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Abstract—Video content is watched not only by humans, but
increasingly also by machines. For example, machine learning
models analyze surveillance video for security and traffic moni-
toring, search through YouTube videos for inappropriate content,
and so on. In this paper, we propose a scalable video coding
framework that supports machine vision (specifically, object
detection) through its base layer bitstream and human vision
via its enhancement layer bitstream. The proposed framework
includes components from both conventional and Deep Neural
Network (DNN)-based video coding. The results show that on
object detection, the proposed framework achieves 13-19% bit
savings compared to state-of-the-art video codecs, while remain-
ing competitive in terms of MS-SSIM on the human vision task.

Index Terms—video compression, video coding for machines

I. INTRODUCTION

Video analytics is an essential technology for various ap-
plications such as traffic monitoring, visual surveillance, and
autonomous navigation. Automated machine vision pipelines
increasingly analyze video streams uploaded to the cloud. If
one is only interested in (machine-based) visual analysis, pre-
computed features can be compressed and transmitted [1],
instead of the full video. There are standard codecs to com-
press computed features, either handcrafted or neural network-
based [2], [3], although these were developed prior to the
current wave of interest on the topic. A problem with these
approaches, however, is that when human viewing is needed,
input video must also be coded and transmitted, and the overall
system becomes less efficient.

A recent trend in image/video coding is to utilize deep
neural networks (DNNs) to replace either specific units within
conventional codecs, or even the whole codec. Over the
past few years, DNNs have made inroads in this area, often
demonstrating promising coding results compared to fully-
engineered conventional approaches [4]–[8]. However, most
DNN-based codecs have focused on compression for human
vision, just like traditional codecs. At the same time, there
are many DNN-based vision analysis methods [9] but they
are usually developed without regard for compression. To
establish a consolidated framework that supports both human
and machine vision, a standardization activity, MPEG-VCM
(Video Coding for Machines) [10], has recently been initiated.
Several recent proposals for image coding [11]–[13] examined
scalable compression for multiple tasks. In these methods, the
base layer features are used to perform machine vision. With
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Fig. 1. Proposed video coding for humans and machines.

additional information in the enhancement layer, these meth-
ods also support high-quality input reconstruction for human
vision. Meanwhile, [14], [15] tried to recover the input image
directly from features, without an additional bitstream: [14]
from intermediate-layer activations of YOLOv2 [16], and [15]
from cuboidal features targeted at YOLOv2. If X denotes the
input image, Y the latent space features, X̂ the reconstructed
image, and T the machine task output, then a typical machine
vision pipeline can be described by a Markov chain X →
Y → X̂ → T . Applying the data processing inequality [17]
to this chain, we obtain I(Y ; X̂) ≥ I(Y ;T ), where I(· ; ·)
is the mutual information, suggesting that less information
(fewer bits) is needed for machine vision than for input
reconstruction.1 This agrees with the scalable approaches,
where both base and enhancement layers are used for input
reconstruction, but only the base layer (i.e., fewer bits) for
machine vision.

In this paper, we develop the first (to our knowledge) video
codec for human and machine vision based on the concept
of latent-space scalability [18]. The codec utilizes multi-task
DNN-based compression for intra coding and a combination
of DNN and conventional techniques for inter-frame coding.
In Section II, we present the proposed video coding system,
along with the explanation of its building blocks for intra and
inter coding. Experimental results are presented in Section III,
followed by conclusions in Section IV.

II. PROPOSED METHODS

A. Group-of-Pictures structure

The Group-of-Pictures (GoP) structure of our proposed
video coding system is shown in Fig. 1. The GoP consists

1Intuitively, we don’t need the details of every pixel in order to detect
objects.
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Fig. 2. Scalable multi-task intra coding.

of an intra-coded frame (shown as pink in Fig. 1) and a
number of subsequent inter-coded frames (shown as green in
Fig. 1). Intra frames are coded in a multi-task scalable manner
using the concept of latent-space scalability, as detailed below
in Section II-B. The base layer of an intra-frame bitstream
supports machine vision, in our case object detection by
YOLOv3 [19]. When only machine vision is needed, only the
base layer bitstream needs to be decoded. The enhancement
layer provides additional information for high-quality input
reconstruction for human viewing. Inter frames are exclusively
used for human viewing. Hence, inter-frame bitstrams are
considered a part of the enhancement layer.

The intended application of such a system is as follows.
Under normal operation, only the machine vision task is active.
For example, a cloud-based automated analysis pipeline is
monitoring an airport lounge through a surveillance camera.
The camera sends the base-layer bitstream to the cloud, where
the machine vision pipeline performs object detection. When
a situation of interest is detected – for example, unattended
luggage2 – enhancement layer is requested by the cloud. This
means that both the base and the enhancement layer bitstream
of the next intra frame are sent to the cloud, together with
subsequent inter frames. Security personnel can then view the
scene and decide when to switch back to machine-only mode.

This example was given as a specific illustration of the
intended use of the proposed system. The use is not limited
to public area surveillance – similar situations arise in traffic
monitoring, smart home security, and so on.

B. Multi-task scalable intra coding

The structure of the multi-task scalable intra frame encoder
follows that of [13], and is illustrated in Fig. 2. Intra frame X
is encoded into a latent representation Ŷ as:

Y = ga(X), Ŷ = Q(Y), (1)

where ga(·) is a trainable analysis transform [4]–[6] and Q(·)
is the quantizer, implemented as rounding to the nearest inte-
ger. The architecture of the encoder can be taken from any end-
to-end trainable image codec; we have used the architecture
from [6]. The main difference is that we retrain the encoder

2A piece of luggage without a human detected near it.

to produce a structured latent space Ŷ = {Ŷ1, Ŷ2}, such
that Ŷ1 contains the information needed for object detection
(base layer), and Ŷ2 contains enhancement information which,
together with Ŷ1, enables reconstruction of the input frame.
Out of the 192 channels in Ŷ , 128 are assigned to Ŷ1 and the
remaining 64 to Ŷ2.

From such latent representation, two decoders – one for
machine vision, the other for human viewing – can efficiently
reconstruct the required information. The object detection
decoder decodes only Ŷ1:

F̃ = LST(Ŷ1), T = O(F̃), (2)

where LST stands for the Latent Space Transform [18] that
maps the encoder’s latent space into a latent space of the object
detection network, and O(·) is the back-end of the object
detection network producing detection output T . In our case,
we have chosen layer 13 of YOLOv3 as the target latent space,
so O(·) consists of all YOLOv3 layers after layer 13. Several
possible architectures for the LST were presented in [13], [18],
here we have used the one from [13].

Meanwhile, the decoder for human viewing decodes the
entire latent space Ŷ = {Ŷ1, Ŷ2},

X̂ = D(Ŷ), (3)

where D is the decoder and and X̂ is the approximation to the
original input frame X. The architecture of the decoder D can
be taken from the same end-to-end codec where the encoder
came from; in our case, this is [6].

Structuring of the latent space is achieved by training all
components of the encoder in Fig. 2, except O, the object
detection back-end, jointly using the loss function

L = R+ λ ·MSE(X, X̂) + λ · γ ·MSE(F , F̃), (4)

where R is a rate estimate (obtained using the entropy model
from [6]), λ controls the trade-off between rate and distortion,
and γ controls the trade-off between latent-space distortion
for object detection, MSE(F , F̃), and pixel-domain distortion
for input reconstruction, MSE(X, X̂). Since F̃ is computed
only from Ŷ1, as shown in (2), by gradient-based training,
information related to object detection will be steered only
into Ŷ1. Meanwhile, since X̂ is obtained from the entire
latent space Ŷ , as shown in (3), information related to input



Fig. 3. Bi-directional affine transformation-based deep frame prediction
from [21].

reconstruction will be spread throughout the entire latent
space, including Ŷ2.

C. Inter-frame coding

Inter-frame coding is based on High Efficiency Video Cod-
ing (HEVC) [20], specifically HEVC test model HM-16.20.3

Besides conventional HEVC coding tools, we also integrate
DNN-based affine frame prediction from [21] into the coding
pipeline. The operation of this network is illustrated in Fig. 3.
The network takes two previously coded frames X̂t1 and X̂t2

as input, and predicts a half-way frame X̃t between the input
frames, where t1 < t < t2. Internally, the network estimates
motion between the two input frames and the desired output
frame, as visualized in the figure, along with adaptive filter
kernels. With computed motion and filter kernels, the network
produces an estimated frame such that the residual signal to
code is minimized. The reader is referred to [21] for details
about the prediction network.

The structure of the overall video decoder is shown in Fig. 4.
To identify intra frames, we still use the network abstraction
layer (NAL) header with 2 bytes as in conventional HEVC.
Within the header data, reserved 6-bit word to support HEVC
scalability is also re-used to distinguish layer IDs for our task
scalability. When only the base layer of an intra frame is
received, Ŷ1 is reconstructed and fed to the object detection
pipeline (LST + YOLOv3 back-end) to detect objects. When
the enhancement layer of an intra frame is also received, Ŷ2

can be reconstructed. Then, input frame is reconstructed from
the full latent representation Ŷ = {Ŷ1, Ŷ2}. The reconstructed
frame is registered in decoded picture buffer (DPB) so that it
can be used as a reference for inter frames.

For inter-frame coding, the coded bitstream is parsed
through the entropy decoder followed by inverse quantization
and transformation. Reconstructed residual signal is added to
the predictor to reconstruct the input frame. For block-level
prediction in the inter frame, there are conventional HEVC
intra and inter prediction tools. The DNN-predicted frame
can be used in the HEVC coding pipeline in several ways.
One is the “direct” mode, in which the frame is used as an
additional prediction mode, indicated by a flag bit. In this case,
no additional motion information is needed. As a result, this
mode ends up being selected up to 57% of the time in the
HEVC rate-distortion (RD) optimization, according to [21].

3http://hevc.hhi.fraunhofer.de/svn/svn HEVCSoftware/tags/HM-16.20+
SCM-8.8

Fig. 4. Block diagram of the overall video decoder. DNN-based components
are shown in red.

However, this mode is constrained to use square blocks. For
this reason, we supplement the pipeline by another approach
indicated by the dashed red line in Fig. 4. Here, the frame
with the largest picture order count (POC) difference from the
current frame in the DPB is replaced by the DNN-generated
frame X̂t. As such, the DNN-generated frame becomes a
reference frame in the DPB. All inter-coding modes can be
used in this case, but additional motion information may be
required, as is the case with conventional inter-prediction. For
block-level coding in inter frames, all coding modes, including
the modes utilizing the DNN-generated frame X̂t, compete in
the HEVC RD optimization process.

III. EXPERIMENTS

A. Implementation and training

All DNNs are implemented in Pytorch. Python embed-
ding library4 is used to embed the DNNs into HM-16.20
implemented in C++. While compressing input video, forward
operations of the DNNs to perform the multi-task compression
and the frame prediction are executed across CPU and GPU.

The intra-frame codec (Fig. 2) was trained on the CLIC,5

JPEG AI [22], and VIMEO-90K [23] datasets, on randomly
cropped patches of size 256 × 256, following the procedure
in [13]. Adam optimizer with a learning rate of 10−4 was
used. The codec was trained with γ = 0.006 in (4), for six
values of λ shown in Table I. The DNN-based frame prediction
network (Fig. 3) was trained on randomly selected triplets of
152× 152 patches cropped from the videos from Xiph6 and
VIMEO-90K [23], following the procedure in [21]. AdaMax
optimizer with a learning rate of 10−3 was used.

To use the pre-trained YOLOv3 [19] back-end in the evalu-
ation of object-detection performance, the input resolution was
resized to 512×512 using bilinear interpolation without letter-
boxing. Compression benchmarks are the two latest video

4https://docs.python.org/3/extending/
5http://www.compression.cc/
6https://media.xiph.org/video/derf/

http://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.20+SCM-8.8
http://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.20+SCM-8.8
https://docs.python.org/3/extending/
http://www.compression.cc/
https://media.xiph.org/video/derf/


TABLE I
λ VALUES FOR TRAINING INTRA-FRAME CODING MODELS

Quality Index 1 2 3 4 5 6

λ 0.0018 0.0035 0.0067 0.013 0.025 0.0483

TABLE II
COMBINATIONS OF MODEL INDEX (λ) AND QP FOR INTRA AND INTER

FRAME, RESPECTIVELY, IN RANDOM ACCESS CODING

Intra Model index
(λ)

6
(0.0483)

5
(0.025)

4
(0.013)

Inter QP 18 22 26 30 34 38

coding standards: HEVC [20] (specifically, HM-16.20) and
Versatile Video Coding (VVC) [24] (specifically, VTM-10.0).
We encode the test sequences using the all-intra and random
access configurations with intra period of 8. For benchmarks,
we encode the sequences with QP ∈ {18, 22, 26, 30, 34, 38}
and QP ∈ {20, 24, 28, 32, 36, 40} for HEVC and VVC, respec-
tively. For our proposed system in the all intra configuration,
we encode the sequences using the six models whose λ values
are shown in Table I. For the random access case, to achieve
the range of bit rates comparable to the benchmarks, we used
several combinations of λ values for the intra codec and QP
for inter coding, as shown in Table II. Inter frames are coded
with QP ∈ {18, 22, 26, 30, 34, 38} plus the QP offsets related
to the hierarchical reference structure defined in the HEVC
Common Test Conditions (CTC) [25]. Bjøntegaard Delta (BD)
metrics [26], [27] are used to evaluate the performance against
the benchmarks in terms of rate-distortion and rate-accuracy.

B. Simultaneous evaluation for human and machine vision

First, we evaluate the performance of our system against
the benchmarks simultaneously on human and machine vision.
We do this on the SFU-HW-Objects-v1 dataset [28], which
contains COCO7-style object labels for a set of HEVC raw
video test sequences. This dataset is also being used in MPEG-
VCM [29]. Table III summarizes the performance of our cod-
ing system versus the benchmarks, with best results indicated
in bold. Since this experiment involves object detection, for
which our system uses only the base layer of the intra-coded
frames, the test is carried out in the all-intra configuration.
Benchmark codecs code intra frames, and decoded frames are
fed to YOLOv3. In our system, only the base layer of intra
frames is decoded and fed via LST to the YOLOv3 back-end,
as shown in Fig. 2.

Mean Average Precision (mAP) [19] is used as the object
detection accuracy metric. Unlike the Peak Signal-to-Noise-
Ratio (PSNR), mAP vs. bit rate curves are not always concave,
or even monotonic [29], which makes it impossible to compute
a valid BD-rate-mAP value. One example is shown in Fig. 5(a)
for the sequence FourPeople, where we see that HEVC and
VVC curves are non-concave and non-monotonic. For this

7https://cocodataset.org

TABLE III
BD PERFORMANCE OF THE PROPOSED VIDEO CODING SYSTEM AGAINST

HEVC AND VVC IN THE ALL-INTRA CONFIGURATION

HEVC (HM-16.20) VVC (VTM-10.0)
Benchmark Machine Vision Human Vision Machine Vision Human Vision

BD-rate- BD-rate-
Class Sequence mAP PSNR MS-SSIM mAP PSNR MS-SSIM

A
PeopleOnStreet -37.17% 8.55% -22.93% -29.52% 36.47% -6.34%

Traffic 33.82% 16.80% -20.72% 61.09% 44.38% -4.09%

Average -1.68% 12.67% -21.83% 15.78% 40.42% -5.21%

B

BQTerrace 16.37% 29.84% -18.33% -2.26% 73.32% 7.84%
BasketballDrive -49.91% 24.57% -13.63% -47.16% 64.10% 9.47%

Cactus -30.68% 20.79% -19.18% -46.64% 55.70% 2.28%
Kimono -75.00% 1.37% -15.72% -70.98% 24.91% 0.74%

ParkScene -35.81% 14.63% -16.45% -20.30% 40.05% -0.63%

Average -35.01% 18.24% -16.66% -37.47% 51.62% 3.94%

C

BQMall -51.04% 1.07% -20.80% -51.96% 31.80% 0.95%
BasketballDrill -37.45% 0.62% -22.76% -46.88% 46.70% 5.09%

PartyScene -8.01% 15.60% -12.54% -12.25% 43.87% 5.33%
RaceHorses 27.07% 8.49% -11.43% -36.60% 38.90% 8.37%

Average -17.36% 6.44% -16.88% -36.92% 40.32% 4.94%

D

BQSquare -6.51% 7.39% -25.10% -15.38% 32.52% -10.52%
BasketballPass -57.82% -2.33% -16.14% -55.58% 29.18% 6.82%

BlowingBubbles -15.49% 1.08% -15.26% -2.86% 30.57% 5.72%
RaceHorses 21.69% -4.15% -11.10% -22.45% 27.46% 11.82%

Average -14.53% 0.50% -16.90% -24.07% 29.93% 3.46%

E
Johnny 116.35% 7.87% -19.50% 86.62% 47.54% 7.45%

KristenAndSara -39.08% 7.48% -29.17% -8.03% 42.40% -8.88%

Average 38.64% 6.21% -24.90% 39.29% 41.19% -2.60%

Avg. (A - D) -20.40% 9.62% -17.47% -26.65% 41.33% 2.86%

Avg. (A - E) -13.45% 9.05% -18.71% -18.89% 41.31% 1.95%

reason, the sequence FourPeople has been excluded from the
results. Other sequences had well-behaved mAP vs. bit rate
curves, like the one shown in Fig. 5(b) for BasketballPass.

On object detection, our coding system shows significant bit
savings of 13.45% and 18.85% on average against HEVC and
VVC, respectively, when averaged over all sequence classes.
Without Class E sequences, average bit reduction is even
higher – 20.40% and 26.65%, respectively, against HEVC and
VVC. Surprisingly, we save more bits against VVC compared
to HEVC, which implies that advanced coding tools adopted
in VVC are less machine vision-friendly.

In terms of input reconstruction for human viewing, stan-
dard codecs perform better, as expected, because that is what
they are optimized for. In terms of BD-rate-PSNR, our system
increases bits by about 9% and 41% against HEVC and VVC,
respectively. In other words, the compression efficiency of
VVC is far superior to other methods in terms of rate-PSNR.
Meanwhile, our system performs reasonably well against
HEVC, achieving some gains on two sequences in Class D.
Overall, our method shows better performance in classes C
and D compared to other classes. We suspect that this is due
to input scaling with bilinear interpolation, which may cause
some artifacts to the sequences in Class C (832× 480) and D
(416× 240) compared to sequences with higher resolution.

In terms of BD-rate-MS-SSIM, our system outperforms
HEVC by 18.71% and has marginally worse performance
(by 1.95%) compared to VVC. If we consider MS-SSIM a
more relevant metric for human viewing experience, then one
could argue that our system provides comparable or better
performance for human viewing while achieving gains on
machine vision. Indeed, it has been known for a while that
DNN-based codecs do well on MS-SSIM, and our system

https://cocodataset.org


(a) FourPeople (b) BasketballPass

Fig. 5. Examples of rate-mAP curves: (a) shows the case when these curves are non-concave and non-convex. Moreover, there are no overlaps on the mAP
axis between the blue curve and the other two curves. Hence, BD-rate-mAP cannot be reliably computed. (b) shows the case where the curves rate-mAP
curves have similar characteristics as the rate-PSNR curves, so BD-rate-mAP can be reliably computed.

TABLE IV
INPUT RECONSTRUCTION PERFORMANCE OF THE PROPOSED VIDEO

CODING SYSTEM AGAINST HEVC AND VVC IN THE RANDOM ACCESS
CONFIGURATION WITH THE INTRA PERIOD OF 8

Benchmark HEVC (HM-16.20) VVC (VTM-10.0)

Class Sequence BD-rate
(PSNR)

BD-rate
(MS-SSIM)

BD-rate
(PSNR)

BD-rate
(MS-SSIM)

A
PeopleOnStreet -1.27% -12.15% 20.82% 9.41%

Traffic 21.88% 8.90% 48.65% 33.31%

Average 10.30% -1.63% 34.74% 21.36%

B

BQTerrace 21.70% 3.32% 55.15% 32.94%
BasketballDrive 5.85% -2.02% 42.65% 31.89%

Cactus 16.54% -1.89% 49.58% 27.42%
Kimono 0.50% -9.96% 29.06% 14.88%

ParkScene 14.13% 0.86% 39.48% 23.98%

Average 11.74% -1.94% 43.18% 26.22%

C

BQMall 3.14% -9.64% 40.89% 22.20%
BasketballDrill 10.91% -4.05% 56.60% 54.33%

PartyScene 12.99% -0.45% 43.24% 24.76%
RaceHorses 4.23% -1.58% 37.94% 31.42%

Average 7.82% -3.93% 44.67% 33.18%

D

BQSquare 7.38% -9.49% 50.49% 19.02%
BasketballPass -2.86% -9.68% 36.77% 23.01%

BlowingBubbles 4.18% -6.94% 39.37% 21.03%
RaceHorses -2.71% -4.75% 38.38% 31.18%

Average 1.50% -7.71% 41.25% 23.56%

E

FourPeople 11.52% -11.51% 45.47% 13.16%
Johnny 17.84% -2.49% 62.58% 32.28%

KristenAndSara 14.26% -16.50% 53.67% 11.36%

Average 14.54% -10.17% 53.90% 18.94%

Avg. (A - D) 7.77% -3.97% 41.94% 26.72%

Avg. (A - E) 8.90% -5.00% 43.93% 25.42%

benefits from DNN-based intra coding in this experiment.

C. Input reconstruction with random access coding

Table IV summarizes input reconstruction performance in
terms of BD-rate metrics for the random access configuration
with the intra period of 8. Here, benchmark codecs perform
better than they did on the object detection task, because they

TABLE V
THE EFFECT OF DNN-AIDED FRAME PREDICTION IN THE RANDOM

ACCESS CONFIGURATION

Class BD-rate-PSNR BD-rate-MS-SSIM

A -2.19% -3.61%

B 0.35% 0.60%

C -1.02% -1.33%

D -0.79% -0.38%

E -1.33% -1.46%

Average -0.77% -0.86%

were optimized for this kind of use. In terms of BD-rate-
PSNR, our system increases the rate by about 8.9% on average
against HEVC. Recall that our inter-coding pipeline is built
upon HEVC. Considering the fact that conventional scalable
extensions of HEVC increase the bit rate by 15%–25% per
layer [30], our scalable system for human and machine vision
performs well within this margin. The performance against
VVC in terms of BD-rate-PSNR is correspondingly lower, as
expected, with about 44% rate increase. Our codec performs
much better in terms of MS-SSIM. In fact, in this case, it
provides BD-rate savings of 5%, on average, against HEVC,
and the loss against VVC is now reduced to about 25%.

D. Ablation study

Here we examine the effect of DNN-aided frame prediction
within our system, by comparing the full version of the system
against a stripped-down version, which does not include DNN-
based frame prediction. The results are shown in Table V for
the random access configuration with the intra period of 8.
DNN-aided frame prediction brings 0.8%–0.9% bit savings
on average, both in terms of PSNR and MS-SSIM.

E. Break-even points

In earlier sections we saw that, compared with conventional
HEVC or VVC coding, our system achieves compression gains
when only the machine vision task is needed, but suffers



TABLE VI
BREAK-EVEN POINTS AGAINST HEVC AND VVC

Benchmark HEVC VVC

Metric PSNR MS-SSIM PSNR MS-SSIM

Break-even point 0.5978 1.0 0.3138 0.9064

coding loss in certain cases when input reconstruction is
needed for human viewing. Thus, in practice, the question of
whether or not our system will provide bit savings depends
on how frequently input reconstruction is needed compared
to machine vision. In this section, we quantify this trade-
off in terms of the maximum fraction of time that input
reconstruction is needed, on average, while still allowing
compression gains for our system. We call this fraction of
time the break-even point.

According to Table III, our system is 13.45% more efficient
(i.e., uses 0.8655 the amount of bits), on average, compared
to HEVC when only object detection is required. At the same
time, it is 9.05% less efficient (i.e., uses 1.0905 the amount
of bits), on average, when input reconstruction is needed, if
reconstruction quality is measured by PSNR. Let th ∈ [0, 1]
be the fraction of time that input reconstruction is needed. The
amount of bits used by our system will be less than or equal
to that used by HEVC if

(1− th) · 0.8655 + th · 1.0905 ≤ 1. (5)

Solving for th that achieves equality in (5), we obtain the
break-even point of th = 0.5978. That is to say, if input
reconstruction is needed less than 59.78% of the time, our
system will provide overall bit savings over HEVC. In fact, if
input reconstruction quality is measured by MS-SSIM instead
of PSNR, our system would always provide gains over HEVC,
since the corresponding BD-rate-MS-SSIM is negative in
Table III. Repeating the same calculation for other cases, we
obtain the break-even points shown in Table VI. The smallest
break-even point across all cases is 0.3138. Hence, if input
reconstruction is needed less than 30% of the time, our system
will provide savings even against VVC.

IV. CONCLUSION

We developed a new scalable video coding system support-
ing machine vision (object detection) in the base layer and
input reconstruction for human viewing in the enhancement
layer. The system was benchmarked against the two most
recent video coding standards - HEVC and VVC. The results
show that the proposed system provides savings of 13-19%
on the object detection task. At the same time, it provides
comparable or better performance in terms of MS-SSIM in the
all-intra coding configuration, as well as the random access
configuration against HEVC. Against VVC in the random
access configuration, there is a loss of about 44% in terms of
BD-rate-PSNR and about 25% in terms of BD-rate-MS-SSIM.
But even against VVC, our system provides rate savings, so
long as human viewing is needed less than 30% of the time.
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