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Abstract

Mainstream object detectors are commonly constituted
of two sub-tasks, including classification and regression
tasks, implemented by two parallel heads. This classic de-
sign paradigm inevitably leads to inconsistent spatial distri-
butions between classification score and localization qual-
ity (IOU). Therefore, this paper alleviates this misalignment
in the view of knowledge distillation. First, we observe that
the massive teacher achieves a higher proportion of har-
monious predictions than the lightweight student. Based on
this intriguing observation, a novel Harmony Score (HS) is
devised to estimate the alignment of classification and re-
gression qualities. HS models the relationship between two
sub-tasks and is seen as prior knowledge to promote har-
monious predictions for the student. Second, this spatial
misalignment will result in inharmonious region selection
when distilling features. To alleviate this problem, a novel
Task-decoupled Feature Distillation (TFD) is proposed by
flexibly balancing the contributions of classification and re-
gression tasks. Eventually, HD and TFD constitute the pro-
posed method, named Task-Balanced Distillation (TBD).
Extensive experiments demonstrate the considerable poten-
tial and generalization of the proposed method. Specifi-
cally, when equipped with TBD, RetinaNet with ResNet-50
achieves 41.0 mAP under the COCO benchmark, outper-
forming the recent FGD and FRS.

1. Introduction
In recent years, the development of object detectors has

drawn wide attention of the computer vision community, es-
pecially with the growth of convolutional neural networks
(CNNs). As a fundamental pillar of the computer vision
task, object detectors have been universally involved in all
walks of life, such as autonomous driving, security mon-
itoring, and pedestrian detection. In general, mainstream
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object detectors [1, 22, 24, 34, 38, 48] can be approximately
divided into two-stage detectors [1, 34] and one-stage de-
tectors [22,24,38,48] depending on whether the region pro-
posal network (RPN) is implemented.

To generate both the location coordinates and the corre-
sponding label for an object, modern object detectors typi-
cally adopt a multi-task pipeline, which consists of a classi-
fication branch and regression branch, implemented by two
parallel heads. However, this parallel implementation may
lead to inconsistent distributions of classification score and
regression quality (IOU). As shown in the top sub-figures
of Fig.1, the vanilla RetinaNet outputs inconsistent predic-
tions due to the overlap between the person and motorcycle.
Specifically, the green candidate contains a high score but a
low IOU, whereas the orange one has an accurate bbox but
a low score. When the post-procedure (e.g., Non-Maximum
Suppression) is executed, the green one with a larger score
will be reserved since the classification score is used as a
general criterion for NMS ranking. As a result, the predic-
tion with an accurate bbox (orange one) may be mistakenly
filtered. Generally speaking, this incorrect filtering can be
attributed to the inconsistent distribution between classifi-
cation and localization accuracy.

Previous works [9, 10, 17, 19, 38, 40] attempt to over-
come this problem in three ways, including recomposing
the NMS score via adding an additional head (i.e., IOUNet
[17], Centerness [38, 48]), focusing on consistent regions
[19, 38], and enhancing the dependency between classifica-
tion and regression tasks to output more harmonious pre-
dictions [9, 40]. Although these studies have made remark-
able progress in alleviating the influence of the inconsistent
spatial distributions, the motivations and solutions are de-
rived from the detector itself. Different from these meth-
ods above, this paper alleviates this inherent problem in the
view of knowledge distillation by designing a customized
teacher-student training workflow.

To elicit the proposed method, we meticulously com-
pare the behaviour between the teacher and student mod-
els in handling this inharmonious distribution. A valu-
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Figure 1. Visualization of the NMS mechanisms between the
vanilla RetinaNet (top sub-figures) and the proposed model (bot-
tom sub-figures). For ease of understanding, only two samples
are shown here. The vanilla RetinaNet generates inconsistent pre-
dictions, leading to inaccurate preservation (green bbox). After
equipping with the proposed method, the high-quality candidate
(orange bbox) is conclusively preserved.

able observation is derived as follows. In general, the
teacher is more inclined to generate harmonious predic-
tions than the student. We count the IOU distributions
of easy-classified predictions, as demonstrated in Table 1.
Overall, the teacher model performs superiorly at achieving
highly consistent predictions (i.e., 69.2 vs. 67.43), while
maintaining fewer inharmonious predictions (i.e., 29.72 vs.
31.68). This observation indicates that owing to the dis-
parate distributions of classification and regression quali-
ties, some easy-classified samples may suffer from inaccu-
rate locations for the student (e.g., the motorcycle appeared
in Fig. 1). Therefore, one meaningful question is whether
the student can generate more harmonious predictions with
the assistance of the teacher model.

In addition, we observe that the inharmonious distri-
butions of two sub-tasks will affect the selection of sub-
stantial areas when distilling features. For transferring
the intermediate features from the teacher to the student, a
meaningful route [5,18,20,41,43,47,51] is how to screen the
significant regions. Previous works [20, 51] attempt to gen-
erate spatial masks to denote the meaningful areas by using
the predictions of the classification branch. However, con-
sidering the inharmonious distributions between classifica-
tion and localization accuracy [9], purely utilizing the clas-
sification information might result in sub-optimal region se-
lection. Therefore, another critical question is whether the
classification and localization information can be fully uti-
lized to guide the feature imitation.

A novel Harmony Distillation (HD) component is de-
vised to achieve the transformation of harmonious predic-
tions. Firstly, the Harmony Score (HS) is defined to quan-
titatively describe the deviation of the classification score
and the corresponding regression quality. In particular, a
large HS implies the classification score is positively corre-

Table 1. The IOU distributions of easy-classified predictions on
COCO minival split. Specifically, predictions with scores larger
than 0.9 are counted.

Model IOU ≥ 0.9 0.5 ≤ IOU < 0.9 IOU < 0.5

Teacher 69.2% 29.72% 1.0%
Student 67.43% 31.68% 0.9%

HD (ours) 70.97% 28.4% 0.58%
Relative gains +5.25% -10.35% -35.56%

lated with the regression quality and vice versa. Secondly,
the HD is derived by aligning the HS between teacher and
student models. The proposed HD affords prior knowledge
that models the relationship between classification and re-
gression to assist the generation of high-quality predictions
for the student. As presented in Tab. 1, the proportion of
harmonious predictions is significantly improved, even sur-
passing that of the teacher.

To achieve the effective feature imitation, a new Task-
decoupled Feature Distillation (TFD) is devised to in-
tegrate the information from both classification and re-
gression tasks. The classification-aware and localization-
aware masks are firstly obtained by using the correspond-
ing predictions. Furthermore, instead of combining these
masks with a heuristic weight scheme, we propose a
Task-collaborative Weight Generation (TWG) module to
balance the contributions of classification and regression
tasks. Concretely, TWG dynamically assigns the task-aware
weights according to both teacher’s and student’s predic-
tions.

The proposed Task-Balanced Distillation (TBD) con-
sists of the above HD and TFD, jointly considering the
properties of classification and localization. To evaluate the
effectiveness of the proposed method, we conduct experi-
ments on the Pascal VOC [7], COCO [25], TJU-DHD [29],
and Cityscapes [3] benchmarks. Abundant experimental
results demonstrate the effectiveness and generalization of
the proposed method. For instance, when equipped with
the proposed TBD, RetinaNet-R50 achieves 41.0 mAP, sur-
passing the baseline by a large margin (i.e., 3.6 mAP), even
outperforming the current SOTA methods such as FRS [51]
and FGD [43].

To sum up, the contributions of this paper are summa-
rized as follows:

• A new Harmony Score (HS) is firstly defined to cap-
ture the relationship between classification and regres-
sion qualities. Then a novel Harmony Distillation
(HD) is proposed to assist the generation of harmo-
nious predictions for the student.

• A novel Task-decoupled Feature Distillation (TFD)
is devised to mimic the intermediate features. The
classification and regression masks are synthetically
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combined by balancing the contributions of these two
tasks.

• Abundant experiments among various datasets and de-
tectors are conducted. In addition, we achieve effec-
tive distillation between homogeneous (CNN to CNN)
and heterogeneous (Transformer to CNN) backbones.
The proposed method is easily plugged in and achieves
SOTA performance.

2. Related Works

2.1. Object Detection

With the wide application of deep learning technology,
the architecture of object detectors has progressively moved
towards an end-to-end pipeline. Inherited from the ideology
of pioneers, Faster RCNN [34] innovatively applies a two-
stage scheme to detect objects. The two-stage detectors pri-
marily consist of two core components. The first component
completes the generation of potential candidates, whereas
the second one further enables precise classification and
regression based on these candidates. This architecture is
popularized by its variants [1, 4, 8, 13, 31]. On the contrary,
well-known one-stage detectors [9,22,24,26,27,33,37,38]
vastly simplified this two-step paradigm, and they directly
make predictions based on the learned features.

2.2. Harmonious Predictions

The content of the inharmonious prediction is origi-
nally derived from reference [17], which means a pre-
dicted bounding box with misaligned classification and lo-
calization accuracy. This misalignment makes the Non-
Maximum Suppression (NMS) procedure unreliable since
the NMS only uses the classification score as the metric to
rank the proposals, resulting in inaccurate suppression. To
alleviate this problem, previous works [9, 10, 17, 22, 38, 40]
attempt to make the predictions more harmonious. The
route to tackling this issue can be divided into three cate-
gories, including reformulating the ranking metric [10, 17,
38], focusing on harmonious regions [22, 38], and enhanc-
ing the dependency between classification and localization
tasks [9, 40]. IOUNet [17] utilizes an extra head to pre-
dict the localization-aware score and reformulate the NMS
score to pay more attention to the localization task. This
paradigm has been popularized by subsequent works such
as FCOS [38] and DIR [10]. In addition, FCOS [38] pro-
poses a centering sampling strategy based on the observa-
tion that the center region of GT usually has high classi-
fication and regression accuracy. Unlike these methods,
GFL [22] incorporates the IOU into the classification la-
bel. TOOD [9] proposes a novel T-head with task alignment
learning (TAL) to enhance the interaction between classifi-
cation and regression tasks. HarmonicDet [40] improves the

prediction consistency from the perspective of loss function
excogitation.

Unlike the previous works, the proposed method gener-
ates harmonious predictions from the perspective of knowl-
edge distillation. We first define the Harmony Score (HS)
to capture the harmonious relationship between classifica-
tion score and localization IOU. Then the HS of the teacher
model is viewed as prior knowledge and ultimately trans-
ferred to the student with the supervision of the proposed
HD.

2.3. Detection-oriented Knowledge Distillation

Knowledge Distillation (KD) is initially proposed in [15]
to compress cumbersome models and has achieved remark-
able progress in image classification. Existing KD-based
methods can be broadly divided into response-based meth-
ods [15, 23, 28, 44], feature-based methods [14, 35, 45], and
relation-based methods [30, 39]. After that, KD has been
increasingly applied to the object detection task, achieving
significant improvements. Compared with the image classi-
fication task, since the image used for object detection nor-
mally contains a mass of background pixels, one of the tech-
nical routes of the detection-based knowledge distillation is
to select suitable distillation regions. Mimicking [21] mim-
ics the feature divergence between teacher and student pro-
posals. FGFI [41] claims that the regions near the ground
truths should be regarded as the crucial distillation areas.
GID [5] defines GIs based on the predictions and proposes
distillation in an instance-wise manner. DeFeat [11] con-
firms that both foreground and background areas are valu-
able and then proposes a spatial-decoupled distillation to
achieve feature imitation. PFI [20] and FRS [51] propose a
prediction-guided distillation by utilizing the classification
score. FGD [43] further decouples the feature imitation at
the spatial and channel dimensions.

The primary difference between the proposed TFD and
the above works is listed as follows. We revisit the se-
lection of valuable feature areas from the perspective of
inharmonious task distributions. In particular, both the
classification-aware and localization-aware regions are re-
garded as valuable areas. Moreover, the TWG module is
proposed to dynamically assign weights to balance the con-
tributions of these two tasks.

3. Proposed Method

This section systematically expounds on the overall ar-
chitecture of the proposed TBD. As demonstrated in Fig.2,
the proposed TBD consists of Harmony Distillation (HD)
and Task-decoupled Feature Distillation (TFD), elaborated
in 3.1 and 3.2, respectively.
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Figure 2. The whole architecture of the proposed TBD. For simplicity, only single-level feature and prediction are shown here.

3.1. Harmony Distillation

In this subsection, we progressively expound on the
derivation of HD. As discussed above, the divergence be-
tween classification score and localization quality will lead
to incorrect NMS suppression. Therefore, the primary point
is to quantify this divergence, called Harmony Score (HS).
In general, the derivation of HS consists of two steps: con-
verting the prediction into the classification and localization
probabilities and then devising the expression of HS based
on the task probabilities.

For each predicted bounding box, Pcls and Preg are
used to denote the outputs of classification and regression
branches, respectively. Concretely, Pcls is a score vector of
C dimensions, where C represents the number of classes.
Similarly, Preg encodes the regularized offsets from the an-
chor (anchor box or anchor point) to the actual prediction.

The defining principle of task-specific probability com-
prises two parts. First, the probability amplitude should be
normalized to [0, 1]. Second, a large probability signifies
a precise prediction. For the classification task, the prob-
ability pc is graciously generated by succinctly using the
normalized maximum activation value:

pc = softmax

(
max

1≤k≤C
P k
cls

)
(1)

where P k
cls is the k-th element of classification prediction,

and softmax is a spatial-wise softmax function to normal-
ize the reserved classification score.

For the regression task, the implementation is similar to
the above one. Concretely, the normalized prediction is
firstly converted to the actual bounding box. Then we evalu-
ate the IOU scores among each bounding box and the over-
all ground truths (GTs). For each predicted box, only the
largest IOU score is preserved as the regression probability
pr.

pr = max
1≤g≤G

IOU (decode(Preg), GTg) (2)

where G denotes the number of GTs in each image, and g
is defined as the corresponding index. decode represents
the transformation function to obtain the actual prediction.

According to Equations 1 and 2, given a predicted
bounding box, the classification and localization qualities
are straightforwardly expressed by a binary tuple (pc, pr).
Based on this definition, it is unequivocal to derive the for-
mulation of HS. Theoretically, the definition of HS should
satisfy two requirements. First, the formulation is monoton-
ically decreasing. For instance, a diminutive divergence be-
tween classification and localization probabilities indicates
encouraging consistency; therefore, a high HS should be
achieved. Second, the definition should be bounded, which
is conducive to avoiding the needless learning dilemma.
Based on the above guidelines, HS is arranged through the
activation function tanh.

∆p = |pr − pc| (3)

HS = 1− tanh (∆p) = 2× e−∆p

e−∆p + e∆p
(4)
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Since the teacher model performs better than the student
in handing inharmonious predictions, a natural thought is to
transfer the HS of the teacher as new knowledge to guide
the student’s learning phase. For distinction, the superscript
t, s are used to denote the HS of teacher and student, re-
spectively. In addition, L1 Loss is conducted to implement
the knowledge transformation. The expression of HD is
demonstrated as follows:

LHD =

L∑
l=1

1

H ×W

W∑
i=1

H∑
j=1

∣∣HSt
i,j,l −HSs

i,j,l

∣∣ (5)

where l denotes the l-th FPN layer, and i, j are the spatial
positions. W and H correspond to the spatial width and
height of the prediction.

Moreover, we notice that Equation 5 is calculated with
equal contribution of foreground and background predic-
tions. To highlight the contributions of foreground pre-
dictions, an IOU-guided harmony loss is established. The
ptr generated by the teacher model is employed as a spa-
tial mask to up-weight the significant foreground locations.
In addition, a dynamic modulation factor

√
1 + |ptc − psc| is

introduced to magnify the loss of unfaithful predictions that
have large performance gaps with the teacher. Considering
the above two points, the spatial mask Ψi,j,l and Equation 5
can be amended as:

Ψi,j,l = ptr,i,j,l ×
√

1 +
∣∣∣ptc,i,j,l − psc,i,j,l∣∣∣ (6)

LHD =

L∑
l=1

∑W
i=1

∑H
j=1 Ψi,j,l

∣∣∣HSt
i,j,l −HSs

i,j,l

∣∣∣∑W
m=1

∑H
n=1 Ψm,n,l

(7)

3.2. Task-decoupled Feature Distillation

The proposed Task-decoupled Feature Distillation
(TFD) is constructed based on FPN features F =
{F1, F2, ..., FL}. The reasons can be explained on two
sides: for one thing, distilling FPN features can facilitate
the imitation of both backbone and FPN features. For an-
other, since most recent studies perform distillation on FPN
features, it is natural to select FPN features to accomplish
a fair comparison. The classic feature mimicking can be
denoted as:

LFPN =

L∑
l=1

W∑
i=1

H∑
j=1

(F t
i,j,l − φ(F s

i,j,l))
2 (8)

where φ (·) denotes the adaptive layer to align the teacher
and student features. As can be seen from the definition in
Equation 8, the loss will be dominated by the background
regions since the background pixels are far more than the
foreground ones in the object detection task. Therefore,
how to determine the distillation area is a valuable topic.

Unlike the previous works [20, 41, 43, 51], we revisit the
selection of crucial areas from the perspective of task-aware
spatial distributions. The theoretical reasons for combin-
ing classification-aware and localization-aware regions are
listed here. On the one hand, the FPN features are the pillar
of subsequent classification and regression heads, so com-
bining them is a natural choice. On the other hand, since
the previous work [9] reveals the inharmonious distribu-
tions between two sub-tasks, only applying the classifica-
tion mask [51] might miss some localization-aware regions.
Based on the above analysis, the proposed TFD completely
utilizes the prediction probabilities (ptc, p

t
r) of the teacher

to generate task-aware masks. The mathematics formula is
shown as follows:

LTFD =

L∑
l=1

ωc ·
∑W

i=1

∑H
j=1 p

t
c,i,j,l(F

t
i,j,l − φ(F s

i,j,l))
2∑W

m=1

∑H
n=1 p

t
c,m,n,l

+

L∑
l=1

ωr ·
∑W

i=1

∑H
j=1 p

t
r,i,j,l(F

t
i,j,l − φ(F s

i,j,l))
2∑W

m=1

∑H
n=1 p

t
r,m,n,l

(9)

where ωc and ωr are hyper-parameters to control the
weights of classification-aware and localization-aware
losses. However, fixed weights applied in Equation 9 may
suffer from some limitations. For instance, fixed weights
are unenviable to adapt to the dynamic inputs compre-
hensively. In addition, extra hyperparametric optimization
overhead is introduced compared with these methods that
only utilize the classification mask. Therefore, we propose
a Task-collaborative Weight Generation (TWG) module, to
dynamically assign weights to overcome these limitations.
Motivated by SENet [16], TWG only consists of two Fully-
Connected (FC) layers and one softmax layer to generate
the task-aware weights. Theoretically, the learned weights
should be jointly determined by the teacher’s prediction
and the current learning state of the student. Based on
this point, when implementing TWG, the prediction masks
(ptc, p

t
r, p

s
c, p

s
r) are firstly concatenated at the channel di-

mension:

P = concat
(
ptc, p

t
r, p

s
c, p

s
r

)
(10)

Then, the concatenated P is compressed by the aver-
age pooling operator. Two lightweight FC layers are sub-
sequently added to generate task-aware weights. Eventu-
ally, the softmax function outputs the normalized weights
to guarantee that the sum of these weights is 1. Note that
we accomplish the implementation of TWG using the most
straightforward way to avoid falling into the cumbersome
network construction. Consequently, the learned weights
can be mathematically expressed as:

T 0, T 1 = softmax (FC (FC (AvgPool (P)))) (11)
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Thus, given the task-aware weights
{
T 0, T 1

}
, Equation

9 can be rewritten as follows:

LTFD−c =

L∑
l=1

T 0
l ·
∑W

i=1

∑H
j=1 p

t
c,i,j,l(F

t
i,j,l − φ(F s

i,j,l))
2∑W

m=1

∑H
n=1 p

t
c,m,n,l

LTFD−r =

L∑
l=1

T 1
l ·
∑W

i=1

∑H
j=1 p

t
r,i,j,l(F

t
i,j,l − φ(F s

i,j,l))
2∑W

m=1

∑H
n=1 p

t
r,m,n,l

(12)

LTFD = LTFD−c + LTFD−r (13)

3.3. Overall Loss

To sum up, the proposed model is trained in an end-to-
end manner, and the whole loss includes the original detec-
tor loss and the customized distillation loss, demonstrated
as follows:

L = Ldetector + α · LHD + β · LTFD (14)

where Ldetector is the original detector loss for the student
model. α and β are hyper-parameters introduced in HD and
TFD to balance the distillation loss.

4. Experiments
4.1. Datasets and Experimental Settings

Datasets. To verify the effectiveness and generalization
of the proposed TBD, we conduct abundant experiments
on four common datasets, including COCO [25], Pascal
VOC [7], Cityscapes [3] and TJU-DHD [29]. Concretely,
the main results are firstly reported on COCO, and then
other datasets are selected to evaluate the generalization of
the proposed method. Following the most common settings
for COCO, the distillation models are trained on the 118k
training split and evaluated on the minival split. In addition,
we also report distillation results trained on COCO mini-
train split [36], which is a curated mini-training set con-
taining about 25k images. For simplicity, we use miniC-
OCO to describe this dataset. For Pascal VOC, the union
of VOC2007 trainval and VOC2012 trainval is chosen
for training, whereas the VOC2007 test split is selected for
evaluation. For Cityscapes, we use 5000 fine-labeled im-
ages for training and testing. For the TJU-DHD dataset,
the traffic split is used as the benchmark, which is a diverse
high-resolution dataset covering five common categories for
generic object detection.

Settings. All the experiments are conducted based on
mmdetection [2] toolbox. The hyper-parameters α, β in
Equation 14 are set as {α = 5.0, β = 0.01}. The impact of
the hyper-parameters is discussed in Table 12. All the stu-
dent models are pre-trained on ImageNet [6]. The inheriting

strategy [18, 43] is not applied unless otherwise indicated.
In addition, 1x and 2x indicate that the models are trained
with 12 and 24 epochs, respectively. The initial learning
rate is fixed as 0.01 and 0.02 for one-stage and two-stage
detectors, respectively. Moreover, the batch size is set as
16 for all datasets, and the warm-up strategy is applied in
the first 500 iterations to make the training procedure more
stable. The remaining hyper-parameters are consistent with
those in mmdetection.

4.2. Main Results

4.2.1 Comparison with SOTA methods

In this part, we compare the proposed TBD with existing
state-of-the-art (SOTA) detection-based distillation meth-
ods. The main comparison experiments are implemented
based on two well-known detectors, including RetinaNet
[24]and Faster RCNN [34]. To verify the superiority of the
proposed TBD, seven recent SOTA models [5,12,20,41,43,
47, 51] are used for comparisons, as shown in Table 2. In
addition, to compare with a recent SOTA, named LD [50],
supplementary experiments are implemented based on GFL
[22] benchmark. Moreover, referring to the comparison set-
tings of previous works [5,43,51], all the distillation models
are conducted with various ResNet/ResNeXt models (e.g.,
R101-R50, X101-R50). Complementary to the basic con-
figurations, the distillation experiments of using other back-
bones are shown in Table 4.

As presented in Table 2, by equipping the proposed
TBD, RetinaNet with the ResNet50 student can even ex-
ceed the teacher model by a large margin (40.0 vs. 38.9).
When an enormous teacher (e.g., ResNeXt101-64x4d) is
applied, the lightweight ResNet50 student can still achieve
comparable performance. Additionally, according to the re-
sults, we can discover that no matter under the guidance of
ResNet101 or ResNeXt101, the proposed TBD significantly
outperforms the previous SOTA methods. Concretely, with
the ResNeXt101 teacher and ResNet50 student, TBD out-
performs FRS [51] and FGD [43] by 0.9 and 0.6, respec-
tively. In addition, when compared with the existing meth-
ods on Faster RCNN, consistent gains are achieved, which
indicates the effectiveness of the proposed model. More-
over, according to the experimental results shown in Table
3, the proposed TBD is also compatible with GFL, exceed-
ing the recent LD [50] from 0.6 to 1.7 AP.

4.2.2 Results of TBD using various teacher-student
configurations

This part shows the results of using diverse teacher-
student configurations on COCO, including CNN-CNN,
Transformer-Transformer, and Transformer-CNN. All the
experiments are based on the RetinaNet. The correlative
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Table 2. Comparison results of proposed TBD and existing SOTA methods on COCO minival. The symbol - means the results are not
available in the original papers. T and S represent the teacher and student models.

Detector Model mAP AP50 AP75 APS APM APL Reference

RetinaNet

T:ResNet101 38.9 58.0 41.5 21.0 42.8 52.4 ICCV2017
S:ResNet50 37.4 56.7 39.6 20.0 40.7 49.7 ICCV2017
FGFI [41] 38.6(+1.2) 58.7 41.3 21.4 42.5 51.5 CVPR2019
GID [5] 39.1(+1.7) 59.0 42.3 22.8 43.1 52.3 CVPR2021
FRS [51] 39.7(+2.3) 58.6 42.4 21.8 43.5 52.4 NIPS2021
[20] 39.6(+2.2) - - 21.4 44.0 52.5 AAAI2022

FGD [43] 39.6(+2.2) - - 22.9 43.7 53.6 CVPR2022
TBD (ours) 40.0(+2.6) 59.1 42.8 22.2 44.1 54.0 NaN
T:ResNeXt101 41.0 60.9 44.0 23.9 45.2 54.0 ICCV2017
S:ResNet50 37.4 56.7 39.6 20.0 40.7 49.7 ICCV2017
FKD [47] 39.6(+2.2) 58.8 42.1 22.7 43.3 52.5 ICLR2021
DICOD [12] 37.9(+0.5) - - 20.5 41.3 50.5 NIPS2021
FRS [51] 40.1(+2.7) 59.5 42.5 21.9 43.7 54.3 NIPS2021
FGD [43] 40.4(+3.0) - - 23.4 44.7 54.1 CVPR2022
TBD (ours) 41.0(+3.6) 60.4 43.8 23.9 45.1 54.7 NaN
T:ResNet101 38.9 58.0 41.5 21.0 42.8 52.4 ICCV2017
S:ResNet18 33.2 51.5 35.1 17.3 35.4 44.7 ICCV2017
FKD [47] 35.9(+2.7) 54.4 38.0 17.9 39.1 49.4 ICLR2021
FGD [43] 35.9(+2.7) 53.9 38.6 18.1 39.2 49.5 CVPR2022
TBD (ours) 37.1(+3.9) 55.5 39.8 19.4 40.4 51.6 NaN

Faster RCNN

T:ResNet101 39.8 60.1 43.3 22.5 43.6 52.8 NIPS2015
S:ResNet50 38.4 59.0 42.0 21.5 42.1 50.3 NIPS2015
FGFI [41] 39.3(+0.9) 59.8 42.9 22.5 42.3 52.2 CVPR2019
GID [5] 40.2(+1.8) 60.7 43.8 22.7 44.0 53.2 CVPR2021
FGD [43] 40.4(+2.0) - - 22.8 44.5 53.5 CVPR2022
TBD (ours) 40.6(+2.2) 61.0 44.2 23.5 44.7 53.5 NaN
T:ResNet101 39.8 60.1 43.3 22.5 43.6 52.8 NIPS2015
S:ResNet18 34.5 54.6 37.2 19.2 36.8 45.2 NIPS2015
FKD [47] 37.0(+2.5) 57.2 39.7 19.9 39.7 50.3 ICLR2021
FGD [43] 37.0(+2.5) 57.1 40.0 18.9 40.6 50.3 CVPR2022
TBD (ours) 37.3(+2.8) 57.3 40.1 19.7 40.8 50.0 NaN

Table 3. Quantitative results of the proposed TBD and LD [50]
on COCO2017 minival. The teacher model is ResNet101, and S
represents the student model.

Detector Model mAP APS APM APL

GFL

S:ResNet18 35.7 19.4 38.8 47.5
LD [50] 37.5(+1.8) 20.2 41.2 49.4
TBD (ours) 39.2(+3.5) 22.5 43.0 51.9
S:ResNet34 38.9 21.5 42.8 51.4
LD [50] 41.0(+2.1) 23.2 45.0 54.2
TBD (ours) 41.6(+2.7) 24.4 45.7 54.2
S:ResNet50 40.2 23.3 44.0 52.2
LD [50] 42.1(+1.9) 24.5 46.2 54.8
TBD (ours) 43.4(+3.2) 25.9 47.6 55.6

results are presented in Table 4. Overall, consistent pro-
ceeds are obtained, declaring that the proposed TBD is fea-
sible, efficient, and stable. Specifically, using CNN teach-

ers, the ResNet18 student with TBD can effectively obtain
performance gains from 2.8 to 4.3. When the heteroge-
neous teacher-student pair is applied (e.g., from PVT [42] to
ResNet), the ResNet18 student overcomes the architecture
divergence between teacher and student and finally achieves
4.3 mAP gains. Moreover, the improvements of experi-
ments based on PVT [42] and RegNet [32] verify the su-
periority of the proposed method, as well.

4.2.3 Results of TBD on various detectors

In this piece, we implement the proposed TBD on six preva-
lent detectors, including two-stage detector Faster RCNN
[34], Dynamic RCNN [46], and one-stage detector FreeAn-
chor [49], RetinaNet [24], GFL [22] and FSAF [52]. Here
ResNet50 is adopted as the teacher while the lightweight
ResNet18 is set as the student. All the models are trained
with the 1x learning paradigm. When the proposed TBD is
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Table 4. Results of applying TBD among diverse backbones on
COCO. All the experiments are based on RetinaNet with the 1x
training schedule.

Student Teacher Distillation Type mAP

ResNet18

- Baseline 31.9
ResNet50 CNN-CNN 34.7 (+2.8)
ResNet101 CNN-CNN 35.3 (+3.4)
PVTb0 [42] Trans-CNN 35.1 (+3.2)
PVTb1 [42] Trans-CNN 36.2 (+4.3)

ResNet50
- Baseline 36.5
PVTb1 [42] Trans-CNN 39.5 (+3.0)
PVTb2 [42] Trans-CNN 40.5 (+4.0)

RegNetX
800MF
[32]

- Baseline 35.6
RegNetX
3.2GF [32] CNN-CNN 38.2 (+2.6)

PVTb0 - Baseline 37.1
PVTb2 Trans-Trans 39.7 (+2.6)

Table 5. Results of applying TBD on diverse detectors based on
COCO.

Detector Distill mAP APs APm APl

Faster RCNN × 33.2 18.2 35.9 43.2√
35.4 (+2.2) 19.6 38.8 46.4

Dynamic RCNN × 34.9 18.3 37.2 47.7√
36.9 (+2.0) 19.6 39.7 49.4

RetinaNet × 31.9 16.4 34.6 43.4√
34.7 (+2.8) 17.9 38.0 47.6

GFL × 35.7 19.4 38.8 47.5√
38.2 (+2.5) 20.6 41.7 50.2

FSAF × 32.4 17.1 35.5 42.3√
35.1 (+2.7) 17.1 38.1 47.3

FreeAnchor × 34.0 18.1 36.3 46.5√
37.2 (+3.2) 19.2 40.2 50.5

adaptive to the two-stage detector, the classification and lo-
calization masks are generated on Region Proposal Network
(RPN). Table 5 summarizes the detailed results. Overall, the
consistent improvements indicate that the proposed TBD is
compatible with mainstream detectors.

4.2.4 Results of TBD on other datasets

The above experiments are completely implemented based
on MS COCO. In this piece, we evaluate our TBD on other
datasets. Concretely, the widely used Pascal VOC, miniC-
OCO, TJU-DHD, and Cityscapes are introduced to evaluate
the performance of TBD on small datasets. Analogously,
all the models are trained with RetinaNet-R18 baseline with
ResNet50 as the teacher. The complete results are shown in
Table 6. For small datasets, we notice that remarkable im-
provements are achieved with the assistance of the proposed
TBD. For example, TBD dramatically improves the vanilla

Table 6. Results of applying TBD on other datasets. The last row
of data in miniCOCO is obtained using the teacher model trained
on full COCO split.

Datasets Distill mAP APs APm APl

miniCOCO [36]
× 19.8 9.2 21.4 26.9√

25.5 (+5.7) 12.2 27.5 34.2√
29.0 (+9.2) 13.1 31.4 39.9

Pascal VOC [7] × 48.8 17.5 32.0 54.6√
52.7 (+3.9) 18.6 35.9 58.4

Cityscapes [3] × 30.1 10.6 31.6 47.7√
33.9 (+3.8) 12.5 34.5 54.6

TJU-DHD [29] × 50.4 19.2 47.1 65.9√
52.5 (+2.1) 21.7 48.8 68.7

Table 7. The individual results of HD and TFD on COCO.

Model HD TFD mAP APS APM APL

T: R50 - - 36.5 20.4 40.3 48.1

S: R18

- - 31.9 16.4 34.6 43.4√
33.2 (+1.3) 17.2 36.2 44.2√
34.4 (+2.5) 17.6 37.8 46.7√ √
34.7 (+2.8) 17.9 38.0 47.6

student model by 5.7 mAP on miniCOCO. The progress can
be extended to 9.2 using the teacher training on the com-
plete COCO train split. Furthermore, the consistent gains
in Table 6 manifest that the proposed TBD performs mag-
nificently among multifarious datasets.

4.3. Ablation Study

In this part, we conduct abundant experiments based on
RetinaNet to demonstrate the effectiveness of each compo-
nent and explore some implementation details of TBD. The
analytical experiments are implemented on the ResNet18
with ResNet50 as the teacher. The whole experiments are
trained with the 1x learning schedule.

4.3.1 Ablation study of each component

As presented in Table 7, the vanilla student model achieves
31.9 mAP. When the proposed method is applied, both HD
and TFD can consistently promote student performance.
Concretely, HD obtains 1.3 gains while TFD harvests 2.5
improvements. In addition, the combination of HD and
TFD brings the maximum promotion (i.e., 2.8 mAP).

4.3.2 Ablation study of HD

Definition of HS. In this piece, we dive deeper into the
definition of HS. Two variants of HS are customized, named
HSexp and HSlog, respectively. In addition, L1 and L2
Loss are also introduced to evaluate the design of the distil-
lation loss function. The expressions of HSexp and HSlog
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Table 8. The comparison of disparate definitions of HS. The exper-
iments are conducted with RetinaNet on COCO2017. The teacher
model is ResNet50, while the student is ResNet18.

HS Loss mAP APS APM APL

- - 31.9 16.4 34.6 43.4
HSexp L2 33.0 (+1.1) 16.8 35.7 44.6
HSexp L1 33.0 (+1.1) 16.8 35.8 44.3
HSlog L2 32.8 (+0.9) 16.9 35.5 44.2
HSlog L1 33.3 (+1.4) 16.9 36.2 45.2
HStanh L2 33.0 (+1.1) 17.0 36.0 44.4
HStanh L1 33.2 (+1.3) 17.2 36.2 44.2

Table 9. Comparisons between HD and other response-based dis-
tillation methods. cls and loc means the classification and lo-
calization task.

Model Distillation mAP Knowledge

T: R50
S: R18

Baseline 31.9 None
KD [15] 32.4 (+0.5) cls logits
FRS [51] 33.0 (+1.1) cls logits
RM [20] 33.3 (+1.4) Anchor rank
HD 33.2 (+1.3) Relationship between

cls and locHD† 33.9 (+2.0)
† means we retrain the proposed HD with the configuration of RM.
The values of KD and FRS are our reproduction results.

are listed as follows.

HSexp = e−|pc−pr|

HSlog =
1

log(e+ |pc − pr|)
(15)

To make it convenient to distinguish, we use HStanh

to represent the HS definition in Equation 4. The over-
all experiment results are shown in Table 8. We can dis-
cover that all the implementations of HS can consistently
boost the baseline performance. In addition, HSlog and
HStanh achieve superior performance compared with other
definitions, which can improve the student model by 1.4
and 1.3. Moreover, we notice that HStanh slightly outper-
formsHSlog when HD is combined with TFD, so we prefer
HStanh as the ultimate representation.

Relationship with other response-based methods. Ta-
ble 9 compares the proposed HD with other response-based
distillation methods such as KD [15], FRS [51], and RM
[20]. Although the conventional soft label distillation [15]
obtains remarkable improvements in the image classifica-
tion task, the promotion is unsatisfactory when applied to
the object detection task. FRS [51] ameliorates the tradi-
tional KD by introducing a feature richness mask. Unlike
these methods using classification logits, the proposed HD

Table 10. Quantitative results of the proposed TFD. cls and
reg represent using the classification-aware and regression-aware
masks, respectively. fixed means the weights are optimized as the
fixed hyper-parameters. In contrast, dynamic denotes the weights
are generated by the proposed TWG.

Mask Weight mAP APS APM APL

- - 31.9 16.4 34.6 43.4
whole fixed 33.3 (+1.4) 17.6 36.3 44.7

cls fixed 34.0 (+2.1) 17.4 37.4 46.7
reg fixed 34.0 (+2.1) 17.4 37.5 46.5

cls + reg fixed 34.1 (+2.2) 17.3 37.6 46.4
cls + reg dynamic 34.4 (+2.5) 17.6 37.8 46.7

Table 11. Comparison results of the proposed TFD and other fea-
ture imitation methods.

Model Distillation mAP Key Region

T: R50
S: R18

Baseline 31.9 cls
FitNet [35] 33.3 (+1.4) cls
FRS [51] 34.0 (+2.1) cls
PFI [20] 34.2 (+2.3) cls
TFD (ours) 34.4 (+2.5) cls + loc
TFD† (ours) 35.1 (+3.2) cls + loc

† means we retrain the proposed TFD with the configuration of PFI.
The values of FitNet and FRS are our reproduction results.

captures the relationship between classification and local-
ization tasks as the prior knowledge and outperforms KD
and FRS by 0.8 and 0.2. When compared with RM, our
proposed HD† also shows distinct advantages, demonstrat-
ing the tremendous potential of the proposed HD.

4.3.3 Ablation study of TFD

Impact of decoupling task-aware masks. This part veri-
fies the effectiveness of decoupling classification-aware and
localization-aware regions. Concretely, we delicately ex-
cogitate several comparison experiments for quantitative
verification. As shown in Table 10, compared with distilling
on the whole feature map, utilizing both the classification
mask ptc and localization mask ptr can obviously promote
effective distillation. Technically, ptc or ptr only capture the
corresponding task information, which might neglect po-
tential clues about another one since the spatial distribu-
tions of ptc and ptr might be disparate. In addition, we ob-
serve that the key to integrating the classification-aware and
localization-aware regions is how to balance the contribu-
tion of each task. Obviously, the information on input char-
acteristics and current training status cannot be considered
comprehensively by using a fixed weight scheme, leading to
inconspicuous improvement. When equipped with the pro-
posed TWG, the performance of TFD obtains a noticeable
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Student Student with HD Student with TBD

Figure 3. PR curves and error analyses among diverse models. ’Correct’: predictions with correct label and IOU > 0.5. ’Loc’: predictions
with correct label but 0.1 < IOU < 0.5. ’Sim’: predictions with an incorrect label but accurate supercategory. ’Oth’: predictions with an
incorrect label. ”BG”: false positives predicted on background regions. ’FN’: false negatives.

Table 12. The impact of applying different α and β.

α 10.0 7.5 5.0 2.5 β 0.015 0.01 0.005 0.0025
mAP 34.6 34.6 34.7 34.6 mAP 34.6 34.7 34.5 34.5

promotion (i.e., 34.4 vs. 34.0).

Relationship with other feature-based methods. Simi-
larly, we compare the proposed TFD with FitNet [35] and
other prediction-guided feature imitations [20, 51], and the
overall results are presented in Table 11. The proposed TBD
surpasses the FitNet by a large margin (1.1 AP). Compared
with the recent SOTA models such as FRS and PFI, the pro-
posed TFD still shows its superiority. In particular, FRS
and PFI only utilize the information of the classification
branch to generate the feature mask, thus resulting in sub-
optimal results (34.0 and 34.2). On the contrary, the pro-
posed TFD combines the superiority of classification and
regression tasks and consistently outperforms them by 0.4
and 0.9.

4.3.4 Ablation study of hyper-parameters

Compared with other detection-based KD methods such as
FGD [43], the number of hyper-parameters introduced in
this paper is significantly reduced (2 vs. 5) so that it is
not difficult to prune them. Concretely, the hyper-parameter

Table 13. Comparison results of the proposed TBD and related
detection methods. The experiments are constructed on the detec-
tors with ResNet50. Besides, the detectors with ResNeXt101 is
served as the teacher model. †† means the inhering strategy [43]
is applied to help the convergence of the student model.

Baseline Method mAP

Faster RCNN
ResNet50

HarmonicDet [40] 39.2
TBD (ours) 40.3
TBD†† (ours) 40.6

RetinaNet
ResNet50

HarmonicDet [40] 37.6
TBD (ours) 40.0
TBD†† (ours) 40.3

analysis is conducted based on RetinaNet-R18 student with
knowledge distilling from RetinaNet-R50 teacher. The
detailed comparison results of various values of α, β are
shown in Table 12. Obviously, the performance of the
proposed TBD is sightly affected by these two hyper-
parameters with only 0.2 mAP fluctuation. Therefore, α =
5.0, β = 0.01 are set as the default configurations.
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4.3.5 Comparison between TBD and related detection-
based methods

As mentioned above, the generation of harmonious predic-
tions can be promoted by a series of methods based on the
detector itself, such as devising a customized training strat-
egy [40]. In this part, we compared our TBD with the re-
cent solution named HarmonicDet [40] to show the superi-
ority of the KD-based method. The results are summarized
in Table 13. According to the results, the proposed TBD
outperforms HarmonicDet by 1.1 and 2.4 on Faster RCNN
and RetinaNet, indicating the impressive potential of apply-
ing knowledge distillation to alleviate the inherent detection
problem. In addition, after using the initialization strategy
proposed in [18], the proposed TBD allows for faster con-
vergence and achieves more satisfactory performance.

4.4. Analysis and Visualization

4.4.1 Error Analysis

We use the official COCO toolbox [25] to conduct error
analysis between RetinaNet-R18 and RetinaNet-R18 with
the proposed TBD. Note that the RetinaNet-R50 is chosen
as the cumbersome teacher. As presented in Fig. 3, af-
ter equipping with the proposed HD, the localization error
(Loc) is significantly decreased (i.e., from 13.8 to 11.9).
When incorporated with TFD, both the localization and
classification errors are further declined. Ultimately, the
proportion of correct predictions is boosted from 50.7 to
57.6, verifying the effectiveness of the proposed TBD.

4.4.2 Visualization

Visualization of Harmony Distillation. We compare the
proportions of harmonious predictions of easy-classified
samples between the original student model and the model
with the proposed HD. The corresponding results of the
teacher model are also shown here for reference. The over-
all results of these models are depicted in Fig. 4, where the
predictions with classification scores larger than 0.9 and 0.8
are selected, respectively. As can be seen from the left and
middle sub-figures of Fig. 4a and 4b, the teacher model is
more inclined to generate high-quality predictions (69.2 vs.
67.4, 86.6 vs. 85.6), illustrating that the teacher model has
the capacity to transfer knowledge to the lightweight stu-
dent. Furthermore, the student model’s proportions of har-
monious predictions tremendously increased from 67.4 to
70.97 and 85.6 to 87.36, even exceeding the teacher model.
Besides, we also observe that the amount of False Positives
(FPs) is partly reduced. We explain that some FPs with IOU
closer to 0.5 can be turned into True Positives (TPs) with the
help of HD.

(a)

(b)

Figure 4. The proportions of harmonious and inconsistent predic-
tions between vanilla student and student with proposed HD. The
predictions with the score larger than 0.9 and 0.8 are counted in
(a) and (b), respectively.

Epoch1 Final

P3 P4 P5

0.499 0.503 0.504 0.501 0.478 0.069 0.495 0.09 0.026

0.499 0.522 0.931 0.505 0.91 0.974

Initial 

0.501 0.497 0.496

Figure 5. Visualization of the classification-aware and
localization-aware masks with the corresponding learned weights.
The top row sub-figures are the classification masks, and the bot-
tom are the regression masks.

Visualization of task-ware masks and the learned
weights. In this part, we provide several visualization re-
sults of the proposed TFD. Concretely, we visualize the
task-aware masks and the learned weights in Fig. 5. Two
meaningful observations can be discovered. For one thing,
the distributions of classification and localization masks are
disparate. The classification task concentrates on significant
parts of the instance, while the regression task encodes rich
information between foreground and background. For an-
other, the learned weights behave diversely at different FPN
levels and training stages. The task-aware weights tend to
be evenly distributed in the initial phase with random ini-
tialization. Owing to the proposed TWG, these weights are
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Figure 6. Qualitative comparisons between vanilla RetinaNet-R50
(the top sub-figures) and RetinaNet-R50 with the proposed TBD
(the bottom sub-figures).

rapidly modulated by the teacher’s predictions and the stu-
dent’s current learning state.

Visualization of detection results. Qualitative compar-
isons between the vanilla student and student with TBD are
demonstrated in Fig. 6. Compared with the vanilla student,
the proposed TBD achieves more credible predictions, such
as accurate bounding boxes and fewer duplicates, indicating
the effectiveness of our method.

5. Conclusion
This paper thoroughly investigates the impact of the in-

harmonious distributions between classification and regres-
sion tasks on distilling object detectors. To alleviate this
limitation, we propose a novel Task-Balanced Distillation
(TBD), composed of Harmony Distillation (HD) and Task-
decoupled Distillation (TFD). HD enhances the harmonious
predictions for the student by aligning the Harmony Score
(HS) between the teacher and student to make the NMS
more credible. In addition, TFD dynamically combines the
classification-aware and localization-aware regions as the
meaningful regions for distilling features. Extensive ex-
periments among various datasets and detectors verify the
effectiveness and generalization of the proposed method.
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