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Abstract. In recent years, deep learning models have become the standard for agricultural computer
vision. Such models are typically fine-tuned to agricultural tasks using model weights that were originally fit
to more general, non-agricultural datasets. This lack of agriculture-specific fine-tuning potentially increases
training time and resource use, and decreases model performance, leading an overall decrease in data
efficiency. To overcome this limitation, we collect a wide range of existing public datasets for three distinct
tasks, standardize them, and construct standard training and evaluation pipelines, providing us with a
set of benchmarks and pretrained models. We then conduct a number of experiments using methods
which are commonly used in deep learning tasks, but unexplored in their domain-specific applications for
agriculture. Our experiments guide us in developing a number of approaches to improve data efficiency
when training agricultural deep learning models, without large-scale modifications to existing pipelines.
Our results demonstrate that even slight training modifications, such as using agricultural pretrained model
weights, or adopting specific spatial augmentations into data processing pipelines, can significantly boost
model performance and result in shorter convergence time, saving training resources. Furthermore, we
find that even models trained on low-quality annotations can produce comparable levels of performance
to their high-quality equivalents, suggesting that datasets with poor annotations can still be used for
training, expanding the pool of currently available datasets. Our methods are broadly applicable throughout
agricultural deep learning, and present high potential for significant data efficiency improvements.

1 Introduction

Deep learning models have become standard for modern computer-vision-based agricultural tasks. Examples of
common standard tasks now largely automated by deep learning include fruit detection (Sa et al., 2016; Bargoti
and Underwood, 2016), crop and weed segmentation (Jeon et al., 2011; Milioto et al., 2018), and plant disease
classification (Mohanty et al., 2016; Umit Atila et al., 2021). Certain deep learning models have even been
used for tasks beyond standard single-RGB-image predictions, involving hyperspectral and thermal imagery for
various analyses (Elsherbiny et al., 2021; Wang et al., 2021) or tasks involving multiple scales of data, such as
spatiotemporal crop yield prediction (Nevavuori et al., 2020). Existing approaches to such tasks often involve
direct applications of state-of-the-art models developed for other tasks in the field of deep learning, which have
been thoroughly evaluated by works such as Li et al. (2020).

A largely prevalent problem in the agricultural domain is a significant deficiency of task-specific data. Transfer
learning (Pan and Yang, 2010) is an approach undertaken when training large deep learning models which
attempts to offset this data deficiency, therein transferring knowledge from a source task to the new, reduced size
target dataset. In practice, this generally consists of replacing random weight initialization for model parameters
with existing pretrained weights from a prior task, converting a complete training task into a finetuning task
using existing pretrained models — for instance, many image classification and object detection tasks start
off with pretrained weights from the ImageNet (Deng et al., 2009) and COCO (Lin et al., 2014) datasets,
respectively. However, these datasets are mostly generalized to common objects in environments ranging from
inside a home to the streets of a city. Such environments consist of a broad range of objects and conditions,
allowing models to locate specific objects with relatively greater ease. In contrast, agricultural environments
are highly domain-specific, and these existing pretrained model approaches may not offer as significant of a
knowledge transfer for agricultural domains. An example of the contrast between the aforementioned conditions
is shown in Figure 1. This, in turn, suggests the potential need for alternative pretrained model approaches in
order to improve data efficiency when training agricultural deep learning models. Previously, Nowakowski et al.
(2021), Moon and Eek Son (2021), and Shrivastava et al. (2021) applied transfer learning to agricultural image
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Fig. 1. Sample of images from the COCO dataset (row 1) and from assorted agricultural datasets (row 2), showcasing
the contrast between the general environment of COCO imagery and the specific environment of agricultural imagery.

classification tasks, demonstrating improved performance using pretrained weights on the ImageNet dataset,
citing its large magnitude of data and certain specific classes relevant to agriculture. However, little to no
prior work has been conducted assessing the viability of transfer learning in other, more relevant agricultural
tasks, like semantic segmentation and object detection. Furthermore, there does not exist a single centralized
repository for agriculture-specific datasets, preventing a large-scale ImageNet-style dataset for agriculture from
being developed. While work done by Zheng et al. (2019) and Sahili and Awad (2022) have proposed new,
larger-scale datasets for agriculture, increasing progress towards such a goal, such datasets are usually specific
to certain conditions and designed for image classification, leaving other tasks without as much data. As a
result, the potential for transfer learning as a viable improvement for data efficiency, at least in agriculture, is
diminished.

Another common approach in deep learning which attempts to offset a deficiency of data is the use of
data augmentations. For computer vision tasks, this refers to the transformation of an input image along with
its corresponding annotations, with the stated intent of increasing diversity of data. Standard augmentations
include rotation or flipping of an input image, or adjustment of visual parameters like saturation or brightness.
The usefulness of augmentations have been studied in a general case in works such as Shorten and Khoshgoftaar
(2019); however these applications have largely been focused either on general image classification tasks or for a
specific domain which is not similar with agriculture. Agricultural environments are largely different than general
environments and are often more complex, involving less quantities of obvious features and more irregular and
inconsistent shapes (Wang et al., 2022). Certain studies of augmentations have been conducted in works such
as Moreira et al. (2022), where custom colorspaces and vegetation indexes were used when processing input data
in order to boost performance on agricultural datasets, but there has not been done any large-scale analysis of
augmentation effectiveness for agricultural environments. In fact, a potential benefit of the domain constraints
of agricultural data is the prospect for assessing features specific to these environments. This can be used to
both develop data processing pipelines specific to agriculture, using such approaches, and adapt existing model
architectures to agricultural tasks using methods like transfer learning. Standing in the way of this development
is a lack of a large-scale centralized database for agricultural data.

Bringing together datasets from previous studies, we present a novel set of centralized and standardized public
agricultural datasets and benchmarks using state-of-the-art deep learning models. This collection of datasets
is composed of real data collected from agricultural datasets across three different tasks: image classification,
semantic segmentation, and object detection. For each task, we develop a standard data format and training
pipeline, which we use to generate benchmarks and pretrained models for each dataset.These pipelines and
models enable us to conduct a set of experiments in which we adapt existing methods for improving data
efficiency, such as transfer learning and image augmentation, as described above, for agricultural environments.
We first conduct an assessment of agricultural models for transfer learning, by (1) assessing data efficiency and



performance when using agricultural pretrained weights for fruit detection models. We apply this study further
by (2) assessing data efficiency and performance when using pretrained weights for backbones of agricultural
semantic segmentation models for fruit and plant segmentation. These two experiments provide us with a
quantifiable way to improve data efficiency for agricultural models. Following our analysis of methods to improve
models, we continue our study by evaluating methods to improve data, by (3) assessing the effectiveness of
standard spatial and visual image augmentations for improving model performance on fruit detection and fruit
segmentation tasks. Finally, we note that while our methods suggest methods to improve data, there exists a
pool of low-quality data which may potentially be disregarded, we (4) assess the effect of annotation quality,
primarily accuracy and quantity of bounding boxes, on fruit detection tasks. Through these experiments, we
find a strong potential for improving data efficiency for agricultural deep learning models without significant
modifications to existing pipelines, with potential implications for a broad range of tasks. Furthermore, we
open-source our standardized datasets and pretrained models through our framework AgML?, to facilitate the
adoption of our described methods.

2 Methods and Experiments

To provide a baseline for our experiments, we have collected a set of agricultural datasets and developed a novel
set of standard benchmarks and pretrained models on these datasets. These datasets have been standardized
by task and are included in the dataset catalogue in the open-source agricultural machine learning framework
called AgML. We discuss our methodology in developing a standard task-based data processing pipeline for
training agricultural machine learning models, and our models’ results on these datasets. These pipelines are
designed to be adaptable for the experiments conducted later in this research, and serve as our primary tool for
them.

2.1 Collecting Datasets

Fig. 2. Countries from which agricultural data in the AgML public dataset collection was sourced.

For the purposes of this work, we restrict datasets to three tasks: image classification, semantic segmentation,
and object detection. Furthermore, we focus on datasets with only a single 3-channel RGB image input, in order
to facilitate the creation of benchmarks for a variety of datasets using standard deep learning models without any
architectural modifications, allowing easier accessibility for a broader range of future applications. We compile
datasets from a number of sources, with the majority coming from Lu and Young (2020). We provide a full
listing of each of the datasets used in this dataset as well as key details and references in Table 1, which also
contains benchmark performance on metrics as detailed later in Section 2.2.

Figure 2 displays, shaded in green, the countries from which data in AgML’s collection of public data sources
was gathered from. This data is sourced from each of the six human-inhabited continents. Furthermore, this data
covers a wide variety of conditions, including lightning, camera angle, and amount of obfuscation. We illustrate

4 https://github.com/Project-AgML/AgML
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Table 1. A listing of publicly available agricultural datasets used as part of this research (as described in Dataset Name),
along with their number of images (Images), agricultural task (Ag. Task), and corresponding benchmark performance
for the models described above on a testing set (Benchmark)

Dataset Name Images Classes Ag. Task Benchmark
Image Classification Accuracy
bean_disease_uganda 1295 3 B 96.90%
plant_seedlings_aarhus (Giselsson et al., 2017) 5539 12 A 94.39%
soybean weed_uav_brazil (dos Santos Ferreira et al., 2017) 15336 4 A 100.0%
sugarcane_damage usa (Alencastre-Miranda et al., 2018) 153 6 B 100.0%
crop_weeds_greece (Espejo-Garcia et al., 2020) 508 4 A 100.0%
rangeland weeds_australia (Olsen et al., 2019) 17509 10 A 97.94%
leaf _counting denmark (Teimouri et al., 2018) 9372 9 C 88.90%
plant_village classification (Hughes and Salath’e , 2015) 55448 39 B 98.91%
plant_doc_classification (Singh et al., 2020) 2336 28 B 89.27%
Semantic Segmentation mIoU
carrot_weeds_germany (Haug and Ostermann, 2015) 60 2 D 52.18%
sugarbeet_weed_segmentation (Sa et al., 2018) 125 2 D 53.59%
apple_flower_segmentation (Dias et al., 2018) 148 1 E 68.38%
apple_segmentation minnesota (Héni, Roy, and Isler, Hani et al.) 670 1 F 79.08%
rice_seedling segmentation (Khan et al., 2020) 224 2 D 52.20%
peachpear_flower_segmentation (Dias et al., 2018) 42 1 E 72.58%
red_grapes_and_leaves_segmentation (Kalampokas et al., 2020) 258 2 F 49.18%
white_grapes_and_leaves_segmentation (Kalampokas et al., 2020) 273 2 F 51.93%
Object Detection mAP@0.5
fruit_detection worldwide (Sa et al., 2016) 565 7 G 70.35%
apple_detection usa (Karkee et al., 2019) 2290 1 G 94.16%
apple_detection_spain (Gené-Mola et al., 2019) 967 1 G 86.65%
apple_detection_drone brazil (Santos and Gebler, 2021) 689 1 G 79.62%
mango_detection_australia (Koirala et al., 2019) 1242 1 G 95.32%
grape_detection_californiaday (Al and Lab, 2019) 126 1 G 69.01%
grape_detection californianight (AI and Lab, 2019) 150 1 G 63.99%
Task Legend 4B fWeed, Disease/Damage} Classification, “Leaf Counting

D.EF {Weed, Flower, Fruit} Segmentation, “Fruit Detection

this diversity in two examples. Figure 4 contains an image from each of the object detection datasets used in
our research. Each of the datasets contains a varying set of conditions, ranging from environmental differences,
such as day versus night, to camera angle, including ground-level versus drone captures, to the type of fruit (the
images shown include apple, grape, mango, and cantaloupe). Similarly, Figure 3 displays examples of imagery
from three semantic segmentation datasets used in our research. We note the variation of agricultural tasks
within these datasets, with one dedicated to solely weed segmentation, one being a combination of plant and
weed segmentation, and another being flower segmentation. Furthermore, the difference in camera angle and
environmental conditions are also present in these datasets.

2.2 Models and Methods

We select our model architectures with two primary focuses: state-of-the-art performance, and ease of access
using existing deep learning frameworks. This approach allows us to construct standard pretrained models with
both high-scoring benchmarks as well as ease of reproducibility and application to future tasks. We assess
state-of-the-art performance using traditional performance benchmarks, namely ImageNet (Deng et al., 2009)
for image classification, CityScapes (Cordts et al., 2016) for semantic segmentation, and COCO test-dev (Lin
et al., 2014) for object detection. Similarly, we define the best-case scenario for ease of access to be the scenario
where a model is contained entirely within the PyTorch(Paszke et al., 2019) library family, to reduce external
dependencies. We now elaborate on our training procedure for each category of deep learning tasks.



Fig. 3. Sample images from a collection of the semantic segmentation datasets used in this research, containing the
original image with annotated segmentation masks. The dataset from which each image is sourced from is annotated on
top of it.

Image Classification In selecting an image classification model, we restrict our search to those available in
the torchvision library, in order to facilitate our goal of ease-of-use and reduction of external dependences.
The EfficientNet family of models has the highest performance out of all models in the library. So, we select
EfficientNetB4 as our model for image classification, considering its high ImageNet top-1 accuracy of 82.9%
with a similar number of parameters to traditional state-of-the-art models like ResNet50. We select categorical
cross-entropy loss as our criterion, defined as

Leg =Y yi-logi

i=1
where n is the number of classes, y; is the ground truth, and ¢ is the prediction. We evaluate model performance
using categorical accuracy.

Semantic Segmentation We again restrict our search to the torchvision library, and in turn we select the
DeepLabV3 model with a ResNet50 backbone, as described in the original implementation (and as is available
in the library). We select a loss function based on the number of classes in the dataset being trained upon. For
binary segmentation tasks, involving only a single class, we use binary cross-entropy loss with logits, defined as

Lpcp = —(ylogy + (1 —y)log(l — 7))
over each pixel, where y represents the ground truth value, and y represents the predicted value. For multi-
class segmentation tasks, we use dice loss (Sudre et al., 2017):
2yy +1
y+y+1
where y again represents the ground truth and ¢ represents the predicted value. We evaluate model perfor-
mance using the mean Intersection-over-Union (mloU) metric:

Lp=1-

1 - Dii
mloU = - a
n+1 ZZ:; > im0 Pij T2 j—0(Pji — pii)

where 7 is the number of classes and p;; is the number of pixels of class ¢ predicted to belong to class j.

Object Detection Here, we expand our reach beyond the torchvision library, due to the reduced amount
of object detection models available in it. We select the EfficientDet family of models —keeping in line with
our prior selection of EfficientNet for image classification — choosing the EfficientDetD4 model, due to its
high performance of 49.3% mAP on the COCO evaluation dataset, with a comparable number of parameters to
traditional state-of-the-art models like YOLOv3. We use the open source effdet library® as our implementation

5 See: https://github.com/rwightman/efficientdet-pytorch
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Fig. 4. Sample images from a collection of the object detection datasets used in this research, containing the original
image with annotated fruit bounding boxes. The dataset from which each image is sourced from is annotated on top of
it.

of the EfficientDetD4 model. The loss function used is focal loss (Lin et al., 2017) with o = 0.25 and v = 1.5,
as described in the original implementation, and given by:

Lp = —(1—p:)" log(p:)

where p; = p if y = 1, otherwise p; = 1 — p (and p is the estimated probability for the class y). We evaluate
model performance using the mean average precision metric, at an IOU threshold of 0.5 (which we denote as
mAPQO.5).

2.3 Model Training Parameters

For each of the three deep learning tasks, we develop training pipelines which are adaptable to each of the
different agricultural datasets. These training pipelines are used both for our benchmark and pretrained model
development as well as for our experiments, proving their versatility in adapting to a number of different
agricultural deep learning tasks. We summarize the main training parameters for each task in Table 2. Data
preprocessing is minimal; our only step involves resizing images to the image size in Table 2 and model-specific
preprocessing: namely normalization for image classification and semantic segmentation and bounding box
format conversion for object detection. In addition, for semantic segmentation and object detection, we decay
the initial learning rate by v = 0.75 every 8 epochs. All models are trained using the PyTorch Lightning
library (Falcon et al., 2019), on an NVIDIA Titan RTX GPU.

2.4 Agricultural Model Weights for Object Detection

Object detection models are traditionally trained using domain-generic weights: either random initialization
or a common benchmark like the COCO dataset. For highly specified environments like agriculture, however,



Table 2. Summary of core training parameters for each task.

Task Image Size Optimizer Learning Rate Epochs
Image Classification 224 Adam 0.001 100
Semantic Segmentation 512 NAdam (Dozat, 2016) 0.005 50
Object Detection 512 AdamW (Loshchilov and Hutter, 2017) 0.0002 100

datasets are often of a much smaller magnitude. In many cases, as explored in Lu and Young (2020), datasets
may only consist of a few hundred images, common in the case of object detection where data annotation takes
significant time. In turn, using domain-specific agricultural weights as a starting point for deep learning models
can significantly boost data efficiency, leading to models attaining high performance with less data and less
training time.

To assess the performance of agricultural pretrained weights, we finetune an EfficientDetD4 model on the
fruit_detection_worldwide dataset, and evaluate a set of five distinct pretrained model approaches: COCO,
GRAPE, GRAPENIGHT, APPLEDRONE and NONE. The parameters of these different models are summa-
rized in Table 3. NONE and COCO serve as our baselines for traditional pretrained weight approaches, while
GRAPE, GRAPENIGHT, and APPLEDRONE represent agricultural pretrained models trained for different
types of environments — GRAPE for daytime, GRAPENIGHT for nighttime, and APPLEDRONE for drone as
opposed to ground imagery.

Table 3. Summary of pretrained model approaches for single-class detection.

Model Name Datasets Pretrained On

NONE None

coco COCO (Lin et al., 2014)
GRAPE grape_detection_californiaday

GRAPENIGHT grape_california night
APPLEDRONE apple_detection_drone brazil

We then use these pretrained models for two experiments involving the fruit_detection worldwide dataset.
We first finetune a model on each of its 7 classes (specifically, 7 one-class models), and then one on the entire
7-class dataset (one 7-class model) — enabling an assessment of the results of pretrained weights on not just fruit
localization, but also classification. Our experimental method and pipeline is carried from Section 2.2, though
we restrict our evaluation to the first 50 epochs to obtain a better picture of data efficiency.

2.5 Agricultural Backbone Weights for Semantic Segmentation

In contrast to the standard available pretrained weights for object detection, tasks like semantic segmentation
often do not have even a domain-general set of pretrained weights available for training — especially due to the
fact that a network with a certain number of classes cannot properly utilize the pretrained weights from one with
a different number of classes, unlike in object detection. In such cases, pretrained weights are only used for the
backbone, a feature extraction model which is used as the input stem into a semantic segmentation network. For
instance, in our DeepLabV3 model, the backbone was ResNet50, a model otherwise used for image classification
tasks. Traditionally, such classifiers are trained on the ImageNet dataset (Deng et al., 2009). However, as we
intend to demonstrate, using agricultural domain-specific weights for even the backbone can performance gain
for the larger network as a whole.

Image classification datasets are largely different from semantic segmentation datasets — while most of our se-
mantic segmentation datasets in Table 1 are for locating fruits or weeds, many our image classification datasets
are for distinguishing between leaves and weeds. For a thorough examination of the viability of agricultural
weights, we select three different agricultural image classification datasets to use as pretrained models, summa-
rized in Table 4. VILLAGE is our largest image classification dataset, with over 55,000 images for species and



Table 4. Summary of pretrained backbones for semantic segmentation. Note that in contrast to object detection, the
number of classes of the image classification models are not relevant, as they are being used as feature extractors.

Model Name Datasets Pretrained On

NONE None

IMAGENET ImageNet (Deng et al., 2009)
VILLAGE plant_village_classification
COUNTING 1leaf_counting denmark

disease classification, while COUNTING is a much smaller dataset focused on a largely different application — leaf
counting. We assess these four pretrained backbones on three different datasets: apple_flower_segmentation,
apple_segmentation minnesota, and rice_seedling segmentation. Our experimental method and pipeline
is the same as in Section 2.2, though we restrict our evaluation to only the first 20 epochs of training.

2.6 Effectiveness of Augmentations for Generating Diverse Data

A standard procedure for improving the performance, and in particular, generalizability of deep learning models,
is to apply visual and spatial augmentations to the input data, with the intended goal of increasing the diversity
of the input data. Standard spatial augmentations include rotation, distortion (such as affine transforms), and
cropping, while standard visual augmentations range from saturation and brightness contrast to Gaussian noise
addition. For agricultural deep learning models, generalizability is a crucial goal, as environmental conditions
vary significantly in different scenarios.

In turn, we conduct a robust analysis of various augmentations across a number of datasets in order to
collect insight into the most viable augmentations for improving generalizability for agriculture. Performance
is assessed of a collection of different augmentations on a set of different datasets across our three different
tasks — image classification, semantic segmentation, and object detection — to provide a greater insight into each
augmentation’s effectiveness. Our analysis only involves the usage of a single augmentation per trial, without
combinations, in order to provide an insight as to the capability of each augmentation independently, relevant
to our goal of assessing augmentations in a agricultural context. Additionally, we collect final metric scores early
in training, namely at only 20 epochs. As noted from our prior observations, most models begin approaching the
relative peak of their performance at this threshold. So, a better analysis of the effectiveness of augmentations
is done by analyzing their performance improvements earlier in training. We use the albumentations (Buslaev
et al., 2020) library for our augmentations, noting its seamless integration into our existing PyTorch training
pipeline. The augmentations we use, alongside model performance corresponding to the datasets we select,
are summarized in Table 5 to eliminate redundancy. Furthermore, we provide a visual example of each of the
augmentations we use in Figure 5.

2.7 Effects of Annotation Quality on Learning

Data annotation is a heavily time-consuming task within deep learning. In the field of agriculture, this is an
especially prevalent issue, due to the present nuance and even simply the quantity of objects such as fruits which
need to be annotated in fruit detection tasks. Oftentimes, the amount of effort needed to annotate a certain
dataset can result in that dataset being generated with imperfect and even obviously inaccurate annotations,
potentially leading to them being unusable for deep learning tasks. However, with the already present scarcity of
agricultural data, any loss of existing data has larger impacts on the open-source data community. Thus, we now
assess how the quality of annotations on agricultural data affects models’ overall performance. In particular,
we aim to observe whether models are capable of achieving high performance without perfect annotations,
potentially leading to less strict annotation requirements for deep learning models in the future.

We use three fruit detection datasets: grape_detection_californiaday, apple_detection drone brazil,
and fruit_detection worldwide. For each dataset, we set aside a common test set. For the remaining data, we
create a set of datasets with reduced quality annotations, removing a certain percentage of bounding boxes for
each image. This procedure is conducted for retention of only 30% of annotations, to 90% of annotations, with
10% increments. Using our object detection pipeline from Section 2.2, we train for 25 epochs on each dataset
and record their mAP@0.5 on the aforementioned test sets.



vertical-flip

Fig. 5. An example image from grape_detection_californiaday with each of the augmentations used in this research
applied to it.

3 Results and Discussion

3.1 Standard Benchmarks for Agricultural Datasets

The performance of each of our task-based models on the datasets we have collected is summarized in Table 1.
Our standard pipelines enable our models to achieve comparable performance with existing benchmarks on our
collected datasets, in certain cases even exceeding them. As mentioned in Section 2.2, these datasets, along with
pretrained models which achieved these benchmarks, are available through the open-source framework AgML,
enabling further research on developing even more efficient data and model pipelines.

3.2 Performance of Agricultural Pretrained Weights for Object Detection

A summary of the results of our experiments using agricultural pretrained weights for object detection are
shown in Figure 6, with each of the fruits representing the 7 one-class models, and complete representing the
one 7-class model. For all of the 7-class models, the pretrained agricultural models significantly outperform the
COCO and NONE baselines. We observe that the agricultural models tended to plateau at their maximum
mean average precision before 10 epochs, for most fruits — some, like strawberry, avocado, and mango, see this
plateau as early as 5 epochs. On the other hand, COCO, the standard baseline, usually takes between 25 to 40
epochs to reach its own maximum value, while the NONE model fails to even break zero mean average precision
for five out of seven fruits, and only reaches a comparable score to COCO for one. For the 7-class model, we see
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Fig. 6. Comparison of mAP@0.5 values on seven different individual fruits from the fruit_detection_worldwide dataset,
alongside the complete dataset (listed as complete, the bottom right plot).

that the agricultural pretrained models follow a similar trajectory to COCO, taking around or over 30 epochs
to plateau at their maximum mean average precision.

A number of observations can be drawn from these results. Pretrained weights are clearly a better approach
when training object detection models, as they converge significantly faster than random weights, saving time
and resources in training. The poor performance of the NONE model demonstrates the value of transferring
prior knowledge when training on new tasks. Furthermore, for agricultural domain-specific detection tasks, using
agricultural pretrained weights can provide, at minimum, comparable performance to COCO, or other standard
weights, but at best, even better performance and much faster convergence. Our results are consistent with
previous observations for other tasks, such as Too et al. (2019), where agricultural pretrained weights were
found to increase performance. Our results are further consistent with previous observations specifically for
object detection such as in Bresilla et al. (2019), where using pretrained fruit detection weights from similar
environments resulted in a significant performance increase. A key insight from our, work, however, is the fact
that agricultural environment played little role in performance improvement — all three models, despite their
distinct environments, achieved similar performance on a dataset in yet another noticeably different environment.
Furthermore, each agricultural pretrained model followed a similar performance trajectory, corroborating our
observations that using agricultural pretrained weights of any form result in not only higher performance, but
faster convergence. In turn, this approach, which only requires a slight modification to existing pipelines, can
significantly improve training results for future agricultural deep learning work.

3.3 Performance of Agricultural Backbone Weights for Semantic Segmentation

Similar to the previous section, we summarize the results of our semantic segmentation models in Figure 7.
We find that our models with agricultural pretrained backbones, VILLAGE and COUNTING, tend to outper-
form models with the existing NONE and IMAGENET backbones to a measureable degree. For the datasets
apple_segmentation minnesota and rice_seedling segmentation, our agricultural pretrained models reach
their maximum mI0U almost within the first couple of epochs, while the other two models either take between 10-
15 epochs to reach a similar degree of performance, or do not reach it at all. For apple_flower_segmentation,
our models reach similar levels of performance as COCO, but maintain a more consistent trajectory of per-
formance increase, while COCO and NONE see a spike in performance followed by a quick drop, suggesting
relative inconsistency.
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Fig. 7. Comparison of mI0U values for four different pretrained backbones on three different evaluation datasets. The
y-axis is on a consistent scale, although each dataset has its models converge to a different range of values.

Semantic segmentation is a unique task due to the required level of data annotation required for it — each pixel
in an image must be assigned to a certain class. This is reflected in the reduced size of segmentation datasets,
an example of which can be seen in the image counts of Table 1. As a result, there is potentially not enough
available data to generate a large-scale pretrained network for semantic segmentation, especially when noting
the potential difference in classes between a pretrained network and an applied, task-specific network — resulting
in loss of knowledge in weights which cannot be transferred. This is noted in works like Sodjinou et al. (2022)
and Peng et al. (2021), where standard domain-general weights are used in lieu of their agricultural equivalents.
However, image classification datasets are in relative surplus in comparison to semantic segmentation, and most
segmentation models use classification models as their feature extractors, representing the encoder module for
a typical encoder-decoder architecture. For most tasks, a standard approach is to freeze weights for this feature
extraction module, the encoder, and only update parameters for the segmentation head, the decoder. This
is inspired by the fact that the feature extraction model obtains the most relevant information regarding the
location of the objects being segmented — however, for agricultural networks, this approach seems largely counter-
intuitive, as the feature extractor is usually trained on domain-general images and this unable to recognize the
most relevant features for plants. Using agricultural pretrained weights, on the other hand, can improve the
localization performance of the feature extractor, in turn improving the network’s performance as a whole. Our
results show that using agricultural weights for feature extractors serves as a potential workaround for the lack of
a standard semantic segmentation pretrained model, still enabling improved performance and reduced training
time.

3.4 Augmentation Effectiveness

We summarize the performance of each of the augmentations used in this work, on six different datasets
(A, B,C object detection, and D, E, F' semantic segmentation), in Table 5. When using a single augmenta-
tion, as in our experiments, observe that spatial augmentations — namely augmentations (1) through (5) as
denoted in the table, when used independently — generally outperform visual augmentations — (6) through (11)
— for all of the datasets used in this experiment. The augmentations which provide the largest performance
increase are all spatial, while the visual augmentations, in many cases, fail to even provide any performance
increase whatsoever. For our subsequent analysis, we refer to each dataset using its key in the table (A refers
to grape_detection_californiaday, and so on).

Our next key observation regards the effect of different augmentations on different environments and condi-
tions. For instance, datasets A and B consist of the same fruit in the same environment, simply in day conditions
versus night conditions. While certain visual augmentations, such as rain and fog, provide a performance boost
for A, they actually significantly reduce performance for B, indicating that certain factors, such as rain and
fog, are less valuable information in nighttime environments as opposed to daytime environments. Another ex-
ample of the effects of different augmentations, this time for spatial augmentations with reference to camera
positioning, is found when observing the results for C. While A and B, the other object detection datasets,
consist of ground cameras capturing images of plants, C' consists of aerial imagery captured by a drone. In turn,
augmentations like rotation, translation provide a better opportunity for the model to generalize to different
aerial camera positions, as opposed to less distortive augmentations like horizontal and vertical flips. For se-
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Table 5. Summary of performance of different augmentations on the aforementioned semantic segmentation and object
detection datasets. Bold indicates the highest performance for a certain dataset.

Augmentation A B C D E F
mAP@QO.5 mI0U
original (0) 64.08% 53.62% 75.11% 69.78%  78.52%  51.04%

horizontal-flip (1) 62.76% 58.32% 74.46% 66.97% 79.19% 51.35%
vertical-flip (2) 68.45% 56.12% 74.48% 62.48% 75.35% 49.19%

shear (3) 63.31% 58.28%  80.96% 65.61% 77.54% 51.04%
rotate (4) 60.77% 61.06% 84.42% 64.51% 73.96% 49.75%
translate (5) 65.53% 53.056% 86.60% 66.26% 79.22% 48.57%
brightness (6) 59.01% 52.69% 78.80% 66.45% 77.72%  44.50%
hsv-shift (7) 56.51% 49.32% 82.39% 51.34% 73.12%  42.95%
gaussian-blur (8) 65.17% 57.09% 84.60% 69.25% 78.61%  50.96%
rain (9) 60.44% 42.25% 81.20% 69.49% 73.09%  50.11%
fog (10) 65.35% 48.66% 78.81% 62.73% 70.81% 44.31%
sun-flare (11) 65.92% 55.87% 80.72%  49.86% 74.70%  43.63%

Agrape,detection,californiaday
Bgrape,detection,californianight
c . .
le_ " i 1
Dataset Legend b apple detectlon. dron.e brazi
apple_segmentation minnesota
Eapple,f lower_segmentation

Frice,seedling,segmentation

mantic segmentation tasks, we observe a less obvious boost in performance from augmentations. In fact, for D,
no augmentations provide the best result, while for E and F' the performance boost is within one percent of no
augmentations. This potentially stems from the different conditions of semantic segmentation tasks as opposed
to object detection tasks — semantic segmentation tasks, especially for fruit or leaf segmentation, like D and F,
can come down to individual pixels, and such precision may likely be distorted by spatial augmentations. In all
tasks, while visual augmentations appear to provide less of an obvious benefit as opposed to spatial augmen-
tations, our results still provide some insight into their potential viability. In particular, augmentations which
affect the hue of an image, such as HSV shift and brightness or contrast shifts, tend to actually decrease perfor-
mance, as they result in a model adapting to those input colors. On the contrary, Gaussian blurring provides a
consistent, though sometimes minute, performance increase relative to the input. This suggests that a reduction
of features, as done by adding a slight blur to the input, can in fact increase performance by potentially having
the model learn more general features in the input environment.

A major benefit of augmentations is their ability to generate data potentially modified for a large variety
of conditions, enabling greater generalizability for agricultural models. Existing state-of-the-art work done for
domain transfer often involves the usage of generative adversarial networks (GANSs), such as Fei et al. (2021), who
developed a GAN for transferring sample imagery between day and night domains, and Zhang et al. (2021), who
used a CycleGAN network to edit the fruits present in imagery while maintaining the environmental conditions.
While augmentations may not necessarily be able to provide an entire domain transfer as in the prior methods,
they can still provide a generalization of conditions — for instance, rain and fog augmentations, as used in our
research, can generalize data to a broader range of common conditions across the world. Other augmentations,
like sun flare, can reduce the impact of edge cases where images are obscured. We note that certain augmentations
expand beyond a single data points, potentially involving multiple images being transformed together. This is
the case in common augmentations such as mosaic and patch, as explored in their applications for agricultural
robotics in Su et al. (2021). While we do not include these augmentations in our research, as they involve larger
modifications to our pipelines, they do present potential further performance improvements for agricultural
models. If used properly based on the input environment, augmentations provide an efficient way to produce a
larger set of environments for agricultural data, improving generalizability of models.
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Fig. 8. Performance of models on three different datasets dependent on the percentage of bounding box annotations
retained per image.

3.5 Annotation Quality

The performance of each of our annotation quality models are recorded in Figure 8, which displays the perfor-
mance of models relative to the quality of annotations on the datasets they are trained on. For the datasets
grape_detection_californiaday and apple_detection_drone_brazil, we find a consistent increase in perfor-
mance as the quality of annotations increase. Notably, we do not observe a one-to-one correspondence between
quality of annotations and level of performance: e.g., 30% of annotations actually corresponds to over 50% of
peak performance, suggesting that models trained on lower quality annotations are, at least to some extent, able
to localize similar objects to a slightly higher than expected degree. We provide a sample of predicted bound-
ing boxes for each grape_detection_californiaday iteration in Figure 9. This observance, however, does not
hold for fruit_detection worldwide, which has a distinction of being a multi-class dataset in contrast to the
prior two. Surprisingly, for this dataset, we find that our models achieve maximum performance with only 50%
of annotations. This example, in turn, provides an insight into the hazardous potential of using lower-quality
annotations. At 50% of annotations, our model may have only learned general features, thus allowing it to still
perform much better on other sample images. However, higher percentages of still low-quality annotations may
result in a model learning to distinguish between different instances of the same fruit by extremely nuanced
features, overfitting on the samples on which it is trained.

A number of methods have been proposed in recent work to try and automate the data annotation process,
which is one of the major bottlenecks for agricultural deep learing. Some approaches, such as Beck et al. (2020),
use robotic systems to capture data from a wider range of angles and automatically annotate bounding boxes
knowing the location of plants in controlled environments. Other approaches (Fatima and Mahmood, 2021;
Ciarfuglia et al., 2022) involve semi-supervised learning, taking advantage of highly precise data to train high-
performance models which in turn improve predictions on unlabeled images. Such approaches show potential
for not only making new, high-quality agricultural datasets, but even potentially improving upon existing
datasets, annotating missed fruits or other objects which may have been missed out on. Nevertheless, our
work demonstrates that fruit detection models can still obtain relatively high performance with some fruits
unannotated. In turn, potential new approaches may involve using lower-quality datasets in coordination with
better datasets, expanding the pool of available data for agricultulture and further boosting model performance.

4 Conclusion

In our work, we have developed a novel set of standardized and centralized agricultural datasets, alongside
benchmarks and pretrained models using state-of-the-art models. Our custom pipelines achieve comparable
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Fig. 9. Sample predictions by models trained on different levels of annotation quality. The percentages above each image
reflect the amount of bounding boxes retained for the data used in training that specific model.

performance with existing benchmarks using no extensive data or architectural modifications, making them
widely applicable to a variety of agricultural deep learning tasks. We have also assessed a number of existing
methods for improving model performance domain-specific to agriculture, including using agricultural pretrained
model weights and image augmentations. Furthermore, we have even explored the viability of traditionally
overlooked lower-quality data, potentially expanding the data pool for agriculture. Our results demonstrate
that slight training modifications can significantly boost model performance and result in shorter convergence
time. We have open-sourced our standardized and centralized versions of the datasets used in our work, alongside
our pretrained models and benchmarks, to guide easier adoption of our described methods.
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