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ABSTRACT

Uncalibrated photometric stereo is proposed to estimate the detailed surface normal from
images under varying and unknown lightings. Recently, deep learning brings powerful
data priors to this underdetermined problem. This paper presents a new method for deep
uncalibrated photometric stereo, which efficiently utilizes the inter-image representation
to guide the normal estimation. Previous methods use optimization-based neural inverse
rendering or a single size-independent pooling layer to deal with multiple inputs, which
are inefficient for utilizing information among input images. Given multi-images under
different lighting, we consider the intra-image and inter-image variations highly corre-
lated. Motivated by the correlated variations, we designed an inter-intra image feature
fusion module to introduce the inter-image representation into the per-image feature ex-
traction. The extra representation is used to guide the per-image feature extraction and
eliminate the ambiguity in normal estimation. We demonstrate the effect of our design on
a wide range of samples, especially on dark materials. Our method produces significantly

better results than the state-of-the-art methods on both synthetic and real data.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Photometric stereo is proposed to estimate the surface nor-
mal from images captured by a fixed camera under varying and
known lighting. Compared with other stereo vision methods
like multi-view stereo, photometric stereo can produce more
detailed normal and perform well on textureless objects. The
pioneering photometric stereo method is proposed for the idea
Lambertian surface [1], following researchers have extended it
to handle a wide range of complex surfaces [2H13]].

However, these methods rely on complex light calibration.
To overcome it, uncalibrated photometric stereo is proposed to
accomplish the task without light calibration. To reduce the
ill-posedness caused by the lack of lighting information, most
traditional methods assume an ideal Lambertian surface [14-
16] or a uniform light distribution [17} [18]], which limits the
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practical application. Recently, motivated the significant ad-
vancements made by deep learning in computer vision, some
researchers [19H22] have utilized deep learning to leverage data
priors and generalized the uncalibrated photometric stereo to
the real complex condition.

The main challenge in deep uncalibrated photometric stereo
is to enable the network to deal with the unordered and arbi-
trary numbers of input images. The common CNN-based net-
work is unsuitable since it requires fixed input channels. Some
researchers utilized optimization-based neural inverse render-
ing to solve this problem [22]]. Kaya er al. [22] optimized the
surface normal by the neural rendering layers. They explic-
itly modeled the effect of interreflection and did not rely on
the ground-truth of surface normals for training. While their
method was limited by the assumption of the differentiable
surface and performed poorly on complicated objects. Other
researchers used the size-independent pooling layer to aggre-
gate features from different inputs [20, 21]. Chen et al. [20]
proposed a light calibration network to estimation the lighting
for the following normal estimation. They first used a shared-
weight feature extractor to explore intra-image variation from
each input independently and then fused them using a max-
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Fig. 1. Visualized results of the cow sample in and the dragon sample
in [21]], compared with the state-of-the-art method [21]. Chen et al.
misjudges the normals on dark materials, especially on regions that lack
highlights. In contrast, our method significantly improves the results. The
dark regions are marked with red boxes and enlarged.

pooling layer to explore the inter-image variation. Chen et al.
[21] further designed a cyclic network structure to introduce ex-
tra inter-image guidance and intra-image guidance for the light-
ing estimation. It improved the accuracy in lighting estimation.
However, the single pooling layer was weak in exploring input
images’ information, which caused the estimated surface nor-
mals were still not satisfactory, especially on dark materials, as
shown in Fig. [T}

In this paper, we consider the correlation between intra-
image intensity variation and inter-image lighting variation and
propose an inter-intra image feature fusion module to combine
these two kinds of variations. Specifically, we explore the intra-
image variation from each input by a share-weight CNN-based
feature extractor that contains our feature fusion modules. Dur-
ing per-image local feature extraction, these fusion modules
aggregate global features (like material and rough geometry)
among multi-images and introduce them into local feature ex-
traction. The implicit material and geometry representations
in global features can guide the next local feature extraction,
which allows a more efficient feature extraction and a more ac-
curate normal estimation. Experiments demonstrate that our de-
sign significantly improved the results, especially on the chal-
lenging dark materials.

2. Related Work

2.1. Deep Uncalibrated Photometric Stereo

Most traditional methods in uncalibrated photometric stereo
rely on unpractical assumptions to like an idea Lambertian
reflectance model [} 24} or a uniform light distribution
[26,27]. On the contrast, the learning-based methods leveraged
powerful data priors and performed better on real objects.

To enable the network handle arbitrary numbers of input im-
ages in uncalibrated photometric stereo, some researchers uti-
lized neural inverse rendering [22], while others utilized size-
independent pooling layers to fuse features.

Kaya et al. [22] calculated the surface normals, BRDFs, and
depth by the optimization of neural rendering loss, which ex-
plicitly modeled the interreflections. While their neural ren-
dering relied on a continuous surface to compute depth and
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Fig. 2. An illustration of the inter-intra image feature fusion module. It
aggregates global features from the intermediate local features of each in-
put and concatenates them with per-image local features separately for the
following 1 x 1 convolutional layer, which fuses local features with global
features.

interreflection kernel, and performed poorly on complex sur-
faces. Chen et al. [[19] directly predicted surface normal from
input images. They used a shared-weight extractor to extract
local features from each input before fusing them using a max-
pooling layers. Chen et al. [20] further introduced lightings
as extra supervision. They first estimated the light directions
and intensities, then predicted the surface normral with esti-
mated lightings. Recently, Chen ef al. [21]] designed a cyclic
network structure for lighting estimation. They first estimated
rough lightings and rough surface normal, then provided com-
puted shading and rough normal as extra guidance for the final
lighting estimation. But they only focus on improving accuarcy
in lighting estimation, the final results of surface normals need
to further improved.

2.2. Multi-Image Deep Network

Similar with photometric stereo, many other tasks in com-
puter vision and computer graph take a variable number of
images as input [28-32]]. Choy et al. [28] took images as a
squeeze and applied a RNN-based network in multi-view 3D
reconstruction. While their architecture was sensitive to the or-
der of inputs and paid less attention to latter images. To over-
come it, Wiles et al. [29] used a shared-weight feature extrac-
tor to extract local features from each image, then fused them
to a fix-sized global feature using a order-independent pooling
layer. Similar strategies were also adopted in SVBRDF capture
(301, burst image deblurring [31]], deep learning on 3d points
[32]. Inspired by these works, we designed our network for un-
calibrated photometric stereo, which leverages the correlation
between images efficiently.

3. Our Method

This section firstly introduces our motivation and strategy of
exploring the intra-image and inter-image variations and then
presents our network structure.

Following the common assumptions, we assume that images
are captured by a radiometrically calibrated orthogonal camera
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Fig. 3. Overview of our framework. With our feature fusion module, our normal estimation network combines inter-image features with local features

during local feature extraction.

under single directional lighting. Moreover, we use “intensity”
to refer to image irradiance for simplicity.

3.1. Inter-Intra Image Feature Fusion Module

In deep uncalibrated photometric stereo, the intra-image in-
tensity variation and inter-image lighting variation of input im-
ages are correlated and significant for normal estimation. The
inter-image variation under different light conditions implies
the surface material and geometry information, which is cru-
cial for eliminating the ambiguity of the normal, light and re-
flectance model. A common approach to exploring these two
kinds of variation is to use a shared-weight extractor to extract
per-image features independently from each input, then fuse
them using a pooling layer [[19, 29} 30]]. However, this network
structure can not perceive any inter-image variation to eliminate
the ambiguity in per-image feature extraction.

To over this problem, we propose the inter-intra image fea-
ture fusion module. Specifically, For a set of input images
X = [X1, X2, ..., X;n] a set of M input images, there are a set
of per-image features f = [fi, f2, ..., f] €xtracted by the front
layers in the share-weight extractor. The modules inserted fuses
features as follow:

g = Pool (fi, fa, s fn) s (1)

where Pool represents the pooling layer that aggregates global
features g from intermediate local features f.

f{ = Nyuse (fi8) )

where Ny, represents the 1x1 convolution layer that fuses lo-
cal features with global features separately to obtain the new
per-image features f/. The new per-image features f”
Lf], f35 .- fin] are fed to the rest layers in the extractor, as shown
in Figure 2]

With the global features representing the inter-image varia-
tion of all images, the extractor can utilize the implied mate-
rial and geometry features to extract local features more accu-
rately and efficiently. For instance, it is easy for the extractor
to roughly distinguish the shadows and regions with low albedo
since the intensities of common shadows change rapidly with
the changing lighting while the intensities of regions with low
albedo remain low. Moreover, with the extra cues of other in-
puts, the network can capture the slight changes of the intensi-
ties of dark materials, which provide strong cues for inferring
the surface normal.

3.2. Network Structure

Our method contains two networks: the lighting estima-
tion network and the normal estimation network. Given X =
[X1, X2, ..., X;n] a set of M input images and the object mask
O, as shown in Figure 3| we first estimate the light directions
and intensities for each image using the lighting estimation net-
work. Then the estimated lighting is used to recover the surface
normal using our proposed normal estimation network.

Lighting Estimation Network For the lighting estimation
network, we follow the structure proposed in [21]]. As shown
in Figure [3] the lighting estimation network contains three sub-
networks, including two lighting estimation sub-networks (L-
Net; and L-Net;) and a normal estimation sub-network (N-
Net). The L-Net; estimates initial lighting given the input im-
ages and object mask. Then the N-Net predicts surface normal
given the initial lighting and input images. Finally, the L-Net,
estimates the final lighting with extra rough normal and shading
estimated by the front networks. More details can be found in
[21].

Normal Estimation Network With the estimated lighting,
we normalize input images with the corresponding predicted
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Fig. 4. Quantitative results of of dragon test data in [21], compared with
Chen ef al. [21]. Our method has lower mean error for both 20 BRDFs
shown in the figure and all 100 BRDFs. Besides, our method performs sig-
nificantly better for those dark materials which are challenging for Chen’s
method. Images above the horizontal axis show the corresponding samples

light intensity, and then concatenate them with the correspond-
ing predicted light direction as the inputs. As shown in Fig-
ure [3] for a set of image-lighting pairs, per-image local features
are extracted separately by a shared-weight feature extractor be-
fore fusing them to global features. Then the following several
convolutional layers and an L2-normalization layer further infer
the normal map from global features.

The CNN-based feature extractor is plugged with the inter-
intra image feature fusion modules at multiple levels. During
the local feature extraction, as motioned in section @ the fea-
ture fusion modules introduce the global features among multi-
images to guide the per-image feature extraction. We choose
the mean-pooling layer for the first fusion block to obtain the
material and reflectance representations and the max-pooling
layer for others.

3.3. Loss Function

The lightings are discretized and considered as a classifica-
tion problem (32 classes for elevation and azimuth to represent
light direction, 32 classes for intensity). Given M images, the
loss function for L-Net in lighting estimation network is

Liighy = % Z (Lf" + L+ LZ’), 3)
f

where L}, L]" and L' are the cross-entropy loss for light az-
imuth, elevation, and intensity classifications, respectively.

The normal loss function of the normal estimation network
and the N-Net in lighting estimation network is

Loormal = % Z (1 - n;hp) s “4)
P

where P donates the number of pixels in per image, and n,
and #1, are the ground truth and predicted normal at pixel p,
respectively. And we fine-tune the entire lighting estimation
network end-to-end using the following loss:

Lﬁne—tune = Llightl + Lnormal + -Eshading + Llightz, (5)

GT / Image

Chen et al (2020) Ours

silver-metallic-paint black-obsidian
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Fig. 5. Visualized results of dragon test data in [21], compared with Chen
et al. [21]. The visualized error maps lie underneath the estimated normal
maps. The regions where lacks highlight due to self-occlusion are marked
with red boxes and enlarged at the bottom-left corner.

Lshading = %) Z Z (n-prlm - il-przm)z > (6)
m._p

where Linaging denote Lyign, and Lyigny, denote the loss function
in L-Net; and L-Net), Lghading denote the shading loss, and Z,,,
and [, are the ground truth and predicted light direction for the
m'™ image.

4. Experiment

We evaluated and analyzed our method on synthetic and real
data and used the popular mean angular error (MAE) to mea-
sure the error of the estimated normal.

4.1. implement details

We trained our model on the publicly available synthetic
Blobby and Sculpture Dataset [19], which contains 85,212 sur-
faces and each is illuminated under 64 random light directions.

For the lighting estimation, we followed the training proce-
dure in [21]] to train three sub-networks one after another until
convergence, then fine-tuned the lighting estimation network



Table 1. Quantitative results on DiLiGenT benchmark [23]], compared with comparison with traditional and deep uncalibrated photometric stereo methods.
For each object, the best result is bolded and colored in dark-red, and the second best result is colored in light-red. i means we use the deeper vision of
version of UPS-FCN.

Methods Ball Cat Potl Bear Pot2 Buddha Goblet Reading Cow Harvest Average
Papadh. et al. (2014) [15] 4.77 9.54  9.51 9.07 1590 14.92 29.93 24.18 19.53 29.21 16.66
Lu etal. (2017) [33] 930 12.60 12.40 1090 15.70 19.00 18.30 22.30 15.00  28.00 16.30
UPS-FCN7 (2018) 396 1216 11.13 7.19 11.11 13.06 18.07 20.46 11.84  27.22 13.62
SDPS-Net (2019) [20] 277 8.06 814 6.89 17.50 8.97 11.91 14.90 8.48 17.43 9.51
Chen et al.(2020) 248 787 721 555 @ 17.05 8.58 9.62 14.92 7.81 16.22 8.73
Kaya et al. (2021) [22] 378 791 875 596 10.17 13.14 11.94 18.22 10.85 25.49 11.62
Ours 304 755 754 540 8.05 8.39 8.91 14.81 6.88 15.23 8.58

GT /Object Chen et al (2020) Ours GT / Object Chen et al (2020) Ours

Harvest

Fig. 6. Visualized results of DiLiGenT benchmark [23], compared with Chen et al. [21]. The object image is produced by averaging all images for better
visualization. The visualized error maps lie underneath the estimated normal maps. The red boxes demonstrate our improvement in dark materials and
concave regions. The full results of our method on DiLiGenT benchmark are included in the supplementary.

end-to-end. The normal estimation network was trained with
ground truth lighting and surface normal, with a batch size of
32 for 30 epochs. We used the same training configuration in
[21]], including the learning rate, batch size, number of train-
ing epochs, etc, to further demonstrate the superiority of our
network architecture.

We implemented the framework in PyTorch and used the
Adam optimizer with default parameters. It took 4.63
hours to train the normal estimation network with a 3.70GHz
Intel Core i9 CPU and a single NVIDIA GeForce RTX 3060
GPU.

4.2. Evaluation on Synthetic Data

We compared our method with the state-of-the-art method
[21]] on the synthetic dragon dataset in [21]]. The dragon shape
is rendered with 100 MERL BRDFs [33] and each is illumi-
nated under 82 randomly sampled light directions.

In Figure[d we show quantitative results of 20 BRDFs on
which Chen’s method [21]] performed worst and sort them by
the error. Our method produced better results, especially for
those challenging dark materials, as we analyzed in section[3.1]
Figure ] shows the visualized results of several dark materi-
als. For marginal regions where lack highlights as extra cues,
Chen’s method produced unreasonable surface normals, while
our method significantly improved them on various materials.
It proves the superiority of our method. With the feature fusion
modules, our model can infer the surface normal through slight
intensities changes among images.

4.3. Evaluation on Real Data

We evaluated our method on the public DiLiGenT bench-
mark [23] and report the quantitative results compared with
other uncalibrated photometric stereo methods. As shown in
Table [T} our method achieved the best performance with the
lowest average error and the lowest error for most objects. The
visualized results in Figure[6]and Figure [I] also proves that our
method significantly improve the normal estimation on dark
and concave regions.

Besides, we demonstrated the superiority of our method on
the feature domain. We compared our method with Chen et al.
[21]], in which the extractor dose not perceive any inter-image
information. We averaged all channels of the fused global fea-
tures aggregated by the final pooling layer (each channel was
normalized). As shown in Figure[/| few valid features were ex-
tracted for dark regions in Chen’s method, which explained its
poor result of surface normal. While our method extracted valid
features for all regions and inferred more accurate normals.

4.4. Ablation Study

To validate the effect of perceiving inter-image variation dur-
ing local feature extraction, we removed all feature fusion mod-
ules, then trained our network from scratch in the same con-
figuration. And we also evaluated the model that only be re-
moved the pooling layers in feature fusion modules to prove our
method does not simply benefit from a deeper network. The
quantitative results of DiLiGenT benchmark [23]] and dragon
test data in [21] are summarized in Table[2] The visualized
results are shown in Figure[§] Ours v, represents the model



Table 2. Quantitative results of the ablation study. For the DiLiGent benchmark, We report the error of all objects and the average error. For Synthetic
dragon data, we report the errors of samples of ten typical materials and the average error of all 100 BRDFs. The lowest errors are bolded.

Methods DiLiGenT benchmark
Ball Cat Potl Bear Pot2  Buddha Goblet Reading Cow Harvest Average
Ours 3.04 7.55 7.54 5.40 8.05 8.39 8.91 14.81 6.88 15.23 8.58
Ours v, 2.85 9.1 7.86 5.35 8.75 8.84 9.42 15.63 7.56 16.45 9.18
Ours v, 3.7 8.61 7.63 6.17 9.20 8.44 9.45 15.11 7.61 16.23 9.21
Methods Synthetic dragon data
Aluminium  Blue-acrylic Chrome Delrin Nickel  Nylon PVC SS440  Steel Tungsten-Carbide | Average
Ours 7.93 3.79 12.62 3.25 8.51 3.85 3.59 8.98 8.84 10.18 4.66
Ours v 8.57 4.65 13.91 3.55 9.88 4.69 3.58 10.14 10.20 11.55 5.03
Ours v, 8.33 5.21 14.01 3.36 9.58 4.80 3.95 9.74 11.20 11.13 5.03
Image Normal Object GT
2
=
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Mean feature map Normal Error map
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Fig. 7. Visualized results on the feature domain, compared with Chen et al.
[21]. The mean feature maps are multiplied by 5 for better visualization.
The lower intensity of our mean feature map is because we used a mean-
pooling layer for the final feature fusion while Chen ef al. used a max-
pooling layer. The cow’s dark eye is marked with red boxes.

only without pooling layers in modules. Ours v, represents the
model without all feature fusion modules.

As shown in Table[2] our full method has the lowest errors
for almost all of the samples and the lowest average errors on
both real and synthetic data. The visualized results in Figure[g]
also prove the improvement on concave regions. It is clearly
shown that the feature fusion modules have an important effect
on results, which proves the variation among multi-images can
greatly improve the per-image feature extraction.

5. Conclusion

This paper proposed the inter-intra image feature fusion
module for uncalibrated photometric stereo. With the proposed
feature fusion module, the representations of inter-image vari-
ations are utilized to guide the per-image feature extraction,
which makes the per-image local feature extraction more ac-
curate and efficient for normal estimation.

The experimental results on the feature domain strongly
demonstrate the effectiveness of our proposed feature fusion
module. In addition, the quantitative and qualitative results

Fig. 8. Visualized results of the ablation study. The object is the “Reading”
from DiLiGenT benchmark [23]. The concave regions are marked with
red boxes.

show that our method performs significantly better on dark ma-
terials than the state-of-the-art method.
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