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Abstract. Probability calibration for deep models is highly desirable
in safety-critical applications such as medical imaging. It makes out-
put probabilities of deep networks interpretable, by aligning prediction
probability with the actual accuracy in test data. In image segmentation,
well-calibrated probabilities allow radiologists to identify regions where
model-predicted segmentations are unreliable. These unreliable predic-
tions often occur to out-of-domain (OOD) images that are caused by
imaging artifacts or unseen imaging protocols. Unfortunately, most pre-
vious calibration methods for image segmentation perform sub-optimally
on OOD images. To reduce the calibration error when confronted with
OOD images, we propose a novel post-hoc calibration model. Our model
leverages the pixel susceptibility against perturbations at the local level,
and the shape prior information at the global level. The model is tested
on cardiac MRI segmentation datasets that contain unseen imaging ar-
tifacts and images from an unseen imaging protocol. We demonstrate
reduced calibration errors compared with the state-of-the-art calibration
algorithm.

1 Introduction

In safety-critical applications like medical imaging, segmentation models are re-
quired to produce accurate predictions on clean input data and are also expected
to be aware of predictions for which the model has low confidence, when con-
fronted with out-of-domain (OOD) data. In medical imaging, OOD data is often
caused by imaging artifacts or changes in imaging protocols. The awareness of
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uncertainty allows to alert radiologists about potentially unreliable predictions.
Unfortunately, deep models are found to be generally over-confident about pre-
dicted probabilities [1,2].

Probability calibration corrects over- or under-confident predictions, and makes
prediction probability interpretable, by aligning it with the accuracy on the test
dataset. For example, if a segmentation model yields a confidence (the probabil-
ity of the highest-scored class) of 70% for each pixel in a test image, we say the
model to be well-calibrated if 70% of the pixels are correctly predicted [3].

Unfortunately, most existing probability calibration methods cannot be di-
rectly applied to medical image segmentation due to the following reasons: First,
the majority of existing methods are designed for image classification, which
yield a single class probability per image [4,5,6,7,8]. Secondly, most previous
methods assume training and testing images are from a same domain. However,
we argue that it is the OOD image for which probability calibration is most
desirable, while most calibration methods are shown to perform sub-optimally
on OOD images [9]. Therefore, in this study we particularly focus on improving
calibration for corrupted medical images.

In this work, we propose a new learning-based probability calibration model
for medical image segmentation on out-of-domain (OOD) data. Particularly,
we focus on the most flexible calibration setting: post-hoc calibration that can
be applied to various frozen feed-forward networks. Specifically, our calibration
model outputs a tempeature map that re-adjusts the prediction probability of
the segmentation network [6,3], correcting over- or under-confident probabilities.
Unlike the state-of-the-art method [3] that only considers the pixel values of in-
put images and their logits, our model finds unreliable predictions by considering
how susceptible the prediction of each pixel is, against small perturbations. Such
susceptibility helps to reveal the uncertainty caused by the real-world pertur-
bations that originate from imperfect acquisition process (device noise, patient
movement etc.) or changes in imaging condition (machine vendors, imaging pro-
tocols etc.). The proposed model further takes advantage of global prior informa-
tion about the shapes of segmentation targets. These local-level and global-level
sources of information strengthens the calibration performance for OOD images.
Our contributions can be summarized as follows:

— We systematically investigate post-hoc probability calibration for the safety-
critical medical image segmentation on out-of-domain (OOD) images.

— We propose a new learning-based probability calibration model that incor-
porates the susceptibility information of pixel-level predictions against per-
turbations at the local level, and the shape prior information at the global
level. The proposed method demonstrates improved performance on OOD
testing images compared to the state-of-the-art method.

— We build a comprehensive testing environment for post-hoc calibration, on
segmentation for out-of-domain MRI. It incorporates common imaging arti-
facts: motion artifacts, bias fields, ghosting artifacts, spikes in k-space, and
an unseen imaging protocol: late gadolinium enhancement (LGE) sequence
for MRI.



Probability calibration for segmenting out-of-domain MRI 3

2 Related Work

Probability calibration for image segmentation: Most probability calibra-
tion methods can be categorized into three types: 1) training strategies that
intrinsically improve calibration for the task network (classification, regression,
etc.). These techniques include focal loss [10], multi-task learning [11], adversar-
ial training [12]; 2) Bayesian methods that carefully model the uncertainties of
model parameters, input data and/or labeling process [13,14,15,16,17]; 3) post-
hoc methods that post-process the softmax output (probability) of an already-
trained task network [4,5,6,3]. Our work follows the post-hoc framework due to
its superior flexibility: being applicable to most of already-trained task networks.
More recently, several papers have discussed calibration for image segmen-
tation: [16] evaluates the effects of segmentation losses, model ensembling and
MC-dropout on calibration. [11] demonstrates that multi-task learning improves
calibration. However, neither works contribute further to post-hoc calibration.
Our idea of using data augmentation to estimate susceptibility of pixel-level
predictions, which can be interpreted as aleatoric uncertainty estimation, is in-
spired by [15]. However, [15] does not investigate post-hoc calibration itself. Our
method is built on the state-of-the-art local temperature scaling (LTS) [3]. To
reduce the calibration error on OOD images, we extend LTS by incorporating
pixel-level susceptibility and global-level shape prior information.
Segmenting out-of-domain medical images: A robust image segmentation
model can usually be obtained by applying input-level or feature-level data aug-
mentations [18,19,20], or by enforcing shape priors [21,22,23]. Unlike these works,
our method focuses on the under-explored problem of promoting interpretability
of prediction probabilities, especially for those on out-of-domain images.
Segmentation quality assessment: Segmentation quality assessment [24,25,26]
predicts a global model performance score, and/or makes corrections to the pre-
dicted segmentation labels. Probability calibration is more challenging, as it is
required to make continuous, pixel-wise adjustments to prediction probabilities.

3 Method

Model-based post-hoc calibration: We aim to align the prediction proba-
bility with the accuracy on the test dataset. To this end, in model-based post-
hoc calibration, we build a separate calibration model g4(-) for a pre-trained
task model (in our case segmentation) fp(-). To train the calibration model,
the validation dataset for the task model is re-used for building g4(-). We let
x; € RIXMXN e the image, y; € REXMXN the ground truth segmentation in
the form of one-hot encoding, where (M, N) is the spatial size and C' the num-
ber of classes. Note, it is usually desirable that the calibration process does not
affect the categorical prediction ¥; for segmentation (therefore does not change
the accuracy of fy(+)).

Temperature scaling: Temperature scaling [27,3] is one of the most simple and
effective frameworks for probability calibration. It produces a temperature factor
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Fig.1. A. Workflow of the proposed calibration technique: A temperate map
T, is used to adjust probabilities of a segmentation network. To do this, the image x; is
sent through a segmentation network fg(-) to obtain the logits z;. Meanwhile, to obtain
T;, x; is sent through two calibration routes: In the susceptibility route, the estimated
distribution p(X;) of x; is obtained by repeated data augmentations. The uncertainty
(pz,;,Xz,) is computed by sending samples of p(X;) to fo(-). In the shape prior route,
z; is sent to the shape prior network sy (-) to obtain a shape residual Vy; which high-
lights the regions where the prediction differs from the prior knowledge about plausible
shapes of segmentation targets. The calibration network g¢(-) takes (puz;, X'z,) and Vy;
as inputs and estimates T; for rescaling logits z; of the segmentation. B. Aleatoric
uncertainty reflects the susceptibility (shaded regions trespassing the decision bound-
ary) of a prediction under small perturbations. C. Shape prior and shape residual,
highlighting potentially unreliable predictions.

(or map) T; > 0 to weigh over-confident predictions down while boost under-
confident ones. Formally, let z; = fy(x;), z; € REXMXN be the output logits,
let o(-) denote the softmax function along the channel dimension, we naturally
have the uncalibrated probability y¥ = o(z;). While with the temperature map
T; € REXM*N the calibrated probability y§ can be obtained by re-scaling the
logits using T, i.e. y¢ = o(z;/T;)".

Method overview: We aim to obtain a temperature-scaling-based calibration
network g, (-) that is suitable for out-of-domain (OOD) testing images. Examples
of these OOD images are assumed to be unseen by the segmentation network
fo(-) and the calibration network g4(-) during their training processes. To this
end we propose to 1) provide the susceptibility of the prediction of each pixel
against small perturbations caused by potential image corruption/artifact or a

"To ensure that the calibration does not affect the accuracy of the task network,
for each spatial location (m,n) in Ty, it is usually assumed that T;(c;,m,n)
Ti(ck,m,n), Y(cj,ck) € {1,2,3,...,C}, i.e., temperature values remain the same for
different channels/classes) [6,3].
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change in imaging protocol. This susceptibility reflects how likely the prediction
of a pixel might be altered when real image artifacts or changes in imaging
protocols are present. This is also known as aleatoric uncertainty ® [14,15]. 2) We
also provide the calibration network with prior information about the shape of
the target segmentation. This shape prior is encoded by a denoising autoencoder
sy (+) and it provides a second opinion about the correctness of the prediction.

As shown in Fig. 1-A, to obtain the temperature map T;, the input x; is
fed to two modules: The Aleatoric-by-augmentation module (colored in purple)
estimates the pixel-level susceptibility (aleatoric uncertainty) by repeated data
augmentations. The shape prior module (colored in green) compares the uncal-
ibrated prediction with the shape prior encoded in the denoising autoencoder
sy (), and provides the calibration network g4(-) with the residual between the
uncalibrated prediction and the prior. The calibration network g4(-) takes the
outputs of the two modules, and estimates a temperature map for adjusting z;.
Finally, the calibrated prediction is made by passing z,;/T; to a softmax layer.
Aleatoric uncertainty by augmentation: The aleatoric-by-augmentation
module provides the calibration network g4(-) with information about suscepti-
bility of predictions for each pixel against small perturbations. Intuitively, if the
prediction can be easily flipped by a small perturbation, the prediction of that
pixel could be unreliable. In medical images, OOD images can also be viewed as
being generated by perturbing intra-domain images [23].

To formally model this susceptibility, we resort to the concept of aleatoric
uncertainty [13,14,15]. As shown in Fig. 1-B, it models images to have a dis-
tribution p(X;) arising from the acquisition process, rather than treating each
image as a single data point (which is instead assumed by the state-of-the-art
LTS [3]). This modeled distribution can be written as p(X;) = [ p(X;|a)p(a)da,
where p(X;|a) represents the image acquisition process and a ~ p(A) denotes
the “randomness” within different possible acquisition processes [15]. Then, the
susceptibility (uncertainty) can be estimated by propagating p(X;) through the
segmentation model fy(-).

In practice, inspired by [15,20], we employ data augmentation to obtain the
estimation p(X;) of the real p(X;). Specifically, for each image x;, we perform
repeated augmentations to obtain {x;,|x;;, = Ta/(x;), a; ~ p(A")}, where | =
1,2,3,..., N4 is the index of augmented samples and 7 (-)’s are photometric
augmentations parameterized by @;’s. To ensure fairness, 7, (-)’s are configured
to be the same types of photometric augmentations used for training fy(-) and
they do not incorporate the corruptions (artifacts) in the testing data. Then,
the propagated uncertainty in the logits, in the form of mean pz, and variance
Yz,, can be computed by sending {x];} to the segmentation network fp(-). For
simplicity, when computing X'z, , each pixel is assumed to be independent.
Shape prior: To provide a second opinion about the correctness of the segmen-
tation, shape priors [24,28,21] are used. For probability calibration, if the pre-

8We do not explicitly highlight it as aleatoric uncertainty, since we do not have the
ground truth to evaluate the accuracy of this estimation of aleatoric uncertainty.
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dicted shape deviates largely from the prior information about plausible shapes,
the prediction is likely to be unreliable.

Here, we employ a denoising autoencoder as the shape prior model. It memo-
rizes correct shapes of segmentation targets in the validation dataset. As shown
in the green block in Fig. 1-A, the autoencoder s, (-) takes the uncalibrated logits
z; as the input and produces a denoised plausible shape y; of the segmentation
target, in the form of probabilities. To highlight regions where the uncalibrated
prediction y¥ = o(z;) deviates from the plausible shape y7, we send the shape
residual Vy,; = y; —y¥ to the calibration network. An example of a shape resid-
ual is shown in Fig. 1-C. In practice, to avoid learning an identity mapping, we
apply heavy dropout to the encoder part of sy(-) during training.

Unlike the shape priors in [21,23], which directly correct the prediction, we do
not expect sy (+) to provide highly accurate segmentations: As shown in Fig. 1-C.,
the right ventricle has been correctly predicted by fy(-) while sy (-) (erroneously)
disagrees. Instead, we only expect the shape prior module to highlight potentially
implausible regions. We leave the calibration network to make the final decision.
Calibration network: The calibration network g,(-) produces a temperature
map T; that is specific to x;, by considering the pixel-level susceptibility (uncer-
tainty) (uz,, Xz,) and the shape residual Vy;. Following the baseline LTS [3],
we also send the image x; and the uncalibrated logits z; to g,4(-). After T; is
computed, the calibrated prediction y¢ is given by y¢ = o(z;/T;), where T; =
9otz Xz, Vi, 2i,%;), and o(-) denotes the softmax layer.

In practice, we configure g4(-) as a shallow residual network, which we em-

pirically found to yield comparable results to the decision-tree-inspired network
in the vanilla LTS [3], but to be more flexible in terms of model architecture. A
channel attention layer is used in g4(-) to allow the network to adaptively weigh
information from different sources.
Training objectives: Following the standard setting of post-hoc calibration,
both the calibration network g, (-) and the shape prior module s, () are trained
on the validation dataset used in building the segmentation network fy(-). To
avoid shortcut learning from s, (-) to g4(-), two networks are trained one by one.
We first train the shape prior module using the cross entropy loss:

L) = — 515 3 Yowile.mmlog (o(sutalemm)). (1)

m,n ¢

where z; = fp(x;), (X;,¥i) € Dy the validation set, the subscript ¢ denotes the
class index. After s,(-) is trained, we close the gradient computation for sy(-).
We then train the calibration network g4(-) using the negative log likelihood loss
that is commonly used for training post-hoc calibration networks [6,3,27]:

Ly(p) =——= Zyi(c, m,n)log (0(z;(c, m,n)/T;(c,m,n))), (2)

where T; = g4(pz,, Xz,, Vi, 2i, %), (kz,, Xz,)’s are obtained by sending multi-
ple augmented versions of x; to fy(). This loss penalizes over-confident erroneous
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Table 1. Quantitative results on expected calibration error (ECE) and static calibra-
tion error (SCE). Lower the better. Average Dice scores of the segmentation networks
are appended for reference.

Nethod O [l | SCB 7] |
! Intra-dom. Bias field Motion Ghosting Spike Artifact Avg. Cross Seq.|Intra-dom. Bias field Motion Ghosting Spike Artifact Avg. Cross Seq.
ucC 10.29 13.60 2238 19.68  39.05 23.67 30.29 5.27 6.96 11.45  10.09 19.82 12.08 15.58
Alea. [15,14] 7.74 9.06 16.47  16.78  37.31 19.90 28.50 5.08 8.39 10.11 10.56  21.15 12.55 16.89
TS [6] 10.06 13.31 22.04 19.42  38.87 23.41 29.96 5.17 6.84 11.31 9.99 19.76 11.98 15.47
LTS [3] 3.22 5.46 10.21 10.61 31.60 14.48 16.78 3.63 4.91 7.93 7.80 17.80 9.61 11.52
Proposed 3.12 4.65° 8.88% 9.23" 28.35' 12.78 15.377 3.38 4.75"  7.237  7.147 16.457 8.89 10.777
’ (-0.10) | (-0.82) (-1.33) (-1.38) (-3.26)| (-1.70) (-1.41) | (-0.25) | (-0.16) (-0.70) (-0.67) (-1.35)| (-0.72) (-0.75)
T p-value < 0.01; *: p-value < 0.05; *: p-value > 0.05, compared with the results of LTS [3]
Dice score [%] T
Inua-dom.‘Bias field Motion Ghosting Spike Artifact Avg. Cross Seq.
Seg. Net. 85.14 ‘ 80.29  69.02  79.73  39.02 ‘ 67.02 ‘ 62.74

predictions while it encourages high confidence for correct predictions. Although
Eq. 2 has similar form as cross-entropy, it essentially optimizes over ¢ via T;.
Since at each location (m,n), Ti(c, m,n)’s remain constant for all the classes
¢’s, this loss does not affect the categorical segmentation result [6,3].

4 Evaluation and Results

Table 2. Ablating key components and the number of test-time augmentations, eval-
uated on artifact-corrupted images.

Alea. Shape|ECE [%] | SCE [%] ||No. of Aug.|ECE [%] | SCE [%] |
14.48 9.61 0

X X 15 13.22 9.0

v X 13.03 9.20 45 12.94 8.94
X v 13.50 9.18 90 12.85 8.92
v v 12.78 8.89 180 12.78 8.89

Dataset: Training and validation dataset: We employ the ACDC cardiac MRI
segmentation dataset (bSSFP sequence) [29] for building the segmentation model
and the proposed calibration model. Specifically, we take the ES fold of ACDC
and split it into training, validation and (intra-domain) testing sets of 60/20/20
cases. To simulate data-hungry medical image segmentation [23], each time we
take 20 cases out of the training data for building the segmentation network,
and 5 out of validation data for validating the segmentation network and for
training the calibration model. We repeat this process for 3 times to cover all
the training samples, and obtain 3 segmentation models. For each segmentation
model, we repeat training the calibration model for 3 times.

Artifact-corrupted testing dataset: Inspired by [23], we simulate common MRI
artifacts: bias field, motion artifact, ghosting artifact and k-space spikes, sep-
arately, to the 20 intra-domain testing cases mentioned above, using TorchIO
[30]. Using this controlled environment allows us to observe the model behaviors
under each type of artifacts.

Cross-sequence testing dataset: We further test the above ACDC-based models
on the 40 LGE MRI of the testing fold of the MS-CMRSeg challenge [31]. As
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Fig. 2. A. For the proposed method, the entropy map which shows the doubt of the
calibration model, agrees well with the actual segmentation error (shown in D.). B.
Reliability map of the proposed method demostrates the least misalignment (purple
bars) between confidence and accuracy. C. The confidence histogram shows that the
proposed method has corrected over-confident predictions, compared with uncalibrated
results. E. The motion-corrupted input image and its ground truth segmentation.

ACDC is based on bSSFP sequence, the segmentation and calibration models
have never seen images from LGE sequence before testing.

Network architecture and training configurations: We employ a U-Net [32]
as the segmentation network. For the calibration network g4(-), we employ a
shallow ResNet with 5 input branches for processing Vy;, pz,, Xz,, z;, and x;
separately. These branches are merged by a channel attention block, followed by
two ResNet blocks. The shape prior model s, (-) is configured as a small U-Net
with dropout (p=0.5) in its encoder. The Adam optimizer is used, with an ini-
tial learning rate of 1 x 1073, 800 epoches separately for sy (-) and g4(-). In each
iteration, (uz,, Y'z,) are computed by repeating augmentations for 6 times.

Photometric transforms: brightness, contrast, gamma transform, random ad-
ditive noises [23], and geometric transformations: affine transformation and elas-
tic transformation are used as data augmentation for training the segmentation
model and the calibration model (also for the LTS [3]). Importantly, these data
augmentations do not include the corruptions in the testing data.

Quantitative and qualitative results: We employ commonly-used expected
calibration error (ECE) [33] and static calibration error (SCE) [27] for evaluation
(lower the better). Both of them measure the gap between prediction probability
and the accuracy in test time, and the latter is a class-conditional version of the
former. To account for the foreground-background class imbalance in ACDC,
inspired by [16], these two metrics are computed over the region-of-interests
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obtained by dilating (expanding) the ground truth segmentations with a kernel
size of 10 pxiels.

As shown in Table 1, we compare the proposed method with the uncalibrated
model (UC) and the state-of-the-art local temperature scaling (LTS) [3]. The
proposed method demonstrates overall smaller calibration errors compared with
LTS. Calibration errors of the estimated aleatoric uncertainty (Alea.) [14,15] and
temperature scaling (TS) [6] are also presented. The segmentation performances
measured in Dice scores of the segmentation networks are also attached.

We show in the first row of Fig. 2 the entropy maps H(y5)’s of the calibrated
probabilities, where higher values suggest stronger doubts by the calibration net-
work. The entropy map produced by the proposed method has the best agree-
ment with the actual segmentation error. We further show the reliability map in
the second row, where the purple bars represent the gaps between confidence (x-
axis) and accuracy (y-axis) at each confidence level. The proposed method also
yields the smallest gaps. Confidence histograms of post-calibration probabilities
are shown in the third row.

Ablation studies: We ablate the two key components of the proposed method:
the susceptibility (aleatoric uncertainty) estimation and the shape prior. The
results in Table 2 left show that the best performances are obtained when two
components work together. We also ablate the number of repeated augmenta-
tions IV 4 used for estimating susceptibility during test time. As shown in Table 2
right, a larger N4 leads to more precise estimations, yielding less errors.
Conclusion: In this work we propose a new calibration method for out-of-
domain MRI segmentation. Future works can be done by designing better shape
prior models that can account for segmentation targets with more irregular
shapes, like blood vessels and tumors.
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