraction of the i-faces containing x (counted by weight)
are in Ai(f, h⃗). Elements of Ai(f, h⃗) are called (f, h⃗)-heavy i-faces, or just heavy i-faces for short.

Lemma 8.4. Let X be a d-complex, let −1 ≤ i ≤ k ≤ d and let A ⊆ X(k). Then
∑
z∈X(i)w(A⊇z) =(k+1

i+1
)
w(A).

Proof. We have∑
z∈X(i)

w(A⊇z) =
∑

z∈X(i)

∑
x∈A:z⊆x

w(x) =
∑
x∈A

∑
z∈X(i):z⊆x

w(x) =
∑
x∈A

(k+1
i+1

)
w(x) =

(k+1
i+1

)
w(A).

Lemma 8.5. Let f ∈ Ck(X,F), h⃗ ∈ (0, 1]{−1,0,...,k−1} and i ∈ {−1, 0, . . . , k}. Then w(Ai(f, h⃗)) ≤
(∏i≤j<k h

−1
j )∥f∥.

Proof. This is clear if i = k, so assume i < k. In this case, using (3.2), the definition of heaviness,
and Lemma 8.4, we see that

w(Ai(f, h⃗)) =
∑

x∈Ai(f,⃗h)

w(x) =
∑

x∈Ai(f,⃗h)

(i+ 2)−1w(X(i+ 1)⊇x)

≤ h−1
i (i+ 2)−1 ∑

x∈Ai(f,⃗h)

w(Ai+1(f, h⃗)⊇x) ≤ h−1
i w(Ai+1(f, h⃗)).

Iterating, we find that

w(Ai(f, h⃗)) ≤ h−1
i h−1

i+1 · · ·h
−1
k−1w(Ak(f, h)) = (

∏
i≤j<k

h−1
j )∥f∥.

It can happen that the intersection of two (f, h⃗)-heavy i-faces (0 ≤ i ≤ k) is an (i−1)-face which
is not (f, h⃗)-heavy. We call such pairs (f, h⃗)-bad, or just bad. Provided k < dimX, we also say that
a (k + 1)-face is (f, h⃗)-bad if it contains a bad pair of faces. The set of (f, h⃗)-bad (k + 1)-faces is
denoted Υ(f, h).
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Lemma 8.6. Let f ∈ Ck(X,F) with k ∈ {0, . . . , d − 1}, and let h⃗, α⃗ ∈ (0, 1]{−1,...,k−1}. Suppose
that X is an i-local αi-skeleton expander for all i ∈ {−1, . . . , k − 1} (in particular, X = X∅ is an
α−1-skeleton expander). Then

w(Υ(f, h⃗)) ≤
k∑
i=0

(k+2
i+2

)
(i+ 1)(αi−1 + hi−1)h−1

i · · ·h
−1
k−1∥f∥.

Proof. Fix i ∈ {0, . . . , k} and z ∈ X(i − 1). We call an (i + 1)-face e z-bad if e ⊇ z and the two
i-faces lying between z and e form a bad pair; denote by B(z) the set of z-bad faces. Let e ∈ B(z)
and let x, y be the i-faces between z and e. Then e − z is an edge connecting the 0-faces x − z
and y − z in the link Xz. Since both x − z, y − z ∈ Ai(f, h)z (because x and y are heavy), our
assumption that Xz is an αi−1-skeleton expander implies that

wz(B(z)z) ≤ (wz(Ai(f, h)z) + αi−1)wz(Ai(f, h)z),

where wz = wXz . Since z is not heavy (x, y is a bad pair), w(Ai(f, h)⊇z) ≤ hi−1w(X(i)⊇z), which
means that wz(Ai(f, h)z) ≤ hi−1wz(X(i)z) = hi−1, by (3.3). Thus,

wz(B(z)z) ≤ (αi−1 + hi−1)wz(Ai(f, h)z).

Scaling both sides using (3.3), we get

w(B(z)) ≤ (αi−1 + hi−1)w(Ai(f, h)⊇z).

Now, since every face in Υ(f, h⃗) contains a face in B(z) for some z, we have

w(Υ(f, h⃗)) ≤
k∑
i=0

∑
z∈X(i−1)

∑
e∈B(z)

w(X(k + 1)⊇e).

Using (3.2), Lemma 8.4 and Lemma 8.5, the right hand side evaluates to

k∑
i=j

∑
z∈X(i−1)

∑
e∈B(z)

(k+2
i+2

)
w(e) =

k∑
i=0

∑
z∈X(i−1)

(k+2
i+2

)
w(B(z))

≤
k∑
i=0

∑
z∈X(i−1)

(k+2
i+2

)
(αi−1 + hi−1)w(Ai(f, h)⊇z)

=
k∑
i=0

(k+2
i+2

)
(i+ 1)(αi−1 + hi−1)w(Ai(f, h))

≤
k∑
i=0

(k+2
i+2

)
(i+ 1)(αi−1 + hi−1)h−1

i · · ·h
−1
k−1∥f∥.

We continue to assume that f ∈ Ck(X,F) and h⃗ ∈ (0, 1]{−1,...,k−1}. Given two heavy faces x, y
with x ⊆ y, we say that y (f, h⃗)-descends to x, or x (f, h⃗)-descends from y, if there exists a sequence
x = xi ⊆ xi+1 ⊆ · · · ⊆ xℓ = y with xj ∈ Aj(f, h⃗) for all j ∈ {i, i+ 1, . . . , ℓ}. We will simply say that
y descends to x if there is no risk of confusion. We say that a (k + 1)-face y descends to a heavy
face x if y contains a heavy k-face descending to x. A face will be called (f, h⃗)-terminal, or just
terminal, if it is heavy and does not descend to any of its proper faces. It is clear that every heavy
face descends to some terminal face. Beware that a terminal face may contain another terminal face.
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Lemma 8.7. Let f ∈ Ck(X,F) and h⃗ ∈ (0, 1]{−1,...,k−1}. Let y ∈ X(k + 1)−Υ(f, h⃗) and let D(y)
denote the set of heavy faces which (f, h⃗)-descend from y. If D(y) ̸= ∅, then there exists exactly one
terminal face z descending from y. Moreover, every face in D(y) descends to z.

Proof. Since D(y) ̸= ∅, the face y must descend to some terminal face z. In order to prove the
lemma, it is enough to show that every z′ ∈ D(y) descends to z.

By definition, there are sequences z = xr ⊆ · · · ⊆ xk ⊆ y and z′ = x′s ⊆ · · · ⊆ x′k ⊆ y such
that xj and x′j are in Aj(f, h⃗) for all j. Set xk+1 = x′k+1 = y. We claim that xi ∩ x′j is heavy for
all i ∈ {r, . . . , k, k + 1} and j ∈ {s, . . . , k, k + 1}. We show this by decreasing induction on i and
j. The claim is clear if i = k + 1 or j = k + 1, so assume i, j ≤ k. By the induction hypothesis,
xi+1 ∩ x′j and xi ∩ x′j+1 are both heavy. If xi+1 ∩ x′j = xi ∩ x′j , or xi ∩ x′j+1 = xi ∩ x′j , then xi ∩ x′j
is also heavy. Otherwise, the dimension of both xi+1 ∩ x′j and xi ∩ x′j+1 is dim(xi ∩ x′j) + 1, and
(xi+1 ∩ x′j) ∩ (xi ∩ x′j+1) = xi ∩ x′j . Since y /∈ Υ(f, h⃗), the face xi ∩ x′j must be heavy as well, hence
our claim.

To finish, consider the sequence of heavy faces z = z ∩ x′k+1 ⊇ z ∩ x′k ⊇ · · · ⊇ z ∩ x′s = z ∩ z′.
The difference between the dimensions of every two consecutive faces in this sequence is either 0
or 1, so z descends to z ∩ z′. Since z is terminal, we must have z = z ∩ z′, or rather, z ⊆ z′. By a
similar argument, z′ descends to z′ ∩ z = z, which is what we want.

Lemma 8.8. Let f ∈ Ck(X,F) with k ∈ {0, . . . , d− 1}, and let h⃗ ∈ (0, 1]{−1,...,k−1}. Let z be an
(f, h⃗)-terminal face, and let

L(z) = {x ∈ X(k) : x (f, h⃗)-descends to z},
L′(z) = {y ∈ X(k + 1) : y (f, h⃗)-descends to z}.

Suppose that f is locally minimal at z (see §6.1), (Xz,Fz) is an ε-coboundary expander in dimension
k − dim z − 1 and F(y) ̸= 0 for all y ∈ X(k + 1)⊇z. Then

(k + 2)ε
k + 1− dim z

w(L(z)) ≤ w([supp(d0f) ∪Υ(f, h⃗)] ∩ L′(z))

Proof. Write i = dim z and fix some ordering on the vertices of z. Define g ∈ Ck(X,F) by

g(x) =
{
f(x) x ∈ L(z)
0 otherwise,

where x ∈ X(k)ord. Then (gz)z = g (notation as in §4.4). By Proposition 6.1(i), fz ∈ Ck−i−1(Xz,Fz)
is minimal, and by Lemma 6.2, so is gz. Write ∥ · ∥z for the weighted support norm on Fz and mz

for its associated mass function. Since F(y) ̸= 0 for all y ∈ X(k+ 1)⊇z, we have mz(k− i) = 1. Our
assumption that (Xz,Fz) is an ε-coboundary expander in dimension k− i− 1, therefore implies that

∥dk−i−1gz∥z ≥ ∥dk−i−1gz∥zmz(k − i− 1) ≥ ε∥gz∥zmz(k − i) = ε∥gz∥z.

By Lemma 4.13, (dk−1−1(gz))z = dk((gz)z) = dkg. Using this and (3.3), we find that

∥dkg∥ ≥
(k+2
i+1

)(k+1
i+1

)−1
ε∥g∥ = (k + 2)ε

k + 1− iw(L(z)). (8.1)

Let y ∈ supp(dkg). By the definition of g, the face y descends to z, that is, y ∈ L′(z). If
y /∈ Υ(f, h⃗), then by Lemma 8.7, every face descended from y also descends to z. In particular,
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every x ∈ (supp f) ∩ X(k)⊆y descends to z, and thus belongs to L(z) = supp g. It follows that
(dkf)(y) = (dkg)(y) ̸= 0, so y ∈ supp(dkf). This shows that

supp(dkg) ⊆ [supp(dkf) ∪Υ(f, h⃗)] ∩ L′(z).

Combining this with (8.1) gives the lemma.

Notation 8.9. We call a collection of subsets E ⊆ P ({1, . . . , n}) an n-vine if:

(1) {1, . . . , n} ∈ E,

(2) Every s ∈ E admits a sequence s = si ⊆ si+1 ⊆ · · · ⊆ sn = {1, . . . , n} such that sj ∈ E and
|sj | = j for all j.

We say that s ∈ E is terminal if no maximal subset of s is in E. (It is possible for non-maximal
subsets of s to be in E.) Denote by T (E) the terminal subsets in E. Finally, set

U(n) = max{#T (E) |E is an n-vine}.

Direct computation shows that U(1) = 1, U(2) = 2 and U(3) = 3. In general, we have
( n
⌊n/2⌋

)
≤

U(n) ≤ 2n − 1.2

Lemma 8.10. Let f ∈ Ck(X,F) be locally minimal (see §6.1), let h⃗ ∈ (0, 1]{−1,...,k−1} and let
ε0, . . . , εk ∈ R+. Suppose that F(x) ̸= 0 for all x ∈ X(k + 1), and that (X,F) is an i-local
εi-coboundary expander in dimension k for every i ∈ {0, . . . , k}. If the empty face of X is not
(f, h⃗)-heavy, then

min
{(k + 2)εi
k + 1− i

∣∣∣∣ i ∈ {0, . . . , k}} ∥f∥ ≤ ∥d0f∥+ U(k + 2)w(Υ(f, h⃗)).

Proof. Denote by T the set of (f, h⃗)-terminal faces. Given z ∈ T , define L(z) and L′(z) as in
Lemma 8.8. We abbreviate Υ(f, h⃗) to Υ.

Let z ∈ T . By assumption, z ̸= ∅, so f is locally minimal at z and (Xz,Fz) is an εdim z-coboundary
expander in dimension k − dim z − 1. Lemma 8.8 now tells us that

(k + 2)ε
k + 1− dim z

w(L(z)) ≤ w([supp(d0f) ∪Υ] ∩ L′(z))

= w([supp(d0f)−Υ] ∩ L′(z)) + w(Υ ∩ L′(z)).

Summing over all z ∈ T , we get

∑
z∈T

(k + 2)ε
k + 1− dim z

w(L(z)) ≤
∑
z∈T

w([supp(d0f)−Υ] ∩ L′(z)) +
∑
z∈T

w(Υ ∩ L′(z)). (8.2)

Since every face in supp f descends to some terminal face, the left hand side of (8.2) is at least

min
{(k + 2)εi
k + 1− i

∣∣∣∣ i ∈ {0, . . . , k}} ∥f∥.
2The number U(n) is larger than

(
n
⌊n/2⌋

)
for large n. Indeed, assuming n = 4k, consider the n-vine E = {s ⊆

{1, . . . , n} : |s| ≥ 2k} ∪ {s ⊆ {1, . . . , 2k} : |s| ≥ k}. It routine to check that T (E) =
(

n
2k

)
− (2k)2 − 1 +

(2k
k

)
, which is

larger than
(

n
⌊n/2⌋

)
as soon as n ≥ 16.

53



As for the right hand side of (8.2), by Lemma 8.7, every face in y ∈ supp(d0f)−Υ descends to a
unique terminal face. Thus,∑

z∈T
w([supp(d0f)−Υ] ∩ L′(z)) = w(supp d0f −Υ) ≤ ∥d0f∥.

If y ∈ Υ, then upon identifying y with {1, . . . , k + 2}, the set of faces to which y descends is a
(k + 2)-vine in the sense Notation 8.9. Thus, the number of terminal faces to which y descends is at
most U(k + 2), meaning that ∑

z∈T
w(Υ ∩ L′(z)) ≤ U(k + 2)w(Υ).

Plugging these observations into (8.2) gives the lemma.

8.2 Proof of Theorem 8.2

We will deduce Theorem 8.2 from the following more general theorem.

Theorem 8.11. Let k ∈ N ∪ {0}, α0, . . . , αk−1, ε0, . . . , εk ∈ R+, and put

ε := min
{(k + 2)εi
k + 1− i

∣∣∣∣ i ∈ {0, . . . , k}} .
Suppose that there are h−1, . . . , hk−1 ∈ (0, 1] such that:

U(k + 2)
k∑
i=0

(k+2
i+2

)
(i+ 1)αi−1 + hi−1

hi · · ·hk−1
< ε, (8.3)

where U(k + 2) is as in Notation 8.9. Then there exist β, γ ∈ R+ such that the following hold: Let
(X,F) be a sheaved d-complex, where d ≥ k + 1. Assume that

(1) (X,F) is an i-local εi-coboundary expander in dimension k for all i ∈ {0, . . . , k}.

(2) X is an i-local αi-skeleton expander for all i ∈ {−1, . . . , k − 1}.

(3) F(x) ̸= 0 for all x ∈ X(k + 1).

Then (X,F) β-expands γ-small locally minimal k-cochains. In fact, one can take γ = h−1 · · ·hk−1
and β to be the difference between the right hand side and the left hand side of (8.3).

Proof. Put h⃗ = (h−1, . . . , hk−1) and define β and γ as in the theorem. Let f ∈ Ck(X,F) be a
locally minimal k-cochain such that ∥f∥ < γ. We need to prove that ∥d0f∥ ≥ β∥f∥.

We first claim that the empty face is not (f, h⃗)-heavy. Indeed, by Lemma 8.5, w(A−1(f, h⃗)) ≤
(h−1h0 · · ·hk−1)−1∥f∥ < (h−1h0 · · ·hk−1)−1γ = 1. Since the empty face has weight 1, this means
that A−1(f, h⃗) = ∅, so the empty face is not heavy.

We may now apply Lemma 8.10, which tells us that

ε∥f∥ ≤ ∥d0f∥+ U(k + 2)w(Υ(f, h⃗)).

By Lemma 8.6, this means that

ε∥f∥ ≤ ∥d0f∥+ U(k + 2)
k∑
i=0

(k+2
i+2

)
(i+ 1)αi−1 + hi−1

hi · · ·hk−1
∥f∥,

and by rearranging, we get β∥f∥ ≤ ∥d0f∥.
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Proof of Theorem 8.2. Assumption (2) and Oppenheim’s Trickling Down Theorem [Opp15, The-
orem 1.4] imply that for every z ∈ X of dimension i ∈ {−1, . . . , d − 2}, the weighted underlying
graph of Xz is a [−1, λ

1−(d−2−i)λ ]-spectral expander, and thus Xz is a λ
1−(d−2−i)λ -skeleton expander

(see §3.4). By the assumptions on λ, we have

λ

1− (d− 2− i)λ ≤
λ

1− (d− 2 + 1)1
d

= dλ ≤
(

ε

(k + 1)222k+6

)2k

.

Setting αi := ( ε
(k+1)222k+6 )2k−1−i for i ∈ {−1, . . . , k−1}, we conclude that X is an i-local αi-skeleton

expander for all i ∈ {−1, . . . , k − 1}.
We now apply Theorem 8.2 with hi = αi. To see that the inequality (8.3) holds, note that for

all i ∈ {0, . . . , k}, we have

αi−1 + hi−1
hi · · ·hk−1

= 2
(

ε

(k + 1)222k+6

)2k−i−2k−1−i−···−20

= ε

(k + 1)222k+5 .

Thus,

U(k + 2)
k∑
i=0

(k+2
i+2

)
(i+ 1)αi−1 + hi−1

hi · · ·hk−1
≤ 2k+2

k∑
i=0

2k+2(k + 1) ε

(k + 1)222k+5 = ε

2 < ε.

It also follows that the constants β and γ of Theorem 8.2 satisfy β ≥ ε − ε
2 = ε

2 and γ =
h−1h0 · · ·hk−1 = ( ε

(k+1)222k+6 )2k+2k−1+···+20 = ( ε
(k+1)222k+6 )2k+1−1. We conclude that (X,F) ε

2 -
expands ( ε

(k+1)222k+6 )2k+1−1-small k-cochains.

In the remainder of this subsection, we analyze the solubility of the inequality (8.3) in the cases
k = 0 and k = 1, deriving specialized versions of Theorem 8.11. We also address the asymptotic
behavior of the general case. To begin, we make the following remark.

Remark 8.12. When solving (8.3), we may assume that h−1, . . . , hk−1 live in R+, rather than
(0, 1], because (8.3) and assumption (1) of Theorem 8.11 force h−1, . . . , hk−1 ≤ 1. This can be seen
by decreasing induction on i. For i = k − 1, the inequality (8.3) and Remark 8.3(ii) imply that
2(k + 1)hk−1 ≤ U(k + 2)

(k+2
k+2

)
(k + 1)hk−1 < ε ≤ k + 2, so hk−1 ≤ 1. Assuming hi+1, . . . , hk−1 ≤ 1

for −1 ≤ i < k − 1, the the same reasoning shows that (k + 2)hi ≤
(k+2
i+3

)
hi < ε ≤ k + 2, so hi ≤ 1.

(In fact, the assumption that hi ≤ 1 for all i was never used in the proof of Theorem 8.11.)

Corollary 8.13. Let (X,F) be a sheaved d-complex (d ≥ 1), let α, ε ∈ R+ be numbers such that
α < ε, and let h ∈ [0, ε− α]. Suppose that (1) (Xv,Fv) is an ε-coboundary expander in dimension
−1 for every v ∈ X(0), (2) X is an α-skeleton expander, and (3) F(e) ̸= 0 for all e ∈ X(1). Then
(X,F) 2(ε− α− h)-expands h-small 0-cochains.

Proof. When k = 0, the inequality (8.3) becomes 2(α−1 + h−1) < 2ε0. Setting h−1 = h, ε0 = ε
and α−1 = α, the statement follows from Theorem 8.11. (Note that every 0-cochain is locally
minimal.)

Corollary 8.14. Let α−1, α0, ε0, ε1 ∈ R+ be numbers such that

α0 < min{ε0
4 ,

ε1
2 } and α−1 <

1
6(min{ε0

4 ,
ε1
2 } − α0)2.
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Then there exist β, γ ∈ R+ such that the following hold: Let (X,F) be a sheaved d-complex (d ≥ 2)
such that (1) (X,F) is an i-local εi-coboundary expander in dimension 1 for i ∈ {0, 1}, (2) X is
an i-local αi-skeleton expander for i ∈ {−1, 0}, and (3) F(x) ̸= 0 for all x ∈ X(2). Then (X,F)
γ-expands β-small locally minimal 1-cochains.

Proof. When k = 1, the inequality (8.3) becomes

9 · α−1 + h−1
h0

+ 6(α0 + h0) < min{3
2ε0, 3ε1}.

By treating this as a quadratic inequality in h0, one finds that it is solvable for h0, h−1 ∈ R+ if and
only if the inequalities in the corollary are satisfied. The corollary is therefore a special case of
Theorem 8.11.

Corollary 8.15. Let ε0, ε
′
0, ε
′
1 ∈ R+ and α−1, α0 ∈ [0, 1] be numbers such that

α0 < min{ε
′
0
4 ,

ε′1
2 } and α−1 < min{ε0,

1
6(min{ε

′
0
4 ,

ε′1
2 } − α0)2},

and let Q, d ∈ N be integers with d ≥ 2. Then there exist β, β′, γ, γ′ ∈ R+, depending on
ε0, ε

′
0, ε
′
1, α−1, α0, and δ, ε ∈ R+, depending on ε0, ε

′
0, ε
′
1, α−1, α0, d,Q, such that the following hold:

If (X,F) is a sheaved d-complex such that

(1) (X,F) is a 0-local ε0-coboundary expander in dimension 0.

(2) (X,F) is a i-local ε′i-coboundary expander in dimension 1 for i ∈ {0, 1}.

(3) Xv is an α0-skeleton expander for all v ∈ X(0) and X is an α−1-skeleton expander,

(4) D(X) ≤ Q, i.e., every vertex of X belongs to at most Q d-faces, and

(5) F(x) ̸= 0 for all x ∈ X(0) ∪X(1) ∪X(2),

then (X,F) is an (ε, δ)-cosystolic expander in dimension 0, β-expands γ-small 0-cochains and
β′-expands γ′-small locally minimal 1-cochains.

Proof. By Corollaries 8.13 and 8.14, there are β′, β, γ′, γ′ ∈ R+, depending on ε0, ε
′
0, ε
′
1, α−1, α0,

such that (X,F) β′-expands γ′-small 0-cochains and β-expands γ-small locally minimal 1-cochains.
The existence of γ and δ is now a consequence of Proposition 6.4.

Remark 8.16. As in the proof of Theorem 8.1, we can use Oppenheim’s Trickling Down Theorem
[Opp15, Theorem 1.4] to replace condition (3) of Corollary 8.15 with

(3′) X is connected and, for all v ∈ X(0), the underlying weighted graph of Xv is a [−1, λ]-spectral
expander,

where λ ∈ R+ is required to satisfy the inequalities

λ < min{ε
′
0
4 ,

ε′1
2 } and λ

1− λ < min{ε0,
1
6(min{ε

′
0
4 ,

ε′1
2 } − λ)2}.
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Remark 8.17. We use the notation of Theorem 8.11. It was demonstrated in the proof of
Theorem 8.2 that the inequality (8.3) is solvable when

αi ≤
(

ε

(k + 1)222k+6

)2k−1−i

for all i ∈ {−1, . . . , k − 1}. The order of magnitude of this upper bound on the i-local skeleton
expansion of X (as a function ε0, . . . , εk) cannot be increased with our present methods. More
precisely, if (8.3) is satisfied, then

αi <

(
ε

U(k + 2)

)2k−1−i

for all i ∈ {−1, . . . , k− 1}, so we must have αi = O(ε2k−1−i) in order to apply Theorem 8.11. To see
this, note that if (8.3) holds for some h−1, . . . , hk−1 ∈ (0, 1], then for all i ∈ {0, . . . , k}, we have

ε > U(k + 2)
k∑
i=0

(k+2
i+2

)
(i+ 1)αi−1 + hi−1

hi · · ·hk−1
≥ U(k + 2) · αi−1 + hi−1

hi · · ·hk−1
.

As a result,

max{αk−1, hk−1} < U(k + 2)−1ε,

max{αk−2, hk−2} < U(k + 2)−1hk−1ε,

...

max{α−1, h−1} < U(k + 2)−1h−1h0 · · ·hk−1ε

These inequalities imply readily that hi < ( ε
U(k+2))2k−1−i for all i. Plugging this in the right hand

side of the inequalities gives αi < ( ε
U(k+2))2k−1−i . It also follows that γ = h−1 · · ·hk−1 (the smallness

of locally minimal k-cochains which are guaranteed to β-expand) is smaller than ( ε
U(k+2))2k+1−1.

9 Examples of Cocycle Codes
In this section, we give examples of sheaved d-complexes to which Theorems 8.1 and 8.2 can be
applied, and analyze the properties of the associated cocycle codes.

Some of the examples make use of simplicial complexes covered affine buildings, recalled in §3.5.

9.1 0-Cocycle Codes of Sheaves on Graphs

We begin by revisiting an example from the Overview section. Fix some m, k ∈ N with k
2 < m ≤ k,

let X be a k-regular graph, and let F be a finite field. Given v ∈ X(0), write E(v) for X(1)⊇v and
choose an injective F-linear map Tv : Fm → FE(v) ∼= Fk. We think of Cv := imTv as a code inside
FE(v) with alphabet F and denote its relative distance by δ(Cv). In §2.2, we defined a sheaf F on X
by setting F(v) = Fm and F(e) = F for all v ∈ X(0), e ∈ X(1), and resFe←v = Proje ◦ Tv — where
Proje : FE(v) → F is projection onto the e-component — whenever v ⊆ e. Putting Σ := Fm, we
form the 0-cocycle code Z0(X,F) inside C0(X,F) = ΣX(0) as in §7.3.

Proposition 9.1. With notation as above, suppose that X is an α-skeleton expander (α ∈ R+) and
ε := min{δ(Cv) | v ∈ X(0)} > α. Then the 0-cocycle code Z0(X,F) ⊆ ΣX(0) has rate ≥ 1− k

2m and
relative distance ≥ ε− α.
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Proof. We observed in §2.3 that (Xv,Fv) is a δ(Cv)-coboundary expander in dimension −1. The
claim about the relative distance is therefore a consequence of Corollary 8.13 and Proposition 7.8(i).
Dimension count implies that dimF Z

0(X,F) ≥ m|X(0)| − |X(1)| = |X(0)|(m− k
2 ), hence the lower

bound on the rate.

9.2 Cocycle Codes of Sheaves on Complexes Covered by Affine Buildings

In the following examples we put into use the fact that constant sheaves on finite spherical buildings
are good coboundary expanders.

Theorem 9.2. For every d ∈ N− {1}, there exists q ∈ N for which the following hold: Let Y be a
q-thick affine building, let k ∈ {0, . . . , d− 2}, let X be a (finite) simplicial complex covered by Y ,
and let F be a nonzero locally constant sheaf on X. Then:

(i) There are ε0, . . . , εk, ε
′
0, . . . , ε

′
k+1, λ ∈ R+, depending only on k and d, and Q ∈ N, depending

only on Y , such that the assumptions of Theorem 8.1 hold for (X,F).

(ii) There are β, β′, γ, γ′ ∈ R+, depending only on k and d, and δ, ε ∈ R+, depending only on Y ,
such that (X,F) β-expands γ-small locally minimal k-cochains, β′-expands γ′-small locally
minimal (k + 1)-cochains and is an (ε, δ)-coboundary expander in dimension k.

Proof. Part (ii) follows from (i) and Theorem 8.1. We turn to prove (i).
We claim that for every i ∈ {0, . . . , k}, there is εi > 0, depending only on d, such that (X,F) is

an i-local εi-coboundary expander in dimension k. Indeed, let z ∈ X(i). Since F is locally constant,
Fz is a constant sheaf on Xz. The link Xz is isomorphic to a proper link of Y , so it is a spherical
building of dimension d− i− 1. Thus, by Theorem 5.12(i), there exists εi > 0 (depending only on
dimXz) such that (Xz,Fz) is an εi-coboundary expander in dimensions k − i− 1.

A similar argument shows that there are ε′0, . . . , ε′k+1 ∈ R+, depending only on d, such that
(X,F) is an i-local ε′i-coboundary expander in dimension k + 1 for all i ∈ {0, . . . , k + 1}.

Take λ to be the maximal number for which the inequality in Theorem 8.1 holds. Let Q = D(Y );
it is finite because Y admits a strongly transitive action (see §3.5). Finally, set q = ⌈ 16

λ2 ⌉.
We claim that assumptions (1)–(5) of Theorem 8.1 hold for (X,F) with the parameters we have

chosen, provided that Y is q-thick. Indeed, assumptions (1) and (2) are immediate. Assumption (4)
holds because D(X) = D(Y ) (since Y covers X), and (5) holds because F is locally constant and
nonzero. To see that (3) holds, let z ∈ X(d− 2). Then Xz is isomorphic to a 1-dimensional link of
Y and is therefore a spherical building of dimension 1. By Theorem 3.4(i), Xz is a [−1, 4√

q ]-spectral
expander, and 4√

q ≤ λ by our choice of q.

Corollary 9.3. For every d ∈ N− {1}, there exists q ∈ N for which the following hold: Let Y be a
q-thick affine building, let k ∈ {0, . . . , d− 2}, let X be a (finite) simplicial complex covered by Y , let
F be a finite field, let F be a nonzero locally constant F-sheaf of dimension m on X and let B be an
F-basis of F (see Example 5.4).

(i) If k = 0, then there are δ, ε, η ∈ R+, depending only on Y , such that the 0-cocycle code
(Z0, C0,Φ) associated to (X,F) (see §7.3; the alphabet is Fm and the length is |X(0)|), is
2-query ε-locally testable of relative distance ≥ δ. Furthermore, it admits a decoding algorithm
able to correct an η-fraction of errors in O|F|,dimF (|X(0)|) operations.

(ii) If k > 0, then there are δ, ε, η ∈ R+ and r ∈ N, depending only on Y , k and dimF , such
that the X-side of the k-cocycle quantum CSS code C := (Zk, Zk, Ck,ΦX ,ΦZ) associated
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to (X,F , B) (see §7.4; the alphabet is F) has relative distance ≥ δ, is r-query ε-testable,
and admits a decoding algorithm able to correct an η-fraction of errors in O|F|,dimF (dimCk)
operations.

Proof. This follows from Theorem 9.2(ii) together with Propositions 7.8 and 7.11. Use Proposi-
tion 5.6(ii) and Remark 5.8(ii) in order to replace the weighted support norm ∥ · ∥ws with ∥ · ∥B.

For every q, d ∈ N, there are q-thick d-dimensional affine buildings Y which cover arbitrarily
large finite d-complexes X (see §13.2, for instance). Each of these quotients X admits an m-
dimensional locally constant F-sheaf F , e.g., the constant sheaf Fm on X. Choosing q large
enough in advance and fixing Y and m, Corollary 9.3(i) says that the 0-cocycle codes of the form
(Z0(X,F), C0(X,F) ∼= (Fm)X(0),Φ) are an infinite family of 2-query LTCs with linear distance on
the alphabet Σ = Fm. Unfortunately, the rate of these codes is very poor — at most 1

|X(0)| —,
because dimF H0(X,F) ≤ dimF = m by Lemma 4.17.

If, instead of considering 0-cocycle codes, we fix k ∈ {1, . . . , d− 2} and m := dimF , and look at
the k-cocycle quantum CSS codes associated to (X,F , B), with B being some F-basis of F , then,
by Corollary 9.3(ii), we get an infinite family of quantum CSS codes whose X-side is locally testable
and has linear distance. The rate of these quantum CSS codes is 1

|X(k)| dimF Hk(X,F). Very little
is known about dimF Hk(X,F), but experts expect that it is polylogarithmic in |X(k)| and linear in
the fixed parameter m = dimF .

Returning to the case of 0-cocycle codes, as demonstrated in §9.1, it is possible to obtain larger
rates by considering sheaves that are not locally constant. We now give such an example.

Construction 9.4. Let X be a d-complex (d ≥ 1), let F be a locally constant sheaf on X, and
let E ⊆ C1(X,F) be an abelian subgroup. For every edge e ∈ Xord(1), let E(e) be the image of E
under the projection from ∏

x∈Xord(1)F(x) to F(e). The abelian group E(e) ⊆ F(e) is independent
of the ordering on e, so it makes sense to discuss E(e) for unordered edges e ∈ X(1). We define a
subsheaf CE of F by letting

CE(x) =
∑

e∈X(1)⊆x

resx←eE(e).

for all x ∈ X.

Note that CE(v) = 0 for all v ∈ X(0), because v contains no edges. The subsheaf CE can be
characterized as the smallest subsheaf of F for which E ⊆ C1(X, C).

We will be interested in the quotient sheaf F := F/CE when F is a locally constant F-sheaf
of dimension m and E is an F-subspace of C1(X,F). In this case, CE and F are F-sheaves. For
every v ∈ X(0), we have F(v) = F(v)/0 ∼= Fm, so we may consider Z0(X,F) as a code inside
C0(X,F) = (Fm)X(0), the alphabet being Fm. As we now show, when X is covered by a sufficiently
thick affine building, and E is small and in general position, the 0-cocycle code of (X,F) is locally
testable and has linear distance. The rate of this code depends on the choice of E and will be
studied in Chapter III.

Theorem 9.5. Let d ∈ N−{1}. There exists q ∈ N such that, for every Y and X as in Theorem 9.2
(resp. Corollary 9.3), the conclusions of Theorem 9.2 (resp. Corollary 9.3(i)) continue to hold with
k = 0 (but with possibly different expansion constants) if the sheaf F is a replaced by any sheaf
of the form F = F/CE, where CE is as in Construction 9.4, and the subgroup (resp. F-subspace)
E ⊆ C1(X,F) satisfies the following conditions:

(a1) For every v ∈ X(0), the map
∑
e res−1

e←v : ⊕
eE(e) → F(v), with e ranging over X(1)⊇v, is

injective.
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(a2) For every triangle t ∈ X(2) with edges e, e′, e′′, we have E(e)|t ⊆ E(e′)|t + E(e′′)|t.

Example 9.6. Condition (a2) of Theorem 9.2 holds if E ⊆ Z1(X,F). Indeed, let t ∈ Xord(2) and
let e, e′, e′′ denote the ordered edges, obtained by removing the 0-th, 1-st and 2-nd vertex of t,
respectively. Then for every f ∈ E(e), there is f̂ ∈ E such that f̂(e) = f . Since E ⊆ Z1(X,F), we
have d1f̂(t) = 0, which means that f |t = f̂(e)|t = f̂(e′)|t − f̂(e′′)|t ∈ E(e′)|t + E(e′′)|t. This shows
that E(e)|t ⊆ E(e′)|t + E(e′′)|t.

Condition (a1) typically holds if dimE ·D0,1(X) ≤ dimF is E is chosen uniformly at random.
We make this precise in Proposition 12.4(ii) below.

We first prove the following lemma:

Lemma 9.7. Let X, F , E and C := CE be as in Construction 9.4 and assume that conditions
(a1) and (a2) of Theorem 9.5 hold. Let v ∈ X(0) and write A = F(v). For every u ∈ X(1)v, put
Au = res−1

u∪v←v(E(u ∪ v)) ⊆ A, and for every x ∈ Xv, define C′(x) = ∑
u∈Xv(0)⊆x

Au. Then:

(i) C′ is a subsheaf of the augmented sheaf A+ on Xv, and the summation map
⊕

u∈Xv(0)Au → A
is injective.

(ii) (F/C)v ∼= A+/C′ as sheaves on Xv.

Proof. (i) That C′ is a subsheaf of A+ is straightforward, and the injectivity of ⊕
u∈Xv(0)Au → A is

a direct consequence of (a1).
(ii) Write F = F/C. Then Fv = Fv/Cv. For every x ∈ Xv, we have

resx∪v←v(C′(x)) =
∑

y∈Xv(0)⊆x

resx∪v←v(Ay) =
∑

y∈Xv(0)⊆x

resx∪v←v res−1
y∪v←v(E(y ∪ v))

=
∑

y∈Xv(0)⊆x

resx∪v←y∪v(E(y ∪ v)) =
∑

e∈X(1):v⊆e⊆x∪v
resx∪v←e(E(e))

⊆ C(x ∪ v) = Cv(x).

This allows us to define φx : A+(x)/C′(x)→ F ′v(x) = Fv(x)/Cv(x) by φx(f +C′(x)) = resx∪v←v(f) +
Cv(x) for all f ∈ A. It is routine to check that φ := (φx)x∈Xv : A+/C′ → F ′v is a morphism of
sheaves. It remains to prove that each φx is bijective, or equivalently, that resx∪v←v(C′(x)) = Cv(x).
We already observed that the left hand side is contained in the right hand side. Proving the reverse
inclusion amounts to showing that for every x ∈ X⊇v and e ∈ X(1)⊆x, we have resx←eE(e) ⊆∑
y∈X(1):v⊆y⊆x resx←y E(y).

Fix x ∈ X⊇v, e ∈ X(1)⊆x and f ∈ resx←eE(e). Then there is g ∈ E(e) such that f = resx←e(g).
If v ⊆ e, then f ∈

∑
y∈X(1):v⊆y⊆x resx←y E(y). Otherwise, t := e ∪ v ∈ X(2). Let e′ and e′′ be the

edges of t different from e. Then v ⊆ e′ and v ⊆ e′′. By (a2), there are f ′ ∈ E(e′) and f ′′ ∈ E(e′′)
such that g|t = f ′|t + f ′′|t. This means that f = g|x = f ′|x + f ′′|x ∈

∑
y∈X(1):v⊆y⊆x resx←y E(y),

which is what we want.

Proof of Theorem 9.5. Write C = CE . The argument is similar to the proof of Theorem 9.2.
We first show that if q is sufficiently large, then there exists ε′0 > 0, not depending on q, such

that (X,F) is a 0-local ε′0-coboundary expander in dimension 1. Let v ∈ X(0). Then Xv is a
q-thick spherical building of dimension d− 1, and Lemma 9.7 and conditions (a1), (a2) say that
Fv is isomorphic to a sheaf as in Theorem 5.13. Thus, (Xv,Fv) is a ε′-coboundary expander in
dimension 0 for ε′ = 2(d−1)

5(d−1)+2 −Od(
1√
q ). Taking q large enough in advance, we get that (Xv,Fv) is

a 1
4 -coboundary expander in dimension 0, so ε′0 = 1

4 suffices.
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Next, we claim that (X,F) is a 1-local ε′1-coboundary expander in dimension 1 for ε′1 = 1
2 .

Let e ∈ Xord(1) and let f ∈ Fe(∅) = F(e) = F(e)/E(e); we shall freely regard f as a member of
C−1(Xe,Fe). Fix some 0-face v of e. Then, for every t ∈ X(2)⊇e, we have f |t = f +C(t). Thanks to
(a2), we have C(t) = E(e)|t +E(v ∪ (t− e))|t. Thus, by condition (a1) and the assumption that F is
locally constant, f |t = 0 if and only if f ∈ (E(e) +E(v ∪ (t− e)))/E(e). Condition (a1) also means
that (E(e) +E(v ∪ (t− e)))∩ (E(e) +E(v ∪ (t′ − e))) = E(e) for every t′ ∈ X(2)⊇e different from t,
so we can have f |t = 0 for at most one t ∈ X(2)⊇e. This means that supp(d−1f) ⊇ Xe − {t− e} for
some t ∈ X(2)⊇e, so (Xe,Fe) is a (1− ξ)-coboundary expander for ξ = max{wXe(u) |u ∈ Xe(0)}.
Writing z = e − v, equation (3.3) gives wXv (u ∪ z) = 2wXv (z)wXe(u) for every u ∈ Xe. Thus,
ξ = max{1

2wXv (u ∪ z)wXv (z)−1 |u ∈ Xe(0)}. Since Xv is a q-thick spherical building of dimension
d − 1, [FK21, Lemma 7.5] says that ξ ≤ 1

2 ·
2

q+d−1 = 1
q+d−1 . This means that (X,F) is a 1-local

(1− 1
q+d−1)-coboundary expander in dimension 1, and the claim follows since d ≥ 2 and q ≥ 1.

As similar argument shows that if q is large enough, then there is ε0 > 0, not depending on q,
such that (X,F) is a 0-local ε0-coboundary expander in dimension 0. Briefly, one similarly finds that
this holds for ε0 = 1− ζ with ζ = max{wXv (z) | v ∈ X(0), z ∈ Xv(0)}, and by [FK21, Lemma 7.5],
ζ ≤ 2

q+d−1 , because X is q-thick.
Now that ε′0, ε′1, ε0 have been determined, define λ to be the largest real number for which the

inequality of Theorem 8.1 holds, and proceed as in the proof of Theorem 9.2.

Remark 9.8. In Theorems 9.2 and 9.5, the lower bound on the thickness of the building Y can
be lowered by using part (ii) of Theorem 5.12 instead of part (i) whenever possible, and by using
Corollary 8.15 instead of Theorem 8.1 when k = 0. If X is moreover assumed to be a 2-dimensional
Ramanujan complex (in the sense of [CSŻ03], [LSV05a]), then the lower bound on the required
thickness can be further lowered by using Proposition 3.5 instead of Theorem 3.4.

9.3 Good 1-Cocycle Codes

We finish this section by giving examples of 1-cocycle codes with linear distance and constant rate.
We do not know if these codes are locally testable relative to their natural 3-tester.

Construction 9.9. Let X be a connected d-complex (d ≥ 2) and assume that there are Q ∈ N,
λ ∈ [−1, 1] and κ ∈ [1, 2] such that

(1) every 0-face of X is contained in exactly Q edges,

(2) the weighted graph underlying Xv is a [−1, λ]-spectral expander for every v ∈ X(0),

(3) κ−1w(e) ≤ w(e′) ≤ κw(e) for every e, e′ ∈ X(1) sharing a vertex.

Fix integers 0 < r < m such that κ
Q < r

m < 2
Q . Let F be a finite field and let F be a locally constant

F-sheaf of dimension m. Suppose that, for every edge e ∈ X(1), we are given an (m− r)-dimensional
subspace U(e) ⊆ F(e), and that these subspaces are in general position in the following sense:

(4) For every v ∈ X(0) and any S ⊆ X⊇v with |S|r ≥ m, we have ⋂
e∈S res−1

e←v U(e) = 0.

Define a subsheaf G of F by setting

• G(v) = 0 for every v ∈ X(0),

• G(e) = U(e) for every e ∈ X(1),

• G(x) = F(x) for every x ∈ X of dimension > 1.
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Since dimF G(e) = m− r for all e ∈ X(1), we may form the 1-cocycle code of (X,G) as in §7.3; its
alphabet is Σ := Fm−r.

Remark 9.10. (i) If the subspaces U(e) are chosen uniformly at random, then the probability that
condition (4) will hold for particular v and S is at least ∏m

i=1(1− |F|−i) > 1− 2|F|−1. In particular,
the probability that this holds for all e and S is at last 1 − |X(0)|2Q+1|F|−1. This means that
we can find subspaces {U(e)}e∈X(1) as in (3) if |F| > |X(0)|2Q. (This bound can be improved to
|F| > poly(Q) with a little more work.)

(ii) Conditions (1)–(4) of Construction 9.9 are local in the sense that they involve only the
proper links of X. As a result, if p : Y → X is a covering and F and {U(e)}e∈X(1) are as in
Construction 9.9, then (1)–(4) hold for Y , the sheaf p∗F (see §4.3) and the subspaces {U(e′)}e′∈Y (1)
defined by U(e′) = U(p(e)).

Theorem 9.11. With notation as in Construction 9.9, suppose that

λ ≤ min{1
6(1

4(1− λ)(1− κ/Q

r/m
)− λ)2(1− λ), 1

4(1− λ)(1− κ/Q

r/m
)}.

Then there exists δ > 0, depending on Q,λ, r,m, κ and D(X), such that the 1-cocycle code associated
to (X,G) has relative distance ≥ δ. The rate of this code is ≥ 2

Q −
r
m − |X(1)|−1.

Proof. Note that B1(X,G) = 0. Thus, by Proposition 7.8(i), in order to prove the lower bound on
the relative distance, it is enough to show that (X,G) β-expands γ-small locally minimal 1-cochains
for some β, γ ∈ R+ depending only on Q,λ, r,m, κ. To that end, we apply Corollary 8.14 to (X,G).

The fact that G is a subsheaf of the locally constant sheaf F implies that all of the restriction
maps resGy←x are injective, so (X,G) is a 1-local 1-coboundary expander in dimension 1.

We claim that (X,G) is a 0-local ε0-coboundary expander in dimension 1 for ε0 = (1−λ)(1− κ/Q
r/m).

To see this, fix v ∈ X(0). Then Gv is a subsheaf of Fv. Since F is locally constant of dimension
m, we have Fv ∼= (Fm)+, so we may assume that Fv = (Fm)+. In particular, we view U(v ∪ u)
as a subspace of Fm for every u ∈ Xv. Let f ∈ C0(Xv,Gv). We need to show that ∥d0f∥ ≥
ε0∥f +B0(Xv,Gv)∥ = ε0∥f∥. If ∥d0f∥ ≥ ε0, then this is clear, so assume ∥d0f∥ < ε0. Assumption
(2) and Theorem 5.11 imply that (Xv,Fv) is a (1 − λ)-coboundary expander in dimension 0, so
there is g ∈ B0(Xv,Fv) = B0(Xv, (Fm)+) such that ∥f − g∥ ≤ (1 − λ)−1∥d0f∥ < ε0(1 − λ)−1.
There is g0 ∈ Fm such that g(u) = g0 for all u ∈ Xv(0). Put S = {u ∈ Xv(0) : f(u) = g0}.
Then wXv (S) > 1− (1− λ)−1ε0 = κ/Q

r/m . Now, assumption (3) implies that |S| > m
r , so by (4), we

have ⋂
u∈S U(v ∪ u) = 0. Since g0 ∈

⋂
u∈S U(v ∪ u), we must have g = 0, and ∥f∥ = ∥f − g∥ ≤

(1− λ)−1∥d0f∥. This means that ε0∥f∥ ≤ (1− λ)∥f∥ ≤ ∥d0f∥, as required.
Next, assumption (2) implies that X is a 1-local λ-skeleton expander (see §3.4). Combining

(2) with Oppenheim’s Trickling Down Theorem [Opp15, Theorem 1.4], we see that the underlying
weighted graph of X is a [−1, λ

1−λ ]-spectral expander, so X is a λ
1−λ -skeleton expander.

Plugging everything into Corollary 8.14 now gives the existence of γ and β; the inequalities in
the corollary hold by our assumptions on λ.

To finish, we show that the rate of Z0(X,G) is at least 2
Q −

r
m − |X(1)|−1. This is equivalent to

showing that dimF Z
0(X,G) ≥ |X(1)|m · ( 2

Q −
r
m −

1
|X(1)|). Observe that

dimB1(X,F) = dimC0(X,F)− dimZ0(X,F) ≥ |X(0)|m−m = |X(1)|m · 2
Q
−m,

where the inequality follows from Lemma 4.17 and the last equality follows from assumption (1).
On the other hand, dimC1(X,G) = |X(1)|(m− r) = |X(1)|m · (1− r

m). Since Z1(X,G) contains
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C1(X,G) ∩B1(X,F) and the intersection takes place in the ambient space C1(X,F), of dimension
|X(1)|m, it follows that

dimZ1(X,G) ≥ |X(1)|m · (( 2
Q
− 1
|X(1)|) + (1− r

m
)− 1) = |X(1)|m · ( 2

Q
− r

m
− 1
|X(1)|).

Remark 9.12. The pair (X,G) does not satisfy the assumptions of Theorem 8.1 with k = 1,
so we cannot assert that (X,G) is an (ε, δ)-cosystolic expander in dimension 1 for some ε, δ > 0.
Indeed, (X,G) is not a 1-local ε-coboundary expander in dimension 2 for every ε > 0, because
H0(Xe,Ge) ∼= F(e)/U(e) ̸= 0 for all e ∈ X(1). Consequently, we cannot assert that the 1-cocycle
code of (X,G) (with its natural 3-tester) is µ-testable for µ > 0 independent of (X,G). We do not
know if such codes are good LTCs in general.

We finish with explaining how to get an infinite family of good 1-cocycle codes using Theorem 9.11.

Example 9.13. Let Y be the affine building of SL3(F ), where F is a local field with residue field of
q elements; it is a 2-dimensional building of type Ã2. It is well-known that one can find a sequence
of simplicial complexes {Xs}s∈N∪{0} covered by Y and such |Xs| tends to ∞ with s and such that
each Xs covers X0; see [LSV05a] for explicit constructions, or §13.2 below. For every v ∈ Y , the
link Yv is isomorphic to the spherical building A2(Fq) of Example 3.3. This implies readily that,
for every s ∈ N ∪ {0}, every 0-face of Xs is contained in exactly 2(q2 + q + 1) edges, every edge
of Xs is contained in exactly q + 1 triangles, and (Xs)v is the incidence graph of the projective
plane over Fq for every v ∈ Xs(0). Thus, conditions (1)–(3) of Construction 9.9 hold for X = Xs

with Q = 2(q2 + q + 1), λ =
√
q

q+1 and κ = 1. Let m = ⌊3
4Q⌋ and r = 1, and let Fs denote the

constant sheaf Fm on Xs. By Remark 9.10(i), for a sufficiently large finite field F, there is a choice
of subspaces {U(e)}e∈X0(1) for which condition (4) holds with (X,F) = (X0,F0). Part (ii) of that
remark then implies that a choice of U(e)-s satisfying (4) exists for every (Xs,Fs); let Gs denote
the sheaf from Construction 9.9 constructed using this data. Note that λ tends to 0 as q tends
to ∞. Thus, if q is sufficiently large, then Theorem 9.11 says that the family of 1-cocycle codes
{Z1(X,Gr) ⊆ C1(X,Gr)}r∈N on the alphabet Σ := Fm−1 has linear distance and constant rate.

10 Rate Conservation
Throughout this section, F denotes a finite field of characteristic p > 0. Let X be a d-complex, let
k ∈ {0, . . . , d− 1}, let F be an F-sheaf on X, and let B be a F-basis of F (see Example 5.4). Recall
from Section 7 that if Bk(X,F) = 0 and dimF(x) = m for all x ∈ X(k), then (X,F) gives rise to a
k-cocycle code Zk(X,F) ⊆ Ck(X,F) ∼= ΣX(k) with alphabet Σ = Fm. If k > 0 and Bk(X,F) ̸= 0,
then (X,F , B) gives rise to k-cocycle quantum CSS code with alphabet F. In either case, the rate
of the code is the ratio dim Hk(X,F)/ dimCk(X,F).

Let u : Y → X be a covering. Then the pullback sheaf u∗F similarly gives rise to a k-cocycle code-
with-tester or a k-cocycle quantum CSS code. (Note that Bk(X,F) = 0 implies Bk(Y, u∗F) = 0.)
In general, there is no relation between the rates of the k-cocycle codes associated to (X,F) and
(Y, u∗F). However, in this section, we will show that under some assumptions on u and (X,F), we
can guarantee that the rate dim Hk(Y, u∗F)/ dimCk(Y, u∗F) is bounded from below by a constant
depending only on X and F . This principle, formalized as Theorem 10.3, will be called rate
conservation in the sequel.

We begin with two lemmas. The cyclic group of order n is denoted Cn. We will make extensive
use of Cn-Galois coverings in the sense §3.3. For example, every double covering is a C2-Galois
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covering and vice versa (Example 3.2(i)). Recall (§4.2) that if F is an F-sheaf on X, then hk(F) or
hk(X,F), denotes dimF Hk(X,F).

Lemma 10.1. Let p be a prime number, let u : Y → X be a Cp-Galois covering of simplicial
complexes, let F be a field of characteristic p, and let F be an F-sheaf. Then there exists a sequence
of subsheaves

0 = F0 ⊆ F1 ⊆ · · · ⊆ Fp = u∗u
∗F

such that Fi/Fi−1 ∼= F for all i ∈ {1, . . . , p}.

The proof of the lemma is shorter and more elementary when p = 2. To help the reader, we
decided to address this special case before proving the lemma in general.

Proof when p = 2. Put F2 = u∗u
∗F and let F0 be the zero subsheaf of F2. For every x ∈ X−{∅}, we

have F2(x) = u∗u
∗F(x) = ∏

y∈u−1(x) u
∗F(y) = ∏

y∈u−1(x)F(x) ∼= F(x)×F(x). Fix an isomorphism
F2(x) ∼= F(x)×F(x) for every x. If y ∈ X⊇x−{x}, then the restriction map resF2

y←x : F(x)×F(x)→
F(y)×F(y) is either resFy←x× resFy←x, or resFy←x× resFy←x followed by swapping the two copies of
F(y). This observation allows us to define a subsheaf F1 of F2 by setting F1(x) = {(f, f) | f ∈ F(x)}
for all x ∈ X − {∅}.

For every x ∈ X−{∅}, define φx : F(x)→ F1(x) and ψx : F2(x)/F1(x)→ F(x) by φx(f) = (f, f)
and ψx((f, g) +F1(x)) = f − g. Using the assumption charF = 2, it is straightforward to check that
φ = (φx)x∈X−{∅} and ψ = (ψx)x∈X−{∅} determine isomorphisms of sheaves φ : F → F1 = F1/F0
and ψ : F2/F1 → F , hence the lemma.

Proof for general p. Let g denote a generator of the group Cp and let FCp = F[g | gp = 1] denote the
group algebra of Cp. Let I be the augmentation ideal of FCp, i.e., I = (g− 1)FCp. Since charF = p,
we have Ip = 0 (because (g− 1)p = gp− 1p = 0). In fact, one readily checks that dimF I

n = p−n for
all n ∈ {0, . . . , p}. The quotient FCp-module In/In+1 is spanned as an F-vector space by (g−1)n, and
g acts trivially on In/In+1 because, for every a ∈ In, we have ga− a = (g− 1)a ∈ (g− 1)In = In+1.
In what follows, all tensor products are over F.

For every x ∈ X − {∅}, choose some x̂ ∈ Y with u(x̂) = x. Since u : Y → X is a Cp-Galois
covering, u−1(x) = {τ x̂ | τ ∈ Cp}. As a result, for every y ∈ X⊇x, there is a unique element cy,x ∈ Cp
such that cy,xx̂ ⊆ ŷ. This also allows us to identify u∗u∗F(x) = ∏

x′∈u−1(x)F(x) with FCp ⊗F F(x)
via sending (fx′)x′∈u−1(x) to ∑

τ∈Cp
τ⊗fτx̂. The restriction map resu∗u∗Fy←x : FCp⊗F(x)→ FCp⊗F(y)

is then given by a⊗ f 7→ ac−1
y,x ⊗ (resFy←x f).

For n ∈ {0, . . . , p}, let Fn denote the subsheaf of u∗u∗F determined by Fn(x) = Ip−n⊗F(x). Fix
n ∈ {1, . . . , p}. For every x ∈ X −{∅}, define φx : F(x)→ Fn(x)/Fn−1(x) ∼= (Ip−n/Ip−n+1)⊗F(x)
by φx(f) = ((g − 1)p−n + Ip−n+1)⊗ f . This is an F-vector space isomorphism. Moreover, since g,
and thus all elements of Cp, act trivially on Ip−n/Ip−n+1, we have φy ◦ resFy←x = resFn/Fn−1

y←x ◦φx
whenever ∅ ̸= x ⊊ y ∈ X. This means that φ = (φx)x∈X−{∅} : F → Fn/Fn−1 is a an F-sheaf
isomorphism, and the lemma follows.

Lemma 10.2. Let p be a prime number, let u : Y → X be a Cp-Galois covering of simplicial
complexes, let F be a field of characteristic p, let F be an F-sheaf, and let k ∈ N∪ {0}. Suppose that
Hk−1(X,F) = 0 (this always holds for k = 0). Then

(i) Hk−1(Y, u∗F) = 0, and

(ii) hk(Y, u∗F)− hk+1(Y, u∗F) ≥ p(hk(X,F)− hk+1(X,F)).
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Proof. Let {Fi}pi=0 be the sequence of sheaves from Lemma 10.1, and put Ni = dim Hk(X,Fi)−
dim Hk+1(X,Fi). We will show by increasing induction on i ∈ {1, . . . , p} that Hk−1(X,Fi) = 0 and
Ni ≥ iN1. Provided this holds, taking i = p and applying Lemma 4.11 to Fp = u∗u

∗F gives (i) and
(ii).

The case i = 1 follows from the assumptions of the lemma, because F1 ∼= F .
Suppose that i > 1 and we have shown that Hk−1(X,Fi−1) = 0 and Ni−1 ≥ (i − 1)N1. The

inclusion Fi−1 ⊆ Fi gives rise to a short exact sequence 0→ Fi−1 → Fi → Fi/Fi−1 → 0, and thus
to a long exact sequence of cohomology groups (see §4.2):

· · · →Hk−1(X,Fi−1)→ Hk−1(X,Fi)→ Hk−1(X,F)
→Hk(X,Fi−1)→ Hk(X,Fi)→ Hk(X,F)
→Hk+1(X,Fi−1)→ Hk+1(X,Fi)→ Hk+1(X,F)→ · · ·

Here, we substituted Fi/Fi−1 with the isomorphic sheaf F . Since both Hk−1(X,Fi−1) and
Hk−1(X,F) are 0, so is Hk−1(X,Fi). Write V = coker(Hk+1(X,Fi)→ Hk+1(X,F)). Then we have
a 7-term exact sequence

0→ Hk(X,Fi−1)→ Hk(X,Fi)→ Hk(X,F)
→ Hk+1(X,Fi−1)→ Hk+1(X,Fi)→ Hk+1(X,F)→ V → 0

This means that

hk(Fi−1)− hk(Fi) + hk(F)− hk+1(Fi−1) + hk+1(Fi)− hk+1(F) + dimV = 0,

and by rearranging, we get

Ni = Ni−1 +N1 + dimV ≥ (i− 1)N1 +N1 = iNi.

Theorem 10.3 (Rate Conservation). Let p be a prime number and let F be a field of characteristic
p. Let X be a simplicial complex of dimension d, let k ∈ {0, . . . , d} and let F be an F-sheaf on X
such that

hk−1(X,F) = 0 and hk(X,F) > hk+1(X,F).

Put
ρ = (hk(X,F)− hk+1(X,F))/ dimCk(X,F).

Let u : Y → X be a covering map of degree pr such that u factors as Y = Xr → Xr−1 → · · · →
X0 = X and each map Xi → Xi−1 is a Cp-Galois covering. Then:

(i) hk(Y, u∗F)− hk+1(Y, u∗F) ≥ ρ dimCk(Y, u∗F).

(ii) The rate of the k-cocycle code of (Y, u∗F) (resp. the k-cocycle quantum CSS code associated to
(Y, u∗F) and some basis of u∗F) is at least ρ.

Proof. Let ui denote the composition Xi → · · · → X0 = X. Applying Lemma 10.2 to the covering
Xi → Xi−1 and the sheaf u∗i−1F with i ranging from 1 to r shows that hk(Y, u∗F)−hk+1(Y, u∗F) ≥
pr(hk(X,F) − hk+1(X,F)) ≥ prρdimCk(X,F). Since dimCk(Y, u∗F) = pr dimCk(X,F), this
means that hk(Y, u∗F)−hk+1(Y, u∗F) ≥ ρ dimCk(Y, u∗F). This proves (i), and (ii) follows because
dimZk(Y, u∗F) ≥ hk(u∗F) ≥ hk(u∗F)− hk+1(u∗F).

65



11 What Is Required to Construct an Infinite Family of LTCs?
We now put together the local-to-global principle for cosystolic expansion (Theorem 8.1) and the
Rate Conservation Theorem (Theorem 10.3) to give a recipe for constructing infinite families of
low-query LTCs with linear distance and constant rate. This is the tower paradigm outlined in
Section 2.

Theorem 11.1 (Tower Paradigm). Let p be a prime number and let F be a finite field of characteristic
p. Let X be a strongly connected d-complex, let k ∈ {0, . . . , d− 2} and let F be an F-sheaf on X.
Suppose that there is m ∈ N such that F(x) = Fm for all x ∈ X(k), that Bk−1(X,F) = 0 (e.g., if
k = 0), that F(x) ̸= 0 for all x ∈ X(k + 1) ∪X(k + 2), and the following conditions are met:

(t1) X admits an infinite tower of connected Cp-Galois coverings · · · → X2 → X1 → X0 = X (i.e.,
Xr → Xr−1 is a Cp-Galois covering for all r ∈ N).

(t2) There exist numbers ε0, . . . , εk, ε
′
0, . . . , ε

′
k+1, λ ∈ R+ satisfying the inequality of Theorem 8.1

and such that

(t2-a) (X,F) is an i-local εi-coboundary expander in dimension k for all i ∈ {0, . . . , k},
(t2-b) (X,F) is an i-local ε′i-coboundary expander in dimension k + 1 for all i ∈ {0, . . . , k + 1},

and
(t2-c) X is a (d− 2)-local [−1, λ]-spectral expander.

(t3) dim H0(X,F) > dim H1(X,F).

Write ur for the composition Xr → Xr−1 → · · · → X0 = X, put Fr = u∗rF and Σ = Fm, and let

(Zk(Xr,Fr), Ck(Xr,Fr) = ΣXr(k),Φr)

denote the k-cocycle code of (Xr,Fr) with its natural tester (§7.3). Then {(Zk(Xr,Fr),ΣXr(k),Φr)}r≥0
is a family of (k + 2)-query LTCs with linear distance and constant rate. Moreover, there is η > 0
such that every code in the family admits a linear-time decoding algorithm able to correct up to an
η-fraction of errors.

If only conditions (t1) and (t2) are met, then {(Zk(Xr,Fr),ΣXr(k),Φr)}r≥0 is a family of LTCs
with linear distance and the codes admit a decoding algorithm as above. If only conditions (t1) and
(t3) are met, then the codes {(Zk(Xr,Fr),ΣXr(k))}r≥0 have constant rate.

By default, we will assume that k = 0 when talking about the tower paradigm. In this special
case, Theorem 11.1 gives a recipe for getting an infinite family of 2-query LTCs with linear distance
and constant rate.

Proof. Condition (t3) and Theorem 10.3 imply that the rate of the codes {(Zk(Xr,Fr),ΣXr(k))}r≥0
is bounded from below by some ρ > 0. The remaining assertions follow from Proposition 7.8
and Theorem 8.1, provided that conditions (1)–(5) of Theorem 8.1 hold for every (Xr,Fr) with
ε0, . . . , εk, ε

′
0, . . . , ε

′
k+1, λ as in (t2) and Q = D(X). These conditions hold for (X,F) by our

assumptions, so they also hold for (Xr,Fr) by Remark 8.3(iv).

Remark 11.2. In Theorem 11.1, it is possible to replace (t2) and the connectivity assumption
in (t1) with milder assumptions by using Theorem 8.11 and its corollaries instead of Theorem 8.1
in the proof. Specifically, in the case k = 0, if we use Corollary 8.15 instead of Theorem 8.1, then
we can replace (t1) and (t2) with the following: There are α−1, α0, ε0, ε

′
0, ε
′
1 ∈ R+ satisfying the

inequalities Corollary 8.15 such that
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(t1′) X admits an infinite tower of Cp-Galois coverings · · · → X2 → X1 → X0 = X, and each Xr is
an α−1-skeleton expander.

(t2′) (X,F) is a 0-local ε0-coboundary expander in dimension 0, an i-local ε′i-coboundary expander
in dimension 1 for i ∈ {0, 1} and a 0-local α0-skeleton expander.

Thanks to Theorem 11.1, the problem of constructing an infinite family of good 2-query LTCs
reduces to the following question:

Question 11.3. Is there a sheaved d-complex (X,F) satisfying conditions (t1)–(t3) of Theorem 11.1
with k = 0?

Note that we only need a single pair (X,F) satisfying (t1)–(t3) with k = 0; we will refer to such
pairs as initial data for the tower paradigm. Note also that once a candidate (X,F) is presented,
conditions (t2) and (t3) can be checked by computation, and only condition (t1) needs a theoretical
proof.

Finding initial data for the tower paradigm is the subject matter of Chapter III, where we reduce
the problem to an experiment-supported conjecture and the existence of certain arithmetic groups.
We also show in §14.2 that any two of the conditions (t1)–(t3) are fulfilled for some pair (X,F).
Alas, Question 11.3 remains open.

We finish this section by explaining why simplicial complexes with a locally constant sheaf (see
§4.5) cannot serve as initial data for the tower paradigm. Note first that if F is a nonzero locally
constant sheaf on X, then the assumption Bk(X,F) = 0 of Theorem 11.1 is satisfied only if k = 0.
The following proposition says that in this case, conditions (t1) and (t3) cannot hold simultaneously.

Proposition 11.4. Let X be a d-complex, let F be a field of characteristic p > 0, and let F be
a locally constant F-sheaf on X. Suppose that X admits an infinite tower of connected Cp-Galois
coverings · · · → X2 → X1 → X0 = X. Then dim H0(X,F) ≤ dim H1(X,F).

Proof. Write ur for the map Xr → · · · → X1 → X and put Fr = u∗rF . Then Fr is locally constant
of dimension dimF . Since Xn is connected, Lemma 4.17 tells us that h0(Xr,Fr) ≤ dimFr = dimF .
Now, if it were the case that h0(X,F) > h1(X,F), then Theorem 10.3 would imply that h0(Xr,Fr)
tends to ∞ as r →∞, which contradicts our previous conclusion that h0(Xr,Fr) ≤ dimF for all r.
Thus, we must have h0(X,F) ≤ h1(X,F).

Remark 11.5. There is an analogue of Theorem 11.1 for quantum CSS codes. That is, we can
impose conditions similar to (t1)–(t3) on a sheaved d-complex (X,F) that would give rise to an
infinite family of one-sided locally testable quantum CSS codes that have constant rate, linear
X-distance, and whose X-side has a linear-time decoding algorithm able to correct a constant-
fraction of errors. Simply assume k > 0, drop the assumption Bk(X,F) = 0, and replace the use of
Proposition 7.8 with Proposition 7.11.

Unlike the case of LTCs, it is seemingly possible for d-complexes with locally constant sheaves
to satisfy the required conditions.
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Chapter III

Toward Initial Data for The Tower
Paradigm

Having the tower paradigm (Theorem 11.1 with k = 0) at our disposal to produce good 2-query
LTCs, we now set to look for sheaved complexes (X,F) satisfying its three prerequisites (t1)–(t3)
(with k = 0). We only need one such pair. The purpose of this chapter is to construct sheaved
complexes which satisfy (t1) (existence of an infinite tower), (t2) (local expansion conditions) and
conjecturally also (t3) (rate conservation). While (t3) could be checked by computation, such a
computation is beyond the reach of present computers because of the sheer size of X and F .

In more detail, our approach to constructing initial data for the tower paradigm starts with a
d-complex X and a locally constant F-sheaf F on X of a large (but ultimately fixed) dimension.1
As in §4.2, we abbreviate

hi(F) = dim Hi(X,F).
In Section 12, we present an iterative process taking F and producing a subsheaf C of F such that
F := F/C is a (non-locally constant) sheaf with h0(F) > h1(F), that is, it satisfies the requirement
(t3). We show that if the resulting subsheaf C of F — which grows with each iteration of the process
— is “small” with respect to F , then (X,F) will satisfy the local expansion conditions in (t2) when
(X,F) satisfies them. (We could also terminate the process while C is still “small” to secure (t2),
and hope that it suffices to get (t3).) Choosing X in advance so that it has an infinite tower of
connected double coverings would secure (t1).

Broadly speaking, we expect the process to converge quickly enough when h1(F) is small with
respect to dimF . We conjecture that this is indeed the case when X is covered by a sufficiently
thick affine building (Conjecture 12.9). We show in Theorems 12.10 and ?? that there are simplicial
complexes covered by affine buildings which admit F2-sheaves F of arbitrarily large dimension such
that h1(F) = o(dimF) (even h1(F) = O(1) or h1(F) = 0, in some cases). Thus, if our conjecture
holds for just one such X, then there is an F2-sheaf F on X such that if we feed it into our process
to produce F = F/C, then (X,F) satisfies the requirements (t1)–(t3) of the tower paradigm. In
particular, (X,F) gives rise to an infinite family of 2-query LTCs with constant rate and linear
distance.

We also give strong evidence that if the kernel of the cup product ∪ : H1(X,F)⊗F H1(X,F)→
H2(X,F) (see §4.6) is of dimension smaller than h0(F), then the iterative process stops quickly
enough (after one step, in fact). Assuming this, we show that if a sheaf satisfying the said condition
exists over a simplicial complex X covered by a sufficiently thick affine building, then there is a
locally constant sheaf F ′ on F such that (X,F ′) satisfies the requirements of the tower paradigm.

1Recall that the tower paradigm cannot work for locally constant sheaves; see Proposition 11.4.
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The iterative process is presented and discussed in Section 12. In Section 14, we show that
there exist simplicial complexes X covered by arbitrarily thick affine buildings that admit (1) an
infinite tower of double covering, and (2) F2-sheaves F of arbitrarily large dimension such that
h1(F) = o(dimF). We also demonstrate that any pair of the conditions (t1)–(t3) of the tower
paradigm are satisfied by some sheaved complex. The intermediate Section 13 establishes the
existence of another tower of coverings (not the tower required for the tower power paradigm) with
some special properties that is needed for the construction of the desired sheaves in Section 14. This
makes use of deep results about arithmetic groups.

12 Modifying Sheaves to Get Rate Conservation
Throughout this section, F is a field (of any characteristic) and X is a d-complex with d ≥ 2. We fix
a linear ordering on the vertices of X and use it to identify Ci(X,F) with ∏

x∈X(i)F(x) for every
sheaf F on X and i ∈ {0, . . . , d}, see Remark 4.5. We let F denote a locally constant F-sheaf of
dimension m.

12.1 An Iterative Modification Process

Recall from Construction 9.4 that if E is an F-subspace of C1(X,F), then we can form a subsheaf
CE of F by setting:

CE(x) =
∑

e∈X(1)⊆x

resx←e Proje(E)

for all x ∈ X, where Proje : C1(X,F) → F(e) is the projection f 7→ f(e) : C1(X,F) → F(e).
Otherwise stated, CE is the smallest subsheaf of F such that E ⊆ C1(X, CE). We will be interested
in quotients sheaves of the form

FE := F/CE .

Since dim CE(v) = 0 for all v ∈ X(0), we have FE(v) = F(v) for all v ∈ X(0). However, if E ̸= 0,
then CE ̸= 0, and as a result, FE is not locally constant. When dimE ≪ dimF , the sheaf FE may
be regarded as being “close” to F because dim C(x) ≤

(i
2
)

dimE ≪ dimF for every i-face x ∈ X.
With the tower paradigm in mind, our purpose will be to find a (typically small) subspace E of

C1(X,F) such that (X,FE) satisfies conditions (t2) and (t3) of Theorem 11.1 (always with k = 0).
We first focus on (t3), which says that h1(FE) < h0(FE).

The effect of E on dim Hi(X,FE) for i = 0, 1 is (crudely) described in the following proposition.

Proposition 12.1. In the previous notation, let BE = E ∩ B1(X,F), ZE = E ∩ Z1(X,F) and
let HE

∼= ZE/BE be the image of ZE under the quotient map Z1(X,F)→ H1(X,F). Denote the
natural map H2(X, CE)→ H2(X,F) by ωE. Then:

(i) h0(FE) ≥ h0(F) + dimBE.

(ii) h1(FE) ≤ h1(F)− dimHE + dim im(ωE).

Proof. Recall from §4.2 that the short exact sequence 0→ CE → F → FE → 0 gives rise to a long
cohomology exact sequence:

0 =H0(X, CE)→ H0(X,F)→ H0(X,FE)→
H1(X, CE) α−→ H1(X,F)→ H1(X,FE)→
H2(X, CE) ω−→ H2(X,F)
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Since C0(X, CE) = 0, we have H0(X, CE) = 0 and H1(X, CE) = Z1(X, CE). Noting that ZE ⊆
Z1(X, CE) and BE = ZE ∩ B1(X,F) ⊆ Z1(X, CE) ∩ B1(X,F), we see that BE ⊆ kerα and
HE ⊆ imα. The proposition now follows readily from the exactness.

If we (incorrectly) ignore the factor dim im(ωE) in Proposition 12.1 (say, if ωE = 0), then the
affect of replacing E with E + Ff for some f ∈ C1(X,F)− E can be summarized as follows:

• if f ∈ B1(X,F), then adding f to E increases h0(FE) by 1,

• if f ∈ Z1(X,F) − B1(X,F), then adding f to E decreases h1(FE) by 1 and leaves h0(FE)
unchanged, and

• if f ∈ C1(X,F) − Z1(X,F), then adding f to E seemingly has no affect on h0(FE) and
h1(FE).

Recall that our goal is to choose E so that h0(FE) > h1(FE). Taking these thumb rules as
facts, we could attempt to achieve this by simply taking E to be a subspace of Z1(X,F) of
dimension > h1(F) − h0(F). Indeed, we can decompose E as E1 ⊕ E2 with E1 ⊆ B1(X,F) and
E2 ∩B1(X,F) = 0. We expect to have h0(FE) ≥ h0(F) + dimE1 and h1(F) ≤ h1(FE)− dimE2,
which together gives h0(FE)− h1(FE) > 0.

Unfortunately, ker(ωE : H2(X, CE) → H2(X,F)) may be nonzero, and its effect on h1(FE)
should be taken into account. However, if kerωE ̸= 0, then we can attempt to eliminate kerωE
by enlarging E with more 1-cochains. Specifically, choose a subspace K ⊆ C2(X, CE) mapping
bijectively onto kerωE ⊆ H2(X, CE) and subspace E′ ⊆ C1(X,F) such that d1 restricts to a bijection
E′ → K (it exists because K ⊆ B2(X,F)), and replace E0 := E with E1 := E + E′. We show
in Proposition 12.4(i) below that replacing E by E + E′ does not affect ZE = E ∩ Z1(X,F) and
BE = E ∩B1(X,F). At the same time, replacing E by E +E′ trivializes the cohomology classes in
ker(ωE0 : H2(X, CE0)→ H2(X,F)), because the natural map H2(X, CE0)→ H2(X, CE1) vanishes on
on kerωE0 . The replacement of E by E +E′ may result in new cohomology classes in kerωE , so we
can repeat this process until kerωE = 0. We therefore arrive at the following iterative process:

Construction 12.2. Let F be a locally constant F-sheaf on a d-complex X such that h1(F) ≥ h0(F).

(1) Set E0 to be the zero subspace of C0(X,F).

(2) Let E′0 be a subspace of Z1(X,F) of dimension h1(F)− h0(F) + 1.2

(3) Set r = 1 and E1 = E′0

(4) While dimE′r−1 > 0:

(a) Choose a subspace E′r ⊆ C1(X,F) such that d1(E′r) ⊆ Z2(X, CEr ) and the composition
E′r

d1−→ Z2(X, CEr) → H2(X, CEr) maps E′r bijectively onto ker(ωEr : H2(X, CEr) →
H2(X,F)).

(b) Set Er+1 = Er + E′r and increase r by 1.

(5) Set E = Er.

We say that the iterative process stops or converges after n steps if E = En. If F is finite, and if
not indicated otherwise, we assume that the spaces E′0, E′1, . . . defined in (2) and (a) are chosen
uniformly at random among all eligible subspaces of C1(X,F).

2It is also possible to take a subspace of larger dimension.
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In what follows, we abbreviate ωEr to ωr and CEr to Cr, so that

0 = E0 ⊆ E1 ⊆ E2 ⊆ · · · ⊆ C1(X,F) and C0 ⊆ C1 ⊆ C2 ⊆ · · · ⊆ F .

Observe that dimE′r is determined by Er. We shall see in the the following proposition that
E′r ∩ Er = 0, and hence dimEr+1 = dimEr + dimE′r. Thus, dimEr+1 determined by Er. However,
the choice of E′r may affect dimEs for s > r + 1.

Part (ii) of the following proposition says that FE satisfies condition (t3) when E is the subspace
constructed in the iterative process of Construction 12.2.

Proposition 12.3. With notation as above:

(i) Er ∩E′r = 0, Er ∩ Z1(X,F) = E1 ∩ Z1(X,F) and Er ∩B1(X,F) = E1 ∩B1(X,F) for every
r ∈ N.

(ii) The process in Construction 12.2 stops, and the resulting subspace E satisfies h0(FE) > h1(FE).

Proof. (i) By construction, E′r ∩ d−1
1 (B2(X, Cr)) = 0. Since d1 maps Er ⊆ C1(X, Cr) into B2(X, Cr),

this means that E′r ∩ Er = 0.
Next, if r > 1 and f ∈ Er ∩ Z1(X,F) = (Er−1 + E′r−1) ∩ Z1(X,F), then we can write

f = g + g′ with g ∈ Er−1 and g′ ∈ E′r−1. Since d1f = 0, we have d1g
′ = −d1g ∈ B2(X, Cr−1), so

g′ ∈ d−1
1 (B2(X, Cr−1)) ∩ E′r−1 = 0. This means that g′ = 0, hence f = g ∈ Er−1 ∩ Z1(X,F). By

induction on r, it follows that Er ∩ Z1(X,F) = E1 ∩ Z1(X,F). Since B1(X,F) ⊆ Z1(X,F), this
means that Er ∩B1(X,F) = E1 ∩B1(X,F).

(ii) Since dimEr is bounded from above by dimC1(X,F), in order to prove that the process
stops, it is enough to show that dimEr+1 > dimEr for all r ≥ 0 such that kerωr ̸= 0. By (i),
dimEr+1 = dimE′r + dimEr = dimEr + dim kerωr, hence our claim.

Suppose now that the process stopped after r steps. Then E = Er and kerωr = kerωE = 0. Write
V1 = E′0∩B1(X,F) and choose a subspace V2 such that E′0 = V1⊕V2. By (i), dim(E∩B1(X,F)) =
dim(E1 ∩ B1(X,F)) = dimV1 and dim(E ∩ Z1(X,F)) = dim(E1 ∩ Z1(X,F)) = dimV2. Now,
applying Proposition 12.1 to E = Er, we get h0(FE) − h1(FE) ≥ (h0(F) + dimV1) − (h1(F) −
dimV2 + dim kerωr) = dimE′0 − (h1(F)− h0(F)) > 0.

Now that we know that iterative process of Construction 12.2 outputs a subspace E ⊆ C1(X,F)
such that FE satisfies condition (t3) of Theorem 11.1, we turn to check whether FE also satisfies the
local expansion conditions in (t2). This is a priori not true in general. Indeed, the process might
stop only when CE(x) = F(x) for all x ∈ X −X(0)−X(−1), in which case FE will be isomorphic
to the sheaf obtained from F by setting FE(x) = F(x) ∼= Fm if x ∈ X(0) and FE(x) = 0 otherwise.
The pair (Xv, (FE)v) is a poor coboundary expander for every v ∈ X(0), so condition (t2) of the
tower paradigm will not hold for (X,FE). Nevertheless, we will now show that if dimE ≪ dimF
and X is covered by a sufficiently thick affine building, then, with high probability, FE satisfies (t2).

To that end, we would like to apply Theorem 9.5. Recall that in order to use this theorem, E
must satisfy the following to conditions:

(a1) For every v ∈ X(0), the map ∑
e res−1

e←v : ⊕
e CE(e)→ F(v), with e ranging over X(1)⊇v, is

injective.

(a2) For every t ∈ X(2) with edges e, e′, e′′, we have CE(e)|t ⊆ CE(e′)|t + CE(e′′)|t.

We would therefore like to choose the spaces E0, E1, . . . of Construction 12.2 such that they all
satisfy (a1) and (a2).
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Proposition 12.4. With notation as in Construction 12.2, suppose that F is a finite field and let
Q = D0,1(X) = max{#X(1)⊇v | v ∈ X(0)}. Then:

(i) For all r ∈ N ∪ {0}, condition (a2) holds for Er.

(ii) For every r ∈ N ∪ {0}, if condition (a1) holds for Er and

dimEr+1 ≤
dimF − log|F| |X(0)|

Q
,

then Er+1 can be chosen to satisfies (a1). More precisely, if E′r is chosen uniformly at random,
then (a1) is satisfied with probability > 1− |X(0)||F|QdimEr+1−dimF .

The non-probabilistic assertions of (ii) also hold if F is infinite upon replacing log|F| |X(0)| with 0.

Proof. (i) We use induction on r. The case r = 0 is clear, and the case r = 1 follows from
Example 9.6.

Suppose that r > 1 and we proved that (a2) holds for Er−1. Let t ∈ X(2) be a triangle with edges
e, e′, e′′, and let fe ∈ Cr(e). We need to show that fe|t ∈ rest←e′ Cr(e′) + rest←e′′ Cr(e′′). There is
f ∈ Er such that fe = f(e) (recall that we have fixed a linear ordering on X(0) and used it to identify
Ci(X,F) with ∏

x∈X(i)F(x)). By construction, Er = Er−1 + E′r−1 with d1(E′r−1) ⊆ C1(X, Cr−1),
so d1f ∈ C1(X, Cr−1). Thus, for some choice of signs, f(e)|t ∈ ±f(e′)|t ± f(e′′)|t + Cr−1(t). By
the definition Cr−1 and the induction hypothesis, Cr−1(t) = Cr−1(e)|t + Cr−1(e′)|t + Cr−1(e′′)|t ⊆
Cr−1(e′)|t +Cr−1(e′′)|t. It follows that f(e)|t ∈ ±f(e′)|t± f(e′′)|t +Cr−1(e′)|t +Cr−1(e′′)|t ⊆ Cr(e′)|t +
Cr(e′′)|t, which is what we want.

(ii) Suppose first that r > 0. Fix a subspace E′ ⊆ C1(X,F) such that d1E
′ ⊆ Z2(X, Cr) and the

composition E′ d1−→ Z2(X, Cr)→ H2(X, Cr) is injective with image kerωr and let h′1, . . . , h′t be a basis
of E′ (so t = dim kerωr). In order to choose E′r uniformly at random in Construction 12.2, we can
choose hi ∈ h′i+Z1(X,F) uniformly at random for each i ∈ {1, . . . , t} and take E′r = Fh1 + · · ·+Fht.

Fix some v ∈ X(0) and i ∈ {1, . . . , t}. Abbreviate N(v) = X(1)⊇v. We claim that the collection
{(rese←v)−1(hi(e))}e∈N(v) distributes uniformly in F(v)N(v). To see this, write zi = hi − h′i. It
is enough to show that {(rese←v)−1(zi(e))}e∈N(v) distributes uniformly in F(v)N(v), which, in
turn, will follow if we show that the linear transformation T : Z1(X,F) → F(v)N(v) given by
T (f) = (res−1

e←v f(e))e∈N(v) is onto. Given (fe)e∈N(v) ∈ F(v)N(v), define g ∈ C0(X,F) by

g(x) =
{
−[x ∪ v : x] res−1

x∪v←x resx∪v←v fx∪v x ∈ X(1)v
0 x /∈ X(1)v,

where [x∪v : x] is 1 if x < v relative to the ordering on V (X), and −1 otherwise. It is straightforward
to check that T (d0g) = (fe)e∈N(v), so T is onto, and our claim follows.

Since h1, . . . , ht are chosen independently, the previous paragraph implies that, for every v ∈
X(0), the collection {(resy←v)−1(hi(e))}e∈N(v),i∈{1,...,t} distributes uniformly in F(v)E(v)×{1,...,t}.
Let R(v) = ∑

e∈N(v) res−1
e←v Cr(e); it is a subspace of F(v). Condition (a1) for Er implies that

R(v) = ⊕
e∈N(v) res−1

e←v Cr(e). This means that

dimR(v) =
∑

e∈N(v)
dim Cr(e) ≤

∑
e∈N(v)

dimEr ≤ Q dimEr.

Now, setting m = dimF , the probability that {(rese←v)−1(hi(e))}e∈N(v),i∈{1,...,t} are linearly in-
dependent and span a subspace of F(v) meeting R(v) only at 0 is ∏tQ−1

j=0 (1 − |F|j+dimR(v)−m) >
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1− |F|Qt+QdimEr−m = 1− |F|QdimEr+1 −m. Consequently, the probability that for every v ∈ X(0),
the collection {(rese←v)−1(hi(e))}e∈N(v),i∈{1,...,t} is linearly independent in F(v) and its span meets
R(v) only at 0 is greater than 1 − |X(0)||F|QdimEr+1−m. This number is non-negative by our
assumption on dimEr+1, so we may choose h1, . . . , ht to satisfy the last condition, which is easily
seen to imply that (a1) holds for Er+1.

The same argument we used for r > 0 also works for r = 0. The only difference is that one
starts with some subspace E′ of Z1(X,F) of the same dimension as that of E′0.

Finally, when F is infinite, an adaptation of the argument shows that if we write hi = zi + h′i
with zi ∈ Z1(X,F), then condition (a1) is met if z1, . . . , zt are chosen outside of the zero locus of
some nonzero multivariate polynomial on Z1(X,F)t ∼= FN . Such a choice is possible because F is
infinite.

Corollary 12.5. Fix d ∈ N− {1} and let q = q(d) be as in Theorem 9.5. Let X be a d-complex
covered by a q-thick affine building, let F be a finite field, and let F be a locally constant F-sheaf
on X with h1(F) ≥ h0(F). Apply the iterative process of Construction 12.2 to (X,F) and suppose
that it stopped after n steps. Let Q = D0,1(X) and let r denote the maximal member of {0, 1, . . . , n}
such that

dimEr ≤ Q−1(dimF − log|F| dimF − log|F| |X(0)|).

Then, with probability greater than 1− r
dimF ≥ 1− dimEr

dimF ≥ 1− 1
Q , the sheaf FEr satisfies condition

(t2) of the tower paradigm (i.e., Theorem 11.1 with k = 0).

Proof. Proposition 12.4(ii) and our choice of r imply that for all 0 ≤ s ≤ r − 1, the probability
that Es+1 satisfies (a1) provided that Es satisfies it is greater than 1− |X(0)||F|QdimEs+1−dimF ≥
1 − |X(0)||F|QdimEr−dimF . Our assumption on dimEr says that the latter quantity is at least
1−|X(0)||F|− log|F| dimF−log|F| |X(0)| = 1− 1

dimF . Since E0 satisfies (a1), this means that the probability
that Er satisfies (a1) is greater than 1− r

dimF . (We have 1− r
dimF ≥ 1− dimEr

dimF because dimEr >
dimEr−1 > · · · > dimE0 = 0, by Proposition 12.3(i).) Proposition 12.4(i) also tells us that Er
satisfies (a2). Applying Theorem 9.5 to the sheaf F and the space Er completes the proof.

We conclude from Proposition 12.3(ii) and Corollary 12.5 that if X is covered by a sufficiently
thick affine building, and if F is a locally constant F-sheaf for which the iterative process of
Construction 12.2 outputs a subspace E ⊆ Z1(X,F) with dimE ≪ dimF with high probability, then
(X,FE) satisfies conditions (t2) and (t3) with high probability. Since dimE1 = h1(F)− h0(F) + 1,
in order to have dimE ≪ dimF , we should start with a sheaf F such that h1(F)≪ dimF ; we will
show that such exist in §14. Taking this for granted, we turn to discuss the growth of dimEr in the
iterative process.

12.2 The Effect of The Cup Product on The Modification Process

As in §12.1, let F be a locally constant F-sheaf on X such that h1(F) ≥ h0(F). We assume that F
is finite, and apply the notation introduced in Construction 12.2.

We conducted a number of computer simulations3 where we applied Construction 12.2 to a
variety of complexes4 and sheaves. These simulations suggest that the typical behavior of the
iterative process can be predicted by means of the cup product (see §4.6), as we now explain.

3The Python code of the simulations was written by the first named author and is attached to the arXiv version of
the paper.

4So far, we checked different triangulations of a 3-dimensional torus and a 3-thick 2-dimensional Ramanujan
complex with 273 vertices. The latter is a quotient of the explicit example in [LSV05a, §10] by a Borel subgroup of
GL3(F16).
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Let r ∈ N and suppose that Er = Er−1 ⊕ E′r−1 of Construction 12.2 has just been defined.
We can attempt to construct elements in the kernel of ωr : H2(X, Cr)→ H2(X,F) as follows. Let
f1, . . . , ft be an F-basis for Er−1 and let f ′1, . . . , f ′s be an F-basis for E′r−1. Suppose that there are
α1, . . . , αt, α

′
1, . . . , α

′
s ∈ C1(X,F) such that

g :=
t∑
i=1

αi ∪ fi +
s∑
j=1

α′j ∪ f ′j ∈ B2(X,F). (12.1)

Then g ∈ B2(X,F) ∩ C2(X, Cr) ⊆ Z2(X, Cr), which means that the cohomology class [g]Cr is in
kerωr. Denote by Vr the subspace of C1(X,F)t+s consisting of tuples (α1, . . . , αt, α

′
t, . . . , α

′
s) for

which (12.1) holds.
In general, not all elements of Vr give rise to a nonzero class in kerωr. This happens in

particular when α′1, . . . , α
′
s ∈ B1(X,F). Indeed, in this case, there are β′1, . . . , β′s ∈ C0(X,F) such

that α′j = d0β
′
j for all j ∈ {1, . . . , s}. By Proposition 4.19, this means that

g =
t∑
i=1

αi ∪ fi +
s∑
j=1

d0β
′
j ∪ f ′j =

t∑
i=1

αi ∪ fi −
s∑
j=1

β′j ∪ d1f
′
j +

s∑
j=1

d1(β′j ∪ f ′j).

If r = 1, then t = 0 and d1f
′
j = 0 for all j, so g = ∑s

j=1 d1(β′j ∪ f ′j) ∈ B2(X, C1) and [g]C1 = 0. If
r > 1, then by the construction of E′r, we have d1f

′
j ∈ C2(X, Cr−1), so g̃ := g −

∑s
j=1 d1(β′j ∪ f ′j) ∈

C2(X, Cr−1). Since [g̃]F = [g]F = 0, we have [g̃]F ∈ kerωr−1, so, by the construction of E′r−1, there
is h ∈ E′r−1 such that d1h = g̃. Consequently, g = d1h+ ∑s

j=1 d1(β′j ∪f ′j) ∈ B2(X, Cr), and [g]Cr = 0.
Similarly, if α′1, . . . , α′s are in the left radical of the pairing ∪ : C1(X,F)×C1(X,F)→ C2(X,F),

denoted L(F), then [g]Cr = 0.
Let Ur denote the sum of L(F) and the subspace of Vr consisting of tuples (α1, . . . , αt, α

′
1, . . . , α

′
s) ∈

Vr with α′1, . . . , α′s ∈ B1(X,F). Our simulations suggest that if dimF is big enough with respect to
dimEr, then with high probability,

(i) all elements in kerωr are obtained from elements of Vr as in (12.1), and

(ii) the elements of Vr which give rise to the zero element in kerωr are precisely the subspace Ur.

Consequently, dimE′r = dimVr − dimUr. Informally, this means that if dimEr ≪ dimF , then
almost surely, relations coming from the cup product are the only explanation to elements in kerωr.

We now analyse heuristically how big should dimF be with respect to dimEr in order to make
the above estimations valid. Classes in kerωr which are not explained by the cup product may
occur if dim H2(X, Cr) > dim H2(X,F), so we need to require that dim H2(X, Cr) ≤ dim H2(X,F).
The iterative process does not use information from faces of dimension ≥ 3, so we may assume
that dimX = 2. Now, since (a2) holds for Er (Proposition 12.4(i)), we typically have dim CEr (x) =
2 dimEr for x ∈ X(2), so we expect that dimC2(X, Cr) = 2|X(2)| dimEr. The kernel of d1 :
C1(X, Cr)→ C2(X, Cr) contains Er ∩Z1(X,F) = E1 (Proposition 12.3(i)), so if dimX = 2, then we
have dim H2(X, Cr) ≥ dimC2(X, Cr)−dimC1(X, Cr)+dimE1 = (2|X(2)|−|X(1)|) dimEr+(h1(F)−
h0(F)+1). Our simulations suggest that equality holds with high probability. A similar computation
shows that when dimX = 2, we have dim H2(X,F) ≥ (|X(2)| − |X(1)|+ |X(0)| − 1) dimF . The
requirement dim H2(X, Cr) ≤ dim H2(X,F) is therefore likely to hold if

dimEr ≤
(|X(2)| − |X(1)|+ |X(0)| − 1) dimF − (h1(F)− h0(F) + 1)

2|X(2)| − |X(1)|. (12.2)

The right hand side is roughly 1
2 dimF if |X(2)| is large w.r.t. |X(1)| and |X(0)|.
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We summarize our observations in the following conjecture, in which we let |F| or dimF grow.
It is supported by all of our simulations.

Conjecture 12.6. With notation as in Construction 12.2, suppose that Er has just been constructed,
and thus dimE′r = dim kerωr is determined. Define Vr and Ur as above. Then:

(i) If (12.2) holds, then dimE′r = dimVr − dimUr with probability 1− o(1) as a function of |F|.

(ii) If (12.2) holds and M is the difference between the right hand side and the left hand side of
(12.2), then dimE′r = dimVr − dimUr with probability 1− o(1) as a function of M .

In particular, if Vr = Ur, then the iterative process will stop at the r-th step with probability 1− o(1)
(in the sense of (i) or (ii)).

Informally, the conjecture means that the “most likely” value of dimEr can be predicted purely
by means of the cup product action of Ci(X,F) on Cj(X,F) for i, j ∈ {0, 1}. (We moreover expect
that it is determined by the homotopy type of the differential graded module C∗(X,F) over the
differential graded algebra C∗(X,F).)

Example 12.7. Let us use Conjecture 12.6 to predict what dimE2 will typically be. Recall that
E1 = E0 ⊕ E′0 with E0 = 0 and E′0 a subspace of Z1(X,F) of dimension s := h1(F)− h0(F)− 1.
(In fact, the analysis that we carry applies to any small subspace of Z1(X,F).) We assume that
(12.2) holds for E1, or equivalently, that h1(F)− h0(F) + 1 ≤ |X(2)|−|X(1)|+|X(0)|−1

2|X(2)|−|X(1)|+1 dimF .
Let f ′1, . . . , f ′s be an F-basis for E′0. Then V1 is the space of (α′1, . . . , α′s) ⊆ C1(X,F)s such that

s∑
j=1

α′j ∪ f ′j ∈ B2(X,F), (12.3)

and U1 = V1 ∩ (B1(X,F) + L(F))s. Since the f ′1, . . . , f
′
s live in Z1(X,F), and since the cup

product of cocycles is a cocycle, it is reasonable to expect that, modulo L(F), (12.3) will hold
only if α′1, . . . , α′s ∈ Z1(X,F); this heuristic is confirmed by our simulations. Replacing V1 with
V1∩Z1(X,F)s and U1 with B1(X,F)s, so that α′1, . . . , α′s ∈ Z1(X,F), condition (12.3) is equivalent
to having

s∑
j=1

[α′j ] ∪ [f ′j ]F = 0

in H2(X,F). Since dimV1 − dimU1 equals the image of V1 in H1(X,F)s, it follows that

dimV1 − dimU1 = ker([α]⊗ f 7→ [α ∪ f ] : H1(X,F)⊗F E
′
0 → H2(X,F)).

This leads to Conjecture 12.8 below, which is again supported by our simulations.
The conjectural formula for dimE′1 = dimV1 − dimU1 also demonstrates how the choice of

E1 = E′0 might affect dimE2. For example, if E′0 is taken to be a subspace of B1(X,F), then
[f ]F = 0 for every f ∈ E′0, and we find that, heuristically,

dimE′1 = dimV1 − dimU1 = s · h1(X,F).

On the other hand, if dimE′0 is chosen such that E′0 ⊕B1(X,F) = Z1(X,F), i.e., we are trying to
eliminate all the cohomology classes in H1(X,F) by passing to FE1 , then the map E′0 → H1(X,F)
is a bijection, and we get

dimE′1 = ker([α]⊗ [f ] 7→ [α ∪ f ] : H1(X,F)⊗F H1(X,F)→ H2(X,F)).
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Conjecture 12.8. With notation as in Construction 12.2, suppose that M := |X(2)|−|X(1)|+|X(0)|−1
2|X(2)|−|X(1)|+1 dimF−

(h1(F)− h0(F) + 1) ≥ 0. Then

dimE′1 = ker([α]⊗ f 7→ [α ∪ f ] : H1(X,F)⊗F E
′
0 → H2(X,F))

with probability 1− o(1) as a function of M (resp. |F|).

It possible to continue the analysis of Example 12.7 in order to predict the dimension of dimEr
for larger values of r. This is manageable for r = 3, or if one assumes that h1(X,F) = 0, but the
general case becomes intractable very quickly. We omit the details.

If X has significantly more 2-cells than 1-cells, then dimension considerations suggest that the
equations defining Vr will be less and less likely to have nontrivial solutions as r grows. Thus, it
may be the case that the iterative process of Construction 12.2 stops after a fixed number of steps if
X is covered by a sufficiently thick affine building. We pose it as a conjecture, although we have no
computational evidence.

Conjecture 12.9. There q, d ∈ N (d ≥ 2) and a function f : N∪ {0} → N such that if X is covered
by a q-thick d-dimensional affine building, then, when the iterative process of Construction 12.2
stops, we have dimE ≤ f(h1(F)) with probability 1− o(1) as |F| → ∞ or dimF →∞.

We will see in the sequel how to find infinite families of sheaves on d-complexes covered by
q-thick buildings such that h1(F) = O(1) as a function of dimF , so any function f : N ∪ {0} → N
will do.

12.3 Candidates for Infinite Families of Good 2-Query LTCs

We conclude this section with showing how a positive answer to the conjectures raised in §12.2
would lead to the existence of an infinite family of good 2-query LTCs. To that end, we use the
following theorem, that will be proved in Section 14.

Theorem 12.10. For every q, d ∈ N with d ≥ 2, there exists a d-complex X that is covered by a
q-thick affine building and a nonzero locally constant F2-sheaf G on X such that h0(G) = h1(G) = 0.
Moreover X admits an infinite tower of double coverings · · · → X2 → X1 → X0 → X.

Based on this, we show:

Theorem 12.11. Let d ∈ N− {1}, let q = q(d) be as in Theorem 9.5, and let X be a d-complex
covered by a q-thick affine building as in Theorem 12.10. Let F be a finite field of characteristic 2
and suppose that one of the following holds:

(1) Conjecture 12.8 holds for X, and there is a nonzero locally constant F-sheaf F0 on X and a
subspace E ⊆ H1(X,F0) of dimension h1(F0) − h0(F0) + 1 such that ∪ : H1(X,F) ⊗F E →
H2(X,F0) is injective.

(2) Conjecture 12.9 is true for X.

Then there exists an F-sheaf F on X such that, if we apply the iterative process of Construction 12.2 to
F , then the pair (X,FE) satisfies conditions (t1), (t2) and (t3) of the tower paradigm (Theorem 11.1
with k = 0) with probability > 0. Consequently, there exists initial data for the tower paradigm, and
as a result, an infinite family of 2-query LTCs with linear distance and constant rate.
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Note that h1(F0)− h0(F0) + 1 ≥ 0 by Proposition 11.4.
Writing Γ = π1(X), the existence of F0 in (1) is equivalent to the existence of a nonzero

representation ρ : Γ→ GLm(F2) and a subspace E ⊆ H1(Γ, ρ) of dimension H1(Γ, ρ)−H0(Γ, ρ) + 1
such that ∪ : H1(Γ,F2)⊗ E → H2(Γ, ρ) is injective. There are representations ρ of arbitrarily large
finite groups having this property, see the MathOverflow answer [24].

Proof. Let G be the sheaf promised by Theorem 12.10. We replace G with its base-change from F2
to F to assume that G is an F-sheaf, see Lemma 4.9.

Suppose that (1) holds. For every s ∈ N, put Fs = F0 × Gs. By our assumptions on G, the
natural map F0 ∼= F0× 0→ F0×Gs = Fs induces maps Hi(X,F0)→ Hi(X,Fs) which are bijective
for i ∈ {0, 1} and injections for i ≥ 2. The map Hi(X,F0)→ Hi(X,Fs) is compatible with the cup
product, so, writing Vs for the image of E in H1(X,Fs), the map ∪ : H1(X,F)⊗F Vs → H2(X,Fs)
is injective.

Let E1 be a subspace of Z1(X,Fs) of dimension h1(Fs)−h0(Fs) + 1 = dimVs, chosen uniformly
at random. As s grows, the probability that the image of E in H1(X,Fs) is Vs approaches some
p > 0. Consequently, the probability that ∪ : H1(X,F)⊗F E1 → H2(X,Fs) is injective is bounded
from below by some p′ > 0. It now follows from Conjecture 12.8 that for all s large enough, the
iterative process of Construction 12.2 stops for Fs after 1 step with probability p′ > 0. When
this happens, the output of the process is the subspace E1, so dimE = h1(F0) − h0(F0) + 1 is
independent of s. Thus, by Corollary 12.5, for all s large enough, (X, (Fs)E) satisfies (t2) with
probability p′′ > 0. By Proposition 12.3(ii), (X, (Fs)E) satisfies (t3), and (t1) holds by the choice of
X in Theorem 12.10. To conclude, we can take F = Fs for any s large enough.

The case where (2) holds is handled similarly but with the following differences: One can start
with any locally constant sheaf F0 on X, e.g., the zero sheaf, and one uses Conjecture 12.9 to bound
dimE from above by f(h1(F0)).

Remark 12.12. Suppose that in Theorem 12.11 we take E be Er of Corollary 12.5 instead of
the output of Construction 12.2 (i.e., we terminate the iterative process of the construction when
dimEr is small w.r.t. to dimF). The same argument as in the proof of the theorem then shows
that for all s large enough there exists a subspace E ⊆ Z1(X,Fs) such that (X, (Fs)E) satisfies (t1)
and (t2) unconditionally, and also (t3) provided that Conjecture 12.9 holds.

13 Arithmetic Groups and Simplicial Complexes Covered by Affine
Buildings

The purpose of this section is to prove the following theorem, which will be used in the next section
to prove Theorem 12.10 and for a few other purposes.

Theorem 13.1. Let q, d ∈ N and assume that d ≥ 3. There exist a (finite) simplicial complex
X covered by a q-think d-dimensional affine building, a tower of (proper) connected coverings
· · · → X ′2 → X ′1 → X ′0 = X and a constant C ∈ R+ such that the following hold:

(i) Every connected covering of X admits an infinite tower of connected double coverings.

(ii) [X ′r : X] is odd and dim H1(X ′r,F2) ≤ C for all r ∈ N ∪ {0}.

Here, [X ′r : X] denotes the degree of X ′r → X.
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The constructions we provide are particular simplicial complexes, which are described in §13.4.
The theorem is also true for d = 2, but we omit most of the details; see Remark 13.18.

The proof of Theorem 13.1 will make extensive use of arithmetic groups — particularly congruence
subgroups — and their actions on affine buildings. While we briefly recall the definitions and
facts that we need in §13.1, some knowledge of algebraic number theory is nevertheless assumed.
Familiarity with linear algebraic groups and affine group schemes is also recommended. We refer
the reader to [PR94] for further details and an extensive discussion of these subjects. A gentle
introduction to group schemes is [Wat79, Chapter 1].

Readers who wish to skip the proof of Theorem 13.1 should proceed to Section 14.

13.1 Preliminaries

We begin with recalling necessary facts about algebraic groups, setting notation along the way.

Let R be any commutative ring, let R-Alg denote the category of commutative R-algebras and
let Grp denote the category of groups. By a group scheme5 over R we mean a functor G from
R-Alg to Grp for which there is a set of multivariate polynomials f1, . . . , ft ∈ R[x1, x2, . . . , xn] such
that, for every S ∈ R-Alg, the set G(S) is in a natural bijection with the solutions of the equations
f1 = · · · = ft = 0 in Sn. The actual polynomials f1, . . . , ft will rarely matter, and we would only
care that they exist. When R is a field, group schemes over R are also called (linear) algebraic
groups over R.

We will only need the following examples of group schemes.

Example 13.2. (i) The functor S 7→ SLm(S) : R-Alg→ Grp is a group scheme, denoted SLm(R).
(Formally, (SLm(R))(S) = SLm(S) for all S ∈ R-Alg.) Indeed, the functoriality is clear, and SLn(S)
can be naturally identified with the zeroes of the polynomial det(xij)− 1 in m2 indeterminates.

(ii) The functor Gm,R : R-Alg→ Grp sending an R-algebra S to its group of invertible elements
S× is a group scheme. To see this, note that the map s 7→ (s, s−1) : S× → S2 identifies S× with the
solutions of the equation x1x2 − 1 = 0 in S2 for every S ∈ R-Alg.

(iii) Given a commutative ring R, put R[i] = R[i | i2 = −1]. Elements of R[i] are formal
sums α + βi with α, β ∈ R, and the product in R[i] is determined by the rule i2 = −1. Write
σR : R[i]→ R[i] for the automorphism sending α+ βi to α− βi. For example, if R = R, then R[i]
is just C and σR is complex conjugation. Given a matrix a = (αij)i,j ∈ Mn(R[i]), we write a∗ for
the matrix (σR(αji))i,j .

Define SUm(R[i]/R) = {a ∈ Mm(R[i]) : a∗a = 1 and det(a) = 1R[i]}; it is a subgroup of
GLm(R[i]). The functor SUm(R[i]/R) : R-Alg → Grp sending a commutative R-algebra S to
SUm(S[i]/S) is a group scheme. Indeed, we can identify Mm(S[i]) with S2m2 by sending a matrix
a = (αjℓ + iβjℓ)j,ℓ to the vector (α11, α12, . . . , αmm, β11, β12, . . . , βmm) ∈ S2m2 . The condition
det(a) = 1S[i] can now be rewritten as two polynomial equations with coefficients coming from R
(or even Z), and the condition a∗a = 1 can be rewritten as 2m2 polynomial equations.

(iv) We can generalize (iii) by fixing r0, r1 ∈ R and replacing R[i] with R̂ := R[x |x2 = r1x+ r0];
the R-automorphism σR : R̂→ R̂ then sends x to r1 − x. Moreover, instead of considering matrices
a ∈ Mm(Ŝ) with a∗a = 1, we could fix a matrix M ∈ GLm(R̂) with M∗ = M and consider the
group of matrices a ∈ Mm(S′) satisfying a∗Ma = M and det(a) = 1. This group is denoted SU(fS),
where fS : Ŝm × Ŝm → Ŝ is the σS-hermitian form corresponding to M , i.e., fS(x, y) = x∗My for
x, y ∈ Ŝn (regarded as column vectors). The functor S 7→ SU(fS) : R-Alg→ Grp is a group scheme
denoted SU(f).

5In this paper, all group schemes are affine and of finite presentation.
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Suppose that G and H are group schemes over R. A morphism from G to H is a natural
transformation f from G to H. In particular, the data of f consists of a group homomorphism
fS : G(S)→ H(S) for every S ∈ R-Alg. We say that f is a monomorphism if fS : G(S)→ H(S) is
one-to-one for all S ∈ R-Alg.

If R′ ∈ R-Alg, then every R′ may be regarded as an R-algebra. This defines a functor R′-Alg→
R-Alg, and its composition with G : R-Alg → Grp is a group scheme over R′, denoted GR′ . (The
polynomial equations defining GR′ are the same as those defining G, but we think of the coefficients
as living in R′ instead of R.)

Let I be an ideal of R (written I ⊴R). Then R/I is an R-algebra, and thus the quotient map
q : R→ R/I gives rise to a group homomorphism Gq : G(R)→ G(R/I). We define

G(R; I) = ker(G(R)→ G(R/I))

and call G(R; I) a principal congruence subgroup of G (or G(R), if G is clear from the context). A
subgroup of G(R) containing a principal congruence subgroup is called a congruence subgroup of G
(or G(R)).6

Example 13.3. Taking R = Z, I = ℓZ and G = SLn(Z), the group SLm(Z; I) := G(Z; I) is just
the group of m×m integral matrices which have determinant 1 and are congruent to the identity
matrix modulo ℓ.

The group scheme G is called absolutely almost simple (and) simply connected if there is a
faithfully flat commutative R-algebra R′ such that, up to isomorphism, GR′ is in the list of split
absolutely almost simple simply connected group schemes over R′ (also called the absolutely almost
simple simply connected Chevalley groups over R′). When R is a domain, this list consists of 4
infinite families and 5 exceptional groups, denoted Am (m ≥ 1), Bm (m ≥ 2), Cm (m ≥ 3), Dm

(m ≥ 4), E6, E7, E8, F4, G2. The description of these group schemes will not matter to us except
for the fact that Am is the group scheme SLm+1(R′).7 The type of G is the symbol (Am, Bm, Cm,
Dm, E6, E7, E8, F4 or G2) used to denote GR′ . For example, G is absolutely almost simple simply
connected of type Am if GR′ ∼= SLm+1(R′) for some faithfully flat R′ ∈ R-Alg. When R is a field,
the absolutely almost simple simply connected group schemes of a given type further break into two
kinds: inner and outer.

Suppose that R is a field K and G is absolutely almost simple simply connected. The group
scheme G is called isotropic if there is a monomorphism from Gm,K to G, and anisotropic otherwise.
The largest r ∈ N ∪ {0} for which there is a monomorphism f : (Gm,K)r → G is called the
rank of G, and denoted rankG. More generally, given a field extension L of K, we say that G is
L-anisotropic (resp. L-isotropic) if GL is anisotropic (resp. isotropic), and define the L-rank of G as
rankLG := rank(GL).

Example 13.4. (i) For all m > 1, the group SLm(R) is absolutely almost simple simply connected
of type Am−1. If R is a field K, then SLm(K) is isotropic of rank m − 1. A monomorphism
f : (Gm,K)m−1 → SLm(K) is given by fS(s1, . . . , sm−1) = diag(s1, . . . , sm−1, s

−1
1 · · · s

−1
m−1) for all

S ∈ K-Alg.
(ii) Suppose that 2 ∈ R×. The group scheme SUm(R[i]/R) of Example 13.2(iv) is absolutely

almost simple simply connected of type Am−1. To see this, suppose first that R contains an
6This definition of congruence subgroups is different from the one used in [PR94]. The definitions are nevertheless

equivalent by [Fir22].
7The groups schemes Bm, Cm, Dm are also not difficult to describe and are Spin2m+1(R′), Sp2m(R′) and

Spin2m(R′), respectively.
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element ε ∈ R with ε2 = −1. Using this element, one can define an isomorphism of R-algebras
α+βi 7→ (α+εβ, α−εβ) : R[i]→ R×R (this is bijective because 2 ∈ R×). Under this isomrophism,
σR corresponds to σ′R : R × R → R × R given by σ′R(x, y) = (y, x). Now, a routine computation
shows that the induced R-algebra isomorphism Mm(R[i]) → Mm(R × R) ∼= Mm(R) × Mm(R)
maps SUm(R[i]/R) to the pairs of matrices (a, b) ∈ Mm(R) ×Mm(R) with det(a) = det(b) = 1R
and ab = 1, namely, onto {(a, a−1) | a ∈ SLm(R)}. Since a similar computation applies over any
commutative R-algebra, we have constructed an isomorphism from G := SUm(R[i]/R) to SLm(R).
If R does not contain a root of −1, then we can simply adjoin one, setting R′ = R[i], and get that
GR′ = SUm(R′[i]/R′) ∼= SLm(R′).

When R is a field, the algebraic group SUm(R[i]/R) is inner if R contains a square root of −1
and outer otherwise.

(iii) The group scheme SU(f) of Example 13.2(v) is absolutely almost simple simply connected
of type Am−1 if r2

1 + 4r0 ∈ R×. Assuming this and that R is a field K, it is inner if and only if
x2 − r1x− r0 has a root in K.

In the remainder of this section we will use the following general notation:

Notation 13.5.

• K is a global field, e.g., Q or Fp(t).

• V is the set of places of K and V∞ is the subset of archimedean places.

• Kρ is the completion of K at ρ ∈ V.

If ρ ∈ V is a non-archimedean place, we also use ρ to denote the corresponding additive valuation
ρ : Kρ → Z ∪ {∞} and set

• Oρ = {x ∈ Kν : ν(x) ≥ 0},

• mρ = {x ∈ Kν : ν(x) > 0} (the maximal ideal of Oρ),

• k(ρ) = Oρ/mρ (the residue field at ρ),

• Pρ = O ∩mρ = {x ∈ O : ρ(x) > 0} (the prime ideal of O corresponding to ρ).

We further fix the following data:

• S is a nonempty subset of V containing V∞.

• O = OS is the ring of S-integers in K, namely, {x ∈ K : ρ(x) ≥ 0 for all ρ ∈ V − S}. The
fraction field of O is K.

• ν is a fixed non-archimedean place in S.

• G is a simply connected absolutely almost simple algebraic group over K.

• G is a group scheme over O such that GK = G.

• G = G(Kν) = G(Kν).

• Y is the affine building attached to GKν . Its dimension is rankKν G [Tit79].

Given an ideal I ⊴O and ρ ∈ V − S, we let
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• Iρ = I · Oρ.

• ρ(I) = min{ν(x) |x ∈ I}; if I ≠ 0, then this is also the unique n ∈ N ∪ {0} such that Iρ = mn
ρ .

For every ρ ∈ V, the group G(Kρ) inherits a topology from Kρ, and if ρ /∈ S, then G(Oρ) is
a compact open subgroup of G(Kρ).8 A theorem of Bruhat, Tits and Rousseau (see [Pra82], for
instance) states that G is Kρ-anisotropic if and only if G(Kρ) is compact. We shall also need the
following facts.

Proposition 13.6. With notation as in Notation 13.5, if there is θ ∈ S such that G is Kθ-isotropic,
then G(O; I) is dense

∏
ρ∈V−S G(Oρ; Iρ).

Proof. Let AS = ∏′
ρ∈V−SKρ denote the adélès away from S. We embed K diagonally in AS .

By the Strong Approximation Theorem ([Pra77], [Mar77]), G(K) is dense G(AS). Since U :=∏
ρ∈V−S G(Oρ; Iρ) is open in G(AS), the set G(K) ∩ U is dense in U . As K ∩∏

ρ∈V−S Iρ = I inside
AS , we have G(K) ∩ U = G(O; I), and the proposition follows.

Proposition 13.7. With notation as in Notation 13.5, there is D ∈ N such that the following
hold: Let R be a commutative O-algebra with trivial O-torsion and let I ⊆ J be ideals of R. Then
G(R; I)/G(R; IJ) is isomorphic to a subgroup of the additive group (I/IJ)D.

Proof. We view both R and K as a subrings of L := R⊗O K. By [Fir22], there is a monomorphism
of algebraic groups f : G→ SLm(K) such that f(G(R;N)) = f(G(L)) ∩ SLm(R;N) for all N ⊴R.
Thus, f induces a one-to-one group homomorphism f : G(R; I)/G(R; IJ)→ SLm(R; I)/SLm(R; IJ).
Since I ⊆ J , we can define a map g : SLm(R; I)/SLm(R; IJ) → Mm(I/IJ) by sending a matrix
x ∈ 1+Mm(I) to the image of x−1 in Mm(I/IJ). It is straightforward to check that g is a one-to-one
group homomorphism (use the fact that I2 ⊆ IJ). Taking D = m2, the lemma follows.

13.2 Finite Quotients of Buildings

Keeping Notation 13.5, recall that G = G(Kν) acts on Y via simplicial automorphisms. In particular,
for any I ⊴O, the principal congruence subgroup Γ = G(O; I) also acts on Y . In this subsection
we will be concerned with determining when is Γ\Y a finite simplicial complex covered by Y , and,
provided this is so, when does it admit an infinite tower of connected double coverings.

Beware that in general Γ\Y is only a partially ordered set relative to the face-inclusion ordering
it inherits from Y . When Γ\Y is isomorphic to a simplicial complex as a partially ordered set, we
will say that Γ\Y is a simplicial complex and treat it as one for all purposes. However, even when
Γ\Y is a simplicial complex, the quotient map Y → Γ\Y may not be a covering map.

Proposition 13.8. With notation as in Notation 13.5, suppose that G is K-anisotropic, Kρ-
anisotropic for every ρ ∈ S − {ν}, and Kν-isotropic. Then:

(i) G(O) is a discrete subgroup of G and G(O)\G is compact.

(ii) There is a finite subset U ⊆ G(O) − {1G} such that if I ⊴ O, G(O; I) ∩ U = ∅ and Γ is a
finite-index subgroup of G(O; I), then Γ acts freely on Y , the quotient Γ\Y is a finite simplicial
complex, Y → Γ\Y is a covering map, and π1(Γ\Y ) ∼= Γ.

8Indeed, G(Kρ) (resp. G(Oρ)) may be understood as the solution set of some polynomial equations f1 = · · · = fr = 0
in Kn

ρ (resp. On
ρ ). We give G(Kρ) (resp. G(Oρ)) the topology induced from Kn

ρ (On
ρ ). This is independent of how G

(resp. G) is realized as the solutions of polynomial equations.
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Proof. (i) As in the proof of Proposition 13.6, let A denote the adélès ring of K, let AS be the
adélès away from S and set AS = ∏

ρ∈SKρ. Since G is K-anisotropic, the quotient G(K)\G(A)
is compact, see [PR94, Theorem 5.5] and [Har69, Corollary 2.2.7]. Embedding K diagonally in
AS × AS , we have O = K ∩ ([∏ρ/∈S Oρ] × AS). Thus, G(O) = G(K) ∩ (U × G(AS)), where
U = ∏

ρ/∈S G(Oρ) and the intersection is taken in G(A). It is now routine to check that the map
G(O)\G(AS)→ G(K)\G(A)/(U × {1G(AS)}) given by G(O)x 7→ G(k)(1G(AS), x)(U × {1G(AS)}) is
injective. By the Strong Approximation Theorem ([Pra77], [Mar77]), this map is also onto (here we
need G to be simply-connected and Kν-isotropic). As it is open as well, it is a homeomorphism
and we conclude that G(O)\G(AS) is compact. Since G(O)\G the image of G(O)\G(AS) under
a continuous map, G(O)\G is also compact. Finally, note that O is discrete in AS , and therefore
G(O) is a discrete subgroup of G(AS) = ∏

ρ∈S G(kρ). Since G(kρ) is compact for all ρ ∈ S − {ν},
the image of G(O) in G = G(Kρ) is also discrete.

(ii) The building Y attached to GKν is constructed so that the stabilizer of every nonempty
face in Y is compact and open in G. Let y1, . . . , yt be representatives for the G-orbits in Y and let
Ki = {g ∈ G : gyi = yi}. Then the G-set ⊔t

i=1G/Ki can be identified with Y by mapping gKi to
gyi for all g ∈ G and i ∈ {1, . . . , t}. Consequently, G(O)\Y is in bijection with ⊔t

i=1 G(O)\G/Ki,
which is compact by (i). Since ⊔t

i=1 G(O)\G/Ki is also discrete (because each Ki is open in G), it
must be finite, and it follows that G(O)\Y is finite. Applying [Fir16, Corollaries 3.11, 3.12] (here we
need the fact the G(O) is discrete in G(Kν)) now gives the set U and the desired conclusions.

Corollary 13.9. Suppose that the assumptions of Proposition 13.8 hold. Let {Im}m∈N be a
decreasing sequence of ideals of O such that

⋂
m∈N Im = {0}, let ρ ∈ V − S and let p = char k(ρ).

Then:

(i) There exists m0 ∈ N such that for every finite-index subgroup Γ of G(O; Im0), the action of
Γ on Y is free, the quotient Γ\Y is a finite simplicial complex, Y → Γ\Y is a covering map,
and π1(Γ\Y ) ∼= Γ.

(ii) If moreover Im0 ⊆ Pρ, then, for every Γ as in (i), the complex Γ\Y has an infinite tower of
connected Cp-Galois coverings (Cp is the cyclic group order p).

Proof. (i) Let U ⊆ G(O) be the subset from Proposition 13.8(ii). Our assumptions on the sequence
{Im}m∈N imply that ⋂

m∈N G(O; Im) = {1G} and G(O; I1) ⊇ G(O; I2) ⊇ . . . . Thus, there exists
m0 ∈ N such that G(O; Im0) ∩ U = ∅, and the conclusion follows from Proposition 13.8(ii).

(ii) For every i ≥ 0, put Γi = Γ ∩ G(O; Im0P
i
ρ). Then Γi/Γi+1 is isomorphic to a subgroup of

G(O; Im0P
i
ρ)/G(O; Im0P

i+1
ρ ), which is an elementary abelian p-group by Proposition 13.7. This

means that there are normal subgroups

Γi = Γi,1 ⊇ · · · ⊇ Γi,t(i) ⊇ Γi,t(i)+1 = Γi+1

such that |Γi,k/Γi,k+1| = p for all k ∈ {1, . . . , t(i)}. Put Xi,k = Γi,k\Y . Then

· · · → X2,2 → X2,1 · · · → X1,2 → X1,1 → · · · → X0,2 → X0,1 = Γ\Y

is the required tower of Cp-Galois coverings.

Remark 13.10. Suppose we are given a global field K, a finite place ν, and an absolutely almost
simple simply connected isotropic algebraic group H over Kν , and we wish to complete this data to
the setting of Notation 13.5 in such a way that H = GKν and the assumptions of Proposition 13.8
hold. This is known to be possible if charK = 0, and thus the affine building Y of H covers infinitely
many finite similicial complexes. On the other hand, if charK > 0 and rank H > 1, then completing
the data in this manner is possible only if H is of type Am.
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13.3 The Congruence Subgroup Property

Keep Notation 13.5. We proceed by recalling the congruence subgroup property and using it to
bound the the number of group homomorphisms from a principal congruence subgroup G(O; I) to
the additive group of Fp.

Let ĜK = lim←−G(K)/U , where the limit ranges over the finite index subgroups U of G(O), and let
GK = lim←−G(K)/G(O; I), where the limit ranges over the nonzero ideals I ⊴O. While G(K)/U , resp.
G(K)/G(O; I), are not groups, ĜK and GK are groups, which we topologize by giving G(K)/U , resp.
G(K)/G(O; I), the discrete topology and taking the limit topology. There is an evident surjective
group homomorphism ĜK → GK . The kernel of this map, denoted CS(G), is called the congruence
kernel of (G, S), and (G, S) is said to satisfy the congruence subgroup property (CSP) if CS(G) is
finite. For example, CS(G) is trivial if and only if any finite index subgroup of G(O) contains a
principal congruence subgroup. The question of which pairs (G, S) have CSP has a long and rich
history; we refer the reader to [PR10] for a survey, and to [PR94, §9.5] for an extensive discussion.
The main conjecture in this field is due to Serre:

Conjecture 13.11 (Serre). With notation as in Notation 13.5, (G, S) has CSP if G is Kρ-
isotropic for every ρ ∈ S − V∞ and

∑
ρ∈S rankKρ G > 1. The pair (G, S) does not have CSP if∑

ρ∈S rankKρ G = 1.

The conjecture is known to hold in many cases. The following two theorems are a culmination
of many results due to Borovoi, P. Gille, Platonov, G. Prasad, Raghunathan, A. Rapinchuk, Segev,
Seitz, Tomanov and others. See [PR10], [PR94, §9.5] and the references therein.

Theorem 13.12. With notation as in Notation 13.5, suppose that

(1) G is Kρ-isotropic for all ρ ∈ S − V∞,

(2)
∑
ρ∈S rankKρ G ≥ 2, and

(3) G is K-isotropic, or of the types Bn (n ≥ 2), Cn (n ≥ 3), Dn (n ≥ 5), E7, E8, F4, G2, or
G = SU(f) where f is a nondegenerate hermitian form of dimension ≥ 4 over a quadratic
Galois extension of K (cf. Example 13.2(iv)).

Then (G, S) has CSP.

Proof. Theorem 2 in [PR10] states that if (1) and (2) hold, then CSP for (G, S) follows from the
centrality of CS(G) in ĜK . The group CS(G) is known to be central in ĜK when (3) holds; see
[Rag76] and [Rag86] for the case where G is isotropic (the assumption G(k) = (k)+ for groups of
type E6 that was unknown at the time and was established in [Gil09]), and [PR94, Theorems 9.23,
9.24] for the anisotropic cases.

Theorem 13.13. With notation as in Notation 13.5, assume that conditions (1) and (2) of 13.12
hold that G has CSP (this follows from (1) and (2) if Conjecture 13.11 holds) and that

(3 ′) G is K-isotropic, or of the types Bn (n ≥ 2), Cn (n ≥ 3), Dn (n ≥ 4, excluding 3,6D4), E7,
E8, F4, G2, or inner of type An, or G = SU(f) where f is a nondegenerate hermitian form
of dimension ≥ 3 over a quadratic Galois extension of K (cf. Example 13.2(iv)).

Then CS(G) is isomorphic to a subgroup of µ(K), the group of roots of unity in K. If moreover S
contains a non-archimedean place, the CS(G) is trivial.
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Proof. Condition (3′) lists the cases where the Margulis–Platonov conjecture is known to hold, see
[Rap06] (inner type An), [Gil09] (isotropic groups) and [RS01, Appendix A] (all other cases). By
[PR10, Theorem 2], if the Margulis–Platonov conjecture holds for G, and (G, S) has CSP, then
CS(G) is isomorphic to the metaplectic kernel M(S,G). G. Prasad and A. Rapinchuk [PR96] (or
[PR10, Theorem 3]) showed that the latter is isomorphic to a subgroup of µ(K), and it is moreover
trivial if there is ρ ∈ S − V∞ such that G is Kρ-isotropic.

In the following theorem, we use CSP in order to bound the number of group homomorphism
from a principal congruence subgroup to Fp. If A and B are topological groups, we write Homc(A,B)
for the set of continuous group homomorphisms from A to B. We give Fp the discrete topology.

Theorem 13.14. With notation as in Notation 13.5, suppose that
∑
ρ∈S rankKρ G ≥ 2, that G is

Kρ-isotropic for every ρ ∈ S − V∞ and that (G, S) has CSP (this is superfluous if Conjecture 13.11
holds). Let p ∈ N be a prime number, and let I ⊴O. Define the following sets of places:

• T1 is the set of ρ ∈ V − S such that char k(ρ) ̸= p and Iρ ̸= Oρ.

• T2 is the set of ρ ∈ V − S such that char k(ρ) ̸= p, Iρ = Oρ, GOρ is absolutely almost simple
simply connected and |k(ρ)| ≥ 4.

• T3 is the set of ρ ∈ V − S such that char k(ρ) = p and GOρ is a split absolutely almost simple
simply connected. If GOρ is of type C2 or G2, we further require that |k(ρ)| > 2.

• T4 = V − S − T1 − T2 − T3.

Then there are C,M ∈ N ∪ {0}, depending only on G and K, such that if charK = 0, then

dimFp Hom(G(O; I),Fp) ≤ C|T3|+
∑
ρ∈T4

dimFp Homc(G(Oρ; Iρ),Fp) +M.

and if charK > 0, then

dimFp Hom(G(O; I),Fp) ≤ C
∑
ρ∈T3

ρ(I) dimFp k(ρ) +
∑
ρ∈T4

dimFp Homc(G(Oρ; Iρ),Fp) +M.

Each term dimFp Homc(G(Oρ; Iρ),Fp) is finite. Moreover, if p ∤ |CS(G)|, then we can take M = 0.

The group scheme GOρ is absolutely almost simple simply connected for all but finitely many
ρ ∈ V − S, see [Rag76, Lemma 1.9]. Thus, if charK = 0, then V − S − T2 is finite.

Proof. Put Γ = G(O; I), let Γ̂ be the profinite completion of Γ, and let Γ = lim←−G(O; I)/G(O; I ′)
where I ′ ranges over the nonzero ideals of O contained in I. Then Γ̂ and Γ are subgroups of ĜK and
GK , respectively, and the natural map ĜK → GK restricts to a surjective map Γ̂→ Γ. The kernel
H := ker(Γ̂→ Γ) is a subgroup of CS(G), hence finite by our assumptions.

There is a one-to-one correspondence between group homomorphisms φ : Γ→ Fp and continuous
group homomorphisms φ̂ : Γ̂→ Fp (Fp is regarded as a discrete tolopgical space). Thus, it is enough
to bound the Fp-dimension of Homc(Γ̂,Fp). The short exact sequence 1→ H → Γ̂→ Γ→ 1 gives
rise to an exact sequence

0→ Homc(Γ,Fp)→ Homc(Γ̂,Fp)→ Homc(H,Fp),

so
dim Hom(Γ,Fp) ≤ dim Homc(Γ,Fp) + dim Hom(H,Fp).
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We take M = maxH′≤CS(G) dimFp Hom(H ′,Fp), so that dimFp Hom(H,Fp) ≤M . By strong approx-
imation, the group Γ is the profinite group ∏

ρ∈V−S G(Oρ; Iρ), cf. Proposition 13.6. Since the kernel
of every continuous homomorphism ∏

ρ∈V−S G(Oρ; Iρ)→ Fp is open, we have

Homc(
∏

ρ∈V−S
G(Oρ; Iρ),Fp) ∼=

⊕
ρ∈V−S

Homc(G(Oρ; Iρ),Fp).

Putting everything together, we get

dim Hom(Γ,Fp) ≤
∑

ρ∈V−S
dim Homc(G(Oρ; Iρ),Fp) +M.

Now, in order to prove the theorem, it remains to bound dim Homc(G(Oρ; Iρ),Fp) according to
whether ρ is in T1, T2, T3 or T4. We split into cases.

Suppose first that ρ ∈ T1. Then Iρ ⊆ mρ and ℓ := char k(ρ) ̸= p. We claim that Homc(G(Oρ; Iρ),Fp) =
0. To see this, note that there is some n ∈ N such that Iρ = mn

ρ . Let φ : G(Oρ;mn
ρ ) → Fp be a

continuous homomorphism. Then kerφ is open and thus contains G(O;mm
ρ ) for some m ≥ n. By

Proposition 13.7, G(Oρ,mi
ρ)/G(Oρ,mi+1

ρ ) is an elementary abelian ℓ-group for all ℓ and i ≥ 1. Since
ℓ ̸= p, this forces φ to be 0.

Suppose next that ρ ∈ T2. Then Iρ = Oρ, ℓ := char k(ρ) ̸= p, GOρ is absolutely almost simple
simply connected and |k(ρ)| ≥ 4. We need to show that Homc(G(Oρ; Iρ),Fp) = Homc(G(Oρ),Fp) = 0.
Let φ : G(Oρ) → Fp be a continuous homomorphism. By the previous paragraph, φ vanishes on
G(Oρ;mρ). Since GOρ is absolutely almost simple simply connected, the same applies to Gk(ρ). Now,
theorems of Chevalley, Steinberg and Tits [PR94, Proposition 7.5] tell us that G(k(ρ)) is a perfect
group (here we need |k(ρ)| ≥ 4). Since GOρ → SpecOρ is smooth, G(Oρ)/G(Oρ;mρ) ∼= G(k(ρ)).
Since Fp is abelian, this forces φ to be 0, as claimed.

Suppose now that ρ ∈ T3. Then char k(ρ) = p and GOρ is a split almost simple simply connected
group scheme over Oρ. Write R = Oρ, m = mρ and J = Iρ. We will make use of the (absolute)
elementary subgroups E(R; J) of G(R; J); see [HVZ13, §2] and the references therein for their
definition. In fact, in our case, E(R; J) = G(R; J) by [AS76, Propositions 2.3, 2.4]. It follows from
the definition of the elementary subgroups that E(R; J)p ⊇ E(R; pJ), hence G(R; J)p ⊇ G(R; pJ).
Moreover, by [HVZ13, Lemma 17] and the comment following Lemma 18 in that source, we have
[E(R; J), E(R; J)] ⊇ E(R; J3) (in fact, we can replace E(R; J3) with E(R; J2) if G is not of type
Cℓ), and likewise for G(R; J). Consequently, any group homomorphism φ : G(R; J) → Fp must
vanish on G(R; pJ) and G(R; J3). If J = Oρ (i.e. ρ(I) = 0), then φ must be zero, so assume J ≠ Oρ.
In particular, pR ⊆ m. We now break into subcases.

Suppose first that charK = 0. Then pJ ̸= 0. Let φ denote the induced map G(R; J)/G(R; pJ)→
Fp. We need to bound the number of these maps by pC for C depending only on G and K.
Write t = ρ(p) > 0, s = ρ(J) and f = dimFp k(ρ). Proposition 13.7 tells us that there is a
constant D such that G(R;mi)/G(R;mi+1) is an elementary abelian p-group of rank ≤ D · f . Thus,
G(R; J)/G(R; pJ) = G(R;ms)/G(R;mt+s) is a p-group with at most pDtf elements, hence it admits
at most pDtf homomorphisms into Fp. Our assumption that charK = 0 implies that only finitely
many places ρ ∈ V − S divide p, so there is a constant C1 ∈ N such that tf ≤ C1 for all ρ ∈ T3. We
can take C = DC1.

Now suppose that charK > 0. Then charK = char k(ρ) = p. Let φ denote the induced
map G(R; J)/G(R; J3) → Fp, and write J = ms (so that s = ρ(I)). An argument similar to
the previous paragraph shows that the dimension of the Fp-vector space of such φ is at most
2sD dimFp k(ρ) = 2Dρ(I) dimFp k(ρ). Taking C = 2D completes the case ρ ∈ T3.
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Finally, we need to show that Homc(G(Oρ; Iρ),Fp) is finite for all ρ ∈ V − S. To that end, it
is enough to prove that G(Oρ; Iρ) is finitely generated as a profinite group. By Proposition 13.6,
G(O; I) is dense in G(Oρ; Iρ). Thus, it is enough to show that G(O; I) is finitely generated. This
holds by [PR94, Theorem 5.11] if charK = 0 and [Beh69] (see also [Beh87]) if charK > 0.

13.4 Proof of Theorem 13.1

We prove Theorem 13.1 by exhibiting an example of a simpicial complex and showing that it
satisfies (i) and (ii). The example can be generalized, of course. To that end, we would like to apply
Corollary 13.9 and Theorem 13.14 together. Their joint assumptions force the set of places S to be
V∞ ∪ {ν}, and moreover, G has to be Kν-isotropic and Kρ-anisotropic for every ρ ∈ V∞.

We first recall the following well-known fact from algebraic topology.

Lemma 13.15. Let X be a connected (finite) simplicial complex with fundamental group Γ and let
p be a prime number. Then H1(X,Fp) ∼= Hom(Γ,Fp) as Fp-vector spaces.

Construction 13.16. We specialize Notation 13.5 as follows. Take

• K = Q.

The set of places V can be identified with the set of prime numbers together with ∞. Fix a prime
number p with p ≡ 1 mod 4 and take:

• S = {p,∞},

• ν = p (ν will also denote the p-adic valuation),

Thus, O = Z[1
p ]. Fix d ≥ 3 and let

• G = SUd+1(O[i]/O),

• G = SUd+1(Q[i]/Q),

where the notation is as in Example 13.2(iii). Thus, Kν = Qp, and Y is the affine building attached
to GQp . Our choice of p implies that Qp contains a square root of −1, so by Example 13.4(ii),
GQp

∼= SLd+1(Qp). Thus, Y is the the familiar affine building of SLd+1(Qp). In particular,
dimY = d and Y is (p+ 1)-thick.

Observe that G(R) is nothing but the group of (d+ 1)× (d+ 1) complex unitary matrices, so
it is compact. Thus, G is R-anisotropic, and therefore Q-anisotropic. On the other hand, G is
Qp-isotropic by Example 13.4(i). This allows us to apply Corollary 13.9 with the sequence of ideals
Im = 2m3O; set Γ = G(O; Im0) = G(O; 2m03O), where m0 ∈ N is in the corollary. (Explicitly, Γ
is the set of matrices in SUd+1(Z[1

p ][i]/Z[1
p ]) which are congruent to the identity matrix modulo

2m0 ·3.) Put X := Γ\Y and X ′r = G(O; 2m03r+1O)\Y for all r ∈ N∪{0}. Then X = X ′0, X
′
1, X

′
2, . . .

are connected simplicial complexes covered by Y , and the evident quotient maps give rise to a tower
of coverings . . . X ′2 → X ′1 → X ′0 = X.

Proposition 13.17. The complex X and the tower . . . X ′2 → X ′1 → X ′0 = X of Construction 13.16
satisfy conditions (i) and (ii) of Theorem 13.1.

Proof. Condition (i) follows from Corollary 13.9(ii).
To show (ii), observe that Proposition 13.7 implies that G(O; 2m03r+1O)/G(O; 2m03r+2O) is an

elementary abelian 3-group for all r ≥ 1. Thus, [X ′r : X] = [G(O; 2m03O) : G(O; 2m03r+1O)] is a
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power of 3, and in particular odd. (In the equality we used the fact that the G(O; 2m03O) acts
freely on Y , which we know by Corollary 13.9(i).)

Next, Lemma 13.15 and Corollary 13.9(i) tell us that

dim H1(X ′r,F2) = dimF2 Hom(π1(X ′r),F2) = dimF2 Hom(G(O; 2m03r+1O),F2).

We bound the right hand side using Theorem 13.14 with p = 2 and I = 2m03r+1O. The as-
sumptions of the theorem hold because rankR G = 0 and rankQp G = rank SLd+1(Qp) = d > 1
(Example 13.4(i)), and (G, S) has CSP holds by Theorem 13.12 (here we need d ≥ 3). In the
notation of Theorem 13.14, we have T1 = {3}, T2 = V − {2, 3, p,∞}, T3 = ∅ and T4 = {2}, so the
theorem implies that dimF2 Hom(G(O; 2m03r+1O),F2) is bounded by a constant C independent of
r.

Proof of Theorem 13.1. The theorem follows from Proposition 13.17. The thickness requirement on
the building Y can be taken care of by choosing p in Construction 13.16 large enough in advance.

Remark 13.18. If Conjecture 13.11 holds, then the proof of Theorem 13.1 also applies with d = 2.
In fact, the theorem holds when d = 2 even without assuming Conjecture 13.11. The idea is to use
the affine buildings of the (unique) simply connected algebraic group of type G2 over Qp. To that
end, one could take G to be the automorphism group scheme of a Z-order in the standard octonion
algebra over Q and argue as in the proof of Proposition 13.17. We omit the details.

For later use, we also introduce a variation of Construction 13.16.

Construction 13.19. Let K = Q and V be as in Construction 13.16. Let E = Q[
√
−7] and

A = Z[
√
−7+1

2 ] ∼= Z[x |x2 = x− 2], and let p be an odd prime number such that x2 − x+ 2 factors
into two distinct factors modulo p, or equivalently, p is congruent to 1, 2, or 4 modulo 7. Let

• S = {p,∞} and

• ν = p (ν will also denote the p-adic valuation).

Then O = Z[1
p ].

Fix d ≥ 3 and let f : Ad+1 × Ad+1 → A denote the hermitian form f((xi), (yi)) = ∑d+1
i=1 xiyi,

where xi is the complex conjugate of xi. Now, using the notation of Example 13.2(iv) (with R = Z,
r0 = −2, r1 = 1), define

• G = SU(f),

• G = SU(fQ).

Since the polynomial x2−x+2 factors into two distinct factors modulo p, we have E⊗ZQp
∼= Qp×Qp

and under isomorphism, complex conjugation becomes swapping the coordinates. Thus, as in
Example 13.4(ii), we see that GKν

∼= SLd+1(Qp), so Y is the the affine building of SLd+1(Qp).
Since E ⊗Q R = C, we again see that G(R) is the group of (d+ 1)× (d+ 1) complex unitary

matrices, so again, G is R-anisotropic, and therefore Q-anisotropic. On the other hand, G is
Qp-isotropic by Example 13.4(i). This allows us to apply Corollary 13.9 with the sequence of ideals
Im = 7m3O; set Γ = G(O; Im0) = G(O; 7m03O), where m0 ∈ N is in the corollary. Put X := Γ\Y .
Then X is a connected simplicial complexes covered by Y .

Proposition 13.20. The complex X of Construction 13.19 satisfies H1(X,F2) = 0.
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Proof. As in the proof of Proposition 13.17, we reduce into showing Hom(G(Z; 7m03Z),F2) = 0. We
show this by applying Theorem 13.14 with p = 2. Note that x2−x+2 splits into two distinct factors
modulo 2, and thus A ⊗Z Z2 ∼= Z2 × Z2, so GZ2

∼= SLd+1(Z2) (cf. Example 13.4(ii)). This means
that, T1 = {7, 3}, T2 = V − S − {2, 3, 7}, T3 = {2} and T4 = ∅. By Theorem 13.13, CS(G) = 1, so
we conclude that Hom(G(Z; 7m03Z),F2) = 0.

14 Sheaves of Large Dimension with Small Cohomology
This final section has to purposes. First, we construct examples of locally cosntant F-sheaves F of
arbitrarily large dimension such that h1(F)≪ dimF . In particular, we shall prove Theorem 12.10
by constructing examples with h0(F) = h1(F) = 0 and dimF → ∞; this uses Theorem 13.1 as
a black box. Sheaves with h1(F) ≪ dimF are natural candidates for the iterative modification
process discussed in Section 12.

Second, we will show that every two of the conditions (t1)–(t3) of the tower paradigm (Theo-
rem 11.1 with k = 0) are satisfied for some sheaved complex (X,F). Otherwise stated, no two of
the prerequisites of the tower paradigm are contradictory.

14.1 Proof of Theorem 12.10

We begin with proving the following lemma. Recall that FX denotes the constant sheaf F on a
simplicial complex X.

Lemma 14.1. Let F be a field, let u : Y → X be a degree-m covering of connected sim-
plicial complexes, and suppose that charF ∤ m. Define a sheaf morphism φ : u∗FY → FX
by φx(α1, . . . , αm) = ∑

i αi for all x ∈ X − {∅}, and put G = kerφ. Then h0(G) = 0 and
h1(G) = dim H1(Y,F)− dim H1(X,F).

Proof. Note that u∗FY (x) = ∏
y∈u−1(x) F for all x ∈ X−{∅} and we implicitly identified ∏

y∈u−1(x) F
with Fm by numbering the faces in u−1(x). Define ψ : FX → u∗FY by ψx(α) = (m−1α, . . . ,m−1α)
(m times) for all x ∈ X − {∅} (here we used the assumption charF ∤ m). It is routine to check that
ψ is indeed a morphism of sheaves, and moreover, φ ◦ ψ = idFX

. This means that u∗FY breaks
as a product of the sheaves imψ ∼= FX and kerφ = G. Consequently, hi(G) = hi(u∗FY )− hi(FX)
for all i ≥ 0. By Lemma 4.11, we have hi(u∗FY ) = hi(FY ). Since X and Y are connected
h0(FX) = h0(FY ) = 1, and lemma follows.

Proof of Theorem 12.10. Recall that we are given q, d ∈ N with d ≥ 2, and we need to construct
a q-thick d-dimensional affine building Y covering a finite simplicial complex X and a nonzero
locally constant F2-sheaf G such that X admits an infinite tower of connected double coverings and
h0(G) = h1(G) = 0.

By Theorem 13.1, there exist a q-thick affine building Y covering a simlicial complex X ′0 and a
tower of connected coverings · · · → X ′2 → X ′1 → X ′0 such that every connected covering of X ′0 admits
an infinite tower of connected double coverings, and [X ′r : X ′0] is odd and bounded by some C ∈ N for
all r ∈ N ∪ {0}. The latter implies that there are t > s ≥ 0 with dim H1(X ′t,F2) = dim H2(X ′s,F2).
Let u denote the covering map X ′t → X ′s. The degree of u — call it m — is odd and greater than 1,
so Lemma 14.1 provides us with a locally constant F2-sheaf G on X ′s of dimension m−1 > 0 such that
h0(G) = 0 and h1(G) = dim H1(X ′t,F2) − dim H2(X ′s,F2) = 0. Taking X = X ′s, we have obtained
the desired sheaved d-complex (X,G). Alternatively, writing p for the covering map X ′s → X ′0, we
can also take (X ′0, p∗G) thanks to Lemma 4.11.
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Remark 14.2. If X admits a tower of coverings · · · → X ′2 → X ′1 → X ′0 = X such that
dim H1(X ′r,F2) ≪ [X ′r : X] as r grows, then by setting Fr = (ur)∗(F2)X′r , where ur is the map
X ′r → X, we get a family {Fr}r∈N of F2-sheaves on X with dimFr →∞ and h1(Fr)≪ dimFr as
r →∞.

Applying this approach to the Ramanujan complexes of [LSV05a] to construct F2-sheaves and
then applying the modification process of Construction 12.2 to these sheaves gives the explicit
example considered in §2.7.

14.2 Satisfying Every Two of The Three Prerequisites of The Tower Paradigm

We finish by demonstrating that every two of the conditions conditions (t1)–(t3) of Theorem 11.1
with k = 0 are met for some sheaved complex (X,F). Theorem 13.1 will play a role in all of the
constructions.

Example 14.3 (Conditions (t1) and (t2) of Theorem 11.1 can be met). Fix q, d ≥ 3 and let Y , X
be simplicial complexes satisfying condition (i) of Theorem 13.1. Then Y is a q-thick d-dimensional
affine building covering X and X has an infinite tower of connected double coverings. The latter
implies (t1). Let F denote the constant sheaf F2 on X. Choosing q sufficiently large in advance
allows us to apply Theorem 9.2(i) to (X,F), thus establishing (t2).

We observed in Proposition 11.4 that (t3) does not hold for this choice of (X,F).

Example 14.4 (Conditions (t1) and (t3) of Theorem 11.1 can be met). Again, fix d ≥ 3 and let X
be a d-complex satisfying condition (i) of Theorem 13.1. Then X has an infinite tower of double
coverings, hence (t1) holds.

Define a sheaf F on X by setting F(v) = Fk2 for all v ∈ X(0), F(y) = F2 for all y ∈
X−X(0)−X(−1), and setting all the restriction maps resFy←x to be 0. Then dim H0(X,F) = k·|X(0)|
while dim H1(X,F) = |X(1)|, so if we choose k > |X(1)|

|X(0)| , then condition (t3) is satisfied.
Of course, (Xz,Fz) is a poor coboundary expander, in all dimension, for all z ∈ X − {∅}, so

condition (t2) does not hold for (X,F). More generally, this highlights the difficulty in securing (t2)
when the dimensions of the spaces {F(y)}y∈X(1) are significantly smaller than those of {F(x)}x∈X(0),
which is the naive approach to making h0(F) large.

Example 14.5 (Conditions (t2) and (t3) of Theorem 11.1 can be met). Fix d ≥ 3 and a prime
number p that is congruent to 1, 2 or 4 modulo 7. We apply Construction 13.19 with p to get a
d-dimensional affine building Y covering a simplicial complex X. Let F be the constant sheaf F2 on
X. By Proposition 13.20, dimF2 H1(X,F) = 0, while dimF2 H0(X,F) = 1, so (t3) holds for (X,F).
In addition, choosing p sufficiently large in advance allows us to apply Theorem 9.2(i), which tells
us that (t2) holds for (X,F).

However, (t1) fails in this case because X has no double coverings. Indeed, it is well-known that
the double coverings of X are classified by H1(X,F2), which is 0 in our case.
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Appendices

A Sheaves on Simplicial Comlexes versus Sheaves on Topological
Spaces

In this appendix we explain the relation between the sheaves on simplicial complexes defined in this
paper (Section 4) and the well-known sheaves on topological spaces. Notably, we will show that
sheaves on simplicial complexes can be realized as sheaves on certain topological spaces in such a
way that the cohomologies agree. The comparison will lead to a definition of the pushforward of a
sheaf along an arbitrary morphism of simplicial complex, extending the definition given in §4.3 for
dimension preserving maps.

We have made the first two subsections of this appendix accessible to readers with no prior
knowledge of sheaves. However, the more advanced topics considered in the remaining sections
require some familiarity with pushforward, pullback and sheaf cohomology; the relevant background
material can be found in [Ive86], for instance.

Throughout, simplicial complexes are allowed to be infinite. We denote the category of sheaves
on a simplicial complex X by Sh(X) (cf. Remark 4.3).

A.1 Sheaves on Topological Spaces: a Quick Introduction

Let Y be a topological space. Recall that a sheaf (of abelian groups) F on Y consists of

(1) an abelian group F(U) for every open subset U ⊆ Y and

(2) a group homomorphism resFV←U : F(U)→ F(V ) for every V ⊆ U open in Y

such that the following conditions are met:

(S1) resFU←U = idF(U) for every open U ⊆ Y .

(S2) resFW←V ◦ resFV←U = resFW←U for all W ⊆ V ⊆ U open in Y .

(S3) Given open subsets {Ui}i∈I of Y and elements fi ∈ F(Ui) for all i ∈ I such that, for all i, j ∈ I,
we have resFUi∩Uj←Ui

fi = resFUi∩Uj←Uj
fj in F(Ui ∩Uj), there exists a unique f ∈ F(U), where

U = ⋃
i∈I Ui, such that fi = resFUi←U f for all i ∈ I.

The maps resFV←U are called restriction maps and elements of F(U) are called U -sections, or just
sections. Elements of F(X) are called global sections. It is common to abbreviate resFV←U f to
f |U→V or f |V . The abelian group F(U) is also written Γ(U,F).

If F is a field, then a sheaf of F-vector spaces on Y is defined similarly, by requiring each F(U)
to be an F-vector space and each restriction map to be an F-linear map. In the same manner, one
can define sheaves of groups, R-modules, sets (the restriction maps are arbitrary functions), and so
on.
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Remark A.1. Condition (S3) is also required to hold with I = ∅, in which case {Ui}i∈I is an empty
collection and U must be ∅. This choice of {Ui}i∈I tells us that F(∅) is the trivial group.

The most fundamental example of a sheaf on Y is obtained by setting

F(U) = {f : U → R : f is continuous},

with resFU←V being given by resFU←V f = f |V (the right hand side is the restriction of f to a function
from V to R). The addition law in F(U) is point-wise addition. Notice that in this case, resFU←V is
literally the restriction-of-domain operation. Conditions (S1)–(S3) now become to the following
simple facts:

(S1′) If U is open in Y and f : U → R is continuous, then f |U = f .

(S2′) If W ⊆ V ⊆ U are open in Y and f : U → R is continuous, then (f |V )|W = f |W .

(S3′) Given open subsets {Ui}i∈I of Y and, for each i ∈ I, a continuous function fi : Ui → R such
that fi|Ui∩Uj = fj |Ui∩Uj for all i, j ∈ I, then all the fi glue uniquely to a continuous function
f : ⋃

i∈I Ui → R such that f |Ui = fi for all i ∈ I.

The sheaf F is actually a sheaf of R-vector spaces.
Similarly, given an abelian group A, we could define a sheaf FA on Y by setting FA(U) to be

the abelian group of all functions from U to A, and again define the restriction maps by restriction
of the domain. If A were a topological group, we could replace “all” with “continuous” and get a
sheaf as well; the example from the previous paragraph is the special case A = R.

In light of the previous examples, the concept of a sheaf on Y can be seen as axiomatizing an
ensemble of “good” (e.g. continuous) functions from open subsets of Y to some fixed target space,
but without specifying what “good” means, or what is the target.

The following example is one reason why elements of F(U) are called sections.

Example A.2. Let X be another topological space and let p : X → Y be a continuous function.
Recall that a (continuous) section of p is a continuous function f : Y → X such that p ◦ f = idY .
More generally, given an open subset U ⊆ Y , we say that a continuous function f : U → Y is a
section of p if p ◦ f = idU . Denote by Fp(U) the set of sections f : U → Y of p. Then Fp defines
a set-sheaf on Y by setting resFp

V←U f = f |V . Moreover, the U -sections of Fp are the exactly the
sections of p defined on U .

If F and G are sheaves on Y , then a morphism φ from F to G consists of a group homomorphism
φU : F(U)→ G(U) for every open U ⊆ Y such that

φV ◦ resFV←U = resGV←U ◦φU

for all V ⊆ U open in Y . If F and G are sheaves of F-vector spaces (resp. rings, sets, etc.), then we
instead require that each φU is a linear transformation (resp. ring homomorphism, any function,
etc.). The sheaves on Y and the morphisms between them form a category denoted Sh(Y ).

A.2 Sheaves on Simplicial Complexes as Sheaves on Topological Spaces

Let X be a simplicial complex. We say that a subset U ⊆ X − {∅} is simplicially open (in X) if
x ∈ U implies that X⊇x ⊆ U . Informally, the set X⊇x may be regarded as the smallest simplicial
neighborhood of x in X. A subset of U of X − {∅} is therefore simplicially open if and only if
it contains a simplicial neighborhood of every face in U . The collection of simplicially open sets
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forms a topology on X − {∅}, and we denote by X◦ the resulting topological space. By design, the
subcollection {X⊇x |x ∈ X − {∅}} is a basis of X◦.

Let G be a sheaf on X◦ and let U ⊆ X◦ be an open subset. Condition (S3) in the definition of
a sheaf on a topological space implies that we can recover G(U) (up to isomorphism) by knowing
the groups {G(X⊇x) |x ∈ X◦} and the restriction maps between them. More precisely, G(U) may
be naturally identified with the set of ensembles (gx)x∈U where gx ∈ G(X⊇x) for all x ∈ U and
such that gx|X⊇x∩X⊇y

= gy|X⊇x∩X⊇y
for all x, y ∈ U . Indeed, such a collection (gx)x∈U determines a

unique g ∈ F(U) with g|X⊇x
= gx for all x ∈ U . Note also that X⊇x∩X⊇y is X⊇x∪y if x∪y is a face

of X, and ∅ otherwise. Thus, the condition on the (gx)x∈X is equivalent to having gx|X⊇z
= gy|X⊇z

whenever x, y, z ∈ U and x, y ⊆ z. Taking y = z or x = z, this is in turn equivalent to having
gx|X⊇y

= gy for all x, y ∈ U with x ⊊ y. Now, abbreviating G(X⊇x) to G△(x) and resGX⊇y←X⊇x
to

resG△y←x for every x, y ∈ U with x ⊊ y, we find that G△ is a sheaf on X in the sense of §4.1, and we
can recover G (up to isomorphism) from G△ via

G(U) ∼= {(gx)x∈U ∈
∏
x∈U
G△(x) : resG△y←x gx = gy for all x, y ∈ U with x ⊊ y},

where the isomorphism is given by g 7→ (g|X⊇x
)x∈U . To conclude, each sheaf G on X◦ determines a

sheaf G△ on X, and we can recover G from G△.
Conversely, we may start with a sheaf F on X in the sense of §4.1 and construct a sheaf F◦ on

X◦ as follows: Given an open subset U ⊆ X◦, let F◦(U) denote the set of (fx)x∈U ∈
∏
x∈U F(x)

such that resFy←x fx = fy for all x, y ∈ U with x ⊊ y. Then, given V ⊆ U open in X◦, define
resF◦V←U : F◦(U)→ F◦(V ) by (fx)x∈U 7→ (fx)x∈V . It is routine to check that this defines a sheaf on
X◦.

As we shall now see, up to sheaf isomorphism, the constructions G 7→ G△ and F 7→ F◦ are
inverse to each other. Thus, sheaves on the topological space X◦ and sheaves on the simplicial
complex X are essentially the same thing. Here is a precise statement:

Theorem A.3. The assignment G 7→ G△ extends naturally to a functor Sh(X◦)→ Sh(X), and the
assignment F 7→ F◦ extends naturally to a functor Sh(X)→ Sh(X◦). These functors are mutual
inverses, up to natural isomorphism.

Proof (sketch). The extension of G 7→ G△ (resp. F 7→ F◦) to a functor is straightforward, but we
include it for the sake of completeness. Given a morphism φ : G1 → G2 between two sheaves on X◦,
define φ△ : G1

△ → G2
△ by φ△x = φX⊇x

for all x ∈ X−{∅}. Given a morphism ψ : F1 → F2 between
two sheaves onX, define ψ◦ : F1

◦ → F2
◦ by ψ◦U ((fx)x∈U ) = (ψxfx)x∈U for all open U ⊆ X◦. We leave

it to the reader to check that these constructions determine functors (−) 7→ (−)△ : Sh(X◦)→ Sh(X)
and (−) 7→ (−)◦ : Sh(X)→ Sh(X◦), and proceed with showing that these functors are inverse to
each other up to natural isomorphism.

Given a sheaf F on X and x ∈ X − {∅}, observe that

(F◦)△(x) = F◦(X⊇x) = {(fy)y ∈
∏

y∈X⊇x

F(y) : fx|y = fy for all y ∈ X⊇x − {x}}.

Define ψF ,x : (F◦)△(x) → F(x) by ψF ,x((fy)y⊇x) = fx. It is routine to check that ψF :=
{ψF ,x}x∈X−{∅} is a sheaf morphism from (F◦)△ to F , with inverse given by ψ−1

F ,x(fx) = (fx|y)y∈X⊇x
.

Moreover, it is straightforward to check that ψF : (F◦)△ → F is natural in F .
Next, let G be a sheaf on X◦. Then for any open U ⊆ X◦, we have

(G△)◦(U) = {(gx)x ∈
∏
x∈U
G(X⊇x) : gx|X⊇y

= gy for all y ∈ X⊇x}.
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Using this, define φG,U : G(U) → (G△)◦(U) by φG,U (f) = (f |X⊇x
)x∈U . It is straightforward to

check that φG := {φG,U}U open in X◦ defines a morphism of sheaves from G to (G△)◦. Moreover, we
observed earlier that condition (S3) (and the nullity of G(∅), see Remark A.1) implies that each
ψG,U is bijective, so ψG is a sheaf isomorphism. Checking that ψG : G → (G△)◦ is natural in G is
routine. This completes the proof.

Remark A.4. A similar argument shows that categories of sheaves of F-vector spaces (resp. groups,
rings, sets, etc.) over X and X◦ are equivalent.9

A.3 Comparing Additional Structure: Pullback, Pushforward and Cohomology

Keep the notation of §A.2. Having identified sheaves on X with sheaves on X◦, we turn to show
that this identification respects pullback, pushforward and cohomology. Thus, the theory of sheaves
on simplicial complexes introduced in Section 4 is really a special case of the theory of sheaves on a
topological space, which can be described in a more elementary way using the combinatorics of the
simplicial complex at hand.

We begin with the following lemma.

Lemma A.5. Let f : Y → X be a morphism of simplicial complexes (see §3.1), and let f◦ denote
the induced map f : Y − {∅} → X − {∅}. Then f◦ : Y ◦ → X◦ is continuous.

Proof. Let x ∈ X − {∅}. Then (f◦)−1(X⊇x) = ∪y∈f−1(x)Y⊇y, which is open in Y ◦. Since the sets
{X⊇x |x ∈ X − {∅}} form a basis to X◦, this means that f◦ is continuous.

Let Y and Y ′ be topological spaces and let u : Y ′ → Y be a continuous map. Given a sheaf G′
on Y ′, recall that the pushforward of G′ along u is the sheaf u∗G′ determined by

u∗G′(U) = G′(u−1(U)) and resu∗G′V←U = resG′u−1(V )←u−1(U)

for all V ⊆ U open in Y .10 The counterpart of this construction is the pullback, which takes a
sheaf G on Y and produces a sheaf u∗G on Y ′. In contrast with pullback of sheaves on simplicial
complexes (see §4.3), the construction of u∗G is somewhat more involved and can be found in [Ive86,
II.§4] or [Sta20, Tag 008C], for instance. The functor u∗ : Sh(Y )→ Sh(Y ′) can be implicitly defined
as the left adjoint of u∗ : Sh(Y ′)→ Sh(Y ).

Under the equivalence of Theorem A.3, pushforward and pullback of sheaves on simplicial
complexes corresponds to pushforward and pullback of sheaves on the associated topological spaces.
Formally:

Theorem A.6. Let u : Y → X be a morphism of simplicial complexes, let F be a sheaf on X and
let G be a sheaf on Y . Then:

(i) If u is dimension-preserving (see §3.1), then there is a natural isomorphism (u∗G)◦ ∼= (u◦)∗G◦.

(ii) There is a natural isomorphism (u∗F)◦ ∼= (u◦)∗F◦.
9In fact, it is enough to show this for set-valued sheaves, since all other types of sheaves can be defined internally

within the topoi of sheaves on X and X◦.
10Recommended exercise for beginners: check that u∗G′ is a sheaf on Y .
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Proof. (i) We will actually show that (u∗G)◦ = (u◦)∗G◦. Let U ⊆ X◦ be an open subset. Then

(u◦)∗G◦(U) = G◦(u−1(U)) = {(gy)y∈u−1(U) ∈
∏

y∈u−1(U)
G(y) : resGy′←y gy = gy′ whenever y ⊊ y′}.

On the other hand,

(u∗G)◦(U) = {(g̃x)x∈U ∈
∏
x∈U

u∗G(x) : resu∗Gx′←x g̃x = g̃x′ whenever x ⊊ x′}.

Recall from §4.3 that u∗G(x) = ∏
y∈u−1(x) G(y), so each g̃x is a collection (gy)y∈u−1(x) with gy ∈ G(y)

for all y. Moreover, for all x ⊊ x′ in U , we have

resu∗Gx′←x g̃x = resu∗Gx′←x((gy)y∈u−1(x)) = (resGy′←y′(x) gy′(x))y′∈u−1(x′),

where y′(x) denotes the unique face of y′ mapping to x (it is unique because u is dimension-
preserving). Thus, the condition resu∗Gx′←x g̃x = g̃x′ is equivalent to having resGy′←y gy = gy′ for all
y′ ∈ u−1(x′) and y ∈ u−1(x) with y ⊊ y′. Now, identifying (g̃x)x∈U = ((gy)y∈u−1(x))x∈U with
(gy)y∈u−1(U), we see that (u∗G)◦(U) = (u◦)∗G◦(U).

A similar argument shows that for every V ⊆ U open in X◦, we have res(u∗G)◦
V←U = res(u◦)∗G◦

V←U , so
(u∗G)◦ = (u◦)∗G◦. That this isomorphism is natural in G is routine.

(ii) Unfortunately, we shall need to unfold the definition of the pullback (u◦)∗F◦. We use the
definition in [Sta20, Tag 008C], which makes use of presheaves11, sheafification and stalks; see [Sta20,
Tag 006A] for details. Recall that for a sheaf H on X◦, the pullback (u◦)∗H is the sheafification of
the presheaf P on Y given by P(U) = lim−→ V⊇u(U)H(V ), where V ranges over the open subsets of
X◦ containing u(U). Fortunately, in our situation, every subset T ⊆ X◦ admits a minimal open
subset containing it, namely, T∧ := ⋃

x∈T X⊇x. The definition of the presheaf P therefore simplifies
to P(U) = H(u(U)∧). Taking H = F◦, we find that (u◦)∗F◦ is the sheafification of the presheaf P
on Y given by

P(U) = F◦(u(U)∧) = {(fx)x ∈
∏

x∈u(U)∧
F(x) : resFx′←x fx = fx′ whenever x ⊊ x′}

and resPV←U ((fx)x∈u(U)∧) = (fx)x∈u(V )∧ for all V ⊆ U open in Y ◦. On the other hand, by unfolding
the definitions, we find that

(u∗F)◦(U) = {(fy)y ∈
∏
y∈U
F(u(y)) : resFu(y′)←u(y) fy = fy′ whenever y ⊊ y′}.

Define φU : P(U)→ (u∗F)◦(U) by φU ((fx)x∈u(U)∧) = (fu(y))y∈U . It is routine to check that this is
well-defined and that φ = (φU )U is a morphism of presheaves from P to (u∗F)◦.

By the universal property of sheafification [Sta20, Tag 0080], φ determines a sheaf morphism
φa from (u◦)∗F◦ (the sheafification of P) to (u∗F)◦. Moreover, in order to show that φa is an
isomorphism, it is enough to check that φ : P → (u∗F)◦ induces an isomorphism at the stalks
[Sta20, Tags 007Z, 007T]. Recall that if H is a presheaf on Y , then the stalk of H at y ∈ H is
Hy := lim−→ V ∋yH(V ) where V ranges over the open sets containing y. In our situation, there is a
unique minimal open subset of Y ◦ containing y, namely Y⊇y, so the stalk Hy is just H(Y⊇y). We are
therefore reduced to showing that φY⊇y

: P(Y⊇y)→ (u∗F)◦(Y⊇y) is an isomorphism for all y ∈ Y .
Write x = u(y). Then u(Y⊇y)∧ = X⊇x. It is routine to check that (fy′)y′∈Y⊇y

7→ (resFx′←x fy)x′∈X⊇x

defines an inverse to φY⊇y
. This shows that φa : (u◦)∗F◦ → (u∗F)◦ is a sheaf isomorphism.

One readily checks that the formation of P is funtorial in F and that φ : P → (u∗F)◦ is natural
in F , so φa : (u◦)∗F◦ → (u∗F)◦ is also natural in F .

11Presheaves on a topological space are defined like sheaves, but without the requiring condition (S3).

94

https://stacks.math.columbia.edu/tag/008C
https://stacks.math.columbia.edu/tag/006A
https://stacks.math.columbia.edu/tag/0080
https://stacks.math.columbia.edu/tag/007Z
https://stacks.math.columbia.edu/tag/007T


Remark A.7. Theorem A.6(i) suggests a way to define the pushforward of a sheaf on a simplicial
complex along an arbitrary morphism of simplicial complexes. Specifically, if u : Y → X is such a
morphism and G is a sheaf on Y , define u∗G to be ((u◦)∗G◦)△. (This is conceptually correct because
u∗ : Sh(Y )→ Sh(X) is a right adjoint of u∗ : Sh(X)→ Sh(Y ).) Unfolding this definition, we find
that for x ∈ X − {∅}, we have

u∗G(x) = {(fy)y ∈
∏

y∈u−1(x)∧
G(y) : resGy′←y fy = fy′ whenver y ⊊ y′},

where u−1(x)∧ = ⋃
y∈u−1(x) Y⊇y, and the restriction maps resu∗Gx′←x : u∗G(x) → u∗G(x′) are given

by forgetting coordinates. It is not difficult to check that (fy)y∈u−1(x)∧ 7→ (fy)y∈u−1(x) defines an
isomorphism from u∗G(x) to

{(fy)y ∈
∏

y∈u−1(x)
G(y) : resGy′←y fy = fy′ whenver y ⊊ y′},

so we may take the latter as the definition of u∗G(x). The restriction maps are then given by
resu∗Gx′←x(fy)y∈π−1(x) = (resy′←y′(x) fy′(x))y′∈π−1(x′), where y′(x) is an arbitrary face of y′ mapping
to x (its choice is inconsequential). When u : Y → X is dimension preserving, no face in u−1(x)
contains another such face, so u∗G(x) = ∏

y∈u−1(x) G(y) and we recover the definition of the pullback
given in §4.3.

Recall that if Y is a topological space and G is a sheaf on Y , then we write Γ(Y,G) for Y (G),
the group of global sections of G. Letting G vary, the assignment Γ(Y,−) defines a left exact functor
from Sh(Y ) to abelian groups, and its right derived functors are denoted {Hi(Y,−)}i≥0. The group
Hi(Y,G) is the i-th cohomology group of the sheaf G; see [Ive86, II.§3] for further details. For
example, H0(Y,G) is just Γ(Y,G) = G(Y ).

We finish this section by showing that the equivalence of Theorem A.3 is compatible with taking
cohomology. More precisely:
Theorem A.8. Let X be a simplicial complex.

(i) For every sheaf F on X and i ≥ 0, there is an isomorphism Hi(X,F) ∼= Hi(X◦,F◦) natural
in F .

(ii) If 0→ F → F ′ → F ′′ → 0 is a short exact sequence of sheaves on X, then 0→ F◦ → F ′◦ →
F ′′◦ → 0 is a short exact sequence of sheaves on X◦, and there is a commutative diagram

· · · // Hi(X,F) //

��

Hi(X,F ′) //

��

Hi(X,F ′′) //

��

Hi+1(X,F) //

��

· · ·

· · · // Hi(X◦,F◦) // Hi(X◦,F ′◦) // Hi(X◦,F ′′◦) // Hi+1(X◦,F◦) // · · ·

in which the rows are the long cohomology exact sequences associated to 0→ F → F ′ → F ′′ → 0
(see §4.2) and 0→ F◦ → F ′◦ → F ′′◦ → 0, and the vertical maps are isomorphism from (i).

Proof. The categories Sh(X) and Sh(X◦) are abelian, so the equivalence F 7→ F◦ : Sh(X)→ Sh(X◦)
of Theorem A.3 is necessarily exact. This shows that the sequence 0→ F◦ → F ′◦ → F ′′◦ → 0 in
(ii) is exact. The equivalence also implies that the right derived functors of F 7→ Γ(X◦,F◦) from
Sh(X) to Ab — the category of abelian groups — are {F 7→ Hi(X◦,F◦)}i≥0. We will show in
Appendix B that the functors {Hi(X,−)}i≥0 are right derived functors of H0(X,−) : Sh(X)→ Ab.
Since derived functors are unique up to a natural isomorphism, the theorem will follow if we show
that H0(X,F) is naturally isomorphic to Γ(X◦,F◦) = F◦(X◦). This is the content of the following
lemma.
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Lemma A.9. Let X be a simplicial complex. There is a natural isomorphism H0(X,F) ∼= F◦(X◦).
Proof. Unfolding the definitions, we find that

F◦(X◦) = {(fx)x ∈
∏

x∈X−{∅}
F(x) : resFy←x fx = fy whenever x ⊊ y},

whereas

H0(X,F) = {(fv)v∈X(0) ∈
∏

v∈X(0)
F(v) : resFe←v fv = resFe←u fu

for all u, v ∈ X(0) with e = u ∪ v ∈ X(1)}.

Define φF : F◦(X◦)→ H0(X,F) by φF ((fx)x∈X−{∅}) = (fv)v∈X(0). It is routine to check that φF
is well-defined and natural in F .

To see that φF is invertible, observe that if (fv)v∈X(0) ∈ H0(X,F), x ∈ X − {∅} and u, v
are two 0-faces of x, then fv|x = fu|x. Indeed, this is clear if u = v, and otherwise, we have
fv|u∪v = fu|u∪v and applying resFx←u∪v to both sides gives the desired equality. This allows
us to define ψF : H0(X,F) → F◦(X◦) by ψF((fv)v∈X(0)) = (fv(x)|x)x∈X−{∅}, where v(x) is an
arbitrary 0-face of x. It is straightforward to check that ψF is defines an inverse to φF , so φF is a
isomorphism.

A.4 Aside: Augmented Sheaves as Sheaves on Topological Spaces

We finish with explaining how some of the results in §A.2 and §A.3 may be adapted to augmented
sheaves.

Let X be a simplicial complex. We let X◦+ denote the set X together with the topology consisting
of all simplicially open subsets U ⊆ X − {∅} and the set X. As in §A.2, given a sheaf G on X◦+, we
can define an augmented sheaf G△ on X by setting G△(x) = G(X⊇x) and resG△y←x = resGX⊇y←X⊇x

;
mind that x is allowed to be the empty face. Conversely, an augmented sheaf F on X gives rise to
a sheaf F◦ on X◦+ defined using the same formulas as in the non-augmented sheaf case. The same
argument as in the proof of Theorem A.3 shows that G 7→ G△ defines an equivalence of categories
from Sh(X◦+) to the category of augmented sheaves on X, and F 7→ F◦ is its inverse up to natural
isomorphism. Thus, augmented sheaves on the simplicial complex X are essentially the same thing
as sheaves on the topological space X◦+.

However, in contrast with the non-augmented sheaf case, the equivalence between augmented
sheaves on X and sheaves on X◦+ does not respect cohomology. Rather, the dimensions are shifted
by 1, i.e., there is a natural isomorphism Hi−1(X,F) ∼= Hi(X◦+,F◦) for every augmented sheaf F
and every i ∈ N ∪ {0}. This can be shown as in the proof of Theorem A.8, except now one has to
establish a natural isomorphism H−1(X,F) ∼= Γ(X◦+,F◦) and show that Hi(X,−) is the (i+ 1)-th
right derived functor of H−1(X,−).

Finally, while we have not defined in §4.3 the pushforward and pullback of augmented sheaves
on simplicial complexes, the equivalence with Sh(X◦+) suggests a way one might define them. That
is, given a morphism of simplicial complexes u : Y → X, an augmented sheaf F on X and an
augmented sheaf G on Y , let u∗F = ((u◦+)∗F◦)△ and u∗G = ((u◦+)∗G◦)△, where u◦+ is just u viewed
as a continuous function from Y ◦+ to X◦+. We leave it to the reader to work out what u∗F and u∗G
turn out to be. Beware, however, that these constructions may present exceptional behavior over
the empty face. For example, if u : Y → X is a covering of degree n, and F+ denotes the constant
augmented sheaf on Y associated to a field F, then u∗(F+)(∅) = F while u∗(F+)(x) ∼= Fn for all
x ∈ X − {∅}. (The conceptual reason for this is that u◦+ : Y ◦+ → X◦+ is generally not a degree-n
covering of topological spaces.)

96



B Sheaf Cohomology is a Right Derived Functor
Throughout, X is a possibly-infinite simplicial complex. Recall that Sh(X) denotes the category of
sheaves on X and let Ab denote the category of abelian groups. Then H0(X,−) defines a left exact
functor from Sh(X) to Ab. The purpose of this appendix is to prove that the higher cohomology
groups Hi(X,−) defined in §4.2 are the right derived functors of H0(X,−). In particular, the
category Sh(X) has enough injectives so that the right derived functors of H0(X,−) are defined.
The necessary material about derived functors can be found in [Ive86] and [Sta20, Tag 010P], for
instance.

We begin by introducing the following construction.

Construction B.1. Let x ∈ X − {∅} and let A be an abelian group. Define a sheaf Ax = AX,x on
X by

Ax(y) =
{
A y ⊆ x
0 y ⊈ x

, resAx
z←y =

{
idA z ⊆ x
0 z ⊈ x

for all y, z ∈ X − {∅} with y ⊊ z.

Remark B.2. Under the equivalence of Theorem A.3, the sheaf Ax corresponds to a skyscraper
sheaf.

Lemma B.3. With notation as in Construction B.1, we have Hi(X,Ax) = 0 for all i ≥ 1.

Proof. Let d = dim x. We many forget about all faces in X not contained in x, and thus assume
that X has a single d-face x, and Ax is the constant sheaf A. In this case, the topological realization
|X| of X is contractible, so by Corollary 4.6, Hi(X,A) = Hi(|X|, A) = 0 for i ≥ 1.

Lemma B.4. Let X,x,A be as in Construction B.1 and let F be any sheaf on X. There is a
natural (in F and A) bijection between HomSh(X)(F , Ax) and HomAb(F(x), A) given by φ 7→ φx.

Proof. Let us first show that φ 7→ φx : HomSh(X)(F , Ax) → HomAb(F(x), A) is injective. Let
ψ : F → Ax be another morphism with ψx = φx, and let y ∈ X − {∅}. If y ⊈ x, then we must
have ψy = 0 = φx, because Ax(y) = 0. On the other hand, if y ⊆ x, then ψy = resAx

x←y ◦ψy =
ψx ◦ resFx←y = φx ◦ resFx←y = resAx

x←y ◦φy = φy (with resFx←x being idF(x)). We conclude that ψ = φ.
Conversely, given an abelian group homomorphism φ0 : F(x)→ A, we can define a morphism

φ : F → Ax by setting φy = 0 if y ⊈ x and φy = φ0 ◦ resFx←y if y ⊆ x (with resFx←x being idF(x)). It
is routine to check that φ is indeed a sheaf morphism and φx = φ0, so the map in the lemma is onto.

That φ 7→ φx is natural in F and A is straightforward.

We can now prove the following key lemma.

Lemma B.5. Let F be a sheaf on X. Then there exists a sheaf G on X and a monomorphism
j : F → G such that Hi(X,G) = 0 for all i ≥ 1. Moreover, G can be taken to be injective in Sh(X).

Proof. Let x ∈ X−{∅}. By Lemma B.4 (applied with A = F(x)), the identity map id : F(x)→ F(x)
gives rise to a sheaf morphism j(x) : F → F(x)x. Let G = ∏

x∈X−{∅}F(x)x (note that the product
may be infinite). Then the morphisms {j(x)}x∈X−{∅} determine a morphism j : F → G given
by jy(f) = (j(x)

y (f))x∈X−{∅}. Since the the y-component of jy(f) is just f , we have ker j = 0.
Moreover, by Lemma B.3, Hi(X,F(x)x) = 0 for all i ≥ 1, which means that the cochain complex
C•(X,F(x)x) is exact in degrees ≥ 1. Since C•(X,G) is the product of the cochain complexes
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{C•(X,F(x)x)}x∈X−{∅}, it is also exact in degrees ≥ 1, and we conclude that Hi(X,G) = 0 for
i ≥ 1.

In order to choose G that is also injective, for every x ∈ X − {∅}, choose an embedding
ix : F(x) → E(x) of F(x) into an injective Z-module E(x), and use the ix to construct the
j(x) : F → (E(x))x and j : F → G := ∏

x(E(x))x. Lemma B.4 implies readily that each of the
sheaves (E(x))x is injective, and therefore, so is G.

Theorem B.6. Let X be a (possibly infinite) simplicial complex. Then:

(i) The abelian category Sh(X) has enough injectives.

(ii) The functor Hi(X,−) : Sh(X)→ Ab of §4.2 is the i-th right derived functor of H0(X,−).

Proof. (i) This is Lemma B.5. Alternatively, by Theorem A.3, Sh(X) is equivalent to Sh(X◦) and
the latter is well-known to have enough injectives [Ive86, II, Theorem 3.1].

(ii) The derived functors of H0(X,−) form a universal cohomological δ-functor, and we observed
in §4.2 that the functors {H i(X,−)}i≥0 form a cohomological δ-functor. Since universal δ-functors
are unique up to natural isomorphism, it is enough to show that the {H i(X,−)}i≥0 are universal.
By [Sta20, Tag 010T], this will follow if we show that every sheaf F on X embeds in a sheaf G with
Hi(X,G) = 0 for all i ≥ 1, and that is exactly what Lemma B.5 tells us.

Remark B.7. Let R be a ring, and let ShR(X) denote the category of sheaves of left R-modules.
The cohomology groups of a sheaf in ShR(X) defined in §4.2 are naturally left R-modules, so we may
regard Hi(X,−) as a functor from ShR(X) to the category of left R-modules, denoted R-Mod. The
same argument as in the proof of Theorem B.6 can be used to show that Hi(X,−) : ShR(X)→ R-Mod
is the i-th right derived functor of H0(X,−) : ShR(X)→ R-Mod.
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Israel J. Math., 149:267–299, 2005. Probability in mathematics.

[Mar77] G. A. Margulis. Cobounded subgroups in algebraic groups over local fields. Funkcional.
Anal. i Priložen., 11(2):45–57, 95, 1977.

[Mes18] Roy Meshulam. Graph codes and local systems, 2018. arXiv:1803.05643.

[MLM94] Saunders Mac Lane and Ieke Moerdijk. Sheaves in geometry and logic. Universitext.
Springer-Verlag, New York, 1994. A first introduction to topos theory, Corrected reprint
of the 1992 edition.

[MW09] R. Meshulam and N. Wallach. Homological connectivity of random k-dimensional
complexes. Random Structures Algorithms, 34(3):408–417, 2009.

[Opp15] Izhar Oppenheim. Vanishing of cohomology and property (T) for groups acting on
weighted simplicial complexes. Groups Geom. Dyn., 9(1):67–101, 2015.

[PK21] Pavel Panteleev and Gleb Kalachev. Asymptotically good quantum and locally testable
classical LDPC codes, 2021. Preprint.

101



[PR94] Vladimir Platonov and Andrei Rapinchuk. Algebraic groups and number theory, vol-
ume 139 of Pure and Applied Mathematics. Academic Press, Inc., Boston, MA, 1994.
Translated from the 1991 Russian original by Rachel Rowen.

[PR96] Gopal Prasad and Andrei S. Rapinchuk. Computation of the metaplectic kernel. Inst.
Hautes Études Sci. Publ. Math., (84):91–187 (1997), 1996.

[PR10] G. Prasad and A.S. Rapinchuk. Developments on the congruence subgroup problem
after the work of bass, Milnor and Serre. In Collected papers of John Milnor. V. Algebra.,
pages 307–326. American Mathematical Society, Providence, RI, 2010. Edited by Hyman
Bass and T. Y. Lam.

[Pra77] Gopal Prasad. Strong approximation for semi-simple groups over function fields. Ann.
of Math. (2), 105(3):553–572, 1977.

[Pra82] Gopal Prasad. Elementary proof of a theorem of Bruhat-Tits-Rousseau and of a theorem
of Tits. Bull. Soc. Math. France, 110(2):197–202, 1982.

[Rag76] Madabusi S. Raghunathan. On the congruence subgroup problem. Publications Mathé-
matiques de l’IHÉS, 46:107–161, 1976.

[Rag86] M. S. Raghunathan. On the congruence subgroup problem. II. Invent. Math., 85(1):73–
117, 1986.

[Rap06] Andrei S. Rapinchuk. The Margulis-Platonov conjecture for SL1,D and 2-generation of
finite simple groups. Math. Z., 252(2):295–313, 2006.

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with
applications to program testing. SIAM J. Comput., 25(2):252–271, 1996.

[RS01] Andrei S. Rapinchuk and Yoav Segev. Valuation-like maps and the congruence subgroup
property. Invent. Math., 144(3):571–607, 2001.

[Sar07] Alireza Sarveniazi. Explicit construction of a Ramanujan (n1, n2, . . . , nd−1)-regular
hypergraph. Duke Math. J., 139(1):141–171, 2007.

[SS96] Michael Sipser and Daniel A. Spielman. Expander codes. volume 42, pages 1710–1722.
1996. Codes and complexity.

[Sta20] The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu,
2020.

[Tit79] Jacques Tits. Reductive groups over local fields. In Automorphic forms, representations
and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977),
Part 1, Proc. Sympos. Pure Math., XXXIII, pages 29–69. Amer. Math. Soc., Providence,
R.I., 1979.

[Wat79] William C. Waterhouse. Introduction to affine group schemes, volume 66 of Graduate
Texts in Mathematics. Springer-Verlag, New York-Berlin, 1979.

102

https://stacks.math.columbia.edu

	Contents
	Introduction
	Main Contributions
	Conceptual and Methodological Contributions
	Acknowledgements

	Overview of The Main Results
	High Dimensional Expanders
	Sheaves on Simplicial Complexes
	Expanding Sheaves
	Utilizing Coverings
	The Tower Paradigm: A Framework for Constructing Good 2-Query LTCs from Expanding Sheaves 
	Finding Initial Data for The Tower Paradigm
	Explicit 2-Query LTCs with Linear Distance and Conjectural Constant Rate
	Organization of The Paper


	Foundations
	Preliminaries
	Simplicial Complexes
	Weights
	Coverings
	Skeleton and Spectral Expansion
	Buildings

	Sheaves 
	Sheaves on Simplical Complexes
	Sheaf Cohomology
	Pushforward and Pullback
	Restricting Sheaves to The Links
	Locally Constant Sheaves
	The Cup Product

	Coboundary and Cosystolic Expansion
	Norms on Abelian Groups
	Normed Sheaves
	Coboudary and Cosystolic Expansion
	Some Examples of Coboundary Exapnders

	Locally Minimal Cochains
	Minimal and Locally Minimal Cochains
	Expansion of Small Locally Minimal Cochains

	Locally Testable Codes and Quantum CSS Codes Arising from Sheaves
	Conventions
	Cocycle Codes
	Locally Testable Codes
	Quantum CSS codes


	The Tower Paradigm
	A Local-to-Global Principle for Cosystolic Expansion
	Heavy Faces
	Proof of Theorem 8.2

	Examples of Cocycle Codes
	0-Cocycle Codes of Sheaves on Graphs
	Cocycle Codes of Sheaves on Complexes Covered by Affine Buildings
	Good 1-Cocycle Codes

	Rate Conservation
	What Is Required to Construct an Infinite Family of LTCs?

	Toward Initial Data for The Tower Paradigm
	Modifying Sheaves to Get Rate Conservation
	An Iterative Modification Process
	The Effect of The Cup Product on The Modification Process
	Candidates for Infinite Families of Good 2-Query LTCs

	Arithmetic Groups and Simplicial Complexes Covered by Affine Buildings
	Preliminaries
	Finite Quotients of Buildings
	The Congruence Subgroup Property
	Proof of Theorem 13.1

	Sheaves of Large Dimension with Small Cohomology
	Proof of Theorem 12.10
	Satisfying Every Two of The Three Prerequisites of The Tower Paradigm


	Appendices
	Sheaves on Simplicial Comlexes versus Sheaves on Topological Spaces
	Sheaves on Topological Spaces: a Quick Introduction
	Sheaves on Simplicial Complexes as Sheaves on Topological Spaces
	Comparing Additional Structure: Pullback, Pushforward and Cohomology
	Aside: Augmented Sheaves as Sheaves on Topological Spaces

	Sheaf Cohomology is a Right Derived Functor

	Bibliography

