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Abstract
We propose a novel memory-enhancing mechanism for recurrent neural networks that exploits the effect of
human cognitive appraisal in sequential assessment tasks. We conceptualize the memory-enhancing mechanism
as Reinforcement Memory Unit (RMU) that contains an appraisal state together with two positive and negative
reinforcement memories. The two reinforcement memories are decayed or strengthened by stronger stimulus.
Thereafter the appraisal state is updated through the competition of positive and negative reinforcement memories.
Therefore, RMU can learn the appraisal variation under violent changing of the stimuli for estimating human
affective experience. As shown in the experiments of video quality assessment and video quality of experience
tasks, the proposed reinforcement memory unit achieves superior performance among recurrent neural networks,
that demonstrates the effectiveness of RMU for modeling human cognitive appraisal.

1 Introduction

When interacting with environment, people’s affective action
is dynamically influenced by the external stimulations, namely
Core Affect which is a continuous assessment of one’s current
state and affects other psychological process accordingly [1].
The process of recursive and continuous assessment is also the
core of the appraisal evaluation [2]. Core affect depends on the
information possessed about the external cue, from its initial
sensory registration to cognitive appraisal. While major progress
has been achieved on the simulation of sensory registration in
computer vision and natural language processing communities,
the modeling of cognitive appraisal is still at the early stage of
exploration. In this work, we aim to exploit the recursively mod-
eling method to simulate subjective appraisal variation under
continuous external stimuli, which is conducive to measuring
and improving the prediction of subjective assessment tasks.

In human appraisal evaluation, the input stimuli are intrinsi-
cally dynamic that influence memory by proactive interference
and retroactive interference. When human sensory receives a
sequence of stimuli, the affective experience is varying contin-
uously and affects the final decision making. Here, we con-
sider the reinforcement in behavioral psychology which can
be strengthened consciously or unconsciously elicited by the
stimulus [3, 4]. The reinforcement is classified into positive
reinforcement and negative reinforcement referring to the en-
hancement of behavior or memory. The positive reinforcement
occurs when receiving the favorable stimulus, which leads to a
tendency of giving a positive assessment. In contrast, the neg-
ative reinforcement occurs given the opposite situation. In the
sequential assessment tasks, our working memory deploys its
limited capacity for the dynamic stimulus that maintains and ma-
nipulates the input information for such goal-directed behavior
[5]. The decision making in human assessment process involves
both conscious and unconscious thought [6], thus it is affected
by stimuli of both the received external information and internal
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mental processes.

To study the human assessment process in a cognitive manner,
some researchers infer to psychological characteristics and expe-
rience. For example, Rimac-Drlje and Seufert et al. [7, 8] utilize
the recency effect in psychology and assign higher weights to
the last received sequence to stimulate the recency effect. Se-
shadrinathan and Bovik [9] observe a hysteresis effect in the
subjective judgment of time-varying video quality, which means
that subjects react sharply to drops in video quality and provide
poor quality for such time interval, but react dully to improve-
ments in video quality thereon. They also propose a temporal
pooling strategy accounting for the hysteresis effect. Kim et al.
[10] consider that the worst quality section has greater influence
to human assessment. So they propose a convolutional neural
aggregation network to learn frame weights and the overall qual-
ity is the weighted average of frame quality scores. However,
most methods only model the distribution of time-dependent
evaluation, instead of the recursive cognitive process. It is often
one-sided that only considering few psychological character-
istics. Human assessment is an iterative process and consists
of continuous fluctuations in core effect. Therefore, learning
the effects of dynamic input on human cognitive appraisal be-
comes essential for subjective assessment. This motivated us
to investigate the recurrent neural networks to mimic such a
procedure.

A variety of recurrent neural networks (RNNs) have been in-
troduced to solve sequential modeling problem and achieved
state-of-the-art performance on various tasks in the literature,
including speech recognition [11, 12], machine translation
[13, 14], and video modeling [15]. To alleviate the issue of
gradients vanishing and exploding and learn long-range tempo-
ral dependencies, some improved RNNs are designed and the
especially successful architecture among them are Long Short-
Term Memory (LSTM) [16] and Gated Recurrent Unit (GRU)
[17] which control the information transmission through well-
designed gates. The design of LSTM and GRU are conducive
to information encoding in sensory registration phase and work
memory modeling. However, more appropriate modeling for
the appraisal changing of the cognitive process is still highly
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Figure 1: Inner structure of the reinforcement memory unit.

desired.

To simulate the human assessment in cognitive process, we de-
sign a Reinforcement Memory Unit (RMU). The RMU contains
a hidden state representing the appraisal and positive and nega-
tive reinforcement memories. The appraisal is adjusted by the
competition of positive and negative reinforcement memories
which are updated by the forget gate and stimulus response.
Therefore, RMU can stimulate the response to the incoming
stimuli, the decay of the impression, and the appraisal variation
under violent changes of stimuli. We validate RMU on video
quality assessment and quality of experience task to predict
retrospective assessment.

The main contributions of this work is threefold:

• A Reinforcement Memory Unit (RMU) is proposed to
estimate the human assessment in cognitive process,
which is easily combined with other methods and ap-
plied to sequential user assessment tasks. It is validated
on video quality assessment task and quality of experi-
ence task, and achieves superior performance.

• The positive and negative reinforcement memories are
designed to simulate the proactive interference and
retroactive interference on memory. The reinforcement
memories will decayed gradually affected by the forget
gate and be enhanced by stronger stimuli responses.

• The appraisal state is designed to simulate subjective as-
sessment which constantly updated over time through
the competition between positive and negative rein-
forcement memories. It can generate recursive assess-
ment under continuous fluctuations of stimuli.

2 The ReinforcementMemory Unit

We propose RMU to simulate human assessment. The inner
structure of RMU is shown in Fig.1. We have the sequence
of input signals X = {x1, x2, · · · , xT }, where xt represents a
feature vector extracted from image, audio or text through neural
networks or hand-crafted descriptions.

In RMU, we first design two memory cells: positive reinforce-
ment memory C+

t−1 and negative reinforcement memory C−t−1
which represent the impression of positive and negative stimuli
at timestep t − 1, respectively, whilst an appraisal hidden state
ht−1 to represent the affective experience at timestep t− 1. When
received the current input xt, the stimulus response st is com-
puted which reflects the direction and intensity of the stimulus
of xt versus previous appraisal ht−1:

st = tanh (Wsht−1 + Usxt + bs) (1)

where tanh represents the hyperbolic tangent function thus the
value of stimulus response falls into the range (−1, 1). The
plus/minus units of st represent positive/negative stimuli re-
sponse compared to the previous appraisal state. When the value
of st is closer to 1/ − 1, the intensity of the change becomes
greater. The stimulus response may contain both plus and minus
units, as some reinforcement can be simultaneously positive and
negative.

As the previous stimuli gradually diminished over time, we
attenuated the reinforcement memories through a forget gate.
Then these two memory states are updated by the response of
stronger stimulus through an element-wise maximal operation,
which can be described mathematically as:

f +
t = σ

(
W+

f ht−1 + U+
f xt + b+

f

)
(2)

f −t = σ
(
W−f ht−1 + U−f xt + b−f

)
(3)

C+
t = max

(
f +
t �C+

t−1,ReLU (st)
)

(4)

C−t = max
(

f −t �C−t−1,ReLU (−st)
)

(5)

where theσ and � represent the logistic sigmoid function and the
Hadamard product, respectively. The ReLU stands for rectified
linear unit and is mathematically defined as f (x) = max (0, x).
It controls that negative stimuli can only update negative mem-
ory state and vice versa. Finally, the appraisal ht is updated
through the competition of positive and negative reinforcement
memories:

ht = tanh
(
C+

t −C−t
)
. (6)
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In order to better understand the practical meaning of RMU, we
take the video quality assessment task as an example. The input
signal X can be represented as the feature vectors consisting of
different quality factors extracted from frames. The appraisal
hidden state ht can be mapped to retrospective video quality
score at t-th timestep. In this formula, if the quality of xt is
significantly worse than previous perceived video quality ht−1
and the intensity of change is larger than the negative impression
in the memory, the negative reinforcement memory C−t will be
updated and strengthened. Thus the appraisal hidden state ht
will change towards negative stimuli and evaluation score will
decrease through the element-wise subtract operation between
positive and negative reinforcement memories. If the qualities
of input sequence change repeatedly, the update of assessment
quality depends on the competition of positive and negative
impressions. If the qualities of input sequence are stable, the
two memory states will tend to be balanced, thereby maintain
the stability of retrospective evaluation ht.

3 Experiments

We evaluate the performance of RMU on two sequential assess-
ment tasks: Video Quality Assessment (VQA) and Quality of
Experience (QoE) prediction. We also explore the changing char-
acteristics of positive and negative reinforcement memories, and
appraisal hidden state through the visualization of continuous
modeling.

3.1 Model Establishment

To adapt RMU on predicting assessment results, we design a
simple network as shown in Figure 2. Given the input, the
feature vectors x are extracted with batchsize b, sequence length
l and feature dimension d1. Then a fully connected layer is
applied for feature transformation. After the temporal modeling
of RMU, we apply another fully connected layer to regress the
hidden state vectors to the output. The output can provide the
continuous scores or just the final evaluation, depending on the
tasks.

To train RMU, the adaptive moment estimation optimizer
(ADAM) [18] is adopted with the learning rate 3 × 10−4. To
reduce the overfitting during training, we apply dropout [19]
with rate of 0.5 on the input of RMU.

3.2 Video Quality Assessment Task

Video Quality Assessment is to design an objective model pre-
dicting the quality score of videos to approach human subjective
evaluation. A challenge issue in VQA is that the quality changes
over time, which involves more complicated cognitive process
and could not be simply described as a temporal pooling proce-
dure. The stimuli of the changes of frame quality continuously
affects the users’ judgment on the video quality in the process of
watching, urging them to make the appropriate score finally. It
could be regarded as a cognitive appraisal process [20], which
refers to a human thought process that interprets and evaluates
new situations and selects the appropriate reaction. Therefore,
learning the cognitive process plays a key role in building an
objective VQA model.

Dataset KoNViD-1k [21] aims at ’in the wild’ authentic

Figure 2: The illustration of network design.

distortions and is created based on (Yahoo Flickr Creative Com-
mons 100 Million) YFCC100m dataset. The KoNViD-1k dataset
contains 1,200 video sequences of resolution 960 × 540 with
a substantial content diversity. The video length is 8s and the
Mean Opinion Scores (MOS) ranges from 1.22 to 4.64. As there
is no standard split for training and testing set on KoNViD-1k, to
better evaluate the cognitive process in VQA, we split the dataset
according to the variance of quality change in temporal domain.
The variance is obtained from frame qualities calculated by the
state-of-the-art VQA method TLVQM [22]. We use the 80%
videos of smaller variance as training set and the rest 20% as
testing set.

Implementation Details In order to eliminate the influence
of different feature extraction neural networks, we extract hand-
crafted features proposed in comparison algorithms as the input
X of RMU. The sampling rate is set as 1 frame/second. As the
VQA task only needs a quality evaluation for the whole video,
thus, the last appraisal state hT is used to generate predicted
quality score y′ of the video. The loss function is defined as
the Mean Square Error (MSE) between predicted score y′ and
subjective MOS score y.

Performance Comparison To evaluate the performance of
RMU fairly, we choose four state-of-the-art NR-VQA and NR-
IQA methods with publicly available implementations to extract
features, including BRISQUE [23], VBLINDS [24], FRIQUEE
[25] and TLVQM [22] with the feature dimension of 36, 46, 560
and 75, respectively. We use the source code to extract features
every second in Matlab and then regress to quality score based
on Pytorch. We compared three recurrent neural networks: GRU,
LSTM and RMU. All the configurations are kept the same.

Four widely-used evaluation criteria are adopted for perfor-
mance comparison: Pearson linear correlation coefficient
(PLCC), Spearman rank order correlation coefficient (SROCC),
Kendall’s rank-order correlation coeicient (KROCC) and Root
Mean Square Error (RMSE). The PLCC, SROCC and KROCC
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Table 1: Performance comparison of no-reference VQA on the KoNViD-1k dataset.
Method PLCC SROCC KROCC RMSE

BRISQUE+LSTM 0.5408 0.5521 0.3911 0.6092
BRISQUE+GRU 0.5820 0.6083 0.4323 0.5868
BRISQUE+RMU 0.6260 0.6321 0.4559 0.5788
VBLINDS+LSTM 0.5948 0.6045 0.4274 0.5515
VBLINDS+GRU 0.5831 0.5897 0.4186 0.5610
VBLINDS+RMU 0.6288 0.6327 0.4474 0.5524

FRIQUEE+LSTM 0.7859 0.7832 0.5869 0.4393
FRIQUEE+GRU 0.7736 0.7693 0.5729 0.4890
FRIQUEE+RMU 0.7751 0.7726 0.5759 0.4363
TLVQM+LSTM 0.7686 0.7731 0.5710 0.4263
TLVQM+GRU 0.7659 0.7735 0.5719 0.4263
TLVQM+RMU 0.7871 0.7904 0.5884 0.4281

measure the correlation between the predicted quality and
ground truth, considering linear dependence or monotonic. A
better method will result in larger PLCC/SROCC/KROCC and
smaller RMSE.

The experimental results are shown in Table 1. It can be
found that the proposed RMU outperforms LSTM and GRU
in most cases. In particular, RMU surpasses LSTM and GRU
on BRISQUE, VBLINDS and TLVQM, especially on PLCC,
SROCC and KROCC with a margin over 0.02, which shows
that the predicted scores of RMU have higher correlation with
human subjective assessment. It is noted that both RMU and
GRU have slightly lower correlation when compared to LSTM
in the case of FRIQUEE. One possible reason is that the num-
ber of parameters of RMU and GRU is less than LSTM, where
FRIQUEE contains much more features compared to other three
methods.

3.3 Quality of Experience Task

Quality of Experience (QoE) refers to a viewer’s holistic per-
ception and satisfaction with a given content, communication
network, or content-providing service [26], where the dynamic
nature of the perceived of streaming videos results in continuous
varying affective experience. Some QoE databases have been de-
veloped by gathering both the continuous and retrospective QoE
scores. The continuous QoE score is composed of instantaneous
subjective score which reflects the quality changing of streaming
videos, while the retrospective QoE score is provided by subjects
based the impression after the video is played. Different from
traditional video QoE prediction task which use QoE influenc-
ing factors to predict continuous or retrospective QoE, we only
consider the subjective continuous QoE to predict retrospective
QoE to compare the performance of different RNNs on such a
task. For this scenario, the influence of different QoE factors are
excluded, such that it is able to validate the ability of learning
the appraisal variation under violent changes of the stimuli and
simulating the human cognitive behavior.

Dataset LIVE-Netflix Video Quality of Experience database
[27] gathered both subjective continuous and retrospective QoE
scores. The database consists of 112 distorted videos evaluated
by over 55 human subjects on a mobile device. The distorted
videos were generated from 14 video contents by imposing a

Table 2: Performance comparison on QoE task.

Training Set Testing Set

RMSE PLCC RMSE PLCC

LSTM 0.4859 0.8320 0.4154 0.7883
GRU 0.2369 0.9506 0.2962 0.7607
RMU 0.2207 0.9569 0.2791 0.7984

set of 8 different playout patterns ranging from dynamically
changing H.264 compression rates and re-buffering events to a
mixture of compression and re-buffering. The average number
of continuous QoE scores per video is 1797. We split the training
set and testing set by 70% to 30%, which means that the training
set contains 80 videos from 10 video contents and the testing set
contains 32 videos from 4 video contents.

Implementation Details The size of hidden unit is set as
1 to better explore the practical meaning and fitting ability of
recurrent unit. The parameter U in Equation 1 is initialized as -
1.0 to fit the design of stimulus response, while other parameters
W∗,U∗ are initialized as 1.0. The biases of forget gates are
initialized as 1.0 to avoid serious forgetting at the beginning of
training, and other biases are initialized as 0.

Performance Comparison Table 2 shows the RMSE and
PLCC between predicted endpoint scores and ground truth. The
performance of RMU surpasses LSTM and GRU on both train-
ing set and testing set. Under limited number of samples and
long sequence length over 1700, the fitting ability of RMU
still shows effectiveness and is better than LSTM and GRU as
shown in Figure 4. Thus It can be concluded that RMU can
capture long-range dependencies and fit human assessment data
effectively.

To further validate the effect of positive and negative reinforce-
ment unit, we further show a visualization example of the vari-
ation of reinforcement memories and appraisal state in Figure
3. Along with continuous external stimuli, the two reinforce-
ment memories are decayed or strengthened recursively further
to affect the appraisal state. Specifically, i) At the beginning
of video, the subjective instantaneous QoE is at a low level
and the negative reinforcement memory keeps active. With the
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Figure 3: An example of the continuous variation of subjective instantaneous QoE, two reinforcement memories and appearisal
hidden state on retrospective QoE prediction.

Figure 4: The loss of LSTM, GRU and RMU based methods
during training epochs on retrospective QoE prediction.

gradual improvement of subjective QoE, the positive reinforce-
ment memory is aroused and suppresses negative reinforcement
memory at timestep t1. ii) Between timestep t1 and t2, the sub-
jective instantaneous QoE becomes stable, thus the positive
reinforcement memory achieves balance between forgotten and
new stimuli responses. iii) From timestep t2 to t3, the quality
of video declines sharply, so does the subjective instantaneous
QoE. The stimuli responses turn into negative. Thus the pos-
itive reinforcement memory decays under the effect of forget
gate, instead, the negative reinforcement memory is strength-
ened. iv) After timestep t3 the subjective instantaneous begins
to rise again slowly. The negative reinforcement is attenuated
until suppressed by positive reinforcement memory. This ex-

periment proves that the reinforce and suppression of positive
and negative reinforcement memories are consistent with hu-
man psychological characteristics and experience. Besides, the
predicted appraisal state at final timestep is close to subjective
retrospective QoE which demonstrates that RMU can handle
sequential user assessment tasks effectively.

4 Characteristics Analysis

Architecture LSTM, GRU and RMU are all gated recurrent
networks, thus we compare their architectures and analyze the
effects of different gates here.

The LSTM contains three gates: input gate it, forget gate ft and
output gate ot which influence the hidden state and cell memory
through the following mechanism:

Ct = ft �Ct−1 + it � C̃t, (7)

ht = ot � φ (Ct) , (8)
where Ct represents the candidate memory. The input gate aims
at controlling how much new information should be remem-
bered, while the forget gate controls how much information in
the memory will be discarded. Then the output gate decides
which information will be output from memory.

Compared to LSTM, GRU combines the memory cell and hid-
den state, thus the output gate is discarded. Besides, the reset
gate rt and update gate zt are applied which integrate the effect
of input gate and forget gate:

h̃t = φ (Wh (rt � ht−1) + Uhxt + b) , (9)

ht = zt � ht−1 + (1 − zt) � h̃t. (10)
In this formula, the reset gate controls which information from
the previous hidden state will ignore and reset with the current
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Table 3: The comparison of computational resources of LSTM, GRU and RMU.
Methods Number of Parameters Memory Consumption

LSTM 4
(
n1n2 + n2

2 + n2

)
n1 + 6n2 + 4

(
n1n2 + n2

2

)
GRU 3

(
n1n2 + n2

2 + n2

)
n1 + 4n2 + 3

(
n1n2 + n2

2

)
RMU 3

(
n1n2 + n2

2 + n2

)
n1 + 6n2 + 3

(
n1n2 + n2

2

)

input, and the update gate controls how much information from
the previous hidden state will carry over to the current hidden
state.

Compared to LSTM and GRU, RMU only keeps the forget gate
as it is consistent with human physiological mechanism and
shows significant effectiveness on information control [28, 29].
Different from the memory update mechanisms in LSTM and
GRU that remember external information intentionally, RMU
transfers external information into stimuli responses (Equation
1) and updates memories with the response of stronger stimuli
(Equation 4, 5). Thus, if the new stimuli beyond the old re-
inforcement memories, the memories will be replaced by the
response of stronger stimuli which can be viewed as retroactive
interference. Otherwise, the memories will defeat new stimuli
which can be viewed as proactive interference.

Computational Resource Considering a recurrent unit with
n1 inputs and n2 hidden units, the recurrent units have x ∈ Rn1 ,
{ct,ht,b∗} ∈ Rn2 , W∗ ∈ Rn1×n2 , U∗ ∈ Rn2×n2 . We have ∗ =
{i, o, f , c} for LSTM, ∗ = {r, z, h} for GRU and ∗ = {s, f +, f −}
for RMU. The total number of parameters is shown in Table
3 which indicate that the parameter number of RMU is three
quarters of LSTM and equal to GRU.

After considering the memory consumption of inputs and hidden
units, the required memories of LSTM, GRU and RMU at each
step are also shown in Table 3. Since the value is dominated
by the 4n2

2 term, it could be concluded that the computational
resource of RMU is comparable with GRU, and less than LSTM.

Convergence Ability To compare the convergence ability of
LSTM, GRU and RMU, Figure 5 shows the loss and PLCC
on training set and testing set on VQA task with TLVQM as
basis. The performance of LSTM and GRU are similar. From
the convergence of loss in Figure 5(a) it could be found that
the training of RMU has less disturbance than LSTM and GRU.
Meanwhile, RMU also converges faster than LSTM and GRU
as shown in Figure 5(b). Thus it can be concluded that RMU
has a quicker and smoother convergence than LSTM and GRU.

5 Conclusion

We proposed a Reinforcement Memory Unit (RMU) to simu-
late the cognitive appraisal process. We demonstrated the inner
structure of RMU that involves the decay of the impression,
the response to new stimuli and the appraisal variation under
the competition between positive and negative reinforcement
memories. Additionally, we showed the success of applying
RMU in user-oriented tasks. The experiments on video qual-
ity assessment and quality of experience task demonstrate that
RMU can not only handle long-range dependencies and temporal
modeling, but also estimate the human assessment in cognitive
process.

(a) Loss

(b) PLCC

Figure 5: The loss and PLCC of LSTM, GRU and RMU based
methods during training epochs on VQA task.

Broader Impact

This research proposes a novel RNN to model continuous as-
sessment process, an important step towards the simulation of
human cognitive process. The Reinforcement Memory Unit is a
flexible module which is easily combined with other methods.
It provides a basic tool for many researchers to model time-
varying assessment task and analyze the memory characteristics.
Therefore, this work has the potential for impact in psychology,
sentiment analysis, video understanding, experience modeling,
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and many other sequential tasks.
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