
Transformers as Meta-Learners for
Implicit Neural Representations

Yinbo Chen and Xiaolong Wang

UC San Diego

Abstract. Implicit Neural Representations (INRs) have emerged and
shown their benefits over discrete representations in recent years. How-
ever, fitting an INR to the given observations usually requires optimiza-
tion with gradient descent from scratch, which is inefficient and does not
generalize well with sparse observations. To address this problem, most
of the prior works train a hypernetwork that generates a single vector
to modulate the INR weights, where the single vector becomes an infor-
mation bottleneck that limits the reconstruction precision of the output
INR. Recent work shows that the whole set of weights in INR can be
precisely inferred without the single-vector bottleneck by gradient-based
meta-learning. Motivated by a generalized formulation of gradient-based
meta-learning, we propose a formulation that uses Transformers as hy-
pernetworks for INRs, where it can directly build the whole set of INR
weights with Transformers specialized as set-to-set mapping. We demon-
strate the effectiveness of our method for building INRs in different tasks
and domains, including 2D image regression and view synthesis for 3D
objects. Our work draws connections between the Transformer hyper-
networks and gradient-based meta-learning algorithms and we provide
further analysis for understanding the generated INRs. The project page
with code is at https://yinboc.github.io/trans-inr/.

1 Introduction

In recent years, Implicit Neural Representations (INRs) have been proposed as
continuous data representations for various tasks in computer vision. With INR,
data is represented as a neural function that maps continuous coordinates to
signals. For example, an image can be represented as a neural function that
maps 2D coordinates to RGB values, a 3D scene can be represented as a neural
radiance field (NeRF [34]) that maps 3D locations with view directions to densi-
ties and RGB values. Compared to discrete data representations such as pixels,
voxels, and meshes, INRs do not require resolution-dependent quadratic or cubic
storage. Their representation capacity does not depend on grid resolution but
instead on the capacity of a neural network, which may capture the underlying
data structure and reduce the redundancy in representation, therefore providing
a compact yet powerful continuous data representation.

However, learning the neural functions of resolution-free INRs from given ob-
servations usually requires optimization with gradient descent steps, which has

ar
X

iv
:2

20
8.

02
80

1v
2

 [
cs

.L
G

]
 5

 A
ug

 2
02

2

https://yinboc.github.io/trans-inr/

2 Y. Chen and X. Wang

𝐺 𝐵𝑅

𝑥 𝑦

... ...

... ...

𝑊!

𝑊"

𝑊#

Transformer
meta-learner

Image

𝐺 𝐵𝑅

... ...

... ...

𝑊!

𝑊"

𝑊#

Transformer
meta-learner

View

𝑦 𝑧𝑥

𝜎

Continuous Image NeRF (w/o view dir.)

Fig. 1: Implicit Neural Representation (INR) is a function that maps coordinates
to signals. We propose to use Transformers as meta-learners for directly building
the whole weights in INRs from given observations. Our method supports various
types of INRs, such as continuous images and neural radiance fields.

several challenges: (i) Optimization can be slow if every INR is learned indepen-
dently from a random initialization; (ii) The learned INR does not generalize
well to unseen coordinates if the given observations are sparse and no strong
prior is shared.

From the perspective of efficiently building INRs, previous works [47] pro-
posed to learn a latent space where each INR can be decoded by a single vector
with a hypernetwork [20]. However, a single vector may not have enough ca-
pacity to capture the fine details of a complex real-world image or 3D object,
while these works show promising results in generative tasks [49,1,5], they do
not have high precision in reconstruction tasks [5]. The single-vector modulated
INRs are mostly used for representing local tiles [31] for reconstruction. Re-
cent works [7,44,57] revisit the grid-based discrete representations and define
INRs over deep feature maps, where the capacity and storage will be resolution-
dependent and the decoding is bounded by feature maps as the INRs rely on
local features. Going beyond the limitation of the resolution, our work is inspired
by recent works [46,52] which explore a promising direction in the intersection
between gradient-based meta-learning and INRs. Without grid-based representa-
tion, these works can efficiently and precisely infer the whole set of INR weights
without the single-vector bottleneck. However, the computation of higher-order
derivatives and a learned fixed initialization make these methods less flexible,
and gradient descent that involves sequential forward and backward passing is
still necessary for obtaining INRs from given observations in these works.

Motivated by a generalized formulation of the gradient-based meta-learning
methods, we propose the formulation that uses Transformers [55] as effective
hypernetworks for INRs (Figure 1). Our general idea is to use Transformers to
transfer the knowledge from image observations to INR weights. Specifically, we
first convert the input observations to data tokens, then we view the weights
in INR as the set of column vectors in weight matrices of different layers, for
which we create initialization tokens each representing one column vector. These

Transformers as Meta-Learners for Implicit Neural Representations 3

initialization tokens are passed together with data tokens into a Transformer,
and the output tokens are mapped to their corresponding location (according to
the location of initialization tokens) as the weights in INRs.

We verify the effectiveness of our method for building INRs in both 2D and
3D domains, including image regression and view synthesis. We show that our ap-
proach can efficiently build INRs and outperform previous gradient-based meta-
learning algorithms on reconstruction and synthesis tasks. Our further analysis
shows qualitatively that the INRs built by the Transformer meta-learner may
potentially exploit the data structures without explicit supervision.

To summarize, our contributions include:

– We propose a Transformer hypernetwork to infer the whole weights in an
INR, which removes the single-vector bottleneck and does not rely on grid-
based representation or gradient computation.

– We draw connections between the Transformer hypernetwork and the gradient-
based meta-learning for INRs.

– Our analysis sheds light on the structures of the generated INRs.

2 Related Work

Implicit neural representation. Implicit neural representations (INRs) have
been demonstrated as flexible and compact continuous data representations in re-
cent works. A main branch of these works use INRs for representing 3D objects or
scenes, their wide applications include 3D reconstruction [10,19,18,33] and gener-
ation [45,5,13]. Typical examples of resolution-free INRs include DeepSDF [37]
which represents 3D shapes as a field of signed distance function, Occupancy
Networks [32] and IM-NET [8] which represents 3D shapes as binary classi-
fication neural network that classifies each 3D coordinate for being inside or
outside the shape. NeRF and its follow-up works [34,30,38,27] are proposed to
represent a scene as a neural radiance field that maps each position to a den-
sity and a view-dependent RGB value, with differentiable volumetric rendering
that allows optimizing the representation from 2D views. The idea of INR has
also been adapted for representing 2D images in recent works [7,49,1,25], which
allows decoding for arbitrary output resolution. Several recent works observe
that coordinate-based MLPs with ReLU activation may lack the capacity for
representing fine details, solutions proposed to address this issue include replac-
ing ReLU with sine activation function [47], and using Fourier features of input
coordinates [53].

Hypernetworks for INRs. A hypernetwork [20] g generates the weights
θ for another network fθ from some input z, i.e. θ = g(z). Directly building
an INR from given observations will usually require performing gradient de-
scent steps, which is inefficient and does not generalize well with sparse obser-
vations. A common way to tackle this short-come is learning a latent space for
INRs [37,32,48,47], where each INR corresponds to a latent vector that can be
decoded by a hypernetwork. Since a single vector may have limited capacity

4 Y. Chen and X. Wang

for representing the fine details (e.g. lack of details in reconstructing face im-
age [47,5]), many recent works [7,18,9,24,39,4,31] address this issue by revisiting
discrete representation and defining INRs with feature maps in a hybrid way,
where the data still corresponds to a grid-based representation. Different from
these hybrid methods, our goal is to obtain a hypernetwork that allows for build-
ing a resolution-free neural function (i.e. a global function instead of a grid-based
representation).

Meta-learning. Learning to build a neural function from given observa-
tions is related to the topic of meta-learning, where a differentiable meta-learner
is trained for inferring the weights in a neural network. Most previous works
on meta-learning have been focus on few-shot learning [56,50,43,51,35] and re-
inforcement learning [17,16,23], where a meta-learner allows fast adaptation for
new observations and better generalization with few samples. Gradient-based
methods is a popular branch in meta-learning algorithms, typical examples in-
clude MAML [17], Reptile [36], and their extentions [2,15,42]. A recent paper
provides a comprehensive survey on meta-learning algorithms [21].

While most previous works in meta-learning aim at building a neural function
for processing the data, the recent rising topic of implicit neural representation
connects neural functions and data representations, which extends the idea of
meta-learning with new possibilities for building neural functions that represent
the data. MetaSDF [46] adopts a gradient-based meta-learning algorithm for
learning signed distance functions, which leads to much faster convergence than
standard learning. Learned Init [52] generalizes this idea to wider classes of INRs
and shows the effectiveness of using the meta-learned initialization as encoded
prior. While these works have shown promising results, their methods only learn
a fixed initialization and require test-time optimization. We show that it is pos-
sible to directly build the whole INR with a Transformer meta-learner and it is
more flexible than a fixed initialization.

Transformers. Transformers [55] were initially proposed for machine trans-
lation, and has later been a state-of-the-art architecture used in various meth-
ods [12,40,41,3] in natural language processing. Recent works [14,54,28] also
demonstrate the potential of Transformers for encoding visual data. In this work,
we show promising results of using Transformers in meta-learning for directly
inferring the whole weights in a neural function of INR.

3 Method

3.1 Problem Formulation

We are interested in the problem of recovering a signal I from observations
O. The signal is a function I : X → Y defined in a bounded domain that
X ⊆ Rc, Y ⊆ Rd. For instance, an image can be represented as a function that
maps 2D coordinates to 3D tuples of RGB values. A 3D object or scene can
be represented as a neural radiance field (NeRF) [34], which maps 3D locations
with view directions v (normalized 3D vectors) to 4D tuples that describe the
densities and RGB values.

Transformers as Meta-Learners for Implicit Neural Representations 5

In implicit neural representation, the signal I is estimated and parameterized
by a neural function fθ with θ as its weights (learnable parameters). A typical
example of fθ is a multilayer perceptron (MLP). We consider a more general
class of fθ where its weights consist of a set of matrices

θ = {Wi |Wi ∈ Rini×outi}m−1
i=0 ,

the biases to add (if exist) are merged into these matrices. Given the observations
O, our goal is now to obtain θ that fits the signal I with the neural function fθ.

Observations O is a set O = {Ti(I)}|O|−1
i=0 with transform functions Ti. For

example, to estimate a continuous image, each pixel i in the given image can be
approximately viewed as Ti(I) = I(xi), where xi is the center coordinate of pixel
i and I(xi) are the RGB values. To estimate a 3D object with NeRF, an input
view provides each pixel i with its corresponding rendering ray ri, that can be
represented as Ti(I) = R(I, ri), where R is the function renders the RGB values
from ray ri in the radience field I.

Given the observation set O, estimating I with the INR fθ can be addressed
by minimizing the L2 loss

L(θ;O) =
1

|O|
∑
Ti∈O

∥Ti(fθ)− Ti(I)∥22. (1)

If we assume Ti(fθ) is differentiable to θ, minimizing this loss with gradient
descent steps is referred to as fitting an INR to given observations or learning
the INR. The goal of a meta-learner is to efficiently find θ with given O and
improve the generalization of the neural function fθ.

3.2 Motivating from gradient-based meta-learning

In meta-learning, the goal is to train a meta-learner that infers the weights θ
of a target network fθ from given observations. In MAML [17], the learnable
component is an initialization θ0, θ = θn is inferred by updating θ0 for n steps

θi+1 = θi + (−∇θL(θ;O)|θ=θi), (2)

where L is the differentiable loss function computed with observations O. The
update formula above defines a computation graph from θ0 to θn, if the com-
putation graph (with higher-order derivatives) is differentiable, the gradient for
optimizing θn can be back-propagated to θ0 for training this meta-learner.

We consider a more general class of meta-learners, where its learnable com-
ponents contain: (i) A learnable initialization θ0; (ii) A total number of update
steps n; (iii) A step-specific learnable update rule Uψi (with ψi as its parameters)
that conditions on some provided data Di:

θi+1 = θi + Uψi
(θi;Di). (3)

The meta-learning objective is applied to the final vector θn, which is typically
fitting the seen observations or generalizing to unseen observations.

6 Y. Chen and X. Wang

×Steps

(a) Gradient-based

Initialization

−𝛻𝜃!

−𝛻𝜃"

𝜃!

𝜃"

Data
tokens

Feed-forward

×L

(b) Transformer Meta-Learner

Initialization
(tokens)

Data
tokens

Attention

𝜑!(→𝜃!)

𝜑"(→𝜃")

Fig. 2: Motivating from gradient-based meta-learners. The residual link
in the Transformer meta-learner shares a similar formulation as subtracting the
gradients in gradient descent for updating the weights.

We observe that this formulation can be naturally instantiated with a Trans-
former architecture. In general, we propose to represent observations as a set
of data tokens, which are passed into a Transformer encoder with a set of ini-
tialization tokens that are learnable parameters defined in addition, as shown in
Figure 2 (b). The computation graph with the residual link can be written as

φi+1 = φi + Uψi
(φi; di), (4)

where di are the data tokens at layer i, Uψi is the function that describes how
the output residual is conditioned on i-th layer’s input, i.e. the function that is
composed of the attention layer and the feed-forward layer, φ0 is the learnable
initialization tokens and tokens φi corresponds to the target weights θi.

3.3 Transformers as Meta-Learners

In this section, we introduce the details of our Transformer hypernetwork. We use
Transformers to directly build the whole weights θ by transferring the knowledge
from encoded information of observations O. Our method is demonstrated in
Figure 3, in general, it represents the observations as data tokens and decodes
them to weight tokens, that each weight token corresponds to some locations in
the INR weights.

In practice, the observation set usually consists of images (or with given
poses). We follow a similar strategy as in Vision Transformer [14], where the
images are split into patches. The patches are flattened and then mapped by a
fully connected (FC) layer to vectors in the dimension of the input to the Trans-
former. We denote these vectors as data tokens, i.e. the tokens that represent
the observation data, which are the blue input tokens in Figure 3.

To decode for the whole INR weights θ = {Wi}m−1
i=0 , we view each weight

matrixWi as a set of column vectors, and θ can be represented as the joint of the

Transformers as Meta-Learners for Implicit Neural Representations 7

Transformer encoder

0 0 1 1

0 0 1 1

Image View

/

Observations

Data tokens

Weight tokens

Init. tokens

INR

0 0

1 1

𝑊!

𝑊"

𝑓#

FC

FC*

Fig. 3: Transformers as meta-learners. We propose to use a Transformer
encoder as the meta-learner that directly builds the whole weights of an INR
from given observations. The observations are split into patches and mapped
to data tokens by a fully connected (FC) layer. The INR weights are viewed
as the set of column vectors in weight matrices. For each column vector, we
create a corresponding initialization token at the input. The data tokens and
the initialization tokens are passed together into the Transformer encoder. The
weight tokens are generated at the output and are mapped to the column vectors
in INR weights with layerwise FCs (denoted by FC∗).

column vector sets. For each of these column vectors, we create an initialization
token (which is a learnable vector parameter) correspondingly at the input for
the Transformer. In Figure 3, they are illustrated as green tokens.

These initialization tokens and data tokens are passed together into the
Transformer encoder, which jointly models: (i) building features of the obser-
vations through interactions in data tokens; (ii) transferring the knowledge of
observations to the weights through interactions between data tokens and initial-
ization tokens; (iii) the relation of different weights in INR through interactions
in initialization tokens.

Finally, the output vectors at the positions of the input initialization tokens
are denoted as weights tokens, which are shown in Figure 3 as the tokens in
orange color. To map them into the INR weights, since the dimensions of the
column vectors in Wi can be different for different i, we have m independent FC
layers for each i ∈ {0, . . . ,m − 1} that maps the weight tokens to their corre-
sponding column vectors in Wi, which gets whole INR weights θ = {Wi}m−1

i=0 .

To train this Transformer meta-learner, a loss is computed with regard to
the INR weights θ. Let O denotes the observations from which we generate θ, for
the optimization goal of the meta-learner, the loss can be defined as L(θ;O) in
Equation 1. In tasks that require improving the generalization of the INR fθ (e.g.
view synthesis from a single input image), we sample O′ ̸= O from the training
set and compute the loss L(θ;O′) instead. L(θ;O′) requires the estimated fθ to
generalize to unseen observations, which explicitly adds generalization of INR
as an objective.

8 Y. Chen and X. Wang

2 3 6 70 1

2 2 2 4 5!
repeat

normalize

𝑊

𝑢! #𝑤",$ (learnable)

4 5𝑈 2 30 1 INR weight
(4 groups) INR

𝑊%

𝑊&

𝑓'

Fig. 4:Weight Grouping. Columns in weight matrixW are divided into groups,
each group can be generated by a single vector. w̄i are learnable vectors assigned
for every column in W , which are independent of the input observations.

3.4 Weight Grouping

Assigning tokens for each column vector in weight matrices might be inefficient
when the size of θ is large. To improve the efficiency and scalability of our
Transformer meta-learner, we present a weight grouping strategy that offers
control for the trade-off of precision and cost.

The general idea is to divide the columns in a weight matrix into groups and
assign a single token for each group, as illustrated in Figure 4. Specifically, let
W ∈ θ denotes a weight matrix that can be viewed as column vectors W =
[w0 . . . wr−1]. For weight grouping with a group size of k, W will be defined by
a new set of column vectors U = [u0 . . . ur/k−1] (assume r is divisible by k).
Specifically, wi is defined by u⌊i/k⌋ with the formula

wi = normalize(u⌊i/k⌋ · w̄i),

where normalize refers to L2 normalization, w̄i are the learnable parameters
assigned for every weight wi, note that they are independent of the given ob-
servations. With this formulation, U will replace W as the new weights for the
Transformer meta-learner to build.

The weight grouping strategy will roughly reduce the number of weight tokens
by a factor of k, which makes it more efficient for the Transformer meta-learner
to build the weights while maintaining the representation capacity of the inferred
INR fθ. w̄i for every column vector wi ∈ W are learnable vectors that do not
need to be generated by the Transformer, and they make the columns vector
within the same group still different from each other.

4 Experiments

4.1 Image Regression

Image regression is a basic task commonly used for evaluating the representation
capacity of INRs in recent works [47,52]. In image regression, a target image J is
sampled from an image distribution J ∼ J . An INR fθ is a neural network that
takes as input a 2D coordinate in the image and outputs the RGB value. The

Transformers as Meta-Learners for Implicit Neural Representations 9

fθ(x) GT fθ(x) GT

Fig. 5: Qualitative results of image regression. Our method builds the
weights of fθ that fit the observations of the target image and recovers the de-
tails of real-world images. Examples are shown on CelebA (left) and Imagenette
(right), which are face images and natural images of general objects.

goal is to infer the weights θ in INR fθ for a given target image J so that fθ can
reconstruct J by outputting the RGB values at the center coordinates of pixels
in J . Unlike previous works that perform gradient descent steps to optimize the
INR weights for given observations, our goal is to use a Transformer to directly
generate the INR that can fit the pixel values in the target image without test-
time optimization.

Setup. We follow the datasets of real-world images used in recent work [52].
CelebA [29] is a large-scale dataset of face images. It contains about 202K im-
ages of celebrities, which are split into 162K, 20K, and 20K images as training,
validation, and test sets. Imagenette [22] is a dataset of common objects. It is a
subset of 10 classes chosen from the 1K classes in ImageNet [11], which contains
about 9K images for training and 4K images for testing.

Input encoding. To apply the Transformer meta-learner to the task of
image regression, we will need to encode the given input of the target image to
a set of tokens as the Transformer’s data tokens. To achieve this, we follow the
practice in Vision Transformer (ViT) [14] that split the input image into patches.
Specifically, the input image is represented by a set of patches of shape P × P ,
which are converted to flattened vectors {pi}

np−1
i=0 with dimension P × P × 3

for RGB images. For each patch pi, it is assigned with a learnable positional
embedding ei. The i-th data token is obtained by FC(pi + ei) with a FC layer.

Implementation details. On the Imagenette dataset, we apply Random-
Crop data augmentation for training our Transformer meta-learner. For both
CelebA and Imagenette datasets, the resolution of target images is 178 × 178
which follows prior practice. We apply a zero-padding of 1 to get the input reso-
lution 180× 180, and split the image with patch size P = 9. For INR, we follow
the same 5-layer MLP structure as in prior work [52], which has the hidden
dimension of 256. The number of groups in weight grouping is 64 by default for
a good balance in performance and efficiency. The Transformer follows a similar

10 Y. Chen and X. Wang

CelebA Imagenette

Learned Init [52] 30.37 27.07
Ours 31.96 29.01

Table 1: Quantitative results of image regression (PSNR). Learned Init
is a gradient-based meta-learning algorithm that adapts to an image with a few
gradient steps.

G = 1 G = 4 G = 16 G = 64

Num of groups (G) 1 4 16 64

PSNR 25.63 27.89 29.93 31.96

Table 2:Ablations on the number of weight groups. The PSNR is evaluated
on CelebA dataset. Having more groups (G) in weight grouping will make the
output INR more flexible and help for representing the details (the yellow box
in the shown example).

structure as ViT-Base [14], but we reduce the number of layers by half to 6
layers for efficiency. The networks are trained end-to-end with Adam [26] with
a learning rate 1 · 10−4 and the learning rate decays once by 10 when the loss
plateaus.

Qualitative results. We first show qualitative results in Figure 5. We ob-
serve that the Transformer meta-learners are surprisingly effective for building
INRs of images in high precision, that can even recover the fine details in com-
plex real-world images. For example, the left example from CelebA shows that
our inferred INR fθ can successfully reconstruct various details in a face image,
including the teeth, lighting effect, and even the background patterns which is
not a part of faces. From the right figure of Imagenette dataset, we observe that
our inferred INR can recover the digital texts on the object with high fidelity.
While it is observed in prior work [47] that learning a latent space of vectors
and decoding INRs by hypernetwork can not recover the details in a face im-
age, we show that an INR with precise information can be directly built by a
Transformer without any gradient computation.

Quantitative results. In Table 1, we show quantitative results of our Trans-
former meta-learner and compare our performance with the gradient-based meta-
learning algorithm Learned Init proposed in prior work. Learned Init meta-learns
an initialization that can be quickly adapted to target images within a few gra-
dient steps. On both real-world image datasets, we observe that our method
achieves the PSNR at around 30 for image regression, and our method without

Transformers as Meta-Learners for Implicit Neural Representations 11

any gradient computation outperforms prior gradient-based meta-learning. The
gradient steps involve the repeated process of forward and backward passing
through the whole INR sequentially, while ours can directly build the INR by
forwarding the information into a shallow Transformer. In summary, our method
provides a precise yet efficient hypernetwork-based way of converting image pix-
els to a global neural function as their underlying INR.

Ablations on the number of weight groups. To justify that the Trans-
former meta-learner learns about building a complex INR, we show by exper-
iments that the number of groups in weight grouping is not redundant. The
qualitative and quantitative results are both shown in Table 2. We observe that
by increasing the number of groups G from 1 to 64, the recovered details for
the target image are significantly improved in vision, and the PSNR is consis-
tently improving by large margins. The results demonstrate the effectiveness of
the weight grouping strategy, and it indicates that the Transformer meta-learner
can learn about the complex relations between different weights in the INR so
that it can effectively build a large set of weights in a structured way to achieve
high precision.

4.2 View Synthesis

View synthesis aims at generating a novel view of a 3D object with several given
input views. Neural radiance field (NeRF) [34] has been recently proposed to
tackle this task by representing the object as an INR that maps from a 3D
coordinate and a viewing direction to the density and RGB value. With the
volumetric rendering, the generated views of NeRF are differentiable to the INR
weights. View synthesis can be then achieved by first fitting INR for the given
input views, then rendering the INR from novel views. The goal of a meta-
learner is to infer the INR from given input views efficiently, and improve its
generalization so that view synthesis can be achieved with fewer input views.

Setup. We perform view synthesis on objects from ShapeNet [6] dataset.
We follow prior work [52] which considers 3 categories: chairs, cars, and lamps.
For each category, the objects are split into two sets for training and test, where
for each object 25 views (with known camera pose) are provided for training.
During testing, a random input view is sampled for evaluating the performance
of novel view synthesis.

Input encoding. For each input view image, given the known camera pose,
we first compute the ray emitted from every pixel for rendering. The emitted ray
at each pixel can be represented as a 3D starting point and a 3D direction vector
(normalized as a unit vector). With the original image which has RGB channels,
we concatenate all the information at every pixel, which gets an extended image
with 9 channels. The extended image contains all the information about an input
view, therefore, it can be then split into patches and mapped to data tokens
in the Transformer meta-learner. This representation naturally generalizes to
multiple input views. Since the information of a single view is represented by a
set of patches, when multiple input views are available, their data tokens can

12 Y. Chen and X. Wang

Input GT w/o T.w/ T. Input GT w/o T.w/ T. Input GT w/o T.w/ T.

Fig. 6:View synthesis with Transformer meta-learner on ShapeNet. The
rows show for chairs, cars, and lamps categories. “w/o T.” denotes the results of
using the Transformer to infer the INR weights without test-time optimization.
“w/ T.” performs a few test-time optimization steps on the generated INR for
the sparse input views, which further helps to reconstruct the fine details in the
input views. The corresponding quantitative results are shown in Table 4.

Chairs Cars Lamps

NeRF [34] (Standard [52]) 12.49 11.45 15.47
Matched [52] 16.40 22.39 20.79
Shuffled [52] 10.76 11.30 13.88

Learned Init [52] 18.85 22.80 22.35
Ours 19.66 23.78 22.76

Table 3: Comparison of building INR for single image view synthesis
(PSNR). The compared methods are baselines and the gradient-based meta-
learning algorithm in prior work. Ours does not perform test-time optimization.

be simply merged as a set for representing all the observation information for
passing into the Transformer.

Adaptive sampling. To improve the training stability, we propose an adap-
tive sampling strategy for the first training epoch. Specifically, when we sample
the pixel locations for computing the reconstruction loss, we ensure that half
of them are sampled from the foreground of the image. This is implemented by
selecting the non-white pixels as the background in ShapeNet image is white.
We found that the training process is stable after having this simple sampling
strategy.

Implementation details. In ShapeNet, input views are provided in resolu-
tion 128×128. We split input views with patch size 8 for the Transformer input.
We use NeRF as the INR representation, it follows the architecture in [52] which
consists of 6 layers with the hidden dimension of 256 and does not use “coarse”
and “fine” models for simplicity. The architecture of the Transformer and the
optimizer are the same as the experiments for image regression.

Results. We first compare our method to the prior gradient-based meta-
learning algorithm of building INR for single image view synthesis, the results
are shown in Table 3. Standard, Matched, and Shuffled are the baselines trained
from different initializations from the prior work [52]. Specifically, Standard de-

Transformers as Meta-Learners for Implicit Neural Representations 13

1-view 2-view
w/o T. w/ T. w/o T. w/ T.

Chairs 19.66 20.56 21.10 23.59
Cars 23.78 24.73 25.45 27.13

Lamps 22.76 24.71 23.11 27.01

Table 4: Effect of test-time optimization and more input views for view
synthesis (PSNR). We observe that our method for view synthesis can take
benefits from test-time optimization and more views.

notes a random initialization, Matched is the initialization learned from scratch
which matches the output of the meta-learned initialization, Shuffled is permut-
ing the weights in the meta-learned initialization. We observe that our method
outperforms the baselines and the gradient-based meta-learning algorithm for
inferring the weights in an INR.

Our method can also naturally take benefits from test-time optimization and
more input views. The qualitative and quantitative results are shown in Figure 6
and Table 4. We observe that the Transformer meta-learner can effectively build
the INR of a 3D object with sparse input views. Since our method builds the
whole INR, we can perform further test-time optimization on the INR with given
input views just as the original training in NeRF. For efficiency, our test-time
optimization only contains 100 gradient steps, it further helps for constructing
the fine details in input views. Since the Transformer takes a set as the input,
it can gather the information from multiple input views, and we observe the
performance can be improved in the setting with more input views.

5 Does the INR Exploit Data Structures?

A key potential advantage of INRs is that their representation capacity does not
depend on grid resolution but instead on the capacity of the neural network,
which allows it to exploit the underlying structures in data and reduce the rep-
resentation redundancy. To explore whether the structure is modeled in INRs,
we visualize the attention weights at the last layer from the weight tokens to
the data tokens. Intuitively, since each data token corresponds to a patch in the
original image, the attention weights may represent that, for weight columns in
different layers, which part of the original image they mostly depend on.

We reshape the attention weights to the 2D grid of patches and bilinearly
up-sample the grid to a mask with the same resolution as the input image. We
mask the input image so that parts with higher attention will be shown, the
visualization results on CelebA dataset are shown in Figure 7. We observe that
there exist weight columns in different layers that attend to structured parts.
For example, there are weights roughly attending to the nose and mouth in
layer 1, the forehead in layer 2, and the whole face in layer 3. Our observations
suggest that the generated INRs may potentially capture the structure of data,

14 Y. Chen and X. Wang

Image Layer 1 Layer 1 Layer 2 Layer 3

Fig. 7: Attention masks from weight tokens to data tokens. Representa-
tive examples are selected from tokens for different INR layers. The attention
map shows where the corresponding INR weight is attending to.

which is different from the grid-based discrete representation, where every entry
independently represents a pixel and the data structure is not well exploited.

6 Conclusion

In this work, we proposed a simple and general formulation that uses Trans-
formers as meta-learners for building neural functions of INRs, which opens up
a promising direction with new possibilities. While most of the prior works of hy-
pernetworks for INRs are based on single-vector modulation and high precision
reconstruction as a global INR function was mostly achieved by gradient-based
meta-learning, our proposed Transformer hypernetwork can efficiently build an
INR in one forward pass without any gradient steps, and we observed it can
outperform the previous gradient-based meta-learning algorithms for building
INRs in the tasks of image regression and view synthesis. While gradient infor-
mation is not necessary for our model, our method simply builds the weights
in a standard INR, therefore it is also flexible to be further combined with any
INRs that involve test-time optimization.

Our method draws connections between the Transformer hypernetworks and
the gradient-based meta-learning algorithms, and our further analysis sheds light
on the generated INRs. We observed that the INR which represents data as a
global function may potentially capture the underlying structures without any
explicit supervision. Understanding and utilizing these encoded structures could
be a promising direction for future works.

Acknowledgement. This work was supported, in part, by grants from
DARPA LwLL, NSF CCF-2112665 (TILOS), NSF 1730158 CI-New: Cogni-
tive Hardware and Software Ecosystem Community Infrastructure (CHASE-CI),
NSF ACI-1541349 CC*DNI Pacific Research Platform, and gifts from Meta,
Google, Qualcomm and Picsart.

Transformers as Meta-Learners for Implicit Neural Representations 15

References

1. Anokhin, I., Demochkin, K., Khakhulin, T., Sterkin, G., Lempitsky, V., Ko-
rzhenkov, D.: Image generators with conditionally-independent pixel synthesis. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. pp. 14278–14287 (2021) 2, 3

2. Antoniou, A., Edwards, H., Storkey, A.: How to train your MAML. In: Interna-
tional Conference on Learning Representations (2019), https://openreview.net/
forum?id=HJGven05Y7 4

3. Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot
learners. arXiv preprint arXiv:2005.14165 (2020) 4

4. Chabra, R., Lenssen, J.E., Ilg, E., Schmidt, T., Straub, J., Lovegrove, S., New-
combe, R.: Deep local shapes: Learning local sdf priors for detailed 3d reconstruc-
tion. In: European Conference on Computer Vision. pp. 608–625. Springer (2020)
4

5. Chan, E.R., Monteiro, M., Kellnhofer, P., Wu, J., Wetzstein, G.: pi-gan: Periodic
implicit generative adversarial networks for 3d-aware image synthesis. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 5799–5809 (2021) 2, 3, 4

6. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich
3d model repository. arXiv preprint arXiv:1512.03012 (2015) 11

7. Chen, Y., Liu, S., Wang, X.: Learning continuous image representation with local
implicit image function. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. pp. 8628–8638 (2021) 2, 3, 4

8. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR) (June 2019) 3

9. Chibane, J., Alldieck, T., Pons-Moll, G.: Implicit functions in feature space for 3d
shape reconstruction and completion. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. pp. 6970–6981 (2020) 4

10. Deng, B., Lewis, J.P., Jeruzalski, T., Pons-Moll, G., Hinton, G., Norouzi, M.,
Tagliasacchi, A.: Nasa neural articulated shape approximation. In: Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part VII 16. pp. 612–628. Springer (2020) 3

11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248–255. Ieee (2009) 9

12. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).
pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota
(Jun 2019). https://doi.org/10.18653/v1/N19-1423, https://aclanthology.org/
N19-1423 4

13. DeVries, T., Bautista, M.A., Srivastava, N., Taylor, G.W., Susskind, J.M.: Uncon-
strained scene generation with locally conditioned radiance fields. arXiv preprint
arXiv:2104.00670 (2021) 3

https://openreview.net/forum?id=HJGven05Y7
https://openreview.net/forum?id=HJGven05Y7
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423

16 Y. Chen and X. Wang

14. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.:
An image is worth 16x16 words: Transformers for image recognition at scale. In: In-
ternational Conference on Learning Representations (2021), https://openreview.
net/forum?id=YicbFdNTTy 4, 6, 9, 10

15. Fallah, A., Mokhtari, A., Ozdaglar, A.: On the convergence theory of gradient-
based model-agnostic meta-learning algorithms. In: International Conference on
Artificial Intelligence and Statistics. pp. 1082–1092. PMLR (2020) 4

16. Fernando, C., Sygnowski, J., Osindero, S., Wang, J., Schaul, T., Teplyashin, D.,
Sprechmann, P., Pritzel, A., Rusu, A.: Meta-learning by the baldwin effect. In:
Proceedings of the Genetic and Evolutionary Computation Conference Companion.
pp. 1313–1320 (2018) 4

17. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: International Conference on Machine Learning. pp. 1126–
1135. PMLR (2017) 4, 5

18. Genova, K., Cole, F., Sud, A., Sarna, A., Funkhouser, T.: Local deep implicit
functions for 3d shape. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 4857–4866 (2020) 3, 4

19. Genova, K., Cole, F., Vlasic, D., Sarna, A., Freeman, W.T., Funkhouser, T.: Learn-
ing shape templates with structured implicit functions. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 7154–7164 (2019)
3

20. Ha, D., Dai, A.M., Le, Q.V.: Hypernetworks. In: ICLR (2017) 2, 3
21. Hospedales, T., Antoniou, A., Micaelli, P., Storkey, A.: Meta-learning in neural

networks: A survey. arXiv preprint arXiv:2004.05439 (2020) 4
22. Howard, J.: Imagenette. URL: https://github. com/fastai/imagenette (2020) 9
23. Jaderberg, M., Czarnecki, W.M., Dunning, I., Marris, L., Lever, G., Castaneda,

A.G., Beattie, C., Rabinowitz, N.C., Morcos, A.S., Ruderman, A., et al.: Human-
level performance in 3d multiplayer games with population-based reinforcement
learning. Science 364(6443), 859–865 (2019) 4

24. Jiang, C., Sud, A., Makadia, A., Huang, J., Nießner, M., Funkhouser, T., et al.:
Local implicit grid representations for 3d scenes. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 6001–6010 (2020) 4

25. Karras, T., Aittala, M., Laine, S., Härkönen, E., Hellsten, J., Lehtinen, J., Aila, T.:
Alias-free generative adversarial networks. arXiv preprint arXiv:2106.12423 (2021)
3

26. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014) 10

27. Liu, L., Gu, J., Lin, K.Z., Chua, T.S., Theobalt, C.: Neural sparse voxel fields.
arXiv preprint arXiv:2007.11571 (2020) 3

28. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows. International
Conference on Computer Vision (ICCV) (2021) 4

29. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In:
Proceedings of the IEEE international conference on computer vision. pp. 3730–
3738 (2015) 9

30. Martin-Brualla, R., Radwan, N., Sajjadi, M.S., Barron, J.T., Dosovitskiy, A., Duck-
worth, D.: Nerf in the wild: Neural radiance fields for unconstrained photo col-
lections. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 7210–7219 (2021) 3

https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy

Transformers as Meta-Learners for Implicit Neural Representations 17

31. Mehta, I., Gharbi, M., Barnes, C., Shechtman, E., Ramamoorthi, R., Chandraker,
M.: Modulated periodic activations for generalizable local functional representa-
tions. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 14214–14223 (2021) 2, 4

32. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy
networks: Learning 3d reconstruction in function space. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(June 2019) 3

33. Michalkiewicz, M., Pontes, J.K., Jack, D., Baktashmotlagh, M., Eriksson, A.: Im-
plicit surface representations as layers in neural networks. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 4743–4752 (2019)
3

34. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. In: Eu-
ropean conference on computer vision. pp. 405–421. Springer (2020) 1, 3, 4, 11,
12

35. Mishra, N., Rohaninejad, M., Chen, X., Abbeel, P.: A simple neural attentive
meta-learner. In: International Conference on Learning Representations (2018),
https://openreview.net/forum?id=B1DmUzWAW 4

36. Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms.
arXiv preprint arXiv:1803.02999 (2018) 4

37. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: Learning
continuous signed distance functions for shape representation. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(June 2019) 3

38. Park, K., Sinha, U., Barron, J.T., Bouaziz, S., Goldman, D.B., Seitz, S.M., Martin-
Brualla, R.: Deformable neural radiance fields. arXiv preprint arXiv:2011.12948
(2020) 3

39. Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., Geiger, A.: Convolutional oc-
cupancy networks. In: Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16. pp. 523–540. Springer
(2020) 4

40. Radford, A., Narasimhan, K.: Improving language understanding by generative
pre-training. preprint (2018) 4

41. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language
models are unsupervised multitask learners. preprint (2019) 4

42. Rajeswaran, A., Finn, C., Kakade, S.M., Levine, S.: Meta-learning with implicit
gradients. In: NeurIPS (2019) 4

43. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: In
International Conference on Learning Representations (ICLR) (2017) 4

44. Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa, A., Li, H.: Pifu:
Pixel-aligned implicit function for high-resolution clothed human digitization. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision. pp.
2304–2314 (2019) 2

45. Schwarz, K., Liao, Y., Niemeyer, M., Geiger, A.: Graf: Generative radiance fields
for 3d-aware image synthesis. arXiv preprint arXiv:2007.02442 (2020) 3

46. Sitzmann, V., Chan, E.R., Tucker, R., Snavely, N., Wetzstein, G.: Metasdf: Meta-
learning signed distance functions. In: Proc. NeurIPS (2020) 2, 4

47. Sitzmann, V., Martel, J.N., Bergman, A.W., Lindell, D.B., Wetzstein, G.: Implicit
neural representations with periodic activation functions. In: Proc. NeurIPS (2020)
2, 3, 4, 8, 10

https://openreview.net/forum?id=B1DmUzWAW

18 Y. Chen and X. Wang

48. Sitzmann, V., Zollhöfer, M., Wetzstein, G.: Scene representation networks: Con-
tinuous 3d-structure-aware neural scene representations. In: Advances in Neural
Information Processing Systems (2019) 3

49. Skorokhodov, I., Ignatyev, S., Elhoseiny, M.: Adversarial generation of continuous
images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 10753–10764 (2021) 2, 3

50. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In:
Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems. vol. 30.
Curran Associates, Inc. (2017), https://proceedings.neurips.cc/paper/2017/
file/cb8da6767461f2812ae4290eac7cbc42-Paper.pdf 4

51. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning
to compare: Relation network for few-shot learning. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 1199–1208 (2018) 4

52. Tancik, M., Mildenhall, B., Wang, T., Schmidt, D., Srinivasan, P.P., Barron, J.T.,
Ng, R.: Learned initializations for optimizing coordinate-based neural representa-
tions. In: CVPR (2021) 2, 4, 8, 9, 10, 11, 12

53. Tancik, M., Srinivasan, P.P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Sing-
hal, U., Ramamoorthi, R., Barron, J.T., Ng, R.: Fourier features let networks learn
high frequency functions in low dimensional domains. NeurIPS (2020) 3

54. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training
data-efficient image transformers & distillation through attention. In: International
Conference on Machine Learning. pp. 10347–10357. PMLR (2021) 4

55. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. In: Advances in neural information
processing systems. pp. 5998–6008 (2017) 2, 4

56. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for
one shot learning. Advances in neural information processing systems 29, 3630–
3638 (2016) 4

57. Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelnerf: Neural radiance fields from
one or few images. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 4578–4587 (2021) 2

https://proceedings.neurips.cc/paper/2017/file/cb8da6767461f2812ae4290eac7cbc42-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/cb8da6767461f2812ae4290eac7cbc42-Paper.pdf

