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Abstract

We study the application of a tailored quasi-Monte Carlo (QMC) method to a class
of optimal control problems subject to parabolic partial differential equation (PDE)
constraints under uncertainty: the state in our setting is the solution of a parabolic
PDE with a random thermal diffusion coefficient, steered by a control function. To
account for the presence of uncertainty in the optimal control problem, the objective
function is composed with a risk measure. We focus on two risk measures, both involv-
ing high-dimensional integrals over the stochastic variables: the expected value and
the (nonlinear) entropic risk measure. The high-dimensional integrals are computed
numerically using specially designed QMC methods and, under moderate assumptions
on the input random field, the error rate is shown to be essentially linear, indepen-
dently of the stochastic dimension of the problem – and thereby superior to ordinary
Monte Carlo methods. Numerical results demonstrate the effectiveness of our method.

1 Introduction

Many problems in science and engineering, including optimal control problems governed
by partial differential equations (PDEs), are subject to uncertainty. If not taken into
account, the inherent uncertainty of such problems has the potential to render worthless
any solutions obtained using state-of-the-art methods for deterministic problems. The
careful analysis of the uncertainty in PDE-constrained optimization is hence indispensable
and a growing field of research (see, e.g., [5, 6, 7, 18, 29, 30, 36, 37, 45, 47, 48]).

In this paper we consider the heat equation with an uncertain thermal diffusion coef-
ficient, modelled by a series in which a countably infinite number of independent random
variables enter affinely. By controlling the source term of the heat equation, we aim to
steer its solution towards a desired target state. To study the effect of this randomness
on the objective function, we consider two risk measures: the expected value and the en-
tropic risk measure, both involving integrals with respect to the countably infinite random
variables. The integrals are replaced by integrals over finitely many random variables by
truncating the series that represents the input random field to a sum over finitely many
terms and then approximated using quasi-Monte Carlo (QMC) methods.
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4040 Linz, Austria. E-mail: philipp.guth@ricam.oeaw.ac.at

‡Fachbereich Mathematik und Informatik, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Ger-
many. E-mail: vesa.kaarnioja@fu-berlin.de · c.schillings@fu-berlin.de

§School of Mathematics and Statistics, UNSW Sydney, Sydney NSW 2052, Australia. E-mail:
f.kuo@unsw.edu.au · i.sloan@unsw.edu.au

1

ar
X

iv
:2

20
8.

02
76

7v
2 

 [
m

at
h.

N
A

] 
 2

7 
M

ar
 2

02
4

mailto:philipp.guth@ricam.oeaw.ac.at
mailto:vesa.kaarnioja@fu-berlin.de
mailto:c.schillings@fu-berlin.de
mailto:f.kuo@unsw.edu.au
mailto:i.sloan@unsw.edu.au


QMC approximations are particularly well suited for optimization since they preserve
convexity due to their nonnegative (equal) cubature weights. Moreover, for sufficiently
smooth integrands it is possible to construct QMC rules with error bounds not depending
on the number of stochastic variables while attaining faster convergence rates compared
to Monte Carlo methods. For these reasons QMC methods have been very successful in
applications to PDEs with random coefficients (see, e.g., [2, 11, 16, 19, 20, 24, 25, 26, 33,
34, 35, 39, 42, 43]) and especially in PDE-constrained optimization under uncertainty, see
[22, 23]. In [32] the authors derive regularity results for the saddle point operator, which
fall within the same framework as the QMC approximation of affine parametric operator
equation setting considered in [43].

This paper builds upon our previous work [22]. The novelty lies in the use and analysis
of parabolic PDE constraints in conjunction with the nonlinear entropic risk measure,
which inspired the development of an error analysis that is applicable in separable Banach
spaces and thus discretization invariant. Solely based on regularity assumptions, our novel
error analysis covers a very general class of problems. Specifically, we extend QMC error
bounds in the literature (see, e.g., [12, 33]) to separable Banach spaces. A crucial part
of our new work is the regularity analysis of the entropic risk measure, which is used to
prove our main theoretical results about error estimates and convergence rates for the
dimension truncation and the QMC errors. We then apply these new bounds to assess the
total errors in the optimal control problem under uncertainty.

The structure of this paper is as follows. The parametric weak formulation of the PDE
problem is given in Section 2. The corresponding optimization problem is discussed in
Section 3, with linear risk measures considered in Subsection 3.1, the entropic risk measures
in Subsection 3.2, and optimality conditions in Subsection 3.3. While the regularity of
the adjoint PDE problem is the topic of Section 4, the regularity analysis for the entropic
risk measure is addressed in Section 5. Section 6 contains the main error analysis of this
paper. Subsection 6.1 covers the truncation error and Subsection 6.2 analyzes the QMC
integration error. Our approach differs from most studies of QMC in the literature insofar
as we develop the QMC and dimension truncation error theory for the full PDE solutions
(with respect to an appropriately chosen function space norm) instead of considering the
composition of the PDE solution with a linear functional. In Section 7 we confirm our
theoretical findings with supporting numerical experiments. Section 8 is a concluding
summary of this paper.

2 Problem formulation

Let D ⊂ Rd, d ∈ {1, 2, 3}, denote a bounded physical domain with Lipschitz boundary,
let I := [0, T ] denote the time interval with finite time horizon 0 < T < ∞, and let
U := [−1

2 ,
1
2 ]

N denote a space of parameters. The components of the sequence y ∈ U
are realizations of independently and identically distributed uniform random variables in
[−1

2 ,
1
2 ], and the corresponding probability measure is

µ(dy) =
⊗
j≥1

dyj = dy.

Let

ay(x, t) := a0(x, t) +
∑
j≥1

yj ψj(x, t), x ∈ D, y ∈ U, t ∈ I, (2.1)

be an uncertain (thermal) diffusion coefficient, where we assume (i) for a.e. t ∈ I we have
a0(·, t) ∈ L∞(D), ψj(·, t) ∈ L∞(D) for all j ≥ 1, and that (supt∈I ∥ψj(·, t)∥L∞(D))j≥1 ∈ ℓ1;
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(ii) t 7→ ay(x, t) is measurable on I; (iii) uniform ellipticity: there exist positive constants
amin and amax such that 0 < amin ≤ ay(x, t) ≤ amax < ∞ for all x ∈ D, y ∈ U and
a.e. t ∈ I. Time-varying diffusion coefficients occur e.g., in finance or cancer tomography.
However, the presented setting clearly also includes time-constant diffusion coefficients,
i.e., ay(x, t) = ay(x) ∀t ∈ I.

We consider the heat equation over the time interval I = [0, T ], given by the partial
differential equation (PDE)

∂
∂tu

y(x, t)−∇ ·
(
ay(x, t)∇uy(x, t)

)
= z(x, t), x ∈ D, t ∈ I,

uy(x, t) = 0, x ∈ ∂D, t ∈ I,

uy(x, 0) = u0(x), x ∈ D,

(2.2)

for all y ∈ U . Here z(x, t) is the control and u0 ∈ L2(D) denotes the initial heat dis-
tribution. We denote the input functions collectively by f := (z, u0). We have imposed
homogeneous Dirichlet boundary conditions.

Given a target state û(x, t), we will study the problem of minimizing the following
objective function:

J̃(u, z) := R
(α1

2
∥uy − û∥2L2(V ;I) +

α2

2
∥uy(·, T )− û(·, T )∥2L2(D)

)
+
α3

2
∥z∥2L2(V ′;I) , (2.3)

subject to the PDE (2.2) and constraints on the control to be defined later in the manuscript.
By R we denote a risk measure, which is a functional that maps a set of random variables
into the extended real numbers. Specifically, R will later be either the expected value
or the entropic risk measure, both involving high-dimensional integrals with respect to y.
We will first introduce a function space setting to describe the problem properly, including
the definition of the L2(V ; I) and L2(V ′; I) norms.

2.1 Function space setting

We define V := H1
0 (D) and its (topological) dual space V ′ := H−1(D), and identify L2(D)

with its own dual. Let ⟨·, ·⟩V ′,V denotes the duality pairing between V ′ and V . The norm
and inner product in V are defined as usual by

∥v∥V := ∥∇v∥L2(D), ⟨v1, v2⟩V := ⟨∇v1,∇v2⟩L2(D).

We shall make use of the Riesz operator RV : V → V ′ defined by

⟨RV v1, v2⟩V ′,V = ⟨v1, v2⟩V ∀ v1, v2 ∈ V, (2.4)

as well as its inverse R−1
V : V ′ → V satisfying R−1

V w = v ⇔ w = RV v for v ∈ V, w ∈ V ′. It
follows from (2.4) that

⟨w, v⟩V ′,V = ⟨R−1
V w, v⟩V ∀ v ∈ V,w ∈ V ′. (2.5)

In turn we define the inner product in V ′ by

⟨w1, w2⟩V ′ := ⟨R−1
V w1, R

−1
V w2⟩V .

The norm induced by this inner product is equal to the usual dual norm.
We use analogous notations for inner products and duality pairings between function

spaces on the space-time cylinder D × I. The space L2(V ; I) consists of all measurable
functions v : I → V with finite norm

∥v∥L2(V ;I) :=
(∫

I
∥v(·, t)∥2V dt

)1/2
.
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Note that (L2(V ; I))′ = L2(V ′; I), with the duality pairing given by

⟨w, v⟩L2(V ′;I),L2(V ;I) =

∫
I
⟨w(·, t), v(·, t)⟩V ′,V dt.

We extend the Riesz operator RV to RV : L2(V ; I) → L2(V ′; I) so that

⟨v1, v2⟩L2(V ;I) =

∫
I
⟨v1(·, t), v2(·, t)⟩V dt =

∫
I

〈
RV v1(·, t), v2(·, t)

〉
V ′,V

dt

=
〈
RV v1, v2

〉
L2(V ′;I),L2(V ;I)

∀ v1, v2 ∈ L2(V ; I),

and we extend the inverse R−1
V : L2(V ′; I) → L2(V ; I) analogously.

We define the space of solutions uy for y ∈ U by

X :=
{
v ∈ L2(V ; I) : ∂

∂tv ∈ L2(V ′; I)
}
,

which is the space of all functions v in L2(V ; I) with (distributional) derivative ∂
∂tv in

L2(V ′; I), and which is equipped with the (graph) norm

∥v∥X :=
(∫

I

(
∥v(·, t)∥2V + ∥ ∂

∂tv(·, t)∥
2
V ′

)
dt
)1/2

=
(
∥v∥2L2(V ;I) + ∥ ∂

∂tv∥
2
L2(V ′;I)

)1/2
.

Finally, because there are two inputs in equation (2.2), namely z ∈ L2(V ′; I) and u0 ∈
L2(D), it is convenient to define the product space Y := L2(V ; I) × L2(D), and its dual
space by Y ′ := L2(V ′; I)× L2(D), with the norms

∥v∥Y :=
(∫

I
∥v1(·, t)∥2V dt+ ∥v2∥2L2(D)

)1/2
,

∥w∥Y ′ :=
(∫

I
∥w1(·, t)∥2V ′ dt+ ∥w2∥2L2(D)

)1/2
.

In particular, we extend X to Y as follows. For all v ∈ X we interpret v as an
element of Y as v = (v(x, t), v(x, 0)). This gives X ⊆ Y. We further know from
[13, Theorem 5.9.3] that X ↪→ C(L2(D); I) and maxt∈I ∥v(·, t)∥L2(D) ≤ C1(∥v∥L2(V ;I) +

∥ ∂
∂tv∥L2(V ′;I)) ≤

√
2C1∥v∥X for v ∈ X , where C1 depends on T only. Hence we obtain for

all v ∈ X that

∥v∥2Y = ∥v∥2L2(V ;I)×L2(D) = ∥v∥2L2(V ;I) + ∥v(·, 0)∥2L2(D)

≤ ∥v∥2L2(V ;I) +
(
max
t∈I

∥v(·, t)∥L2(D)

)2
≤ ∥v∥2X + 2C2

1∥v∥2X = (1 + 2C2
1 )∥v∥2X ,

and thus we get that X is continuously embedded into Y, i.e., X ↪→ Y.

2.2 Variational formulation

Based on these spaces, using integration by parts with respect to x we can write (2.2) as
a variational problem as follows. Given the input functions f = (z, u0) ∈ Y ′ and y ∈ U ,
find a function uy ∈ X such that

b(y;uy, v) = ⟨f, v⟩Y ′,Y ∀ v = (v1, v2) ∈ Y , (2.6)
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where for all w ∈ X , v = (v1, v2) ∈ Y and y ∈ U ,

b(y;w, v) := ⟨Byw, v⟩Y ′,Y

:=

∫
I

〈
∂
∂tw, v1

〉
V ′,V

dt+

∫
I

∫
D

(
ay∇w · ∇v1

)
dxdt︸ ︷︷ ︸

=: ⟨By
1w,v1⟩L2(V ′;I),L2(V ;I)

+

∫
D
w(·, 0) v2 dx︸ ︷︷ ︸

=: ⟨By
2w,v2⟩L2(D)

, (2.7)

⟨f, v⟩Y ′,Y :=

∫
I
⟨z, v1⟩V ′,V dt+

∫
D
u0 v2 dx ,

with operators By : X → Y ′, By
1 : X → L2(V ′; I), By

2 : X → L2(D), and Byw =
(By

1w,B
y
2w). For better readability we have omitted the parameter dependence v =

(v1(x, t), v2(x)), f = (z(x, t), u0(x)), w = w(x, t) and ay = ay(x, t). Note that a solution
of (2.6) automatically satisfies uy(·, 0) = u0, as can be seen by setting v1 = 0 and allowing
arbitrary v2.

The parametric family of parabolic evolution operators {By, y ∈ U} associated with
this bilinear form is a family of isomorphisms from X to Y ′, see, e.g., [10]. In [44] a
shorter proof based on the characterization of the bounded invertibility of linear operators
between Hilbert spaces is presented, together with precise bounds on the norms of the
operator and its inverse: there exist constants 0 < β1 ≤ β2 <∞ such that

sup
y∈U

∥(By)−1∥Y ′→X ≤ 1

β1
and sup

y∈U
∥By∥X→Y ′ ≤ β2 , (2.8)

where β1 ≥ min{amina
−2
max,amin}√

2max{a−2
min,1}+ϱ2

and β2 ≤
√
2max{1, a2max}+ ϱ2 with ϱ := sup

w∈X

∥w(·,0)∥L2(D)

∥w∥X ,

and hence for all y ∈ U we have the a priori estimate

∥uy∥X ≤ ∥f∥Y ′

β1
=

1

β1
∥(z, u0)∥Y ′ =

1

β1

(
∥z∥2L2(V ′;I) + ∥u0∥2L2(D)

)1/2
. (2.9)

With N0 := {0, 1, 2, . . .}, let ν ∈ N∞
0 denote a multi-index, and define supp(ν) :=

{j ≥ 1 : νj ̸= 0} and |ν| :=
∑

j≥1 νj . In the sequel, we shall consider the set F :=
{ν ∈ N∞

0 : |supp(ν)| < ∞} of multi-indices with finite support. We use the notation
∂νy :=

∏
j≥1(∂/∂yj)

νj to denote the mixed partial derivatives with respect to y. For any

sequence of real numbers b = (bj)j≥1, we define bν :=
∏

j≥1 b
νj
j .

The following regularity result for the state uy was proved in [32].

Lemma 2.1. Let f = (z, u0) ∈ Y ′. For all ν ∈ F and all y ∈ U , we have

∥∂νyuy∥X ≤ ∥f∥Y ′

β1
|ν|! bν , (2.10)

where β1 is as described in (2.8) and the sequence b = (bj)j≥1 is defined by

bj :=
1

β1
sup
t∈I

∥ψj(·, t)∥L∞(D). (2.11)

For our later derivation of the optimality conditions for the optimal control problem,
it is helpful to write the variational form of the PDE (2.6) as an operator equation using
(2.7):

Byuy = (By
1u

y, By
2u

y) = (z, u0) in Y ′ , (2.12)
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with By
1 : X → L2(V ′; I) and By

2 : X → L2(D) given by

By
1 = Λ1B

y and By
2 = Λ2B

y ,

where Λ1 : Y ′ → L2(V ′; I) and Λ2 : Y ′ → L2(D) are the restriction operators defined, for
any v = (v1, v2) ∈ Y ′, by

Λ1(v1, v2) := v1 and Λ2(v1, v2) := v2 .

For the definition of a meaningful inverse of the operators By
1 and By

2 , we first define
the trivial extension operators Ξ1 : L2(V ′; I) → Y ′ and Ξ2 : L2(D) → Y ′, for any v1 ∈
L2(V ′; I) and v2 ∈ L2(D), by

Ξ1v1 := (v1, 0) and Ξ2v2 := (0, v2) .

We observe that P1 := Ξ1Λ1 is an orthogonal projection on the L2(V ′; I)-component in Y ′

and analogously P2 := Ξ2Λ2 is an orthogonal projection on the L2(D)-component in Y ′.
This is verified as follows. For all v, u ∈ Y ′ it is true that

⟨(IY ′ − P1)v, P1u⟩Y ′ = 0 and ⟨(IY ′ − P2)v, P2u⟩Y ′ = 0 ,

where IY ′ denotes the identity operator on Y ′. We clearly have IY ′ = P1 + P2. Therefore
we can write any element v in Y ′ as v = P1v + P2v in Y ′, and by linearity of (By)−1 we
get

(By)−1v = (By)−1(P1v + P2v) = (By)−1P1v + (By)−1P2v .

A meaningful inverse of the operators By
1 : X → L2(V ′; I) and By

2 : X → L2(D) are
then given by (By

1 )
† : L2(V ′; I) → X and (By

2 )
† : L2(D) → X , defined as

(By
1 )

† := (By)−1Ξ1 and (By
2 )

† := (By)−1Ξ2 . (2.13)

We call the operator (By
1 )

† the pseudoinverse of By
1 and the operator (By

2 )
† the pseudoin-

verse of By
2 . Clearly, the pseudoinverse operators are linear and bounded operators.

Lemma 2.2. The pseudoinverse operators (By
1 )

† and (By
2 )

† defined by (2.13) satisfy

IL2(V ′;I) = By
1 (B

y
1 )

† , IL2(D) = By
2 (B

y
2 )

† , and

IX = (By
1 )

†By
1 + (By

2 )
†By

2 , (2.14)

which are the identity operators on L2(V ′; I), L2(D), and X , respectively.

Proof. From the definition of various operators, we have

By
1 (B

y
1 )

† = Λ1B
y(By)−1Ξ1 = Λ1IY ′Ξ1 = Λ1Ξ1 = IL2(V ′;I) ,

By
2 (B

y
2 )

† = Λ2B
y(By)−1Ξ2 = Λ2IY ′Ξ2 = Λ2Ξ2 = IL2(D) ,

(By
1 )

†By
1 + (By

2 )
†By

2 = (By)−1Ξ1Λ1B
y + (By)−1Ξ2Λ2B

y

= (By)−1(P1 + P2)B
y = (By)−1IY ′By = IX ,

as required.

Lemma 2.3. For y ∈ U and given (z, u0) ∈ Y ′, the solution uy of the operator equation
(2.12) can be written as

uy = (By)−1(z, u0) = (By
1 )

†z + (By
2 )

†u0 in X . (2.15)

Proof. From (2.14) we have uy = (By
1 )

†By
1u

y + (By
2 )

†By
2u

y = (By
1 )

†z + (By
2 )

†u0, as re-
quired.
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2.3 Dual problem

In the following we will need the dual operators (By)′, (By
1 )

′ and (By
2 )

′ of By, By
1 and

By
2 , respectively, which are formally defined by

⟨w, (By)′v⟩X ,X ′ := ⟨Byw, v⟩Y ′,Y

⟨w, (By
1 )

′v1⟩X ,X ′ := ⟨By
1w, v1⟩L2(V ′;I),L2(V ;I)

⟨w, (By
2 )

′v2⟩X ,X ′ := ⟨By
2w, v2⟩L2(D)

for all w ∈ X , v = (v1, v2) ∈ Y and y ∈ U , with (By)′v = (By
1 )

′v1 + (By
2 )

′v2.
The dual problem to (2.6) (or equivalently (2.12)) is as follows. Given the input

function fdual ∈ X ′ and y ∈ U , find a function qy = (qy1 , q
y
2 ) ∈ Y such that

⟨w, (By)′qy⟩X ,X ′ = ⟨w, fdual⟩X ,X ′ ∀w ∈ X , (2.16)

or in operator form (By)′qy = fdual, which has the unique solution qy =
(
(By)′

)−1
fdual .

Existence and uniqueness of the solution of the dual problem follow directly from
the bounded invertibility of By. We know that its inverse, (By)−1, is a bounded linear
operator and thus the dual of (By)−1 is (uniquely) defined (see, e.g., [49, Theorem 1
and Definition 1, Chapter VII]). The operator (By)−1 and its dual operator ((By)−1)′ =
((By)′)−1 are equal in their operator norms (see, e.g., [49, Theorem 2, Chapter VII]), i.e.,
the operator norms of the dual operator (By)′ and its inverse are bounded by the constants
β2 and 1

β1
in (2.8).

Applying integration by parts with respect to the time variable in (2.7), the left-hand
side of the dual problem (2.16) can be written as

⟨w, (By)′qy⟩X ,X ′ = ⟨Byw, qy⟩Y ′,Y

=

(∫
I
⟨w,− ∂

∂tq
y
1 ⟩V,V ′ dt+

∫
I

∫
D
(ay∇w · ∇qy1 ) dxdt

+

∫
D
w(·, T ) qy1 (·, T ) dx−

∫
D
w(·, 0) qy1 (·, 0) dx

)
+

∫
D
w(·, 0) qy2 dx (2.17)

=
〈
w, (By

1 )
′qy1

〉
X ,X ′ +

〈
w, (By

2 )
′qy2

〉
X ,X ′ .

We may express the solution qy = (qy1 , q
y
2 ) ∈ Y of the dual problem (2.16) in terms of

the dual operators of the pseudoinverse operators (By
1 )

† and (By
2 )

†. This is true because
we get an analogous result to Lemma 2.2 in the dual spaces.

Lemma 2.4. The dual operators ((By
1 )

†)′ and ((By
2 )

†)′ of the pseudoinverse operators
defined in (2.13) satisfy

IL2(V ;I) = ((By
1 )

†)′(By
1 )

′ , IL2(D) = ((By
2 )

†)′(By
2 )

′ , and

IX ′ = (By
1 )

′((By
1 )

†)′ + (By
2 )

′((By
2 )

†)′ , (2.18)

which are the identity operators on L2(V ; I), L2(D) and X ′, respectively.

Proof. For all v1 ∈ L2(V ′; I), w1 ∈ L2(V ; I), v2, w2 ∈ L2(D), it follows from (2.14) that

⟨v1, w1⟩L2(V ′;I),L2(V ;I) =
〈
By

1 (B
y
1 )

†v1, w1

〉
L2(V ′;I),L2(V ;I)

=
〈
v1, ((B

y
1 )

†)′(By
1 )

′w1

〉
L2(V ′;I),L2(V ;I)

, and

⟨v2, w2⟩L2(D) =
〈
By

2 (B
y
2 )

†v2, w2

〉
L2(D)

=
〈
v2, ((B

y
2 )

†)′(By
2 )

′w2

〉
L2(D)

.
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Similarly, for all v ∈ X and w ∈ X ′ we have

⟨v, w⟩X ,X ′ =
〈(
(By

1 )
†By

1 + (By
2 )

†By
2

)
v, w

〉
X ,X ′

=
〈
(By

1 )
†By

1 v, w
〉
X ,X ′ +

〈
(By

2 )
†By

2 v, w
〉
X ,X ′

=
〈
v, (By

1 )
′((By

1 )
†)′w

〉
X ,X ′ +

〈
v, (By

2 )
′((By

2 )
†)′w

〉
X ,X ′

= ⟨v,
(
(By

1 )
′((By

1 )
†)′ + (By

2 )
′((By

2 )
†)′

)
w⟩X ,X ′ .

This completes the proof.

Lemma 2.5. Given the input function fdual ∈ X ′ and y ∈ U , the (unique) solution of the
dual problem (2.16) is given by

qy = (qy1 , q
y
2 ) =

(
((By

1 )
†)′fdual, ((B

y
2 )

†)′fdual
)

in Y . (2.19)

Proof. Existence and uniqueness follow from the bounded invertibility of (By)′, see Sub-
section 2.2. Thus, we only need to verify that (2.19) solves the dual problem (2.16). It
follows from (2.18) that

fdual =
(
(By

1 )
′((By

1 )
†)′ + (By

2 )
′((By

2 )
†)′

)
fdual

= (By
1 )

′((By
1 )

†)′fdual + (By
2 )

′((By
2 )

†)′fdual

= (By
1 )

′qy1 + (By
2 )

′qy2 = (By)′qy ,

as required.

We will see in the next section that, with the correct choice of the right-hand side
fdual, the gradient of the objective function (2.3) can be computed using the solution qy

of the dual problem.

3 Parabolic optimal control problems under uncertainty with
control constraints

The presence of uncertainty in the optimization problem requires the introduction of a
risk measure R that maps the random variable objective function (see (3.3) below) to
the extended real numbers. Let (Ω,A,P) be a complete probability space. A functional
R : Lp(Ω,A,P) → R ∪ {∞}, for p ∈ [1,∞), is said to be a coherent risk measure [1] if for
X, X̃ ∈ Lp(Ω,A,P) we have

(1) Convexity: R(λX + (1− λ)X̃) ≤ λR(X) + (1− λ)R(X̃) for all λ ∈ [0, 1].

(2) Translation equivariance: R(X + c) = R(X) + c for all c ∈ R.

(3) Monotonicity: If X ≤ X̃ P-a.e. then R(X) ≤ R(X̃).

(4) Positive homogeneity: R(tX) = tR(X) for all t ≥ 0.

Coherent risk measures are popular as numerous desirable properties can be derived from
the above conditions (see, e.g., [29] and the references therein). However, it can be shown
(see [30, Theorem 1]) that the only coherent risk measures that are Fréchet differentiable
are linear ones. The expected value has all of these properties, but is risk-neutral. In order
to address also risk-averse problems we focus on the (nonlinear) entropic risk measures,
which are risk-averse, Fréchet differentiable, and satisfy the conditions (1)–(3) above, i.e.,
they are not positively homogeneous (and thus not coherent). Risk measures satisfying
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(2) and (3) are called monetary risk measures, and a monetary risk measure that also
satisfies (1) is called a convex risk measure (see [14]).

In this section we will first discuss the required conditions on the risk measure R
under which the optimal control problem has a unique solution. We will then present two
classes of risk measures that satisfy these conditions, namely the linear risk measures that
include the expected value, and the entropic risk measures. Finally we derive necessary
and sufficient optimality conditions for the optimal control problem with these two risk
measures. We assume that the target state û belongs to X and that the constants α1, α2

are nonnegative with α1 + α2 > 0 and α3 > 0. Then we consider the following problem:
minimize J̃(u, z) defined in (2.3) subject to the parabolic PDE (2.2) and constraints on
the control

z ∈ Z (3.1)

with Z being nonempty, bounded, closed and convex.
We want to analyze the problem in its reduced form, i.e., expressing the state uy =

(By)−1(z, u0) in (2.3) in terms of the control z. This reformulation is possible because
of the bounded invertibility of the operator By for every y ∈ U , see Section 2.2 and the
references therein. We therefore introduce an alternative notation u(z) = (uy(z))(x, t) =
uy(x, t). (Of course uy depends also on u0, but we can think of u0 as fixed, and therefore
uninteresting.) The reduced problem is then to minimize

J(z) := J̃
(
u(z), z

)
= R

(α1

2

∥∥uy(z)− û
∥∥2
L2(V ;I)

+
α2

2

∥∥ET

(
uy(z)− û

)∥∥2
L2(D)

)
+
α3

2
∥z∥2L2(V ′;I), (3.2)

where ET : X → L2(D) is the bounded linear operator defined by v 7→ v(·, T ) for some
fixed terminal time T > 0.

Defining

Φy(z) :=
α1

2

∥∥(By)−1(z, u0)− û
∥∥2
L2(V ;I)

+
α2

2

∥∥ET

(
(By)−1(z, u0)− û

)
∥2L2(D), (3.3)

we can equivalently write the reduced problem as

min
z∈Z

(
R(Φy(z)) +

α3

2
∥z∥2L2(V ′;I)

)
. (3.4)

With the uniformly boundedly invertible forward operator By, our setting fits into the
abstract framework of [29] where the authors derive existence and optimality conditions
for PDE-constrained optimization under uncertainty. In particular, the forward operator
By, the regularization term α3

2 ∥z∥2L2(V ′;I) and the random variable tracking-type objective

function Φy satisfy the assumptions of [29, Proposition 3.12]. In order to present the
result about the existence and uniqueness of the solution of (3.4), which is based on [29,
Proposition 3.12], we recall some definitions from convex analysis (see, e.g., [29] and the
references therein): A functional R : Lp(Ω,A,P) → R ∪ {∞} is called proper if R(X) >
−∞ for all X ∈ Lp(Ω,A,P) and dom(R) := {X ∈ Lp(Ω,A,P) : R(X) < ∞} ̸= ∅; it is
called lower semicontinuous or closed if its epigraph epi(R) := {(X,α) ∈ Lp(Ω,A,P)×R :
R(X) ≤ α} is closed in the product topology Lp(Ω,A,P)× R.

Lemma 3.1. Let α1, α2 ≥ 0 and α3 > 0 with α1 + α2 > 0 and let R be proper, closed,
convex and monotonic, then there exists a unique solution of (3.4).

Proof. The existence of the solution follows directly from [29, Proposition 3.12]. We thus
only prove the strong convexity of the objective function, which implies strict convexity
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and hence uniqueness of the solution. Clearly α3
2 ∥z∥2L2(V ′;I) is strongly convex. Since the

sum of a convex and a strongly convex function is strongly convex it remains to show
the convexity of R(Φy(z)). By the linearity and the bounded invertibility of the linear
forward operator By, the tracking-type objective functional Φy(z) is quadratic in z and
hence convex, i.e., we have for z, z̃ ∈ L2(V ′; I) and λ ∈ [0, 1] that Φy(λz + (1 − λ)z̃) ≤
λΦy(z)+(1−λ)Φy(z̃). Then, by the monotonicity and the convexity of the risk measure R
we get R(Φy(λz+(1−λ)z̃)) ≤ R(λΦy(z)+(1−λ)Φy(z̃)) ≤ λR(Φy(z))+(1−λ)R(Φy(z̃)) ,
as required.

3.1 Linear risk measures, including the expected value

First we derive a formula for the Fréchet derivative of (3.2) when R is linear, which
includes the special case R(·) =

∫
U (·) dy.

Lemma 3.2. Let R be linear. Then the Fréchet derivative of (3.2) as an element of
(L2(V ′; I))′ = L2(V ; I) is given by

J ′(z) = R
((

(By
1 )

†)′(α1RV + α2E
′
TET

)(
uy(z)− û

))
+ α3R

−1
V z (3.5)

for z ∈ L2(V ′; I).

Proof. For z, δ ∈ L2(V ′; I), we can write

J(z + δ) = R
(α1

2

∥∥uy(z + δ)− uy(z) + uy(z)− û
∥∥2
L2(V ;I)

+
α2

2

∥∥ET

(
uy(z + δ)− uy(z) + uy(z)− û

)∥∥2
L2(D)

)
+
α3

2
∥z + δ∥2L2(V ′;I)

= R
(α1

2

∥∥(By
1 )

†δ +
(
uy(z)− û

)∥∥2
L2(V ;I)

+
α2

2

∥∥ET (B
y
1 )

†δ + ET

(
uy(z)− û

)∥∥2
L2(D)

)
+
α3

2
∥z + δ∥2L2(V ′;I),

where we used (2.15) to write uy(z + δ)− uy(z) = [(By
1 )

†(z + δ) + (By
2 )

†u0]− [(By
1 )

†(z) +
(By

2 )
†u0] = (By

1 )
†δ. Expanding the squared norms using ∥v + w∥2 = ⟨v + w, v + w⟩ =

∥v∥2 + 2⟨v, w⟩+ ∥w∥2, we obtain

J(z + δ) = J(z) + (∂zJ(z)) δ + o(δ),

with the Fréchet derivative ∂zJ(z) : L
2(V ′; I) → R defined by

(∂zJ(z)) δ := R
(
α1

=:Term1︷ ︸︸ ︷〈
(By

1 )
†δ, uy(z)− û

〉
L2(V ;I)

+ α2

〈
ET (B

y
1 )

†δ, ET

(
uy(z)− û

)〉
L2(D)︸ ︷︷ ︸

=:Term2

)
+ α3 ⟨z, δ⟩L2(V ′;I)︸ ︷︷ ︸

=:Term3

.

It remains to simplify the three terms. Using the extended Riesz operator RV :
L2(V ; I) → L2(V ′; I), we have

Term1 =
〈
uy(z)− û, (By

1 )
†δ
〉
L2(V ;I)

=
〈
RV

(
uy(z)− û

)
, (By

1 )
†δ
〉
L2(V ′;I),L2(V ;I)

=
〈
RV

(
uy(z)− û

)
, (By

1 )
†δ
〉
X ′,X

=
〈(
(By

1 )
†)′RV

(
uy(z)− û

)
, δ
〉
L2(V ;I),L2(V ′;I)

,
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where the third equality follows since (By
1 )

†δ ∈ X ↪→ L2(V ; I), and the fourth equality
follows from the definition of the dual operator ((By

1 )
†)′ : X ′ → L2(V ; I), noting that

(L2(V ′; I))′ = L2(V ; I).
Next, using the definition of the dual operator (ET )

′ : L2(D) → X ′, we can write

Term2 =
〈
ET

(
uy(z)− û

)
, ET (B

y
1 )

†δ
〉
L2(D)

=
〈
E′

TET

(
uy(z)− û

)
, (By

1 )
†δ
〉
X ′,X

=
〈(
(By

1 )
†)′E′

TET

(
uy(z)− û

)
, δ
〉
L2(V ;I),L2(V ′;I)

.

Finally, using the definition of the L2(V ′, I) inner product and the extended inverse
Riesz operator R−1

V : L2(V ′; I) → L2(V ; I), we obtain

Term3 = ⟨z, δ⟩L2(V ′;I) = ⟨R−1
V z,R−1

V δ⟩L2(V ;I) =
〈
R−1

V z, δ
〉
L2(V ;I),L2(V ′;I)

.

Writing (∂zJ(z)) δ = ⟨J ′(z), δ⟩L2(V ;I),L2(V ′;I) and collecting the terms above leads to the
expression for J ′(z) in (3.5).

We call J ′(z) the gradient of J(z) and show next, that J ′(z) can be computed using
the solution of the dual problem (2.16) with

fdual := (α1RV + α2E
′
TET )(u

y − û) ∈ X ′ . (3.6)

We show this first for the special case when R is linear.

Lemma 3.3. Let α1, α2 ≥ 0 and α3 > 0, with α1 + α2 > 0. Let f = (z, u0) ∈ Y ′ and
û ∈ X . For every y ∈ U , let uy ∈ X be the solution of (2.2) and then let qy ∈ Y be the
solution of (2.16) with fdual given by (3.6). Then for R linear, the gradient of (3.2) is
given as an element of L2(V ; I) by

J ′(z) = R(q1) + α3R
−1
V z (3.7)

for z ∈ L2(V ′; I).

Proof. This follows immediately from (3.6), Lemma 3.2 and Lemma 2.5.

Proposition 3.4. Under the conditions of Lemma 3.3, with fdual given by (3.6), the dual
solution qy = (qy1 , q

y
2 ) ∈ Y satisfies

qy2 = qy1 (·, 0).

Consequently, the left-hand side of (2.16) reduces to∫
I

〈
w,− ∂

∂tq
y
1

〉
V,V ′ dt+

∫
I

∫
D

(
ay∇w · ∇qy1

)
dx dt+

∫
D
w(·, T ) qy1 (·, T ) dx , (3.8)

and hence qy1 is the solution to
− ∂

∂tq
y
1 (x, t)−∇ ·

(
ay(x, t)∇qy1 (x, t)

)
= α1RV

(
uy(x, t)− û(x, t)

)
qy1 (x, t) = 0

qy1 (x, T ) = α2

(
uy(x, T )− û(x, T )

)
,

(3.9)

where the first equation holds for x ∈ D, t ∈ I, and the second equation holds for x ∈ ∂D,
t ∈ I, and the last equation holds for x ∈ D.
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Proof. Since (2.16) holds for arbitrary w ∈ X , it holds in particular for the special case

w = wn(x, t) :=

{(
1− nt

T

)
v(x) for t ∈

[
0, Tn

]
,

0 for t ∈
(
T
n , T

]
,

with arbitrary v ∈ V . For fdual given by (3.6), the right-hand side of (2.16) becomes

⟨wn, fdual⟩X ,X ′

=
〈
wn, α1RV (u

y − û)
〉
X ,X ′ +

〈
wn(·, T ), α2

(
uy(·, T )− û(·, T )

)〉
L2(D)

=

∫ T
n

0

∫
D

(
1− nt

T

)
v α1RV (u

y − û) dxdt → 0 as n→ ∞ .

From (2.17) the left-hand side of (2.16) is now

⟨wn, (B
y)′qy⟩X ,X ′

=

∫ T
n

0

(
1− nt

T

)〈
v,− ∂

∂tq
y
1

〉
V,V ′ dt+

∫ T
n

0

∫
D

(
1− nt

T

)(
ay∇v · ∇qy1

)
dxdt

−
∫
D
v qy1 (·, 0) dx+

∫
D
v qy2 dx

→
∫
D
v
(
qy2 − qy1 (·, 0)

)
dx as n→ ∞ .

Equating the two sides, letting n → ∞, and noting that v ∈ V is arbitrary, we conclude
that necessarily qy2 = qy1 (·, 0).

Hence, the left-hand side of (2.16) reduces to (3.8). By analogy with the weak form of
(2.2), using the transformation t 7→ T − t, we conclude that qy1 is the solution to (3.9).

3.2 The entropic risk measure

The expected value is risk neutral. Next, we consider risk averse risk measures such as
the entropic risk measure

Re(Y (y)) :=
1

θ
ln
(∫

U
exp

(
θ Y (y)

)
dy

)
,

for an essentially bounded random variable Y (y) and some θ ∈ (0,∞). Using R = Re in
(3.2), the optimal control problem becomes minz∈Z J(z), with

J(z) =
1

θ
ln
(∫

U
exp

(
θΦy(z)

)
dy

)
+
α3

2
∥z∥2L2(V ′;I) , (3.10)

for some θ ∈ (0,∞) and Φy defined in (3.3).
In the following we want to compute the Fréchet derivative of J(z) with respect to

z ∈ L2(V ′; I). To this end, we verify that Φy(z) ≤ C <∞ is uniformly bounded in y ∈ U
for any z ∈ L2(V ′; I), i.e. the constant C > 0 is independent of y ∈ U .

Lemma 3.5. Let f = (z, u0) ∈ Y ′ and û ∈ X , and let α1, α2 ≥ 0 with α1 + α2 > 0. Then
for all y ∈ U , the function Φy defined by (3.3) satisfies

0 ≤ Φy ≤
α1 + α2 ∥ET ∥2X→L2(D)

2

(∥f∥Y ′

β1
+ ∥û∥X

)2
<∞. (3.11)

Thus for all θ > 0 we have

1 ≤ exp
(
θΦy

)
≤ eσ <∞, with (3.12)

σ :=
α1 + α2 ∥ET ∥2X→L2(D)

2

(∥f∥Y ′

β1
+ ∥û∥X

)2
θ. (3.13)
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Proof. We have from (3.3) that

Φy(z) ≤ α1

2

∥∥(By)−1f − û
∥∥2
X +

α2

2
∥ET ∥2X→L2(D)

∥∥(By)−1f − û
∥∥2
X

≤
α1 + α2 ∥ET ∥2X→L2(D)

2

(∥∥(By)−1f
∥∥
X + ∥û∥X

)2
,

which yields (3.11) after applying (2.9).

Using the preceding lemma, we compute the gradient of (3.10).

Lemma 3.6. Let α1, α2 ≥ 0 and α3 > 0, with α1 + α2 > 0, and let 0 < θ < ∞. Let
f = (z, u0) ∈ Y ′ and û ∈ X . For every y ∈ U , let uy ∈ X be the solution of (2.2) and
then let qy = (qy1 , q

y
2 ) ∈ Y be the solution of (2.16) with fdual given by (3.6). Then the

gradient of (3.10) is given as an element of L2(V ; I) for z ∈ L2(V ′; I) by

J ′(z) =
1∫

U exp
(
θΦy(z)

)
dy

∫
U
exp

(
θΦy(z)

)
qy1 dy + α3R

−1
V z (3.14)

where Φy(z) is defined in (3.3).

Proof. The application of the chain rule gives

∂zRe(Φ
y(z)) =

1

θ
∫
U exp

(
θΦy(z)

)
dy
∂z

(∫
U
exp

(
θΦy(z)

)
dy

)
.

Lemma 3.5 implies that 1 ≤
∫
U exp

(
θΦy(z)

)
dy < ∞. Then the integral is a bounded

and linear operator and hence its Fréchet derivative is the operator itself. Exploiting
this fact, we obtain that ∂z

(∫
U exp

(
θΦy(z)

)
dy

)
=

∫
U

(
∂z exp

(
θΦy(z)

))
dy. By the

chain rule it follows for each y ∈ U that ∂z exp
(
θΦy(z)

)
= θ exp

(
θΦy(z)

)
∂zΦ

y(z) .
Recalling from the previous subsection that ∂z(

α3
2 ∥z∥2L2(V ′;I)) = α3R

−1
V z and ∂zΦ

y(z) =(
(By

1 )
†)′(α1RV + α2E

′
TET )(u

y(z)− û) = qy1 , and collecting terms gives (3.14).

3.3 Optimality conditions

In the case when the feasible set of controls Z is a nonempty and convex set, we know
(see, e.g., [46, Lemma 2.21]) that the optimal control z∗ satisfies the variational inequality

⟨J ′(z∗), z − z∗⟩L2(V ;I),L2(V ′;I) ≥ 0 ∀z ∈ Z . (3.15)

For convex objective functionals J(z), like the ones considered in this work, the variational
inequality is a necessary and sufficient condition for optimality. The complete optimality
conditions are then given by the following result.

Theorem 3.7. Let R be the expected value or the entropic risk measure. A control z∗ ∈
L2(V ′; I) is the unique minimizer of (2.3) subject to (2.2) and (3.1) if and only if it
satisfies the optimality system:

⟨Byuy, (v1, v2)⟩Y ′,Y = ⟨z∗, v1⟩L2(V ′;I),L2(V ;I) + ⟨u0, v2⟩L2(D) ∀ v ∈ Y,
⟨w, (By)′qy⟩X ,X ′ = ⟨w,α1RV (u

y − û)⟩X ,X ′

+⟨w(T ), α2(u
y(T )− û(T ))⟩L2(D) ∀w ∈ X ,

z∗ ∈ Z ,

⟨J ′(z∗), z − z∗⟩L2(V ;I),L2(V ′;I) ≥ 0 ∀z ∈ Z ,

which holds for all y ∈ U , and J ′(z) is given by (3.7) for the expected value, or (3.14) for
the entropic risk measure.
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Observe that the optimality system in Theorem 3.7 contains the variational formula-
tions of the state PDE (2.6) and the dual PDE (2.16) in the first and second equation,
respectively.

It is convenient to reformulate the variational inequality (3.15) in terms of an orthog-
onal projection onto Z. The orthogonal projection onto a nonempty, closed and convex
subset Z ⊂ H of a Hilbert space H, denoted by PZ : H → Z, is defined as

PZ(h) ∈ Z , ∥PZ(h)− h∥H = min
v∈Z

∥v − h∥H , ∀h ∈ H .

Then, see, e.g., [27, Lemma 1.11], for all h ∈ H and γ > 0 the condition h ∈ Z, ⟨h, v−z⟩H ≥
0 ∀v ∈ Z is equivalent to z − PZ(z − γh) = 0. Using the definition of the Riesz operator
and H = L2(V ′; I), we conclude that (3.15) is equivalent to

z∗ − PZ(z
∗ − γRV J

′(z∗)) = 0 .

This equivalence can then be used to develop projected descent methods to solve the
optimal control problem, see, e.g., [27, Chapter 2.2.2].

Remark 3.8. If Z is the closed ball with radius r > 0 in a Hilbert space H, then the
orthogonal projection PZ is given by

PZ(h) = min
(
1,

r

∥h∥H

)
h for all h ∈ H.

4 Parametric regularity of the adjoint state

In this section we derive an a priori bound for the adjoint state and the partial derivatives
of the adjoint state with respect to the parametric variables. Existing results, e.g., [32,
Theorem 4], do not directly apply to our case, since the right-hand side of the affine linear,
parametric operator equation depends on the parametric variable, more specifically

(By)′qy = (α1RV + α2E
′
TET )(u

y − û).

Lemma 4.1. Let α1, α2 ≥ 0 and α3 > 0, with α1 + α2 > 0. Let f = (z, u0) ∈ Y ′ and
û ∈ X . For every y ∈ U , let uy ∈ X be the solution of (2.2) and then let qy ∈ Y be the
solution of (2.16) with fdual given by (3.6). Then we have

∥qy∥Y ≤
α1 + α2 ∥ET ∥2X→L2(D)

β1

(
∥f∥Y ′

β1
+ ∥û∥X

)
,

where β1 is described in (2.8).

Proof. By the bounded invertibility of By and its dual operator, we have

∥qy∥Y ≤ ∥((By)′)−1∥X ′→Y ∥(α1RV + α2E
′
TET )(u

y − û)∥X ′

with ∥((By)′)−1∥X ′→Y ≤ 1/β1,

∥RV (u
y − û)∥X ′ ≤ ∥RV (u

y − û)∥L2(V ′;I) = ∥uy − û∥L2(V ;I) ≤ ∥uy − û∥X ,
∥E′

TET (u
y − û)∥X ′ ≤ ∥ET ∥2X→L2(D) ∥u

y − û∥X ,

∥uy − û∥X ≤ ∥uy∥X + ∥û∥X ≤ ∥f∥Y ′

β1
+ ∥û∥X ,

where we used (2.9). Combining the estimates gives the desired result.
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Theorem 4.2. Let α1, α2 ≥ 0 and α3 > 0, with α1 + α2 > 0. Let f = (z, u0) ∈ Y ′ and
û ∈ X . For every y ∈ U , let uy ∈ X be the solution of (2.2) and then let qy ∈ Y be the
solution of (2.16) with fdual given by (3.6). Then for every ν ∈ F we have

∥∂νy qy∥Y ≤
α1 + α2 ∥ET ∥2X→L2(D)

β1

(∥f∥Y ′

β1
+ ∥û∥X

)
(|ν|+ 1)! bν ,

where β1 is described in (2.8) and the sequence b = (bj)j≥1 is defined in (2.11).

Proof. For ν = 0 the assertion follows from the previous lemma. For ν ̸= 0 we take
derivatives ∂νy ((B

y)′qy) = ∂νy ((α1RV + α2E
′
TET )(u

y − û)) and use the Leibniz product
rule to get ∑

m≤ν

(
ν

m

)(
∂my (By)′

)(
∂ν−m
y qy

)
= (α1RV + α2E

′
TET )

(
∂νy (u

y − û)
)
.

Separating out the m = 0 term, we obtain

(By)′(∂νy q
y)

= −
∑

0 ̸=m≤ν

(
ν

m

)(
∂my (By)′

)(
∂ν−m
y qy

)
+ (α1RV + α2E

′
TET )

(
∂νy (u

y − û)
)
.

By the bounded invertibility of (By)′, we have ∥((By)′)−1∥X ′→Y ≤ 1
β1

and

∥∂νy qy∥Y ≤
∑

0̸=m≤ν

(
ν

m

)
∥((By)′)−1∂my (By)′∥Y→Y ∥∂ν−m

y qy∥Y

+ ∥((By)′)−1∥X ′→Y ∥(α1RV + α2E
′
TET )(∂

ν
y (u

y − û))∥X ′

≤
∑

0 ̸=m≤ν

(
ν

m

)
1

β1
∥∂my (By)′∥Y→X ′ ∥∂ν−m

y qy∥Y

+
α1 + α2 ∥ET ∥2X→L2(D)

β1
∥∂νy (uy − û)∥X .

Recall that

⟨v, (By)′w⟩X ,X ′

=

∫
I
⟨v,− ∂

∂tw⟩V,V ′ dt+

∫
I

∫
D
ay ∇v · ∇w dx dt+

∫
D
ETwET v dx.

For m ̸= 0, we conclude with (2.1) that ⟨v, ∂m(By)′w⟩X ,X ′ =
∫
I

∫
D ψj ∇v · ∇w dx dt if

m = ej , and otherwise it is zero. Hence for m = ej we obtain for all v ∈ Y that

∥∂m(By)′v∥X ′ = sup
w∈X

|⟨v, ∂m(By)′w⟩X ,X ′ |
∥w∥X

= sup
w∈X

|
∫
I

∫
D ψj ∇v · ∇w dx dt|

∥w∥X

≤ bj sup
w∈X

∥v∥L2(V ;I) ∥w∥L2(V ;I)

∥w∥X
≤ bj∥v∥Y .

Hence

∥∂νy qy∥Y ≤
∑

j∈supp(ν)

νj bj ∥∂
ν−ej
y qy∥Y +

α1 + α2 ∥ET ∥2X→L2(D)

β1
∥∂νy (uy − û)∥X .
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By Lemma 4.1 this recursion is true for ν = 0 and we may apply [33, Lemma 9.1] to get

∥∂νy qy∥Y ≤
∑
m≤ν

(
ν

m

)
|m|! bm

(α1 + α2 ∥ET ∥2X→L2(D)

β1
∥∂ν−m

y (uy − û)∥X
)
.

From (2.9) and (2.10) we have

∥∂νy (uy − û)∥X ≤

{
1
β1
∥f∥Y ′ + ∥û∥X if ν = 0,

1
β1
∥f∥Y ′ |ν|! bν if ν ̸= 0.

We finally arrive at

∥∂νy qy∥Y ≤
∑
m≤ν
m ̸=ν

(
ν

m

)
|m|! bm

α1 + α2 ∥ET ∥2X→L2(D)

β1

∥f∥Y ′

β1
|ν −m|! bν−m

+ |ν|! bν
α1 + α2 ∥ET ∥2X→L2(D)

β1

(∥f∥Y ′

β1
+ ∥û∥X

)
= (|ν|+ 1)! bν

α1 + α2 ∥ET ∥2X→L2(D)

β1

∥f∥Y ′

β1

+ |ν|! bν
α1 + α2 ∥ET ∥2X→L2(D)

β1
∥û∥X

≤ (|ν|+ 1)! bν
α1 + α2 ∥ET ∥2X→L2(D)

β1

(∥f∥Y ′

β1
+ ∥û∥X

)
,

where the equality follows from [33, Formula (9.4)].

5 Regularity analysis for the entropic risk measure

Our goal is to use QMC to approximate the following high-dimensional integrals appear-
ing in the denominator and numerator of the gradient (3.14). To this end, we develop
regularity bounds for the integrands.

Lemma 5.1. Let θ > 0, α1, α2 ≥ 0, with α1 + α2 > 0. Let f = (z, u0) ∈ Y ′ and û ∈ X .
For every y ∈ U , let uy ∈ X be the solution of (2.2) and let Φy be as in (3.3). Then for
all ν ∈ F we have

|∂νyΦy| ≤
α1 + α2 ∥ET ∥2X→L2(D)

2

(
∥f∥Y ′

β1
+ ∥û∥X

)2

(|ν|+ 1)! bν ,

where the sequence b = (bj)j≥1 is defined by (2.11).

Proof. The case ν = 0 is precisely (3.11). Consider now ν ̸= 0. We estimate the partial
derivatives of Φy by differentiating under the integral sign and using the Leibniz product
rule in conjunction with the Cauchy–Schwarz inequality to obtain

|∂νyΦy| ≤
α1 + α2 ∥ET ∥2X→L2(D)

2

∑
m≤ν

(
ν

m

)
∥∂m(uy − û)∥X ∥∂ν−m(uy − û)∥X .
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Separating out the m = 0 and m = ν terms and utilizing (2.10), we obtain∑
m≤ν

(
ν

m

)
∥∂m(uy − û)∥X ∥∂ν−m(uy − û)∥X

= 2 ∥uy − û∥X ∥∂νuy∥X +
∑
m≤ν

0 ̸=m̸=ν

(
ν

m

)
∥∂muy∥X ∥∂ν−muy∥X

≤ 2

(
∥f∥Y ′

β1
+ ∥û∥X

)
∥f∥Y ′

β1
|ν|! bν +

(
∥f∥Y ′

β1

)2

bν
∑
m≤ν

0̸=m̸=ν

(
ν

m

)
|m|! |ν −m|!,

where the sum over m can be rewritten as

|ν|−1∑
ℓ=1

ℓ! (|ν| − ℓ)!
∑

m≤ν, |m|=ℓ

(
ν

m

)
=

|ν|−1∑
ℓ=1

ℓ! (|ν| − ℓ)!

(
|ν|
ℓ

)
= |ν|! (|ν| − 1),

where we used the identity ∑
m≤ν, |m|=ℓ

(
ν

m

)
=

(
|ν|
ℓ

)
=

|ν|!
(|ν| − ℓ)! ℓ!

, (5.1)

which is a simple consequence of the Vandermonde convolution [38, Equation (5.1)]. Com-
bining the estimates yields the required result.

For future reference, we state a recursive form of Faà di Bruno’s formula [41] for the
exponential function.

Theorem 5.2. Let G : U → R. For all y ∈ U and ν ∈ F \ {0}, we have

∂νy exp(G(y)) = exp(G(y))

|ν|∑
λ=1

αν,λ(y),

where the sequence (αν,λ(y))ν∈F ,λ∈N0 is defined recursively by αν,0(y) = δν,0, αν,λ(y) = 0
for λ > |ν|, and otherwise

αν+ej ,λ(y) =
∑
m≤ν

(
ν

m

)
(∂ν−m+ejG)(y)αm,λ−1(y), j ≥ 1.

Proof. This is a special case of [41, Formulas (3.1) and (3.5)] in which f is the exponential
function and m = 1 so that λ is an integer.

Lemma 5.3. Let the sequence (Aν,λ)ν∈F , λ∈N0 satisfy Aν,0 = δν,0, Aν,λ = 0 for λ > |ν|,
and otherwise satisfy the recursion

Aν+ej ,λ ≤
∑
m≤ν

(
ν

m

)
cρν−m+ej (|ν| − |m|+ 2)!Am,λ−1, j ≥ 1, (5.2)

for some c > 0 and a nonnegative sequence ρ. Then for all ν ̸= 0 and 1 ≤ λ ≤ |ν| we
have

Aν,λ ≤ cλ ρν
λ∑

k=1

(−1)λ+k (|ν|+ 2k − 1)!

(2k − 1)! (λ− k)! k!
. (5.3)

The result is sharp in the sense that both inequalities can be replaced by equalities.

17



Proof. We prove (5.3) for all ν ̸= 0 and 1 ≤ λ ≤ |ν| by induction on |ν|. The base case
Aej ,1 is easy to verify. Let ν ̸= 0 and suppose that (5.3) holds for all multi-indices m of
order ≤ |ν| and all 1 ≤ λ ≤ |m|. The case Aν+ej ,1 is also straightforward to verify. We
consider therefore 2 ≤ λ ≤ |ν|+ 1. Using (5.2) and the induction hypothesis, we have

Aν+ej ,λ

≤
∑

0 ̸=m≤ν

(
ν

m

)
cρν−m+ej (|ν| − |m|+ 2)!

×
(
cλ−1 ρm

λ−1∑
k=1

(−1)λ−1+k (|m|+ 2k − 1)!

(2k − 1)! (λ− 1− k)! k!

)

= cλ ρν+ej

|ν|∑
ℓ=1

∑
m≤ν
|m|=ℓ

(
ν

m

) λ−1∑
k=1

(−1)λ−1+k (|ν| − ℓ+ 2)! (ℓ+ 2k − 1)!

(2k − 1)! (λ− 1− k)! k!

= cλ ρν+ej
2 |ν|! (−1)λ−1

(λ− 1)!

λ−1∑
k=1

(−1)k
(
λ− 1

k

) |ν|∑
ℓ=1

(
|ν| − ℓ+ 2

|ν| − ℓ

)(
ℓ+ 2k − 1

ℓ

)
︸ ︷︷ ︸

=:T

, (5.4)

where we used (5.1) and then regrouped the factors as binomial coefficients. Next we take
the binomial identity [38, Equation (5.6)]

|ν|∑
ℓ=0

(
|ν| − ℓ+ 2

|ν| − ℓ

)(
ℓ+ 2k − 1

ℓ

)
=

(
|ν|+ 2k + 2

|ν|

)
,

separate out the ℓ = 0 term, and use
∑λ−1

k=1(−1)k
(
λ−1
k

)
=

∑λ−1
k=0(−1)k

(
λ−1
k

)
− 1 = −1, to

rewrite T as

T =
λ−1∑
k=1

(−1)k
(
λ− 1

k

)[(
|ν|+ 2k + 2

|ν|

)
−
(
|ν|+ 2

|ν|

)]

=
λ−1∑
k=1

(−1)k
(
λ− 1

k

)(
|ν|+ 2k + 2

|ν|

)
+

(
|ν|+ 2

|ν|

)

=
λ−1∑
k=0

(−1)k
(
λ− 1

k

)(
|ν|+ 2k + 2

|ν|

)
=

λ∑
k=1

(−1)k−1

(
λ− 1

k − 1

)(
|ν|+ 2k

|ν|

)
.

Substituting this back into (5.4) and simplifying the factors, we obtain

Aν+ej ,λ ≤ cλ ρν+ej

λ∑
k=1

(−1)λ+k (|ν|+ 2k)!

(2k − 1)! (λ− k)! k!
,

as required.

Theorem 5.4. Let θ > 0, α1, α2 ≥ 0, with α1 + α2 > 0. Let f = (z, u0) ∈ Y ′ and û ∈ X .
For every y ∈ U , let uy ∈ X be the solution of (2.2) and let Φy be as in (3.3). Then for
all ν ∈ F we have

|∂νy exp(θΦy)| ≤ emax(σ, σe2+2σ−1) |ν|! (eb)ν ,

where the sequence b = (bj)j≥1 is defined by (2.11) and σ is defined by (3.13).

18



Proof. For ν = 0 we have from (3.12) that | exp(θΦy)| ≤ eσ, which satisfies the required
bound. For ν ̸= 0, from Faà di Bruno’s formula (Theorem 5.2) we have

|∂νy exp(θΦy)| ≤ exp(θΦy)

|ν|∑
λ=1

|αν,λ(y)|, (5.5)

with αν,0(y) = δν,0, αν,λ(y) = 0 for λ > |ν|, and

|αν+ej ,λ(y)| ≤
∑
m≤ν

(
ν

m

)
θ |∂m+ej

y Φy| |αν−m,λ−1(y)|

≤
∑
m≤ν

(
ν

m

)
σ (|m|+ 2)! bm+ej |αν−m,λ−1(y)|,

where we used Lemma 5.1. Applying Lemma 5.3 we conclude that

|αν,λ(y)| ≤ σλ bν
λ∑

k=1

(−1)λ+k (|ν|+ 2k − 1)!

(2k − 1)! (λ− k)! k!
. (5.6)

We have

|ν|∑
λ=1

σλ
λ∑

k=1

(−1)λ+k (|ν|+ 2k − 1)!

(2k − 1)! (λ− k)! k!
=

|ν|∑
k=1

(|ν|+ 2k − 1)!

(2k − 1)! k!

|ν|∑
λ=k

(−1)λ+k σλ

(λ− k)!

= |ν|!
|ν|∑
k=1

σk

k!

(
|ν|+ 2k − 1

2k − 1

) |ν|−k∑
ℓ=0

(−σ)ℓ

ℓ!
≤ |ν|!

|ν|∑
k=1

σk

k!
e|ν|+2k−1eσ (5.7)

≤ |ν|! e|ν|+σe2+σ−1,

where we used
(
n
m

)
≤ nm/m! ≤ en. Combining (5.5), (5.6), (5.7) and (3.11) gives

|∂νy exp(θΦy)| ≤ exp(σ) bν |ν|! e|ν|+σe2+σ−1 = eσe
2+2σ−1 |ν|! (eb)ν ,

as required.

Remark 5.5. In the proof of Theorem 5.4, a different manipulation of (5.7) can yield a
different bound 2c e|ν|+σe2+σ+1(|ν| − 1)! for ν ̸= 0, leading to a tighter upper bound for
large |ν| at the expense of a bigger constant,

|∂νy exp(θΦy)| ≤ 2σ eσe
2+2σ+1 (|ν| − 1)! (eb)ν .

This then leads to a more complicated bound for Theorem 5.6 below. We have chosen to
present the current form of Theorem 5.4 to simplify our subsequent analysis.

Interestingly, the sum in (5.6) can also be rewritten as a sum with only positive terms:
denoting v = |ν|,

λ∑
k=1

(−1)λ+k(v + 2k − 1)!

(2k − 1)!(λ− k)!k!
=
v!

λ!

λ∑
k=0

(
λ

k

)(
v − 1

v − λ− k

)
2λ−k

= 2λ
(
v − 1

v − λ

) λ∑
k=0

(
λ
k

)(
v−λ
k

)(
λ+k−1

k

) 2−k,

which is identical to the sequence [3, Proposition 7] and the sequence A181289 in the
OEIS (written in slightly different form). However, we were unable to find a closed form
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expression for the sum; neither [21] nor [38] shed any light. The hope is to obtain an
alternative bound for (5.7) that does not involve the factor e|ν|. This is open for future
research.

As an alternative approach to the presented bootstrapping method, holomorphy argu-
ments can be used to derive similar regularity bounds, see, e.g., [8].

Theorem 5.6. Let θ > 0, α1, α2 ≥ 0, with α1 + α2 > 0. Let f = (z, u0) ∈ Y ′ and û ∈ X .
For every y ∈ U , let uy ∈ X be the solution of (2.2) and Φy be as in (3.3), and then let
qy = (qy1 , q

y
2 ) ∈ Y be the solution of (2.16) with fdual given by (3.6). Then for all ν ∈ F

we have ∥∥∂νy (exp(θΦy) qy1
)∥∥

L2(V ;I)
≤

∥∥∂νy (exp(θΦy) qy
)∥∥

Y ≤ µ

2
(|ν|+ 2)! (eb)ν ,

where the sequence b = (bj)j≥1 is defined by (2.11), σ is defined by (3.13) and

µ := emax(σ, σe2+2σ−1)
(α1 + α2 ∥ET ∥X→L2(D)

β1

)(∥f∥Y ′

β1
+ ∥û∥X

)
.

Proof. Using the Leibniz product rule and Theorem 5.4 with Theorem 4.2, we obtain∥∥∂νy (exp(θΦy) qy
)∥∥

Y ≤
∑
m≤ν

(
ν

m

)∣∣∂my exp(θΦy)
∣∣ ∥∥∂ν−m

y qy
∥∥
Y

≤
∑
m≤ν

(
ν

m

)
emax(σ,σ e2+2σ−1) |m|! (eb)m

×
(α1 + α2 ∥ET ∥2X→L2(D)

β1

)(∥f∥Y ′

β1
+ ∥û∥X

)
bν−m (|ν| − |m|+ 1)!

≤ µ (eb)ν
∑
m≤ν

(
ν

m

)
|m|! (|ν| − |m|+ 1)! = µ (eb)ν

(|ν|+ 2)!

2
,

with the last equality due to [33, Formula (9.5)].

6 Error analysis

Let z∗ denote the solution of (3.4) and let z∗s,n be the minimizer of

Js,n(z) := Rs,n(Φ
y
s (z)) +

α3

2
∥z∥2L2(V ′;I),

where Φy
s (z) = Φ(y1,y2,...,ys,0,0,...)(z) is the truncated version of Φy(z) defined in (3.3), and

Rs,n is an approximation of the risk measure R, for which the integrals over the parameter
domain U = [−1

2 ,
1
2 ]

N are replaced by s-dimensional integrals over Us = [−1
2 ,

1
2 ]

s and then
approximated by an n-point randomly-shifted QMC rule:

Rs,n(Φ
y
s (z)) =


1

n

n∑
i=1

Φy(i)

s (z) for expected value,

1

θ
ln

( 1

n

n∑
i=1

exp
(
θΦy(i)

s (z)
))

for entropic risk measure,

for θ ∈ (0,∞), for carefully chosen QMC points y(i), i = 1, . . . , n, involving a uniformly
sampled random shift ∆ ∈ [0, 1]s, see Section 6.2.
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We have seen in the proof of Lemma 3.1 that the risk measures considered in this
manuscript are convex and the objective function J , see (3.2), is thus strongly convex. It
is important to note that the n-point QMC rule preserves the convexity of the risk measure,
so Js,n is a strongly convex function, because it is a sum of a convex and a strongly convex
function. Therefore we have the optimality conditions ⟨J ′

s,n(z
∗
s,n), z−z∗s,n⟩L2(V ;I),L2(V ′;I) ≥

0 for all z ∈ Z and thus in particular ⟨J ′
s,n(z

∗
s,n), z

∗−z∗s,n⟩L2(V ;I),L2(V ′;I) ≥ 0. Similarly, we
have ⟨J ′(z∗), z−z∗⟩L2(V ;I),L2(V ′;I) ≥ 0, and in particular ⟨−J ′(z∗), z∗−z∗s,n⟩L2(V ;I),L2(V ′;I) ≥
0. Adding these inequalities gives

⟨J ′
s,n(z

∗
s,n)− J ′(z∗), z∗ − z∗s,n⟩L2(V ;I),L2(V ′;I) ≥ 0 .

Hence

α3∥z∗ − z∗s,n∥2L2(V ′;I)

≤ α3∥z∗ − z∗s,n∥2L2(V ′;I) + ⟨J ′
s,n(z

∗
s,n)− J ′(z∗), z∗ − z∗s,n⟩L2(V ;I),L2(V ′;I)

= ⟨J ′
s,n(z

∗
s,n)− α3R

−1
V z∗s,n − J ′(z∗) + α3R

−1
V z∗, z∗ − z∗s,n⟩L2(V ;I),L2(V ′;I)

= ⟨J ′
s,n(z

∗
s,n)− α3R

−1
V z∗s,n − J ′

s,n(z
∗) + α3R

−1
V z∗, z∗ − z∗s,n⟩L2(V ;I),L2(V ′;I)

+ ⟨J ′
s,n(z

∗)− α3R
−1
V z∗ − J ′(z∗) + α3R

−1
V z∗, z∗ − z∗s,n⟩L2(V ;I),L2(V ′;I)

≤ ⟨J ′
s,n(z

∗)− α3R
−1
V z∗ − J ′(z∗) + α3R

−1
V z∗, z∗ − z∗s,n⟩L2(V ;I),L2(V ′;I)

≤ ∥J ′
s,n(z

∗)− α3R
−1
V z∗ − J ′(z∗) + α3R

−1
V z∗∥L2(V ;I)∥z∗ − z∗s,n∥L2(V ′;I) ,

where we used the α3-strong convexity of J ′
s,n in the fourth step, i.e.,

⟨J ′
s,n(z

∗
s,n)− J ′

s,n(z
∗)− α3R

−1
V (z∗ − z∗s,n), z

∗ − z∗s,n⟩L2(V ;I),L2(V ′;I) ≤ 0 .

Thus we have with (3.4)

∥z∗ − z∗s,n∥L2(V ′;I) ≤
1

α3
∥J ′(z∗)− J ′

s,n(z
∗)∥L2(V ;I).

We will next expand this upper bound in order to split it into the different error con-
tributions: dimension truncation error and QMC error. The different error contributions
are then analyzed separately in the following subsections for both risk measures.

In the case of the expected value, it follows from (3.7) that

E∆∥z∗ − z∗s,n∥2L2(V ′;I) ≤
1

α2
3

E∆

∥∥∥∫
U
qy1 dy − 1

n

n∑
i=1

qy
(i)

1,s

∥∥∥2
L2(V ;I)

≤ 2

α2
3

∥∥∥∫
U
(qy1 − qy1,s) dy

∥∥∥2
L2(V ;I)

+
2

α2
3

E∆

∥∥∥∫
Us

qy1,s dy − 1

n

n∑
i=1

qy
(i)

1,s

∥∥∥2
L2(V ;I)

, (6.1)

where qy1,s := q
(y1,y2,...,ys,0,0,...)
1 denotes the truncated version of qy1 , and E∆ denotes the

expected value with respect to the random shift ∆ ∈ [0, 1]s.
In the case of the entropic risk measure, we recall that J ′(z) is given by (3.14). Let

T :=

∫
U
exp

(
θΦy(z∗)

)
dy , Ts,n :=

1

n

n∑
i=1

exp
(
θΦy(i)

s (z∗s,n)
)
,

S :=

∫
U
exp

(
θΦy(z∗)

)
qy1 (z

∗) dy , Ss,n :=
1

n

n∑
i=1

exp
(
θΦy(i)

s (z∗s,n)
)
qy

(i)

1,s (z∗s,n),
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then we have

α3

∥∥z∗ − z∗s,n
∥∥
L2(V ′;I)

≤
∥∥∥S
T

− Ss,n
Ts,n

∥∥∥
L2(V ;I)

=

∥∥S Ts,n − Ss,n T
∥∥
L2(V ;I)

T Ts,n

=

∥∥S Ts,n − S T + S T − Ss,n T
∥∥
L2(V ;I)

T Ts,n

≤

∥∥S∥∥
L2(V ;I)

∣∣T − Ts,n
∣∣

T Ts,n
+

∥∥S − Ss,n
∥∥
L2(V ;I)

Ts,n

≤ µ
∣∣T − Ts,n

∣∣+ ∥∥S − Ss,n
∥∥
L2(V ;I)

,

where we used T ≥ 1 and Ts,n ≥ 1 and, using the abbreviated notation gy(x, t) :=
exp(θΦy(z)) qy1 (x, t) we get

∥S∥2L2(V ;I) =

∫
I

∥∥∥∫
U
gy(·, t) dy

∥∥∥2
V
dt =

∫
I

∫
D

∣∣∣∇(∫
U
gy(x, t) dy

)∣∣∣2 dxdt

≤
∫
U

∫
I

∫
D

∣∣∇gy(x, t)∣∣2 dx dt dy =

∫
U

∥∥gy∥∥2
L2(V ;I)

dy ≤ µ2 ,

where we used Theorem 5.6 with ν = 0.
We can write

E∆

∥∥∥S
T

− Ss,n
Ts,n

∥∥∥2
L2(V ;I)

≤ 2µ2 E∆

∣∣T − Ts,n
∣∣2 + 2E∆

∥∥S − Ss,n
∥∥2
L2(V ;I)

. (6.2)

For the first term on the right-hand side of (6.2) we obtain

E∆

∣∣T − Ts,n
∣∣2 ≤ 2

∣∣T − Ts
∣∣2 + 2E∆

∣∣Ts − Ts,n
∣∣2, (6.3)

and for the second term we have

E∆∥S − Ss,n∥2L2(V ;I) ≤ 2∥S − Ss∥2L2(V ;I) + 2E∆∥Ss − Ss,n∥2L2(V ;I). (6.4)

Remark 6.1. Since we have ∥v1∥L2(V ;I) ≤ ∥v∥Y for all v = (v1, v2) ∈ Y by definition,
and thus in particular ∥

∫
U (q

y
1 − qy1,s) dy∥L2(V ;I) ≤ ∥

∫
U (q

y − qys ) dy∥Y , we can replace

qy1 , q
y
1,s ∈ L2(V ; I) in (6.1) and (6.4) by qy, qys ∈ Y. In order to obtain error bounds

and convergence rates for (6.1) and (6.4), it is then sufficient to derive the results in the
Y-norm, which is slightly stronger than the L2(V ; I)-norm.

6.1 Truncation error

In this section we derive bounds and convergence rates for the errors that occur by trun-
cating the dimension, i.e., for the first terms in (6.1), (6.3) and (6.4).

We prove a new and very general theorem for the truncation error based on knowledge
of regularity. The idea of the proof is based on a Taylor series expansion and is similar
to the approach in [19, Theorem 4.1]. The use of Taylor series for dimension truncation
error analysis has also been considered, for instance, in [4, 17].

Theorem 6.2. Let Z be a separable Banach space and let g(y) : U → Z be analytically
dependent on the sequence of parameters y ∈ U = [−1

2 ,
1
2 ]

N. Suppose there exist constants
C0 > 0, r1 ≥ 0, r2 > 0, and a sequence ρ = (ρj)j≥1 ∈ ℓp(N) for 0 < p < 1, with
ρ1 ≥ ρ2 ≥ · · · , such that for all y ∈ U and ν ∈ F we have

∥∂νyg(y)∥Z ≤ C0 (|ν|+ r1)! (r2ρ)
ν .
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Then, denoting (y≤s;0) = (y1, y2, . . . , ys, 0, 0, . . .), we have for all s ∈ N∥∥∥∫
U

(
g(y)− g(y≤s;0)

)
dy

∥∥∥
Z
≤ C0C s

−2/p+1 ,

for C > 0 independent of s.

Proof. Let y ∈ U and G ∈ Z ′ with ∥G∥Z′ ≤ 1 and define

F (y) := ⟨G, g(y)⟩Z′,Z .

Evidently, ∂νyF (y) = ⟨G, ∂νyg(y)⟩Z′,Z for all ν ∈ F . Moreover,

sup
y∈U

|∂νyF (y)| ≤ C0(|ν|+ r1)!(r2ρ)
ν for all ν ∈ F .

For arbitrary k ≥ 1 we consider the Taylor expansion of F about the point (y≤s;0) =
(y1, y2, . . . , ys, 0, 0, . . .):

F (y) = F (y≤s;0) +

k∑
ℓ=1

∑
|ν|=ℓ

νj=0 ∀j≤s

yν

ν!
∂νyF (y≤s;0)

+
∑

|ν|=k+1
νj=0 ∀j≤s

k + 1

ν!
yν

∫ 1

0
(1− t)k∂νyF (y≤s; ty>s) dt.

Rearranging this equation and integrating over y ∈ U yields∫
U
(F (y)− F (y≤s;0)) dy =

k∑
ℓ=1

∑
|ν|=ℓ

νj=0 ∀j≤s

1

ν!

∫
U
yν ∂νyF (y≤s;0) dy

+
∑

|ν|=k+1
νj=0 ∀j≤s

k + 1

ν!

∫
U

∫ 1

0
(1− t)k yν ∂νyF (y≤s; ty>s) dtdy. (6.5)

If there is any component νj = 1 with j > s, then the summand in the first term vanishes,
since (for all ν ∈ F with νj = 0 ∀j ≤ s)∫

U
yν∂νyF (y≤s;0) dy =

∫
U≤s

∂νyF (y≤s;0)
(∏

j>s

∫ 1/2

−1/2
y
νj
j dyj

)
︸ ︷︷ ︸
=0 if at least one νj=1

dy≤s = 0,

where we used Fubini’s theorem. Taking the absolute value on both sides in (6.5) and
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using |yj | ≤ 1
2 , we obtain∣∣∣ ∫

U
(F (y)− F (y≤s;0)) dy

∣∣∣
≤

k∑
ℓ=2

∑
|ν|=ℓ

νj=0 ∀j≤s
νj ̸=1 ∀j>s

1

2νν!
sup
y∈U

|∂νyF (y)|+
∑

|ν|=k+1
νj=0 ∀j≤s

k + 1

2νν!

∫ 1

0
(1− t)k sup

y∈U
|∂νyF (y)|dt

=

k∑
ℓ=2

∑
|ν|=ℓ

νj=0 ∀j≤s
νj ̸=1 ∀j>s

1

2νν!
sup
y∈U

|∂νyF (y)|+
∑

|ν|=k+1
νj=0 ∀j≤s

1

2νν!
sup
y∈U

|∂νyF (y)|

≤
k∑

ℓ=2

∑
|ν|=ℓ

νj=0 ∀j≤s
νj ̸=1 ∀j>s

1

2νν!
C0 (|ν|+ r1)! (r2ρ)

ν +
∑

|ν|=k+1
νj=0 ∀j≤s

1

2νν!
C0 (|ν|+ r1)! (r2ρ)

ν

≤ C0 (k + r1)!
r2

k

22 2!

k∑
ℓ=2

∑
|ν|=ℓ

νj=0 ∀j≤s
νj ̸=1 ∀j>s

ρν + C0 (k + 1 + r1)!
(r2
2

)k+1 ∑
|ν|=k+1

νj=0 ∀j≤s

ρν

ν!
. (6.6)

Furthermore, we have∥∥∥∫
U
(g(y)− g(y≤s;0)) dy

∥∥∥
Z
= sup

G∈Z′

∥G∥Z′≤1

∣∣∣〈G, ∫
U
(g(y)− g(y≤s;0)) dy

〉
Z′,Z

∣∣∣
= sup

G∈Z′

∥G∥Z′≤1

∣∣∣ ∫
U
⟨G, g(y)− g(y≤s;0)⟩Z′,Z dy

∣∣∣
= sup

G∈Z′

∥G∥Z′≤1

∣∣∣ ∫
U
(F (y)− F (y≤s;0)) dy

∣∣∣ ,
which is also bounded by the last expression in (6.6).

For s sufficiently large, we obtain in complete analogy to [15] that the first term in
(6.6) satisfies

k∑
ℓ=2

∑
|ν|=ℓ

νj=0 ∀j≤s
νj ̸=1 ∀j>s

ρν =
∑

2≤|ν|≤k
νj=0 ∀j≤s
νj ̸=1 ∀j>s

ρν ≤
∑

0̸=|ν|∞≤k
νj=0 ∀j≤s
νj ̸=1 ∀j>s

ρν = −1 +
∏
j>s

(
1 +

k∑
ℓ=2

ρℓj

)

= −1 +
∏
j>s

(
1 +

1− ρk−1
j

1− ρj
ρ2j

)
= O(s−2/p+1),

since ρ ∈ ℓp with 0 < p < 1 and ρ1 ≥ ρ2 ≥ · · · by assumption.
On the other hand, we can use the multinomial theorem to bound the second term in

(6.6)

∑
|ν|=k+1

νj=0 ∀j≤s

ρν

ν!
≤

∑
|ν|=k+1

νj=0 ∀j≤s

(
k + 1

ν

)
ρν =

(∑
j>s

ρj

)k+1

= O(s(k+1)(−1/p+1)),
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where we used
∑

j>s ρj ≤ s−1/p+1(
∑∞

j=1 ρ
p
j )

1/p. (The last inequality follows directly from
[9, Lemma 5.5], which is often attributed to Stechkin. For an elementary proof we refer
to [31, Lemma 3.3].)

Taking now k = ⌈ 1
1−p⌉ yields that (6.6) is of order O(s−2/p+1). Note that k ≥ 2 for

0 < p < 1. The result can be extended to all s by a trivial adjustment of the constants.

Remark 6.3. The assumption of analyticity of the integrand can be replaced since the
Taylor series representation remains valid under the weaker assumption that only the ν-th
partial derivatives with |ν| ≤ k + 1 for k = ⌈ 1

1−p⌉ and 0 < p < 1 exist.

We now apply this general result to the first terms in (6.1), (6.3) and (6.4).

Theorem 6.4. Let θ > 0, α1, α2 ≥ 0, with α1 + α2 > 0. Let f = (z, u0) ∈ Y ′ and
û ∈ X . For every y ∈ U , let uy ∈ X be the solution of (2.2) and Φy be as in (3.3), and
then let qy ∈ Y be the solution of (2.16) with fdual given by (3.6). Suppose the sequence
b = (bj)j≥1 defined by (2.11) satisfies∑

j≥1

bpj <∞ for some 0 < p < 1, and (6.7)

b1 ≥ b2 ≥ · · · . (6.8)

Then for every s ∈ N, the truncated solutions uys , q
y
s and Φy

s satisfy∥∥∥∫
U
(uy − uys ) dy

∥∥∥
X
≤ C s−2/p+1,∥∥∥∫

U
(qy − qys ) dy

∥∥∥
Y
≤ C s−2/p+1,

∥S − Ss∥Y =
∥∥∥∫

U

(
exp

(
θΦy

)
qy − exp

(
θΦy

s

)
qys
)
dy

∥∥∥
Y
≤ C s−2/p+1,

|T − Ts| =
∣∣∣ ∫

U

(
exp

(
θΦy

)
− exp

(
θΦy

s

))
dy

∣∣∣ ≤ C s−2/p+1.

In each case we have a generic constant C > 0 independent of s, but depending on z, u0,
û and other constants as appropriate.

Proof. The result is a corollary of Theorem 6.2 by applying the regularity bounds in
Lemma 2.1, Theorem 4.2, Theorem 5.6 and Theorem 5.4.

6.2 Quasi-Monte Carlo error

We are interested in computing s-dimensional Bochner integrals of the form

Is(g) :=

∫
Us

g(y) dy,

where g(y) is an element of a separable Banach space Z for each y ∈ Us. As our estimator
of Is(g), we use a cubature rule of the form

Qs,n(g) :=
n∑

i=1

αi g(y
(i)).

with weights αi ∈ R and cubature points y(i) ∈ Us. In particular, we are interested in
QMC rules (see, e.g., [12, 33]), which are cubature rules characterized by equal weights
αi = 1/n and carefully chosen points y(i) for i = 1, . . . , n.
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We shall see that for sufficiently smooth integrands, randomly shifted lattice rules lead
to convergence rates not depending on the dimension, and which are faster compared to
Monte Carlo methods. Randomly shifted lattice rules are QMC rules with cubature points
given by

y
(i)
∆ := frac

( iz
n

+∆
)
−
(1
2
, . . . ,

1

2

)
, (6.9)

where z ∈ Ns is known as the generating vector, ∆ ∈ [0, 1]s is the random shift and frac(·)
means to take the fractional part of each component in the vector. In order to get an
unbiased estimator, in practice we take the mean over R uniformly drawn random shifts,
i.e., we estimate Is(g) using

Q(g) :=
1

R

R∑
r=1

Q(r)(g), with Q(r)(g) :=
1

n

n∑
i=1

g(y
(i)

∆(r)). (6.10)

In this section we derive bounds and convergence rates for the errors that occur by
applying a QMC method for the approximation of the integrals in the second terms in
(6.1), (6.3) and (6.4). We first prove a new general result which holds for any cubature
rule in a separable Banach space setting.

Theorem 6.5. Let Us = [−1
2 ,

1
2 ]

s and let Ws be a Banach space of functions F : Us → R,
which is continuously embedded in the space of continuous functions. Consider an n-point
cubature rule with weights αi ∈ R and points y(i) ∈ Us, given by

Is(F ) :=

∫
Us

F (y) dy ≈
n∑

i=1

αi F (y
(i)) =: Qs,n(F ),

and define the worst case error of Qs,n in Ws by

ewor(Qs,n;Ws) := sup
F∈Ws, ∥F∥Ws≤1

|Is(F )−Qs,n(F )|.

Let Z be a separable Banach space and let Z ′ denote its dual space. Let g : y 7→ g(y) be
continuous and g(y) ∈ Z for all y ∈ Us. Then∥∥∥∫

Us

g(y) dy −
n∑

i=1

αi g(y
(i))

∥∥∥
Z

≤ ewor(Qs,n;Ws) sup
G∈Z′

∥G∥Z′≤1

∥G(g)∥Ws . (6.11)

Proof. From the separability of Z and the continuity of g(y) we get strong measurability
of g(y). Moreover, from the compactness of Us and the continuity of y 7→ g(y) we
conclude that supy∈Us

∥g(y)∥Z <∞ and hence
∫
Us

∥g(y)∥Z dy <∞, which in turn implies

∥
∫
Us
g(y) dy∥Z <∞. Thus g(y) is Bochner integrable.

Furthermore, for every normed space Z, its dual space Z ′ is a Banach space equipped
with the norm ∥G∥Z′ := supg∈Z, ∥g∥Z≤1 |⟨G, g⟩Z′,Z |. Then it holds for every g ∈ Z that
∥g∥Z = supG∈Z′, ∥G∥Z′≤1 |⟨G, g⟩Z′,Z |. This follows from the Hahn–Banach Theorem, see,
e.g., [40, Theorem 4.3].

Thus we have∥∥∥∫
Us

g(y) dy −
n∑

i=1

αi g(y
(i))

∥∥∥
Z

= sup
G∈Z′

∥G∥Z′≤1

∣∣∣〈G,∫
Us

g(y) dy −
n∑

i=1

αi g(y
(i))

〉
Z′,Z

∣∣∣
= sup

G∈Z′
∥G∥Z′≤1

∣∣∣ ∫
Us

⟨G, g(y)⟩Z′,Z dy −
n∑

i=1

αi ⟨G, g(y(i))⟩Z′,Z

∣∣∣ , (6.12)
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where we used the linearity of G and the fact that for Bochner integrals we can swap the
integral with the linear functional, see, e.g., [49, Corollary V.2].

From the definition of the worst case error of Qs,n in Ws it follows that for any F ∈ Ws

we have
|Is(F )−Qs,n(F )| ≤ ewor(Qs,n;Ws) ∥F∥Ws .

Applying this to the special case F (y) = G(g(y)) = ⟨G, g(y)⟩Z′,Z in (6.12) yields (6.11).

Theorem 6.6. Let the assumptions of the preceding Theorem hold. In addition, suppose
there exist constants C0 > 0, r1 ≥ 0, r2 > 0 and a positive sequence ρ = (ρj)j≥1 such that
for all u ⊆ {1 : s} and for all y ∈ Us we have∥∥∥ ∂|u|

∂yu

g(y)
∥∥∥
Z
≤ C0 (|u|+ r1)!

∏
j∈u

(r2 ρj). (6.13)

Then, a randomly shifted lattice rule can be constructed using a component-by-component
(CBC) algorithm such that

E∆

∥∥∥∫
Us

g(y) dy − 1

n

n∑
i=1

g(y(i))
∥∥∥2
Z

≤ Cs,γ,λ [ϕtot(n)]
−1/λ for all λ ∈ (12 , 1],

where ϕtot(n) is the Euler totient function, with 1/ϕtot(n) ≤ 2/n when n is a prime power,
and

Cs,γ,λ := C2
0

( ∑
∅≠u⊆{1:s}

γλu

(
2ζ(2λ)

(2π2)λ

)|u|) 1
λ
( ∑

u⊆{1:s}

[(|u|+ r1)!]
2
∏

j∈u(r2 ρj)
2

γu

)
. (6.14)

Proof. We consider randomly shifted lattice rules in the unanchored weighted Sobolev
space Ws,γ with norm

∥F∥2Ws,γ
:=

∑
u⊆{1:s}

1

γu

∫
[− 1

2
, 1
2
]|u|

∣∣∣ ∫
[− 1

2
, 1
2
]s−|u|

∂|u|

∂yu

F (yu;y{1:s}\u) dy{1:s}\u

∣∣∣2dyu

≤
∑

u⊆{1:s}

1

γu

∫
Us

∣∣∣ ∂|u|
∂yu

F (y)
∣∣∣2dy.

It is known that CBC construction yields a lattice generating vector satisfying

E∆[ewor(Qs,n;W)]2 ≤
( 1

ϕtot(n)

∑
∅≠u⊆{1:s}

γλu

(2ζ(2λ)
(2π2)λ

)|u|) 1
λ
for all λ ∈ (12 , 1].

We have from (6.11) that

E∆

∥∥∥∫
Us

g(y) dy − 1

n

n∑
i=1

g(y(i))
∥∥∥2
Z

≤ E∆[ewor(Qs,n;W)]2 sup
G∈Z′

∥G∥Z′≤1

∥G(g)∥2Ws,γ
.

Using the definition of the Ws,γ-norm, we have

∥G(g)∥2Ws,γ
≤

∑
u⊆{1:s}

1

γu

∫
Us

∣∣∣ ∂|u|
∂yu

G(g(y))
∣∣∣2 dy

=
∑

u⊆{1:s}

1

γu

∫
Us

∣∣∣G( ∂|u|
∂yu

g(y)
)∣∣∣2 dy ≤

∑
u⊆{1:s}

1

γu

∫
Us

∥G∥2Z′

∥∥∥ ∂|u|
∂yu

g(y)
∥∥∥2
Z
dy .

We can now use the assumption (6.13) and combine all of the estimates to arrive at the
required bound.
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Remark 6.7. Theorem 6.5 holds for arbitrary cubature rules, thus similar results to Theo-
rem 6.6 can be stated for other cubature rules. In particular, the regularity bounds obtained
in Sections 4 and 5 can also be used for worst case error analysis of higher-order QMC
quadrature as well as sparse grid integration.

We now apply Theorem 6.6 to the second terms in (6.1), (6.3) and (6.4).

Theorem 6.8. Let θ > 0, α1, α2 ≥ 0, with α1 + α2 > 0. Let f = (z, u0) ∈ Y ′ and û ∈ X .
For every y ∈ U and s ∈ N, let uys ∈ X be the truncated solution of (2.2) and Φy

s be as
in (3.3), and then let qys ∈ Y be the truncated solution of (2.16) with fdual given by (3.6).
Then a randomly shifted lattice rule can be constructed using a CBC algorithm such that
for all λ ∈ (12 , 1] we have

E∆

∥∥∥∫
Us

uys dy − 1

n

n∑
i=1

uy
(i)

s

∥∥∥2
X
≤ Cs,γ,λ [ϕtot(n)]

−1/λ, (6.15)

E∆

∥∥∥∫
Us

qys dy − 1

n

n∑
i=1

qy
(i)

s

∥∥∥2
Y
≤ Cs,γ,λ [ϕtot(n)]

−1/λ, (6.16)

E∆∥Ss − Ss,n∥2L2(V ;I) ≤ E∆

∥∥∥∫
Us

exp(θΦy
s ) q

y
s dy − 1

n

n∑
i=1

exp(θΦy(i)

s ) qy
(i)

s

∥∥∥2
Y

≤ Cs,γ,λ [ϕtot(n)]
−1/λ, (6.17)

E∆|Ts − Ts,n|2 ≤ E∆

∣∣∣ ∫
Us

exp(θΦy
s ) dy − 1

n

n∑
i=1

exp(θΦy(i)

s )
∣∣∣2

≤ Cs,γ,λ [ϕtot(n)]
−1/λ, (6.18)

where ϕtot(n) is the Euler totient function, with 1/ϕtot(n) ≤ 2/n when n is a prime power.
Here Cs,γ,λ is given by (6.14), with r1 = 2, r2 = e, ρj = bj defined in (2.11), and C0 > 0
is independent of s, n, λ and weights γ but depends on u, z0, û and other constants.

With the choices

λ =

{
1

2−2δ for all δ ∈ (0, 1) if p ∈ (0, 23 ] ,
p

2−p if p ∈ (23 , 1) ,

γu = γ∗u :=

(
(|u|+ r1)!

∏
j∈u

r2 ρj√
2ζ(2λ)/(2π2)λ

)2/(1+λ)

,

we have that Cs,γ∗,λ is bounded independently of s. (However, Cs,γ∗, 1
2−2δ

→ ∞ as δ → 0

and Cs,γ∗, p
2−p

→ ∞ as p→ (2/3)+.) Consequently, under the assumption (6.7), the above

three mean-square errors are of order

κ(n) :=

{
[ϕtot(n)]

−(2−2δ) for all δ ∈ (0, 1) if p ∈ (0, 23 ] ,

[ϕtot(n)]
−(2/p−1) if p ∈ (23 , 1) .

(6.19)

Proof. The mean-square error bounds are a corollary of Theorem 6.6 by applying the reg-
ularity bounds in Lemma 2.1, Theorem 4.2, Theorem 5.6 and Theorem 5.4. For simplicity
we set C0, r1 and r2 to be the largest values arising from the four results.

We know from [35, Lemma 6.2] that for any λ, Cs,γ,λ defined in (6.14) is minimized
by γu = γ∗u . By inserting γ∗ into Cs,γ,λ we can then derive the condition p < 2λ

1+λ < 1 for

which Cs,γ∗,λ is bounded independently of s. This condition on λ, together with λ ∈ (12 , 1]
and p ∈ (0, 1) yields the result.
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6.3 Combined error bound

Combining the results in this section gives the final theorem.

Theorem 6.9. Let α1, α2 ≥ 0 and α3 > 0 with α1 + α2 > 0, and let the risk measure
R be either the expected value or the entropic risk measure with θ > 0. Denote by z∗ the
unique solution of (3.4) and by z∗s,n the unique solution of the truncated problem using
a randomly shifted lattice rule as approximation of the risk measure. Then, if (6.7) and
(6.8) hold, we have √

E∆∥z∗ − z∗s,n∥2L2(V ′;I)
≤ C

(
s−2/p+1 +

√
κ(n)

)
,

where κ(n) is given in (6.19), and the constant C > 0 is independent of s and n but
depends on z, u0, û and other constants.

Proof. This follows from (6.1)–(6.4), Remark 6.1, Theorem 6.4 and Theorem 6.8.

7 Numerical experiments

We consider the coupled PDE system
∂tu

y(x, t)−∇ · (ay(x)∇uy(x, t)) = z(x, t)

uy(x, t) = 0

uy(x, 0) = u0(x)

(7.1)

and 
−∂tqy(x, t)−∇ · (ay(x)∇qy(x, t)) = α1RV (u

y(x, t)− û(x, t))

qy(x, t) = 0

qy(x, T ) = α2(u
y(x, T )− û(x, T )),

(7.2)

where the first equations in (7.1) and (7.2) hold for x ∈ D, t ∈ I, y ∈ U , the second
equations hold for x ∈ ∂D, t ∈ I, y ∈ U , and the last equations hold for x ∈ D and
y ∈ U . We fix the physical domain D = (0, 1)2 and the terminal time T = 1. The
uncertain diffusion coefficient, defined as in (2.1), is independent of t, and parameterized
in all experiments with mean field a0(x) ≡ 1 and the fluctuations

ψj(x) =
1

2
j−ϑ sin(πjx1) sin(πjx2) for ϑ > 1 and j ∈ N.

We use the implicit Euler finite difference scheme with step size ∆t = T
500 = 2 · 10−3

to discretize the PDE system with respect to the temporal variable. The spatial part
of the PDE system is discretized using a first order finite element method with mesh
size h = 2−5 and the Riesz operator in the loading term corresponding to (7.2) can be
evaluated using (2.4). In all experiments, the lattice rules are generated using the fast
CBC algorithm with weights chosen as in Theorem 6.8, where we used the parameter value
β1 = 1 in (2.11).

In the numerical experiments presented in Subsections 7.1–7.3, we choose

û(x, t) := χ∥x−(c1(t),c2(t))∥∞≤ 1
10
(x) û1(x, t)

+ χ∥x+(c1(t),c2(t))−(1,1)∥∞≤ 1
10
(x) û2(x, t),
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where

û1(x, t) := 10240

(
x1 − c1(t)−

1

10

)(
x2 − c2(t)−

1

10

)
×
(
x1 − c1(t) +

1

10

)(
x2 − c2(t) +

1

10

)
,

û2(x, t) := 10240

(
x1 + c1(t)−

11

10

)(
x2 + c2(t)−

11

10

)
×
(
x1 + c1(t)−

9

10

)(
x2 + c2(t)−

9

10

)
,

c1(t) :=
1

2
+

1

4
(1− t10) cos(4πt2) and c2(t) :=

1

2
+

1

4
(1− t10) sin(4πt2).

As the parameters appearing in the objective functional (2.3) and adjoint equation (7.2),
we use α1 = 10−3, α2 = 10−2, and α3 = 10−7. Moreover, we always use

u0(x) = sin(2πx1) sin(2πx2).

In Subsections 7.1 and 7.2, we fix the source term

z(x, t) = 10x1(1− x1)x2(1− x2)

to assess the dimension truncation and QMC errors.
All computations were carried out on the computational cluster Katana supported by

Research Technology Services at UNSW Sydney [28].

7.1 Dimension truncation error

The dimension truncation errors in Theorem 6.4 are estimated by approximating the
quantities ∥∥∥∥∫

Us′

(uys′ − uys ) dy

∥∥∥∥
L2(V ;I)

and

∥∥∥∥∫
Us′

(qys′ − qys ) dy

∥∥∥∥
L2(V ;I)

as well as
∥Ss′ − Ss∥L2(V ;I) and |Ts′ − Ts|

for s′ ≫ s, by using a tailored lattice cubature rule generated using the fast CBC
algorithm with n = 215 nodes and a single fixed random shift to compute the high-
dimensional parametric integrals. The obtained results are displayed in Figures 1 and 2
for the fluctuations (ψj)j≥1 corresponding to decay rates ϑ ∈ {1.3, 2.6} and dimensions
s ∈ {2k | k ∈ {1, . . . , 9}}. We use θ = 10 in the computations corresponding to Ss and Ts.
As the reference solution, we use the solutions corresponding to dimension s′ = 2048 = 211.

The theoretical dimension truncation rate is readily observed in the case ϑ = 1.3. We
note in the case ϑ = 2.6 that the dimension truncation convergence rates degenerate for
large values of s. This may be explained by the fact that the QMC cubature with n = 215

nodes has an error around 10−8 (see Figure 3 in Subsection 7.2), but the finite element
discretization error may also be a contributing factor. For smaller values of s, the higher
order convergence is also apparent in the case ϑ = 2.6.
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Figure 1: The approximate dimension truncation errors corresponding to the state and adjoint PDEs.

Figure 2: The approximate dimension truncation errors corresponding to ∥Ss′ − Ss∥L2(V ;I) and |Ts′ − Ts|.

7.2 QMC error

We investigate the QMC error rate by computing the root-mean-square approximations√√√√ 1

R(R− 1)

R∑
r=1

∥(Q−Q(r))(u·s)∥2L2(V ;I)
,

√√√√ 1

R(R− 1)

R∑
r=1

∥(Q−Q(r))(q·s)∥2L2(V ;I)
,

√√√√ 1

R(R− 1)

R∑
r=1

∥(Q−Q(r))(exp(Φ·
s) q

·
s)∥2L2(V ;I)

,

√√√√ 1

R(R− 1)

R∑
r=1

|(Q−Q(r))(exp(Φ·
s))|2,

corresponding to (6.15)–(6.18), where Q and Q(r) are as in (6.10) for a randomly shifted
lattice rule with cubature nodes (6.9), where the random shift ∆ is drawn from U([0, 1]s).
As the generating vector, we use lattice rules constructed using the fast CBC algorithm
with n = 2m, m ∈ {4, . . . , 15}, lattice points and R = 16 random shifts, and s = 100.
We carry out the experiments using two different decay rates ϑ ∈ {1.3, 2.6} for the input
random field. The results are displayed in Figure 3. The root-mean-square error converges
at a linear rate in all experiments, which is consistent with the theory.
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Figure 3: Left: The approximate root-mean-square error for QMC approximation of the integrals
∫
Us

uy
s dy and∫

Us
qys dy. Right: The approximate root-mean-square error for QMC approximation of quantities Ss and Ts. All

computations were carried out using R = 16 random shifts, n = 2m, m ∈ {4, . . . , 15}, and dimension s = 100.

7.3 Optimal control problem

We consider the problem of finding the optimal control z ∈ Z that minimizes (2.3) sub-
ject to the PDE constraint (2.2). We consider constrained optimization over Z = {z ∈
L2(V ′; I) : ∥z∥L2(V ′;I) ≤ 2} and compare our results with the reconstruction obtained by
carrying out unconstrained optimization over Z = L2(V ′; I). To this end, we define the
projection operator

P(w) := min

{
1,

2

∥w∥L2(V ;I)

}
w for w ∈ L2(V ; I)

which is used in the constrained setting, while in the unconstrained setting we use P :=
IL2(V ;I). The operator P acts on L2(V ; I) and hence it is different from the operator PZ
introduced in Section 3.3, which projects onto Z.

To be able to handle elements of Z numerically, we apply the projected gradient
method (see, e.g., [27]) as described in Algorithm 1 together with the projected Armijo
rule stated in Algorithm 2. Note that evaluating J(RV w) and J ′(RV w) in Algorithms 1
and 2 requires solving the state PDE with the source term RV w. In particular, the Riesz
operator appears in the loading term after finite element discretization and can thus be
evaluated using (2.4). We use the initial guess w0 = 0. The parameters of the gradient
descent method were chosen to be η0 = 100, γ = 10−4, and β = 0.1.

We consider the entropic risk measure with θ = 10 and set ϑ = 1.3. The reconstructed
optimal control obtained using the bounded set of feasible controls Z is displayed in
Figure 4. The reconstructed optimal control at the terminal time T = 1 and its pointwise
difference to the control obtained without imposing control constraints are displayed in
Figure 5. Finally, the evolution of the objective functional as the number of gradient
descent iterations increases is plotted in Figure 6 for the constrained and unconstrained
optimization problems.
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Algorithm 1 Projected gradient descent

Input: feasible starting value w ∈ L2(V ; I) such that z = RV w ∈ Z
1: while ∥w − P(w − J ′(RV w))∥L2(V ;I) >TOL do
2: find step size η using Algorithm 2
3: set w := P(w − ηJ ′(RV w))
4: end while

Algorithm 2 Projected Armijo rule

Input: current w ∈ L2(V ; I), parameters β, γ ∈ (0, 1) and η0 > 0
Output: step size η > 0

1: set η := η0
2: while
J(RV P(w − ηJ ′(RV w)))− J(RV w) > −γ

η∥w − P(w − ηJ ′(RV w))∥2L2(V ;I) do
3: set η := βη
4: end while

Figure 4: The inverse Riesz transform R−1
V z∗ of the reconstructed optimal control z∗ using the entropic risk measure

for several values of t in the constrained setting.

Figure 5: Left: the inverse Riesz transform of the control at time t = 1 in the constrained setting after 25 iterations
of the projected gradient descent algorithm using the entropic risk measure. Right: The difference between the
reconstruction obtained in the constrained setting and the corresponding solution in the unconstrained setting.
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Figure 6: The value of the objective functional for each gradient descent iteration. The results corresponding to the
constrained setting and the unconstrained setting are plotted in blue and red, respectively.

8 Conclusion

We developed a specially designed QMC method for an optimal control problem subject
to a parabolic PDE with an uncertain diffusion coefficient. To account for the uncer-
tainty, we considered as measures of risk the expected value and the more conservative
(nonlinear) entropic risk measure. For the high-dimensional integrals originating from
the risk measures, we provide error bounds and convergence rates in terms of dimension
truncation and the QMC approximation. In particular, after dimension truncation, the
QMC error bounds do not depend on the number of uncertain variables, while leading
to faster convergence rates compared to Monte Carlo methods. In addition we extended
QMC error bounds in the literature to separable Banach spaces, and hence the presented
error analysis is discretization invariant.
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