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Abstract. Recently, a number of new Semi-Supervised Learning meth-
ods have emerged. As the accuracy for ImageNet and similar datasets
increased over time, the performance on tasks beyond the classification
of natural images is yet to be explored. Most Semi-Supervised Learn-
ing methods rely on a carefully manually designed data augmentation
pipeline that is not transferable for learning on images of other domains.
In this work, we propose a Semi-Supervised Learning method that auto-
matically selects the most effective data augmentation policy for a par-
ticular dataset. We build upon the Fixmatch method and extend it with
meta-learning of augmentations. The augmentation is learned in addi-
tional training before the classification training and makes use of bi-level
optimization, to optimize the augmentation policy and maximize accu-
racy. We evaluate our approach on two domain-specific datasets, contain-
ing satellite images and hand-drawn sketches, and obtain state-of-the-art
results. We further investigate in an ablation the different parameters rel-
evant for learning augmentation policies and show how policy learning
can be used to adapt augmentations to datasets beyond ImageNet.

Keywords: Semi-Supervised Learning · Augmentation Learning · Meta
Learning

1 Introduction

Convolutional Neural Networks (CNNs) are widely used in many computer vision
applications and achieve state-of-the-art performance in many different tasks
across various domains. However, training CNNs requires a large amount of
data with proper annotation. Data annotation is often done by humans and
thus expensive on a large scale, especially if the labeling requires an educated
domain expert (e.g., in the case of medical images). Many methods have been
proposed to address that problem. One possible solution to avoid an expensive
annotation process is utilizing Semi-Supervised Learning [1,3,11,15,19,21,22,2]
that requires labeling for only a small fraction of the data and combines training
from labeled data with learning from large-scale unlabeled data. Such training
can lead to huge improvements [1,3,15,19,21,22,2], and unlabeled data can often
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be gathered at low cost, making Semi-Supervised Learning a cheap option to
increase performance on datasets with a limited amount of labeled data.

In most modern Semi-Supervised Learning methods unlabeled data is utilized
by applying an augmentation technique in some form. [1,3,11,15,19,21,22,2]. Im-
age augmentation [5,14,4,18] is an effective way to alter images while keeping
their class information. However, augmentation can not only alter inessential fea-
tures of the image but also lead to a loss of relevant information. Augmentation
that changes the colors of an image can be useful for the task of distinguish-
ing between a tractor and a chair but can be harmful to the task of predicting
the condition of a diseased tomato leaf. Most modern Semi-Supervised Learning
methods [1,3,11,15,19,21,22,2] are mostly evaluated on the ImageNet dataset[6]
or similar natural image datasets like CIFAR-10 [10] and CIFAR-100 [10], where
the classification task is to recognize full objects in real life images. And so far
the selection of augmentation has mostly been based on the incentive to im-
prove performance on these datasets. Hence, the used augmentations might not
be optimal for all datasets, so the methods might not be able to unfold their
full potential on domain-specific datasets with unique properties such as medical
images or pencil sketches.

To address this problem, we propose a Semi-Supervised Learning method
that performs data augmentation policy learning, to optimize the Semi-Supervised
Learning training for each individual, domain-specific dataset. Inspired by re-
cent advances in augmentation training in self-supervised learning setups, such
as AutoAugment [4], Fast AutoAugment [14], or DADA [13], we propose a way
to integrate the augmentation learning pipeline into a Semi-Supervised setup.
We combine FixMatch [19], a recently published method for Semi-Supervised
Learning , with the augmentation learning approach of DADA [13]. This is done
by building a bi-level-optimization loop around FixMatch which iteratively up-
dates augmentation parameters to maximize classification accuracy in future
epochs. The augmentation parameters include a weight determining how fre-
quently the augmentation is applied. The learned augmentation is then applied
during follow-up training. To make the best use of the learned augmentation we
propose to add a sharpening step, to further improve our results. In an experi-
mental evaluation, we compare our method to the original FixMatch approach
on two datasets with non-ImageNet-like properties. On both datasets, we can
observe an increased accuracy. In the ablation studies, we show the positive im-
pact of sharpening and investigate the influence of the amount of applied training
during the follow-up training. It shows that different datasets require different
degrees of augmentation. Finally, we do a quantitative analysis of the impact of
single augmentation.

2 Related Work

2.1 Semi-Supervised Learning

Recently, many semi-supervised learning methods [1,3,11,15,19,21,22,2] emerged
implementing different algorithms to set new state-of-the-art results on a vari-
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ety of challenges and datasets [10,6]. For this purpose Semi-Supervised Learning
methods leverage unlabeled data to supplement usual supervised machine learn-
ing on labeled samples. This can be especially useful in cases where a huge
number of unlabeled data is available but additional labeling exceeds existing
resources or is plainly inconvenient. A method that can exploit unlabeled data
and produce competitive results in the respective domain can be a big asset
for many scientific fields. [20] evaluated a variety of Semi-Supervised Learning
algorithms for robustness on datasets containing unlabeled images of classes not
represented in the labeled fraction. Still, in most cases the evaluation of those
methods [1,3,11,15,19,21,22,2] is done using well established datasets like Ima-
geNet [6] which mainly include natural images in a common setting, in which the
accumulation of data is comparatively easy in contrast to more domain-specific
tasks which include more restrictive data.

Pseudo-labeling [12] is a simple and generally applicable method for Semi-
Supervised Learning that enhances supervised training by additionally utilizing
unlabeled samples. This is achieved by iteratively using the already trained net-
work to predict future labels for unlabeled data. To do so the model assigns a
probability value to all predictable classes which then is transferred into a pseudo
label using a predefined threshold. The created pseudo labels can then be used
as targets for a standard supervised loss function. In this sense, pseudo labeling
has some similarities to self-training.

Consistency Regularization [9] is used by most state-of-the-art Semi-Supervised
Learning methods and aims to increase the robustness of the trained model to
perturbations in different image views of the same class. This usually is accom-
plished by minimizing the distance between two different instances of the same
class or image. In visual terms, the goal is to separate data into clusters of their
respective classes.

Recently many Semi-Supervised Learning methods [1,3,11,15,19,21,22,2] have
been published and evaluated. One of the state-of-the-art Semi-Supervised Learn-
ing methods for image classification that has recently been published is FixMatch
[19].

FixMatch [19] combines pseudo-labeling and consistency regularization in a quite
simple yet effective approach. Parallel to conventional supervised training on the
labeled fraction of the data, additional training is applied to the unlabeled data.
For unlabeled samples, two views of the same image are created. One of the
images is only transformed slightly (cropping and horizontal flipping), while the
other is strongly augmented using RandAugment [5]. FixMatch refers to these
views as weak and strong augmentation respectively. Next, the model predicts
a class for the weakly augmented image. If the confidence of the prediction sur-
passes a certain threshold, the prediction is transformed into a one-hot pseudo-
label. The resulting pseudo-label is then used as the target for the strongly
augmented image. The FixMatch approach achieved state-of-the-art results on
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multiple benchmark datasets, however it was mainly evaluated on ImageNet [6],
CIFAR-10 [10], CIFAR-100 [10], and SVHN [16].

2.2 Augmentation Learning

Most Semi-Supervised Learning methods rely heavily on a data augmentation
pipeline. Many different approaches of augmentation have been proposed re-
cently [5,2,14,13]. FixMatch relies on Randaugment [5] that applies randomly
sampled operations from a pool of 15 augmentation operations (like rotation,
shearing, and autocontrast). However, the augmentation method and the opera-
tions in the pool have been designed and tuned on ImageNet and similar datasets
but might not be optimal for other domains.

Differential Automatic Data Augmentation (DADA) [13] is a method for aug-
mentation learning. The method uses bi-Level optimization to deferentially op-
timize augmentation for supervised image classification on a certain dataset.
An augmentation policy is learned during an additional augmentation learning
phase prior to the actual model training. An augmentation policy consists of
a set of sub-policies of two augmentation operations each. We extend the idea
of DADA, which so far has only been applied in fully-supervised settings, and
make it usable for the case of Semi-Supervised Learning .

3 Method

The main idea of the proposed approach is to learn augmentation policies using
bi-level optimization in the first phase and use the learned policies as augmen-
tation for the Semi-Supervised Learning method during a follow-up training
in the second phase. Note that, while FixMatch is used as a reference, the
overall architecture is independent of the semi-supervised learning framework
and other methods could be used as well. Unlike DADA, we use the respective
Semi-Supervised Learning architecture during the augmentation learning phase
instead of a supervised one. We start by defining our definition of an augmen-
tation policy before introducing the optimization problem of the augmentation
learning phase.

3.1 Augmentation Policy

The goal of our system is to find an optimal augmentation policy, for a given
dataset. Following Fast AutoAugment [14], we define an augmentation policy S
as a set of N sub-policies si as described in equation 1.

S = {s1, s2, s3, ..., sN} (1)

Where N , denotes the total amount of sub-policies. Each sub-policy si consists
of two operations O1, O2, with respective probabilities p1, p2 and magnitudes
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Fig. 1. Each sub-policy contains two operations. All sub-policies have a weight. The
sub-policies are sampled by a weighted categorical distribution.

m1, m2. The two operations are applied successively. Each operation is applied
with its respective probability pi and magnitude mi. A Bernoulli experiment
samples whether an operation is applied using the probability pi. The magni-
tude of the operation is determined by mi. Most operations are applied with
a variable parameter such as rotation angle or intensity. All of these parame-
ters are normalized to a scale from 0 to 1. The magnitude parameter mi lies
in the same range and determines the strength of the applied operation. For
operations without variable parameters such as invert, the magnitude is simply
ignored. Furthermore, each sub-policy is assigned a weight w, which represents
the chance of the sub-policy being sampled. Including all components mentioned
above, we define a sub-policy si in equation 2

si = ((Oi,1, pi,1, mi,1), (Oi,2, pi,2, mi,2), wi) (2)

We use 15 different operations, leading to N = 105 different possible pairs of
two operations which we use as sub-policies. Following DADA [13], the selec-
tion of sub-policies is modelled as sampling from a categorical distribution with
probabilities according to w as visualized in Figure 1. The application of opera-
tions is modeled as a Bernoulli experiment by the respective probability pi. The
search space is the set of all weights w, probabilities p, and magnitudes m in the
augmentation policy S

3.2 Optimization Problem

To find the optimal augmentation policy in the search space described above, we
approach an optimization problem as described by DADA [13]. Our approach
builds augmentation learning on top of FixMatch. Parallel to a regular training
loop minimizing the loss of the FixMatch classification task, the augmentation
training is performed. So, our training consists of two update steps. One to
update the model and one to update the augmentation parameters. The two
update steps are performed alternately. The FixMatch update step is performed
just as described in section 2.1. After each FixMatch update step, an update



6 Tim Frommknecht et al.

Fig. 2. Augmentation learning process: A Data augmentation policy (purple) is used
to augment images for a Semi-Supervised Learning (FixMatch) update step. Instead
of changing the original model (blue), a copy is created (green). All unlabeled data
(light yellow) and a part of the labeled data (yellow) are used for the update step.
The updated copy (green) is then evaluated using the second part of the labeled data
(yellow) resulting in a loss term (red). Finally, the loss is backpropagated through the
whole process to compute gradients for the augmentation parameters (purple). For the
augmentation learning phase, this architecture is repeated in a training loop parallel
to the regular FixMatch training, that updates the model (blue).

step for the augmentation training is applied. One augmentation update step is
performed by minimizing a validation loss of a bi-level optimization problem. To
do so, we copy the model, sample a sub-policy from a categorical distribution
as described above, and perform an update step to the copied model according
to the FixMatch loss. The updated copy of the model is then evaluated on an
additional fraction of the labeled data, which is only reserved for this particular
validation. The resulting validation loss is then differentiated all the way back
to the augmentation parameters. A visualization of the augmentation learning
process can be seen in Figure 2 The gradient flow is estimated by the RELAX
gradient estimator [7]. For more details see [13]. For our work, we chose to
integrate DADA into FixMatch, but the approach will work for other Semi-
Supervised Learning methods as well. Once the augmentation training phase
is over, the resulting weights w are sharpened. Sharpening is done using the
Softmax-function in equation 3.

w′i =
exp(wi

T )∑N
j=1 exp(

wj

T )
∀i ∈ {1, ..., N} (3)

The distribution of the weights can be controlled by varying the temperature
parameter T . A high temperature makes the distribution more uniform, while a
low temperature leads to a sharper distribution, s.t. the best sub-policies are used
significantly more often than others. A visualization of the effect of sharpening
can be seen in Figure 3. During the follow-up learning phase, the learned augmen-
tation is used for Fixmatch training. Unlike during the augmentation learning
phase, the augmentations are no longer sampled batch-wise but image-wise, s.t.
images in the same batch can have different augmentations. Furthermore, the
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augmentation is no longer limited to one sub-policy at a time. We thereby intro-
duce a parameter n that denotes, how many augmentations are applied to each
image.

Integrating DADA augmentation learning into FixMatch: For the augmentation
training, the FixMatch architecture [19] was adapted to perform the additional
augmentation learning step using bi-level optimization after each regular update
step. Augmentation steps are performed as follows: For each unsupervised image,
two views are created. One weakly augmented one and one strongly augmented
one. For weak augmentation, we perform cropping and a random horizontal flip.
To perform strong augmentation a single sub-policy is sampled for the whole
batch. The resulting unsupervised loss is then used for the bi-level optimization
as described above.
In parallel, the unsupervised images and an additional fraction of labeled images
are used to update the model following the FixMatch method [19]. For the
follow-up training, we apply FixMatch using the learned augmentation as strong
augmentation replacing RandAugment [5] from the original approach.

4 Experiment

In this section, we introduce our experimental setup and discuss the performance
of our approach. In the first step we generate baseline numbers for our datasets:
EuroSAT [8] and sketch10 [17]. Here we use the standard augmentation meth-
ods introduced in the original papers respectively. In the second step, we run
our FixMatch data augmentation search for each dataset to evaluate the base-
line against our augmentation method. This chapter is structured as follows: In
section 4.1, we introduce our experimental setup and evaluation methods. In
4.2, the datasets for our experiments are introduced, before we compare our ap-
proach to state-of-the-art methods in 4.3. In section 4.4 we’ll further investigate
our method with an ablation study consisting of quantitative parameter studies
and an evaluation of single augmentation operations.

4.1 Implementation Details

Data Splitting: For all experiments, we used 80% of the data for training and 20%
for testing. While we used all images in the training set, only a small fraction
of labels was used. For our experiments, we used 10% of the training labels.
The remaining images are considered unlabeled and the labels are dropped.
During the augmentation learning phase, we split the labeled images into two
partitions of equal size, leading to two labeled datasets containing 5% of the
training data each. While one of the partitions was used as the labeled dataset
for the respective Semi-Supervised Learning training, the other partition was
used for validation in the bi-level optimization during augmentation steps. For
the follow-up training, all labeled images (10% of the train set) were used for
Semi-Supervised Learning training.
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Augmentation learning For augmentation learning we adjust the setting from
DADA for our Semi-Supervised case. We increase the number of trained epochs
to 100 and use the dataset as described above. For the learning rate we used
ηd = 3× 10−3 and the Adam optimizer. The parameters for the neural network
are derived from the official DADA publication [13] and the batch size is 128.
The probabilities p and magnitudesm are uniformly initialized with 0.5. Meaning
that each operation is applied with a 50% chance and with medium magnitude.

Evaluation All results are reported as average accuracy over all classes on a
test set, that was not used for model training or policy search. We compare
the proposed approach to the supervised baselines on the labeled images 10%,
thus using only the labeled part for supervised training, as well as to the fully
supervised baseline, which uses the full train set including the labels we dropped
for the Semi-Supervised Learning experiments. These two can be seen as lower
and upper bounds for our experiments. Additionally, we ran these two measures
again with RandAugment, to make a fair comparison to the FixMatch algorithm,
which uses RandAugment as well.

Network specifications For all experiments, we use ResNet-50 as the backbone
network. We used a pre-trained architecture that was trained on ImageNet.
According to the original FixMatch and DADA papers, we used a stochastic
gradient descent (SGD) optimizer to update the model and an Adam optimizer
to update the augmentation parameters.

4.2 Datasets

EuroSAT [8] is an image dataset containing satellite images of different land-
scapes. The EuroSAT dataset is based on Sentinel-2-Satelite imagery covering
13 spectral bands. To have consistent image formats for better comparison of
the augmentations, we choose to use the RGB dataset containing only three of
the 13 original channels. The dataset contains 10 different classes with 2000 to
3000 images per class adding up to 27000 total images. Each class represents a
certain kind of landscape, like residential, pasture, or forest. We’ve chosen to use
EuroSAT, as its different classes are not recognized by recognizing objects but
by environmental structures and properties.

Sketch10 We further derive the Sketch10 dataset as a subset from the original
DomainNet dataset [17]. To this end, we only use those images of the dataset,
that contain data in sketch style. The images are black and white images that
contain sketches of 365 different classes. To keep a balanced distribution while at
the same time providing enough data, the dataset was further reduced to the 10
largest classes. The reduced dataset contains a total of 6548 images among the
10 classes, with images per class ranging from 593 (sleeping bag) to 729 (square).
We propose the Sketch10 dataset as it significantly deviates from conventional
object detection datasets, as the dataset contains high-resolution images with a
very specific style and features.
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4.3 Comparison to State-of-the-art

In this section, we will compare our method of combining FixMatch’s Semi-
Supervised Learning training with DADA’s approach of augmentation learning
to the original approach FixMatch. We will start by evaluating the baselines
using different augmentations, followed by the analysis for FixMatch. The Fix-
Match analysis begins with an evaluation of the original method to the super-
vised baselines, followed by a comparison to our method. The following analysis
is based on the results in Table 1.

Supervised baselines We start by comparing the baselines using RandAugment to
the baselines using weak augmentation. We can observe that for Sketch10 Ran-
dAugment performs better than weak augmentation. As both baselines (using
10% and 100% of data) show a significant improvement when using RandAug-
ment. For EuroSAT, we can observe the opposite behavior, as weak augmentation
performs significantly better than RandAugment. These results indicate, that
not every augmentation technique does perform equally well for every dataset,
but rather indicate the need for more targeted augmentation learning.

FixMatch VS FixMatch + DADA Original FixMatch performs a significant im-
provement towards the lower bound baselines. For EuroSAT the accuracy is
increased by 1.53% and 4.51%, compared to the weak and RandAugment base-
line respectively. An even stronger improvement can be observed for Sketch10,
where the baselines are outperformed by 5.45% (weak) and 4.11% (RandAug-
ment). It further shows that our approach to combining FixMatch with DADA
outperforms the original FixMatch in both datasets. For Sketch10 we achieve an
improvement of 1.41% in classification accuracy towards the original method.
For EuroSAT we could improve performance by 0.42%. To validate that the im-
provement is due to the proposed augmentation learning technique and not due
to the way the augmentation is applied, we also compare to FixMatch using a
random policy, which consists of a set of sub-policies just like our approach. The
only difference is, that the weights are defined as uniform and all magnitudes
and probabilities are 0.5. This is done to mimic parameters as they are before
training. This way we ensure that the improvement is due to the learning phase.

4.4 Ablation and Analysis

Influence of sharpening Temperature One technical contribution of this paper is
the sharpening of the learned sub-policy weights after the augmentation training
is finished. As described in Section 3.2, sharpening is performed using Softmax
with a temperature parameter T . Without further sharpening, the weights vary
only very little. With different temperatures T, we can control how much the
weights deviate. Different levels of sharpness can be seen in Figure 3. To inves-
tigate the influence of T we conduct a parameter study on both datasets. The
results and a comparison to uniform sampling (T =∞) can be seen in Table 2.
We experimented temperature values ranging from 10−4 to 10−3.
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Table 1. Comparison of our approach to the original FixMatch and a version of our
approach before training, s.t. the policy is not trained but uniformly random. Ad-
ditionally, we compare our results with supervised baselines using FixMatch’s weak
augment and Randaugment respectively. Each accuracy was calculated as the average
over three runs. The combination of FixMatch and DADA leads to state-of-the-art re-
sults for sketch10 and EuroSAT. The Table contains the average accuracy along three
runs for each experiment

labels used Sketch10 EuroSAT

Supervised baseline (weak augmentation) 10% 61.32 93.03
Supervised baseline (RandAugment) 10% 62.66 90.05

FixMatch (original) 10% 66.77 94.56

FixMatch + random policy 10% 67.43 94.81

FixMatch + DADA (ours) 10% 68.18 94.98

Fully supervised baseline (RandAugment) 100% 75.76 95.91
Fully supervised baseline (weak augmentation) 100% 74.03 97.09

Table 2. Parameter study on EuroSAT for the weight sharpening temperature T . The
Table contains the average accuracy values over three runs following the FixMatch ar-
chitecture using our learned augmentation. An infinite temperature (T =∞) leads to
a uniform selection of sub-policies. The results are additionally compared to the (un-
sharpened) original weights and RandAugment. For the runs on EuroSAT, we applied
one sub-policy per image during training (n = 1). For Sketch10 we used n = 4.

T 1e-4 2e-4 3e-4 4e-4 5e-4 6e-4 7e-4 8e-4 9e-4 1e-3 ∞ orig. w

EuroSAT 94.98 94.57 94.80 94.54 94.69 94.66 94.79 94.70 94.84 94.90 94.81 94.89
Sketch10 67.47 67.16 66.34 66.97 66.44 67.74 66.26 66.50 68.18 68.18 67.43 65.38

For both datasets, we observe an improvement of the sharpened results to-
wards the original weights. The accuracy varies only very little for EuroSAT but
we can still achieve an accuracy gain of 0.09%. For Sketch10, we can see a much
bigger improvement, as sharpening increases classification accuracy by 2.80%.
For EuroSAT, the best accuracy is achieved using a lower comparatively low
temperature of T = 1e− 4. For Sketch10, we achieve best accuracy with higher
temperatures of T = 9e− 4 and T = 1e− 3.

Quantitative evaluation of the number of applied sub-policies n To explore the
behavior of the performance of Fixmatch with harsher augmentation, we apply
multiple sub-policies to each image during training. The results can be seen in
Table 3. The results for both datasets show a clear trend, towards a sweet spot.
On EuroSAT, we observe best accuracy with n = 1, while Sketch10 peaks at
n = 4. This shows that depending on the dataset a different value for n is optimal
which again indicates that augmentation policies can be dataset depended and
that it might be desirable to adapt them individually.
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Fig. 3. Weight distribution among sub-policies: original (left), sharpened with T =
10−3 (middle) and sharpened with T = 10−4 (right). In the figures, each bar repre-
sents the weight of a single sub-policy. The sub-policies are ordered from left to right
descending by weights. While the original distribution is close to uniform, the sharp-
ened distributions become more selective with sharpening. This effect increases with a
lower temperature.

Table 3. Parameter study of FixMatch for the number of applied sub-policies per image
n. The Table contains the average accuracy along three runs for each experiment. For
the experiments, we used a Temperature of T = 9e− 4.

n 1 2 3 4

EuroSAT 94.84 94.31 94.16 94.12
Sketch10 66.85 67.29 65.56 68.18

Qualitative evaluation of the influence of single augmentation operations Our
approach makes use of different augmentation operations by weighting them
differently. This way some operations are applied more often, while others are
applied less frequently. In Section 4 we’ve shown, that this leads to an increased
accuracy among the tested datasets. To further investigate the influence of sin-
gle operations we made an additional ablation study on the full Sketch dataset.
For these experiments, we took each of our 15 augmentation operations and ran
FixMatch training with only that one respective augmentation. So instead of
sampling random augmentations from a pool, the same augmentation operation
is applied to each image. We use the full Sketch dataset from DomainNet con-
taining all 365 classes. The training process of the experiments can be observed
in Figure 4. In addition to the augmentations, we show two baseline experiments
for comparison, a supervised baseline with weak augmentation s.t. we can see
the improvement caused by the augmentation, as well as one experiment sim-
ilar to the above but with an augmentation operation, that simply colors the
whole image in black. This is supposed to work as a negative example of a bad
augmentation, that is expected to mislead training and thus decrease perfor-
mance. In Figure 4 we can observe, that the bad augmentation (green) degrades
accuracy compared to the supervised baseline (orange). On the contrary, none
of our augmentation operations seems to be degrading training as all of them
outperform the non-augmented baseline. This leads to the conclusion, that all
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Fig. 4. Evaluation of single augmentation operations on Sketch10. Each line represents
the accuracy during the first 40 training epochs. In orange, you can see the supervised
baseline. The training with the bad augmentation (image set to black) is represented
by the green line. Each of the other lines represents an experiment with one of the
augmentation operations from our augmentation pool. A selection of the final accuracy
values can be seen in table 4

Table 4. Accuracy for FixMatch using only one augmentation operation. The table
shows the accuracy for a selection of the operations as well as the accuracy for baseline
and the purposely bad augmentation. These values refer to the curves in Figure 4.

Operation Baseline Bad Solarize Invert Cutout Equalize Color

Accuracy 38.70 36.88 39.53 38.95 38.90 40.07 38.65

augmentations can be applied to support training. In Table 4 we can observe
that some augmentations score a higher accuracy than others. This indicates
that even though all augmentations do increase accuracy, some operations have
a greater effect than others. This supports the idea that all augmentations from
the pool can be used but some should be applied more often than others.

5 Conclusion

In this work, we address the problem of learning augmentations in a Semi-
Supervised Learning setup. While most augmentation methods are designed to
perform well on ImageNet or similar datasets, we shift the focus towards more
domain-specific datasets such as sketches and satellite images. We propose a
novel method for Semi-Supervised Learning that trains specific data augmenta-
tion for a given dataset. We applied the approach to enhance FixMatch training.
We’ve shown that our new method applies to different datasets and domains, to
be precise satellite and sketch images, and has outperformed previous augmen-
tation methods for those settings. Furthermore, we propose to add a sharpening
step to the weights of the learned augmentation policy, to further improve the
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performance of the method and evaluated the effect of different sharpening tem-
peratures in an ablation study. Additionally, we investigated the effect of an
increased number of augmentation operations per image. Finally, we investigate
the effect of single augmentations for training and find that all augmentations
from our pool do improve FixMatch training, but some do more than others.
We hope that the proposed method will make Semi-Supervised Learning more
applicable to satellite or other domain-specific datasets.
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