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Video-based Human Action Recognition using
Deep Learning: A Review

Hieu H. Pham, Louahdi Khoudour, Alain Crouzil, Pablo Zegers, and Sergio A. Velastin

Abstract—Human action recognition is an important application domain in computer vision. Its primary aim is to accurately describe
human actions and their interactions from a previously unseen data sequence acquired by sensors. The ability to recognize,
understand and predict complex human actions enables the construction of many important applications such as intelligent
surveillance systems, human-computer interfaces, health care, security and military applications. In recent years, deep learning has
been given particular attention by the computer vision community. This paper presents an overview of the current state-of-the-art in
action recognition using video analysis with deep learning techniques. We present the most important deep learning models for
recognizing human actions, analyze them to provide the current progress of deep learning algorithms applied to solve human action
recognition problems in realistic videos highlighting their advantages and disadvantages. Based on the quantitative analysis using
recognition accuracies reported in the literature, our study identifies state-of-the-art deep architectures in action recognition and then
provides current trends and open problems for future works in this filed.

Index Terms—Human action recognition, deep learning, CNNs, RNN-LSTMs, DBNs, SDAs.
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1 INTRODUCTION

IN recent years, human action recognition continues to
be an increasingly active research in the computer vision

community due to the interest in the development of many
intelligent systems involving surveillance, control, and anal-
ysis. The main goal of this area is to determine, and then
predict what humans do in a video or a sequence of images.
There are many potential applications such as intelligent
surveillance systems [1], [2], [3], human-computer interfaces
[4], [5], health care [6], virtual reality [7], or security and
military applications [8], [9].

1.1 Motivation

An action can be defined as a spatio-temporal sequence of
human body movements. There are many ways to define an
action from the literature [15], [16], [17]. Here, we consider
“an action” as a single motion or complex sequences of
motions performed by a single person or several humans.
Actions are understood as episodic examples of human
dynamics that have starting and ending temporal points.
From the viewpoint of computer vision, given an image
sequence that contains one or many actions, human action
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recognition attempts to label each frame or a sequence of
frames with a corresponding name of an action. In general,
human action recognition is a hierarchical process, where
the lower levels are on human detection and segmentation.
The objective of those levels is to identify the regions of
interest (ROIs) corresponding to static or moving humans in
video. The visual information of actions is extracted at the
next level and represented by features. These features are
then used for recognizing actions. So, recognizing an action
from features can be considered as a classification problem.
Early attempts at human action recognition systems used
independent frame-by-frame analysis methods, e.g. shape
matching techniques [18], while later research has focused
on the spatio-temporal analysis of human motions.

A rapid increase in the number of researchers and tech-
niques focusing on human action recognition has signifi-
cantly improved its accuracy. However, action recognition
is still a challenging problem due to many issues including
the large intra-class difference, fuzzy boundary between
classes, viewpoint, occlusion, appearance, influence of en-
vironments and recording settings [17], in particular from
realistic videos. Moreover, to have a complete human action
recognition system, we need a mating of several disciplines
including psychology and ontology [20], [21].

1.2 Scope of the review, taxonomy and organization

Human action recognition is a big topic in computer vision.
Many different approaches have been published in the last
two decades [22]. In recent years, the advances of computer
vision algorithms, especially machine learning, has opened
up a new direction for researchers. Therefore, it is timely
that progress in this field is reviewed. In this paper, we
focus on surveying publications that use deep learning,
a technique that has won numerous contests in machine
learning including the recognition of human actions. Our

ar
X

iv
:2

20
8.

03
77

5v
1 

 [
cs

.C
V

] 
 7

 A
ug

 2
02

2



2

main goal is to present a review of the work that has been
reported in literature, compare the performance of deep
learning based approaches and other existing work in order
to identify its advantages and limitations. For instance,
we divide deep learning approaches for action recognition
based on their architectures. Many of the most important
models are covered including Convolutional neural net-
works (CNNs), Recurrent Neural Network with Long Short-
Term memory (RNN-LSTMs), Deep Belief Networks (DBNs)
and Stacked Denoising Autoencoders (SDAs). In addition,
some combination architectures will also be discussed.

The review is organized as follows: First, we introduce
related surveys and publicly available datasets in Section
2. Then, we present the key deep learning architectures for
human action recognition in Section 3, including the main
ideas and mathematical models behind each architecture.
Section 4 reviews the state-of-the-art in using deep models
for human action recognition and related tasks. In Section
5, we give a quantitative analysis about the recognition
accuracies of deep learning approaches and discuss their
pros and cons. In that section, we also provide some promis-
ing directions for future research. Finally, we conclude our
paper in Section 6.

2 RELATED SURVEYS AND PUBLICLY AVAILABLE
DATASETS

2.1 Previous surveys
In this section, we first consider related earlier surveys in
human action recognition. Looking at the major conferences
and journals [23], [24], [25], [26], [27], several earlier sur-
veys have been published. Aggarwal and Cai [28] reviewed
methods for human motion analysis focusing on three major
areas including: motion analysis involving human body
parts, tracking a moving human from a single view or
multiple cameras and recognizing human activities from
image sequences. Moeslund and Granum [29] reviewed
papers on human motion capture considering a general
structure for systems analyzing human body motion as a
hierarchical process with four steps: initialization, tracking,
pose estimation and recognition. Wang et al. [30] presented
a survey of work on human motion analysis, in which
motion analysis was illustrated as a three-level process
including human detection (low-level vision), human track-
ing (intermediate-level vision), and behavior understanding
(high-level vision). Moeslund et al. [15] described the work
in human capture and analysis based on 280 papers from
2000 to 2006, centered on initialization of human motion,
tracking, pose estimation, and recognition.

Turaga et al. [16] considered that “actions” are charac-
terized by simple motion patterns typically executed by a
single person while “activities” are more complex and in-
volve coordinated actions among a small number of humans
and reviewed the major approaches for recognizing human
action and activities. Poppe [17] focused on image represen-
tation and action classification methods. A similar survey
by Weinland et al. [31] also concentrated on approaches for
action representation and classification. Popoola and Wang
[32] presented a survey focusing on contextual abnormal
human behavior detection for surveillance applications. Ke
et al. [33] reviewed human activity recognition methods for

both static and moving cameras, covering many problems
such as feature extraction, representation techniques, ac-
tivity detection and classification. Aggarwal and Xia [34]
presented a survey of human activity recognition based on
3D data, especially on using RGB and depth information
acquired by consumer 3D sensors as the Kinect [12] sensor.
Guo and Lai [35] gave a survey of existing approaches on
still image-based action recognition.

Recently, Cheng et al. [36] reviewed approaches on hu-
man action recognition using an approach-based taxonomy,
in which all methodologies are classified into two categories:
single-layered approaches and hierarchical approaches. In
addition, Vrigkas et al. [37] categorized human activity
recognition methods into two main categories including
“unimodal” and “multimodal”. Then, they reviewed clas-
sification methods for each of these two categories. The
survey of Subetha and Chitrakala [38] mainly focused on
human activity recognition and human-object interaction
methods. Presti et al. [39] provided a survey of human
action recognition based on 3D skeletons, summarizing the
main technologies, including both hardware and software
for solving the problem of action classification inferred from
time series of 3D skeletons. In addition, another survey was
presented by Kang and Wildes [40]. It summarized various
action recognition and detection algorithms, focused on en-
coding and classifying features. The latest survey on human
action recognition was published in early 2016 by Herath et
al. [41], in which the authors reviewed methods based on
hand-crafted features and some deep architectures for rec-
ognizing actions. Table 1 summarizes previous surveys on
human action and activity recognition published from 1997
to 2017 and reviewed in this paper. The surveys in the liter-
ature have shown that the common approaches in human
action recognition have focused on using hand-designed
local features such as HOG/HOF [42], [43], SIFT [44], or
SURF [45]. In addition, these approaches are also extended
for more robustness in video processing such as Cuboids
[46], HOG3D [47]. To the best of our knowledge, there is no
review on human action recognition based on deep learning
techniques including comparisons of the performance of
deep learning based approaches with traditional methods
and with each other. Moreover, deep learning is a rapidly
growing field, where novel algorithms appear in very short
time duration and change the way of understanding and
recognizing actions from visual data. That has prompted us
to perform this work. Not only to provide a comparative
analysis about the current state of human action recognition
using deep learning algorithms, but also to point out the
new trends in this field. Our survey will add to the latest
reviews on human action recognition in the literature.

2.2 Benchmark datasets for human action recognition
With the increase in study of human action recognition
algorithms, many datasets have been recorded and pub-
lished for the research community. Much of the progress
in action recognition was demonstrated on standard bench-
mark datasets. These datasets allow us to develop, evaluate
and compare new methods. In this section we summarize
the most important public datasets in the area. From the
early dataset which contained very simple actions and ac-
quired under controlled environments, to recent benchmark
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TABLE 1
Summary of previous surveys and their key points ordered by

year of publication.

Authors Year Main topics / Area of Interest
Aggarwal et al. [28] 1997 Human motion analysis, tracking.
Moeslund et al. [29] 2001 Motion initialization, tracking, pose

estimation, recognition.
Wang et al. [30] 2003 Human detection, tracking, activity

understanding.
Moeslund et al. [15] 2006 Human motion capture, action, and

behavior analysis.
Turaga et al. [16] 2008 Recognizing human behavior.
Poppe [17] 2010 Feature extraction and classification

of human action.
Weinland [31] 2011 Full-body action segmentation, and

recognition.
Popoola et al. [32] 2012 Human motion analysis, abnormal

behavior recognition.
Ke et al. [33] 2013 Human activity recognition from

static and moving camera.
Aggarwal et al. [34] 2014 Human activity recognition from

3D and depth data.
Guo et al. [35] 2014 Human action recognition using

still image.
Cheng et al. [36] 2015 Single-layered and hierarchical ap-

proaches for action recognition.
Vrigkas et al. [37] 2015 Human activity classification.
Subetha et al. [38] 2016 Human activity recognition and

human-object interactions.
Presti et al. [39] 2016 Action classification based on skele-

ton.
Kang et al. [40] 2016 Human action recognition and de-

tection.
Herath et al. [41] 2016 Human action recognition based

on handcrafted features and deep
learning approaches

datasets with thousands of video samples and millions of
frames providing complex actions and human behaviors
from the real world. Table 2 shows the datasets and their
descriptions. To guide readers in the selection of the most
suitable dataset for evaluating their work, we divide bench-
marks into four categories including single action (category
I), human-human interaction, human-object interaction and
behavior (category II), surveillance (category III) and sport
videos and other types (category IV). The complexity of each
dataset depends on its recorded setting. For example, early
benchmark datasets such such as KTH [48] or Weizmann
[49] were made under laboratory conditions for idealized
human actions: all of them are composed of simple and
unrealistic actions and homogeneous background. Many
methods have already achieved very high recognition rates
on these datasets. Performances have increased over the
years and have reached perfect accuracy, e.g., 100% on the
Weizman [49] by Ikizler et al. [71] or Brahnam et al. [72]. In
other words, we can say that the unrealistic datasets have
already already solved by our action recondition systems.
Another dataset named IXMAS has also been produced
under laboratory conditions, but with multiple viewpoints
[50].

After the success of the action recognition systems on
benchmarks produced ”in the lab”, more complex bench-
marks have been released. For instance, MSR Action3D [56],
UT-Interaction [55], Daily-Activity-3D [57], Cornell Activity
CAD-60 [73], Cornell Activity CAD-120 [63], VIRAT 2.0 [60],
SBU-Kinect Interaction [64]. These datasets aim to provide

Fig. 1. Household activities from the ActivityNet [69] dataset.

challenging videos of human action under unconstrained
environments with complex background and illumination
conditions. However, they are not ”real” actions. Then,
many researchers have extracted realistic situations from
movie or sport videos on social networks such as YouTube
to make new realistic benchmark datasets. See for example
Hollywood-1 [51], Hollywood-2 [52], YouTube [53], HMDB-
51 [61], UCF-50 [66], UCF-101 [67], Sports-1M [68], Activ-
ityNet [69]. The general approach in these datasets is to
collect videos from “in-the-wild” sources with many clips
and action classes. It is easy to see that several datasets
are designed with deep learning algorithms in mind due
to their very large scale. For example, in Sports-1M [68]
there are around 1 million YouTube videos belonging to a
taxonomy of 487 classes of sports, ActivityNet [69] provides
more than 200 activity classes with 10,024 training videos,
4,926 validation videos and 5,044 testing videos. Figure 1
shows some actions in a class of the ActivityNet [69] dataset.
These large scale datasets are an important premise for
the development of deep learning methods because they
require a large number of training data and tuning them
on small and out-of-date datasets such as KTH [48] or
Weizmann [49] leads to low performance. Most recently,
Shahroudy et al. introduced NTU RGB+D dataset [70], a
very large-scale RBD-D dataset for human action recog-
nition. The NTU RGB+D dataset contains more than 56
thousand video samples, 4 million frames with 60 different
action classes and performed by 40 different subjects. To
our best knowledge, this is the newest dataset for action
recognition tasks. Some samples of RGB, depth, joints, and
IR image are shown in Figure 2. Experiments on realistic
human action datasets have so far given limited results
specially when dealing with a large and varied range of
actions (e.g., table 3 shows recognition results methods on
the HMDB-51 [61] dataset). Therefore, the current problem
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TABLE 2
Some popular datasets for human action recognition (ordered by year of publication).

Dataset (category) Author Year # Classes Description
KTH Schuldt et al. [48] 2004 6 Walking, jogging, running, boxing,

(I) hand waving, and hand clapping.

Weizman Gorelick et al. [49] 2005 10 Walk, run, jump, gallop sideways,
(I) bend, one-hand wave, two-hands wave,

jump in place, jumping, jack skip.

IXMAS Weinland et al. [50] 2006 13 Check watch, cross arms, scratch head,
(I) sit down, get up, turn around, walk,

wave, punch, kick, point, pick up, etc.

Hollywood-1 Laptev et al. [51] 2008 8 Answer phone, get out car, hand shake,hug
(II) person, kiss, sit down, sit up, stand up.

Hollywood-2 Marszalek et al. [52] 2008 12 Answer phone, drive car, eat,
(II) fight person,hug person, kiss, run,etc.

YouTube Liu et al. [53] 2009 8 Basketball shooting, volleyball spiking,
(II) soccer juggling, cycling, diving, etc.

MuHAVi Singh et al. [54] 2010 17 Walk turn back, run stop, punch, kick,
(II) shot gun collapse, pull heavy object,

pick up through object, walk fall.

UT-Interaction Ryoo et al. [55] 2010 6 Shake-hands, point, hug, push, kick,
(II) and punch.

MSR Action3D Li et al. [56] 2010 20 High arm wave, horizontal arm wave, hammer,
(II) hand catch, forward punch, high throw, etc.

Daily-Activity-3D Wang et al. [57] 2010 16 Drink, eat, read book, call cellphone,
(II) cheer up, sit still, toss paper, play game, etc.

MSR Action3D Li et al. [58] 2010 20 High arm wave, horizontal arm wave, hammer,
(II) hand catch, forward punch, high throw, etc

Olympic Sports Niebles et al. [59] 2010 16 High jump, long jump, triple jump, pole vault
(IV) discus throw, hammer throw, etc.

VIRAT 2.0 Oh et al. [60] 2011 12 Loading an object to a vehicle, opening a
(III) vehicle trunk, getting into a vehicle, etc.

HMDB-51 Kuehne et al. [61] 2011 51 Smile, laugh, chew, talk,
(II) smoke, eat, drink, etc.

Cornell Activity CAD-60 Sung et al. [62] 2011 12 Rinsing mouth, brushing teeth,
(II) talking on the phone, drinking water, etc.

Cornell Activity CAD-120 Koppula et al. [63] 2012 20 Making cereal, taking medicine, stacking objects,
(II) reaching, moving, pouring, eating, etc.

SBU-Kinect Interaction Kiwon et al. [64] 2012 8 Approach, depart, push, kick, punch,
(II) exchange objects, hug, and shake hands.

LIRIS Wolf et al. [65] 2012 10 Discussion between two or more people,
(II) give an object to another person,

put (take) an object into (from) a box (desk), etc.

UCF-50 Reddy et al. [66] 2012 50 Diving, drumming, fencing,
(IV) tennis swing, trampoline jumping, playing piano, etc.

UCF-101 Soomro et al. [67] 2012 101 Horse riding, hula hoop, ice dancing,
(IV) skiing, skijet, sky diving, etc.

Sports-1M Karpathy et al. et al. [68] 2014 487 Juggling club, pole climbing, tricking,
(IV) foot-bag, skipping rope, slack-lining, etc.

ActivityNet Heilbron et al. [69] 2015 203 Personal care, eating and drinking, household,
(II) caring and helping, working, socializing, etc.

NTU RGB+D Shahroudy et al. [70] 2016 60 Drinking, eating, reading,
(II) punching, kicking, hugging, etc.



5

Fig. 2. Some samples of RGB, depth, skeleton and IR image from the
NTU RGB+D dataset [70].

in action recognition that needs solving by computer vision
community is recognizing complex actions and behaviors on
realistic scenarios. Furthermore, there is also the need to build
cost-effective real-world applications. This explains state-of-
the-art benchmark datasets such as UCF-101 [67], HMDB-
51 [61], Sports-1M [68], ActivityNet [69] and NTU RGB+D
[70]. Researchers who want to evaluate their algorithms on
state-of-the-art benchmark datasets can participate in the
THUMOS challenge [74], a common benchmark for action
classification and detection for computer vision community
from around the world.

Recent developments in low-cost depth sensor technol-
ogy have brought many opportunities for solving human
action recognition tasks. RGB-D and skeleton data allow
better understanding of the 3D structure of human body
motion. Related to RGB-D and skeleton datasets, interested
readers are referred to the recent work of Zhang et al. [75]
and Firman [76]. In the next section, we will present deep
learning-based approaches, one of the most interesting tech-
niques in recent years in this field to answer the challenges
highlighted here.

TABLE 3
Accuracy on the HMDB-51 dataset [61]

Approach Author Year Acc.(%)
RGB + optical flow fusion Wang et al. [77] 2016 62.0

FST + SCI fusion Sun et al. [78] 2015 59.1
Two-stream CNN + SVM Simonyan et al. [79] 2014 59.4
Improved dense trajectory Wang et al. [80] 2013 57.2
W-flow dense trajectories Jainet al. [81] 2013 52.1

Dense trajectory Wang et al. [82] 2013 46.6
TRAJMF Jiang et al. [83] 2012 40.7

Binary ranking models Can et al. [84] 2013 39.0
MIP Kliper-Gross et al. [85] 2012 29.2

GIST 3D Solmaz et al. [86] 2012 29.2
Action bank Sadanand et al. [87] 2012 26.9

C2 Kuehne et al. [61] 2011 23.0
HOG/HOF Kuehne et al. [61] 2011 20.0

3 DEEP LEARNING: A SHORT PRESENTATION

For the sake of completeness, we present this section espe-
cially for readers who might not be very familiar with deep

learning techniques. A full discussion is clearly outside the
scope of this paper. Before discussing deep learning, we
would like to briefly summarize the concept of machine
learning (ML). ML is the branch of algorithms that allows
computers to automatically learn from data. We can use ML
systems for identifying objects in images, detecting spam
emails, understanding text, finding genes associated with a
particular disease and numerous other applications. The pri-
mary goal of ML is to develop general-purpose algorithms
which are able to make accurate predictions in many differ-
ent tasks. In other words, ML algorithms try to match the density
function that produced the data. For example in classification
problems, we need to identify a set of categories C from a
space of all possible examples X . Given any set of labeled
examples (x1, c1), ..., (xm, cm) , where xi ∈ X and ci ∈ C; the
goal of ML is to find a concept F(·) that satisfies ci = F(xi)
for all i. In general, ML algorithms include two main steps.
The first step is to define the representations of the raw
data acquired by sensors, called “feature extraction”. Then,
these features are mapped into labels and called “feature-
to-label mapping”. This process produces an ML model that
can be applied for new unlabeled data. Depending on the
way of learning, (e.g., learn from labeled data or unlabeled
data, learn with feedback or non-feedback), ML methods are
typically classified into four categories including supervised
learning, unsupervised learning, semi-supervised learning,
reinforcement learning.

Deep Learning (DL) is a class of techniques in machine
learning. In 2012, DL became a major breakthrough in
computer vision after the authors of AlexNet [88] achieved
record performance on a highly challenging dataset named
ImageNet. AlexNet [88] was able to classify 1.2 million high-
resolution images from 1000 different classes with the best
error rate. In general, DL methods are machine learning
methods that consists and operate on multiple (multi-layer)
levels of representation.

Various DL architectures have been proposed over the
years (see Table 4) and have been shown to produce state-
of-the-art results on many tasks, not least within human
action recognition. In this section, we describe the most
important DL architectures for human action recognition
including Convolutional Neural Networks (CNNs or Con-
vNets) [92], [93], [94], [95], Recurrent Neural Networks
with Long Short-Term Memory (RNN-LSTMs) [96], Deep
Belief Networks (DBNs) [97], and Stacked Denoising Au-
toencoders (SDAs) [98].

3.1 Convolutional neural networks (CNNs)

After obtaining breakthrough results in object recognition
with AlexNet [88] for the ImageNet project in 2012, CNNs
become one of the most important deep learning models
and play a dominant role for solving visual-related tasks.
A CNN is a type of artificial neural network, designed for
processing visual and other two-dimensional data. The
main benefit of this model is that it operates directly on the
raw data without any hand-crafted feature extraction. The
idea of CNNs was firstly presented in 1980 by Fukushima
[92] inspired by the structure of the visual nervous
system [105]. CNN models continued to be proposed and
developed e.g. by Rumelhart et al. [93], LeCun et al. [94]
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TABLE 4
Popular deep learning architectures.

Architecture Main articles
CNNs Fukushima (1980) [92];

Rumelhart et al. (1986) [93];
LeCun et al. (1989) [94];
Krizhevsky et al. (2012) [95]
Szegedy et al. (2015) [99]
Simonyan et al. (2014) [100]
He et al. (2015) [101]

RNN-LSTMs Hochreiter and Schmidhuber [96]
DBNs Hinton et al. [97]
DBMs Salakhutdinov et al. (2006) [102]
Sparse Coding Olshausen and Field (1996) [103];

Lee et al. (2006) [104]
SDAs Vincent et al. (2008) [98]

and Krizhevsky et al. [95]. There are three key ideas behind
a CNN architecture including ”local connections”, ”shared
weights”, and ”pooling”.

Local connections: In regular neural networks, each
hidden layer consists of a set of neurons, where each
neuron is fully connected to all neurons in the previous
layer (Figure 3a). This model does not work efficiently when
the input vector has a hight dimension. To make this more
efficient, the idea is to reduce the number of connections
between the first hidden layer to the input or each hidden
layers to each other. Given an image as an input vector,
every input pixel is not connected to every neuron in the
first hidden layer. Instead, neurons in the first hidden layer
are connected to localized regions of the input image. This
sub-region is called the “local receptive field”. For each local
receptive field, we can identify a neuron in the first hidden
layer as shown in Figure 3b.

Shared weights: For standard neural networks such as
multilayer perceptrons [107] (MLP), the neurons of the first
layer are computed by the dot product function of input
vector ~x and its weights ~w where many different wi values
are used. In a CNN, we use a technique called “weight
sharing” which is able to reduce the number of parameters
wi. Specifically, in weight sharing, some of the parameters
in the CNN model are constrained to be equal to each other
[108]. Mathematically, the weight sharing technique can be
performed using a convolution operator. In this process, we
apply the filters to many local receptive fields in the input
image, a “feature map” is generated by sliding a filter over
the input matrix and computing the dot product. We can
use many different filters and each of them will produce
one feature map.

Pooling: “Pooling” also called “subsampling” is a sample-
based discretization process. Its main goal is to reduce the
dimensionality of the input representation while retaining
the most important information in feature maps. This
process reduces the computational cost and at the same
time it provides a form of translation invariance. Max-
pooling is performed by applying a max filter, it computes
the max value of a selected set of output neurons from the
feature map in the convolutional layer.

These concepts above can now be put together to form
a complete CNN architecture that consists of a series
of stages. The first few stages are structured by one
convolutional layer and one max-pooling layer. These
layers are followed by one or more fully connected layers at
the top of the model. In a CNN, the convolution layer plays
the role of a local feature extractor while the max-pooling
layer merges semantically similar features into one. The last
layer is a standard neural network working as a classifier
(or a standard classifier such as an SVM). So the network
learns a set of good features (c.f. with arbitrarily chosen or
hand-crafted features) to use with a classifier. To prevent
over-fitting and train the CNNs faster, Rectified Linear
Units (ReLUs) and Dropout Layers [109], [110] have also
been used. However, we do not discuss these two layers
here as it is beyond the scope of this paper.

3.2 Recurrent Neural Networks with Long-Short Term
Memory (RNN-LSTMs)
Recurrent Neural Network (RNN) is a good choice to model
the complex dynamics of various actions in video because
its architecture allows to store and access the long range
contextual information of a temporal sequence. The main
difference between an RNN and a multilayer perceptron is
the presence of cyclical connections (Figure 4). This way, an
RNN can learn to map from the entire history of previous
inputs to each output [114]. However, they are very difficult
to train due to the “vanishing gradient problem” [115], [116].
The Long Short-Term Memory (LSTM) approach [96] has
been proposed to solve these problems. Figure 5 describes
the LSTM’s structure and its information flow.

RNNs not only are able to make use of previous context
but also able to exploit future context as well. Bidirectional
RNNs [117] has been proposed to do this by processing data
in both directions with two separate hidden layers. All the
information are then sent forwards to the same output layer.
By replacing the nonlinear units in the Bidirectional RNNs
architecture by LSTM cells, we can obtain Bidirectional-
LSTM as shown in Figure 6. In subsection 4.2, we will see
how to apply Bidirectional-LSTMs to model and recognize
human actions in video.

3.3 Deep belief networks (DBNs)
DBNs [97] have been used successfully for many recognition
tasks such as handwritten digits recognition [118], object
recognition [119], or modeling human motion [120]. DBNs
are probabilistic generative models that are constructed
by stacking several restricted Boltzmann machines (RBMs)
[121], [122] (Figure 7b). RBMs are shallow networks contain-
ing two layers: one layer of “visible” units that represents
the input data and one layer of “hidden” units that learns
to represent features. In an RBM architecture, all visible
units of the visible layer are connected to all hidden units
of the hidden layer, but there are no connections between
two units of the same layer (Figure 7a). The standard
type of RBM has binary-valued hidden and visible units,
meaning that each unit can only be in one of two states,
“0” or “1”. The probability of setting a unit to “1” is a
sigmoid function of its bias, weights on connections, and
the state of other units. More detail, given a binary RBM
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(a) (b)

Fig. 3. (a) Illustration of a fully-connected model in a regular 3-layer neural network. (b) Illustration of the local receptive field in the input neurons
[106].

(a) (b)

Fig. 4. Illustration of: (a) a multilayer perceptron and (b) a recurrent neural network.

it = σ(Wxix
t +Whih

t−1 +Wcic
t−1 + bi)

f t = σ(Wxfx
t +Whfh

t−1 +Wcfc
t−1 + bf )

ct = f tct−1 + ittanh(Wxcx
t +Whch

t−1 + bc)
ot = σ(Wxox

t +Whoh
t−1 +Wcoc

t + bo)
ht = ottanh(ct)

Fig. 5. Diagram of an LSTM unit [114]. A typical LSTM unit contains
an input gate it, a forget gate f t, an output gate ot, an output state ht
and a memory cell state ct. The information flow is described by the
above equations where σ is the sigmoid activation; xt is the input to
the network at time t; all the matrices W are the connection weights
between units. � denotes element-wise product; and ut denotes the
modulated input function.

Fig. 6. Architecture of a Bidirectional-LSTM. The circular nodes repre-
sent LSTM cells.

with m visible units V = {vi}, i ∈ (1, ...,m) and n hid-
den units H = {hj}, j ∈ (1, ..., n), where vi and hj are
the binary states of visible unit i and hidden unit j or
(vi, hj) ∈ (0, 1)m+n, the joint probability distribution for
visible and hidden units is defined as [123]:

P (vi, hj) =
1

Z
e−E(vi,hj) (1)

where Z is the partition function computed by summing
over possible pairs of (vi, hj):

Z =
∑
vi,hj

e−E(vi,hj) (2)
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and E(vi, hj) is the energy function given by:

E(vi, hj) = −
m∑
i=1

aivi −
n∑

j=1

bjhj −
∑
i,j

vihjwi,j . (3)

In function 3, ai and bj are biases, wi,j is the weight between
vi and hj units. In a binary RBM model, there are no direct
connections between visible units nor between hidden units.
So, given the input data v through the visible units, the
binary state of each unit hj is 1 with probability:

p(hj = 1|v) = σ(bj +
∑
i

viwi,j). (4)

Given a hidden vector h, we can also reconstruct the states
of a visible unit by:

p(vi = 1|h) = σ(ai +
∑
j

hjwi,j) (5)

where σ(x) is the sigmoid function with form:
1

1 + e−x
.

For estimating the weights wi,j and biases ai, bj , we use:

∂ log p(v)
∂wi,j

= 〈vihj〉data − 〈vihj〉model (6)

∂ log p(v)
∂ai

= 〈vi〉data − 〈vi〉model (7)

∂ log p(v)
∂bj

= 〈hj〉data − 〈hj〉model (8)

The conditional distribution p(hj |v) in equation 4 shows
that the hidden layer can be constructed by updating the
state of units hj when given a data vector v. In practice,
since all units in the hidden layer are conditionally inde-
pendent given the visible layer, the state of each unit can
be computed by using block Gibbs sampling [97]. This
technique allows to update the state of all the units in
parallel. As shown in Figure 7b, a DBN could be viewed
as a stack of several RBMs. Therefore, training a DBN is
performed through training each of its RBM. The work of
Hinton et al. [97] provided an efficient procedure for training
DBNs. In this process, the units of the current hidden layer
are regarded as visible layer for the next hidden layer and
training a DBN starts from the lowest RBM. The procedure
is repeated layer-to-layer until the highest RBM is reached
and known as the “greedy layer-wise training strategy”. Each
component (an RBM) of the DBNs acts as a feature extractor
on inputs. It extracts “low level” features at the bottom
hidden layer, as well as more “abstract” features at the higher
hidden layers. To improve the performance of DBNs for
classification tasks, the DBN model could be extended by
adding a soft-max layer on the top of its architecture.

3.4 Stacked Denoising Autoencoders (SDAs)
SDA is another important technique in DL. It is an extension
of a classical autoencoder [124] and was first introduced
in 2008 by Vincent et al. [98]. The idea of an autoen-
coder is shortly described here: Given a set of data points
x = {x1, x2, ..., xm}, map x to another set of data points
y = {y1, y2, ..., yn} where n < m. From the compressed set
y, we reconstruct a set of x̃, which approximates the original

data x. The mapping x 7→ y is called “encoding” and the
mapping y 7→ x̃ is called “decoding”. Formally, the processes
of encoding and decoding are performed as follows:

y =W1xi + b1 (9)

x̃ =W2yi + b2. (10)

where W1 ∈ Rm×m,W2 ∈ Rn×n. Figure 8 illustrates the
network architecture of a typical autoencoder. To achieve the
goal of reconstructing x̃ to approximate the original data x,
we minimize the difference between x and x̃ by minimizing
the function:

J(W1, b1,W2, b2) =
m∑
i=1

(x̃i − xi)2. (11)

From equations 10 and 11, we have:

J(W1, b1,W2, b2) =
m∑
i=1

(W1W2xi−1)xi+b1W2+b2)
2. (12)

SDAs are constructed by stacking several autoencoders
together to create a “deep” architecture where the weights
are fine-tuned with a back-propagation algorithm [125]. The
”unsupervised pre-training” of each autoencoder is performed
in a greedy layer by layer manner. Once the a SDAs is learnt,
its output will then be used as the input representation of a
supervised learning algorithm for recognition tasks.

4 HUMAN ACTION RECOGNITION APPROACHES
BASED ON DL
This section reviews current studies of deep learning on hu-
man action recognition. We categorized publications based
on the proposed taxonomy, including: human action recog-
nition based on CNNs (subsection 4.1 ); human action
recognition based on DBNs (subsection 4.3 ); human action
recognition based on SDAs (subsection 4.4); human action
recognition based on RNN-LSTMs (subsection 4.2), and
some other architectures (subsection 4.5).

4.1 Human action recognition based on CNNs
Many works on human action recognition and related tasks
based on DL models have been proposed and reported in
the literature. Among them, one of the most used deep
models is CNNs (see subsection 3.1) and its extensions.
Researchers have successfully applied CNN-based architec-
tures for many visual tasks such as people detection and
tracking [126], [127], [128], pose estimation [129], [130], [131],
[132], [133], [134], action recognition [79], [135], [136], [137],
[138], [139], [140], [141], [142], [143], [144], [145], [146], [147],
[148], [149], [150], [151], [152], [153], [154], [155], [156], [157],
[158], event detection and crowded scene understanding
[159], [160], [161], [162]. Early work on applying CNNs
was made in 1995 by Nowlan et al. [129] for hand tracking
and recognizing. In their work, a CNN model is proposed
to locate the hand and recognize whether it is close or
open with accuracies of 99.7% and 99.1% on a dataset of
900 video images from 18 different subjects for each task.
However, the complex structured backgrounds of images
may have a significant impact on the recognition accuracy.
Starting from the work of Fukushima [92], Giese and Poggio
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(a) (b)

Fig. 7. (a) An example of a RBM with m visible units and n hidden units. (b) The schematic overview of a deep belief networks composed of d
RBMs. W1,W2,...,Wh are the weights matrices between the connections.

Fig. 8. The typical structure of an autoencoder.

[135] proposed a hierarchical feedforward architecture for
the recognition of biological movements such as walking,
running or various full-body actions. In a related paper,
Sigala et al. [136] also developed a hierarchical model for
detecting a walker based on the use of the neural detectors
that are able to extract motion features with different levels
of complexity. Jhuang et al. [137] proposed an extension
model from the work of Giese and Poggio [135] for the
recognition of actions from video sequences (Figure 9).

In 2007, Kim et al. [138] used a modified CNN model
and a weighted fuzzy min-max neural network (WFMM)
[163] for human action recognition. In their paper, the CNN
generates a set of feature maps from the pretreated data
and a WFMM [163] plays the role of a classifier. Normally,
the CNNs have been primarily applied on two-dimensional
data (2D-CNN) in which these models compute features
from the spatial dimensions only. In order to exploit the
temporal information of human motion, Ji et al. [139] pre-
sented a novel three-dimensional convolutional neural net-
work (3D-CNN) architecture for recognizing human action.
This architecture used 3D kernels in the convolution stages
to extract motion features from both spatial and temporal

dimensions. This improvement can be applied to contiguous
frames in video to extract multiple features.

Experiments on TRECVID-2008 [164] datasets have
shown that this model outperforms the frame-based 2D-
CNN model and two other methods proposed by Lazebnik
et al. [165] and Yang et al. [166] which follow the state-of-the-
art bag-of-words (BoW) [167]. Motivated by Ji et al. [139],
Wang et al. [140] has also used 3D-CNN for building a deep
architecture for human activity understanding using RGB-
D data. In addition, Tran et al. [142] investigated in detail
the 3D-CNN model and showed that it outperforms the 2D-
CNN in modeling human motion information on various
recognition tasks. Moreover, Tran et al. [142] found that the
best kernel length for 3D-CNN is 3 × 3 × 3 size. Varol et al.
[168] also used 3D-CNN for learning action representation
in video but with long-term temporal convolutions at the
input layer. This study demonstrated that this solution can
significantly improve the performance on state-of-the-art
action recognition datasets. A visible disadvantage of 3D-
CNN model is the increasing number of parameters of the
network. To reduce the complexity of the model, Sun et
al. [78] proposed a factorized spatio-temporal convolutional
network that factorizes the 3D convolution kernels into 2D
spatial kernels and followed by 1D temporal kernels.

After finding more efficient ways to train CNNs using
GPU computing [169] and the success of AlexNet [88] in
the ILSVRC-2012 competition, much work on human action
recognition has been published. Ijjina et al. [170] recognize
human actions in videos by using the standard action bank
[171] as a feature detector and a CNN as a classifier. Gkioxari
et al. [132] gave state-of-the-art performance for predicting
actions on the PASCAL VOC 2012 detection and action train
set [172] by using the same CNN architecture as AlexNet
[88] and extracting region proposals on input image with
R-CNN technique [173]. Chéron et al. [134] designed a new
CNN-based pose descriptor for human action recognition
from RGB and optical flow information. Two distinct CNNs
with an architecture similar to AlexNet [88] have been used.

The two-stream convolutional network proposed by Si-
monyan and Zisserman [79] has shown strong performance
for human action recognition in videos. This model is a
two-stream architecture including the spatial stream and
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Fig. 9. The framework for recognizing human action proposed by Jhuang et al. [137]. Given a gray-value video sequence as input data, the S1

stage locates the object in image frame by using spatio-temporal filters. Each C1 unit is computed by applying a local max over for each S1 unit
for down-sampling. From the C1 stage, we perform a template matching operation for identifying intermediate-level features of the model. The C2

stage is constructed by computing the global max over each S2 unit. The high-level features are extracted in S3 through a template matching and
the C3 features are computed from S3 using the same way like computing C2. The last stage is a linear multiclass SVM classifier that is able to
recognize the actions using the C3 features as input.

the temporal stream where each stream is executed by a
CNN. The first stream recognizes actions from a single
frame, while the second recognizes actions from motion
information of multi-frame optical flow. These two streams
are then combined for the classification task. The experi-
mental results show that using multi-frame optical flow for
training model allows to achieve very good performance
with limited training data. This architecture has been seen
as the most effective approach of applying DL to action
recognition with limited training data. Inspired by the work
of Simonyan and Zisserman et al. [79], many different au-
thors have developed two-stream convolutional networks
for solving action recognition problems, e.g., Wang et al.
[174], [175], [176], Xiong et al. [177]. Unlike the two-stream
architecture developed by Simonyan and Zisserman et al.
[79], Liu et al. [145] added a module called stCNN (Spatio-
Temporal Convolutional Neural Network) to the standard
CNN model for exploiting motion and content-dependent
features concurrently. Experiments on KTH [48] and UCF-
101 [178] datasets showed that the recognition accuracy for
motion-content combined was better when compared with
motion alone. Singh et al. [148] addressed the problem of
understanding egocentric activities by using a three-stream
CNN architecture. More specifically, the authors proposed
a framework for the recognition of wearer’s actions. First,
a CNN model called “Ego Convnet” is trained for learning
features from egocentric cues including hand mask, head
motion, and a saliency map. Then, Ego Convnet is extended
by adding two more streams corresponding to spatial and
temporal streams as the model proposed by Simonyan and
Zisserman et al. [79]. Experiments showed that the model
with the Ego Convnet stream alone achieved state-of-the-art
accuracy on different egocentric videos datasets. In addition,
the three-stream architecture.

In a recent study, Wang et al. [77] divided an input video
consisting of t frames X = {x1, x2, ..., xt} into two sets: the
precondition state frames Xp = {x1, ..., xzp} and effect state
frames Xe = {xze , ..., xt}. The Siamese network architecture

has been designed for learning action features. In fact, this is
a two-stream CNN models where the first stream is trained
on the precondition state frames and the second is trained
on the effect state frames as shown in Figure 10.

Advances of 3D sensors such as Microsoft Kinect [12]
brings up new opportunities in computer vision, even
though they tend to be limited to small indoor environ-
ments. RGB-D data is able to provide additional informa-
tion about human motion. Take advantage of depth maps
provided by Kinect sensors, Wang et al. [179] proposed the
use of CNNs to learn actions from sequences of depth maps.
Given a sequence of depth maps, 3D points are created
and three Depth Motion Maps (DMMs) are constructed by
projecting the 3D points to the three orthogonal planes.
Three CNNs are constructed based on AlexNet architecture
[88] to extract motion features from each DMM and then
classify them into classes. This study is extended in [180]
and [143]. State-of-the-art results have been shown on MSR
Action3D Dataset [56], an extension of the MSR Action3D
Dataset, UTKinect-Action Dataset [181], and MSR-Daily-
Activity3D Dataset [57]. Dobhal et al. [144] also used depth
information and a CNN for recognizing human activities.
Given a sequence of 2D images, background subtraction is
performed. All binary frames are then stacked into a single
image called Binary Motion Image (BMI) which contains
the flow of the action and is used as the input for the
CNN in training and testing phases. The CNN’s architecture
is same the architecture introduced by LeCun and Bengio
[182]. Their approach is extended for extracting BMI from
3D depth maps and achieved competitive performance on
Weizmann [49] and MSR Action3D Dataset [56]. The key
ideas behind CNNs such as “local connections” or “shared
weights” and the improvements on GPU computing technol-
ogy have enabled CNNs to train on very large scale datasets.
Karpathy et al. [183] studied the performance of CNNs by
trying to predict and classify on Sports-1M [184] dataset
which consists of more than one million sport videos. Mul-
tiresolution CNN architecture with two separate streams of
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Fig. 10. The Siamese network architecture proposed by Wang et al. [77].

processing has been proposed for reducing training time.
The results show that CNNs are capable of learning power-
ful features and significantly outperform the feature-based
baseline. Figure 11 shows some examples of predictions on
Sports-1M dataset [184].

In addition to RGB-D information, the acquisition of the
skeleton data has become easier with the support of RGB-
D sensor. Mo et al. [147] presented a deep model which
combines a CNN with a multilayer perceptron [107] for
recognizing the human activities based on skeleton data
acquired from a Kinect sensor [12]. The method achieves
a recognition accuracy of 81.8% on the CAD-60 dataset [73].
Skeleton data has been used by Wang et al. [185]. Firstly, the
spatio-temporal information of the joint trajectories is en-
coded into color images. Then, a CNN based on the AlexNet
architecture [88] is used to learn the color distribution and
to classify actions. The idea of encoding the spatio-temporal
information of a skeleton sequence into color texture images
and using a standard CNN architeture such as AlexNet [88]
can also be found in the work of Hou et al. [186].

Among the local space-time features, trajectories are one
of the best ways to describe motion [80], [187], [188]. Wang
et al. [141] combined the benefits of improved trajectories
[80] and two-stream CNN architecture from the work of
Simonyan and Zisserman et al. [79] for designing an effec-
tive representation of video feature called “Trajectory-Pooled
Deepconvolutional Descriptor (TDD)”. The experimental re-
sults show that this framework has obtained state-of-the-art
performance for recognizing action on the UCF-101 [178]
and HMDB51 datasets [189]. Inspired by the work of Wang
et al. [141], Cao et al. [146] proposed a novel 3D deep convo-
lutional descriptor based on joint positions named “Joints-
Pooled 3D Deep Convolutional Descriptors (JDD)”. Promising
experimental results on sub-JHMDB [190], Penn Action
[191], and Composable Activities [192] have shown that
using joint-based descriptor with deep model is an effective
and robust way for understanding human action. A new
powerful and simple representation of videos for action
recognition based on DL, especially CNNs, called “Dynamic
Image” has been presented in the work of Bilen et al. [193].
The idea of this paper is summarizing the video content in a
single standard RGB image, then using a pre-trained CNN
model such as AlexNet [88] on a dataset of dynamic images

with fine-tuning technique. The authors also proposed to
train CNN from scratch by generating more dynamic im-
ages from video segments. Experiments on HMDB-51 and
UCF-101 datasets shown the effectiveness of the “Dynamic
Image” representation.

Very deep convolutional neural networks such as VG-
GNet [100], GoogLeNet [99] have achieved significant suc-
cess for object recognition and classification tasks. Several
authors started to exploit these architectures for action
recognition problems. Wang et al. [194] introduced very
deep two-stream CNNs for action recognition based on
VGG-16 (VGGNet C with 13 convolutional layers and 3
fully-connected layers) and GoogLeNet [99] with 22-layers
network. Feichtenhofer et al. [195] proposed a CNNs-based
novel architecture for spatio-temporal fusion of two stream
networks in which the deep CNN model VGG-M-2048 [196]
and very deep model VGG-16 [100] have been used. The
performance comparison between deep (VGG-M-2048) and
very deep (VGG-16) models on UCF-101 and HMDB-51
datasets shown that the use of deeper networks improves
performance. In addition, GoogLeNet [99] and VGGNet
[100] have also been used to design the two-stream CNNs
in the work of Wang et al. [197]. Fernando et al. [198]
trained VGG-16 [100] on HMDB-51 [189], UCF-101 [178]
and Hollywood2 [199] datasets for obtaining VGG-16 CNN
features. The CNN feature vectors are then encoded by
a method called ”hierarchical rank pooling”. This method
allows encoding the temporal dynamics of a video sequence
for action recognition. A video sequence is encoded at
multiple levels in which the output of the each level is a
sequence of vectors which captures higher-order dynamics
of its previous level. The final representation can be used to
learn an SVM classifier for activity recognition as descrip-
tors.

Very recently, the residual learning framework (ResNets)
[101], a state-of-the-art CNN and the deepest CNN model
at the moment has been exploited for human action recog-
nition by Feichtenhofer et al. [200]. In the main ResNet
paper [101], authors have suggested different architectures
of ResNet with 18, 34, 50, 101, 152, and 1202 layers. The
underlying network with 50 layer ResNet has been used in
the work of Feichtenhofer et al. [200] to design a two-stream
network. Experiments shown a state-of-the-art performance
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Fig. 11. Action prediction on Sports-1M dataset [184]. The first row indicates ground truth label and the bars below show model predictions. Green
and red distinguish correct and incorrect predictions, respectively. [183].

Fig. 12. The framework for action recognition proposed by Wang et al. [141]. Given an input video, the model extracts trajectories. Multiscale
convolutional feature maps are extracted by a CNN at the same time. Trajectory Pooled deep-Convolutional Descriptors (TDDs) are then estimated
from a set of improved trajectories and convolutional feature maps.

TABLE 5
Performance comparison of deep model VGG-M-2048 with very

deep model VGG-16 on the UCF-101 [178] and HMDB-51 reported
by Feichtenhofer et al. [195].

Dataset UCF101 HMDB51
Model VGG-M-2048 VGG-16 VGG-M-2048 VGG-16
Spatial 74.22% 82.61% 36.77% 47.06%
Temporal 82.34% 86.25% 51.50% 55.23%
Spatio-
Temporal

85.94% 90.62% 54.90% 58.17%

on UCF-101 [178] and HMDB51 [189] datasets.
CNNs are also applied for solving more complex tasks

related to human action recognition such as event detec-

tion, crowd analysis or behavior prediction. Xu et al. [201]
proposed a CNN-based approach for event detection on the
large scale video datasets, i.e., TRECVID MEDTest 13 [?] and
TRECVID MEDTest 14 [?]. The encoding technique is used
for improving the performance and the video representation
is compressed for reducing the computation costs. Gan et al.
[159] presented a CNN-based framework called “DevNet”
for detecting events in videos. Shao et al. [160] built a
large-scale crowd dataset called WWW Crowd Dataset and
designed a CNN model to learn and recognize attributes
prediction in crowd video. A similar study can be found in
the work of Castro et al. [161]. Xiong et al. [162] presented
a CNN-based approach which contains two-channels CNN
for recognizing complex events from static images. This
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Fig. 13. Deep learning framework combining CNN and RNN-LSTM for
action recognition proposed by Donahue et al. [205]

system is able to detect the objects, predict events, and has
given a state-of-the-art result on a very large dataset.

4.2 Human action recognition based on RNN-LSTMs
As pointed out in subsection 3.2, the main advantage of
RNN-LSTMs is the capacity to model the long-term con-
textual information of temporal sequences. This advantage
puts RNN-LSTM at one of the best sequence learners for
time-series data including visual information of human
action. Grushin et al. [202] has demonstrated the robustness
of the LSTM network’s performance on the human action
recognition task with the hand-crafted feature HOF [43].
As discussed in subsection 4.1, CNNs has been shown its
effectiveness in learning features from raw data. Therefore,
the works of Baccouche et al. [203], Ng et al. [204], Donahue
et al. [205], Giel et al. [206], Sharma et al. [207], Ibrahim et
al. [208], Singh et al. [209], Li et al. [210], Wu et al. [211],
Wang et al. [212], Chen et al. [213] tackle the question of
understanding human actions by combining a CNN and
an RNN-LSTM network. The general idea of these papers
is to use the standard CNN models such as AlexNet [88],
VGGNet [100], or GoogLeNet [99] for extracting motion
features from input video. Then, RNN-LSTM network is
connected to the output of the CNN to classify sequences
using learned features. Figure 13 shows an example of
using CNN and RNN-LSTM for human action recognition
from the work of Donahue et al. [205] . While all the work
above just uses RNN-LSTMs as a sequence classification,
several studies have proposed the use of RNN-LSTMs as
an end-to-end learning framework for skeleton based action
recognition. E.g., the work of Du et al. [214], Song et al.
[215], Zhu et al. [216], Li et al. [217], Liu et al. [218]. RNN-
LSTMs learn directly motion features and classify them into
classes from 3D human-skeleton sequences provided by
depth sensors. Experiments on the state-of-the-art datasets
demonstrate the effectiveness of these methods. In another
study of Mahasseni et al. [219] used a parallel architecture to
recognize actions with multi-source data. A RNN-LSTM is
trained in unsupervised manner on 3D human-skeleton se-
quences. In the same time, another RNN-LSTM with a CNN
is trained on 2D videos. The outputs are then compared to
improve the ability of the system.

Fig. 14. The parallel deep learning architecture with RNN-LSTM pro-
posed by Mahasseni et al. [219].

4.3 Human action recognition based on DBNs

DBNs have become popular DL models after the key paper
by Hinton et al. [97] presented in 2006. A comparative
evaluation by Tang [220] showed that DBNs seem ideal
for semi-supervised learning, in which we do not need
much labeled data. Early work on DBNs was successfully
applied for handwritten digits recognition [97] and object
recognition [119], [221]. In 2007, Taylor et al. [120] extended
the RBM model by connecting two more visible layers to the
hidden layer for modeling human motion. The new model,
called the conditional RBM (cRBM) allows to find a single
set of parameters that simultaneously capture several dif-
ferent kinds of motion after training on skeleton data. Then,
the authors successfully constructed a DBN from cRBMs.
Experiments on two motion datasets have demonstrated
that this model is able to effectively learn different kinds
of motion, as well as the transitions between these kinds.

In another research, Zhang et al. [222] used a modified
DBN model for recognizing human actions in real-time from
skeleton data. To achieve this goal, the authors used cRBMs
as proposed by Taylor et al. [120] to create the new DBN
architecture with two hidden layers as shown in Figure 15.
The proposed model is trained and tested by using the skele-
tal representation of MSR Action3D [56] and MIT datasets
[223]. Results show that the recognition accuracy depends
on the number of frames. For example, on the MIT datasets
[223], the accuracy when using one frame is 98.34%. Mean-
while, when the number of frames is more than 30, accuracy
can reach 100%. Foggia et al. [224] proposed a DBN-based
method for recognizing human actions with depth images.
A DBN model is constructed as shown in Figure 16. Three
types of well-known feature including the Average Depth
Image (ADI), the Motion History Image (MHI), and the
Depth Difference Image (DDI) are computed and encoded as
low-level data representation in the first layer. The high level
representation is then extracted by the proposed model for
recognition task. The achieved results on MIVIA [225] and
MHAD [226] datasets are very promising. Ali and Wang
[227] presented a framework based on DBN to recognize
and identify human actions. To speed up learning time, the
Fast Fourier Transform (FFT) [228] technique is used for
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Fig. 15. (a) The cRBM model proposed by Taylor et al. [120]. (b) A modified DBN model designed by Zhang et al. [222].

Fig. 16. An overview of the DBN architecture for human action recog-
nition proposed by Foggia et al. [224]. Three derived images (ADI,
MHI,DDI) are computed from depth images and feed into the first level of
the network. A more abstract representation is obtained at higher level.
Finally, the classification is done using a feed-forward neural network.

converting images to the frequency domain. The model is
first pre-trained with KTH dataset [48] and then is used
for predicting actions. Experiments showed that the pro-
posed model is better than all published approaches in the
literature. More details about this comparison are shown
in Table 6. We can also find in the literature some other
human action recognition applications based on DBNs. For
example, Nam et al. [235] employed a DBN for developing
a real-time human activity recognition using 3D joint posi-
tions from RGB-D sensor. The achieved results from these
studies confirmed that DBN-based approaches are a good
choice for many human action recognition problems.

4.4 Human action recognition based on SDAs

As pointed out in subsection 3.4 SDAs can be trained to
reconstruct the input from a corrupted version of it. The first

TABLE 6
Average recognition accuracy of human action on KTH [48]

dataset

Approach Accuracy
DBN by Ali et Wang [227] 94.3%
ISA + Norm-thresholding by Le et al. [229] 93.9%
Harris3D [230] + HOF [43] by Wang et al. [231] 92.1%
Harris3D [230] + HOG/HOF [43] by Wang et al. [231] 91.8%
HMAX [137] 91.7%
3D CNN [139] 90.2%
Cuboids [46] + ISA [230] 90.0%
GRBM [232] 90.0%
Dense + HOF [43] by Wang et al. [231] 88.0%
pLSA [233] 83.3%
Volumetric [234] 62.7%

Here, accuracy (ACC) is computed as: ACC =
TP + TN

N
.

successful application based on the encoder-decoder model
is presented in 2007 by Huang et al. [236] for object recog-
nition tasks. A few years later, based on the principle of the
model of Huang et al. [236], Baccouche et al. [237] proposed
a solution for learning of sparse spatio-temporal features
based on autoencoder scheme. Experiments on KTH [48]
and GEMEP-FERA datasets [238] showed the best results
when compared to methods using hand-crafted features.
Some other autoencoder-based approaches have also been
proposed in the works of Wu et al. [239], Xie et al. [240],
Hasan et al. [241], and Budiman et al. [242]. For instance,
Wu et al. [239] constructed a 3-layer SDA architecture for
human action recognition using skeleton information cap-
tured by Kinect [12] sensor. Budiman et al. [242] have also
performed a similar study when using a SDA model to
learn skeleton feature for human body pose classification.
To recognize human action, Xie et al. [240] used a SDA
architecture with 3-hidden layers to learn contour features
from a single depth frame. Hasan et al. [241] presented an
autoencoder-based framework for learning human activity
models continuously from streaming videos. This method
is executed through two phases: “initial learning” phase and
“incremental learning” phase. Given a streaming video with a
few labeled activities, the first phase will extract space-time
interest points (STIP) [230] of the motion then encode these
feature vectors by a sparse autoencoder. A softmax function
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is used as a classification model that provides action label.
To recognize human activities in unlabeled frames, the incre-
mental learning phase uses the sparse autoencoder and the
parameters of activity classification model in initial learning
phase, but in an unsupervised manner. In this phase, the
active learning technique [243] has also been used to reduce
the amount of manual labeling of classes.

The long training time is a disadvantage of SDAs when
working with large-scale datasets. To overcome this limi-
tation, Chen et al. [244] proposed a novel variant of SDAs
named “mSDA”. Experiments on the same dataset showed
that mSDA matched the performance of SDA but reducing
the training time down to 450 times. Taking advantage of
the mSDA, Gu et al. [245] trained an mSDA network for
multi-view action recognition. An mSDA is trained over all
the camera views and the trained network is then used to
generate features for each camera view respectively. These
obtained features from all the camera views are then com-
bined to create a single integrated representation, which can
then be used as the input of a classifier. The evaluation
on three benchmark multi-view action datasets provided
that this model achieved the state-of-the-art recognition
performance.

4.5 Other deep architectures for human action recog-
nition

Some other deep architectures have also been used for
human action recognition and related recognition tasks such
as group activity analysis, or prediction of physical interac-
tions. Sparse coding [103], [104], [246] is also another po-
tential deep model for recognizing human action. The suc-
cess of the sparse representation in various fields including
pattern recognition [247], [248] or image classification [249]
have shown that it could flexibly adapt to diverse low level
natural signals. The sparse representations of the signals are
then used as image features which are sent directly into
the classifiers. Therefore, many authors [250], [251], [252],
[253], [254] have exploited the advantages of sparse coding
for solving human action recognition problems. Recently,
some novel deep architectures for recognizing human action
have been published in the literature [255], [256], [257].
For instance, Ullah and Petrosino [255] employed a CNN
and a pyramidal neural network (PyraNet) [258] to recog-
nize human action. A strict 3D pyramidal neural network
(3DPyraNet) was constructed which allows to learn spatio-
temporal features of human motion. These works continued
to be expanded by the same authors [256] and achieved
competitive results on some action datasets. Rahmani et al.
[257] presented the “Robust Non-Linear Knowledge Transfer
Model” (R-NKTM), a deep fully-connected neural network
which is capable of understanding human action from
cross-view by learning features from dense trajectories of
synthetic 3D human models and real motion capture data.
Figure 17 illustrates the procedure to train this network.
Experiments on cross-view human action datasets including
IXMAS [50], UWA3DII [259], N-UCLA Multiview Action3D
[260], and UCF Sports [261] have shown that this method
outperforms existing state-of-the-art.

The paper published by Le et al. [229] reports that we can
combine the different network models to build a single deep

architecture for improving its performance. Based on two
key ideas, “convolution” and “stacking” in CNN architecture
(subsection 3.1), the authors constructed a deep model by
using the Independent Subspace Analysis (ISA) [262] (see
Figure ??a) and Principal Component Analysis (PCA) [263].
The ISA is trained on small input patches for learning fea-
ture directly from unlabeled video data. It is then convolved
with a larger region of the input image. The PCA algorithm
is applied on the top of ISA for reducing dimensions. The
responses are then used as the input layer for another ISA.

The method is evaluated on KTH [48] , Hollywood2
[199], UCF sports [261] and YouTube datasets [53]. Table 7
shows that this deep architecture advanced the state-of-
the-art in human action recognition when the paper was
published.

TABLE 7
Comparison of Le’s method and the best methods before

Method KTH Hollyhood2 UCF YouTube
Measure AA Mean AP AA AA

Le et al. [229] 93.9% 53.3% 86.5% 75.8%
Previous best result 92.1% 50.9% 85.6% 71.2%

Improvements 1.8% 2.4% 0.9% 4.6%

Here, the average accuracy is noted by AA.

Srivastava et al. [264] constructed a model which consists
of two LSTMs - the encoder LSTM and the decoder LSTM
to learn representations of sequences of images. The state of
the LSTM encoder is the representation of the input video.
Then, the LSTM decoder will reconstruct the input sequence
from this representation. It can be used for reconstructing
the input sequence as well as predicting the future sequence.

Very recently, Luo et al. [265] combined many different
models to build a deep learning framework for recognition
human motion in Videos. The idea is designing a network
which is able to predict the future 3D motions in videos (see
Figure 18). Given input frames, the model will predict 3D
flows in future frames, then use the features to recognize
activities. To do that, a Recurrent Neural Network based
Encoder-Decoder framework has proposed. During the en-
coding process, CNNs (the standard VGG-16 networks) are
used for extracting a low-dimensionality feature from the
input frames. Then, the LTSMs have been used to learn the
temporal representation of motion. The learned representa-
tion is then decoded in the decoding process to generate
the atomic 3D flows. This approach achieved the state-of-
the-art result on NTU-RGB+D dataset [70] and MSR Daily
Activity3D [58]. To the best of our knowledge, this model
is the best learning framework at the moment for action
recognition using different input modalities (RGB, Depth,
RGB-D).

A new unsupervised learning approach called Genera-
tive Adversarial Networks (GANs) was proposed by Ian et
al. [266]. In 2016, Radford et al. [267] introduced a set of
architectures called Deep Convolutional GANs (DCGANs)
in order to train GANs in a better way. This study showed
that GANs can learn good representations of images for
supervised learning and generative modeling. After that,
GANs have started to show their real potential. E.g. Von-
drick et al. [268] capitalized on recent advances in GANs
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Fig. 17. Architeture of R-NKTM and its learning process [257]. Firstly, 3D human models are fitted to real motion capture data for generating realistic
3D videos. These 3D videos are then projected on 2D planes for calculating dense trajectories. A general codebook is learned from trajectories
which is then used as the input of R-NKTM. By this way, the R-NKTM can learn features of human action videos and use it for testing process.

Fig. 18. (a) Illustration of the idea of learning a video representation by predicting a sequence of basic motions described as atomic 3D flows. The
learned representation is then used for action recognition. (b) The learning framework architecture based on the Recurrent Neural Network based
Encoder-Decoder proposed in the work of Luo et al. [265]

for both action classification and prediction in video. A
two-stream generative model has built for learning scene
dynamics. This study is an open research opportunity for
designing of predictive models for understanding human
actions.

5 DISCUSSION

Human action recognition has become one of the most
active research topics in computer vision during the last
two decades. In particular, the appearance of the DL models
as well as the advances of parallel computing techniques,
e.g. GPU computing, opened up more new opportunities
for this field. Many DL based approaches have developed
and applied for various applications related to human action
recognition. Their studies indicate various methods to learn
motion features from videos and use them to recognize
and classify actions. In this section, we provide a detailed
analysis of the mentioned classes of architectures. The pros
and cons of each class and the link between them will be
discussed. Based on these analyses, we point out challenges,
current trends and potential directions future research in
this field.

After reviewing more than two hundred papers, our
study shows that human action recognition has advanced
rapidly from recognition in controlled environment with
small size benchmark datasets to recognition of actions
in realistic videos with very large scale benchmarks. DL
techniques play an important role in this progress. In the
literature of human action recognition based on DL, CNNs
seem to be the most important model for learning spatio-
temporal features of human action directly from RGB and
RGB-D videos without pre-processing. Almost outstanding
architectures, such as networks proposed by Ji et al. [139],
Tran et al. [142], Simonyan et al. [79], Wang et al. [176],
Feichtenhofer et al. [200], Luo et al. [265], etc. have used
3D convolutional filters to extract motion features. The key
ideas behind CNNs allow them to work directly on image
structure and obtaining high-level features by composing
lower-level ones. CNNs are not only working as an end-to-
end solution, they were also used as a feature extractor and
were a part in another frameworks. However, CNNs achieve
very goof performance when they were trained on very
large datasets. If not, overfit will happen. Some techniques
have been developed to prevent overfitting in convolutional
layers such as dropout, data augmentation (e.g. random
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cropping, flipping, color effect, etc). When training a very
deep CNN architecture, millions of connections between
neurons will be involved. Therefore, another limiting factor
of CNNs is the high energy consumption due to its high
computational complexity. Normally, GPU computing is
required to work with this type algorithm.

Recurrent neural networks with long short-term mem-
ory (LSTM-RNNs) have been designed for solving time
series problems. LSTM-RNNs have been used successfully
in modeling the long-term context information of motion
sequences, specifically with skeleton data as the work of Du
et al. [214], Song et al. [215], Zhu et al. [216], Li et al. [217],
Liu et al. [218]. The success of LSTM-RNNs for human ac-
tion recognition comes from their ability to take advantage
the entire history motion frames. Even so, most of LSTM-
RNN based models can not work directly on raw data.
For example, skeleton data need to be preprocessed before
feeding into LSTM-RNNs. It is difficult to build an LSTM-
RNN based end-to-end learning framework with RGB-D
data. Consequently, many authors used CNN to extract
color features and then fed into the LSTM for sequences
learning and prediction.

Deep belief network (DBNs) and Stacked Denoising
Autoencoders (SDAs) are also very promising choice for
action recognition tasks. For DBNs, these networks can be
trained in an semi-supervised way with less labeled data
from a set of examples to classify its inputs. The limitation
of DBNs is that they require hand-crafted features [224]
or converting input data to appropriate form [227]. SDAs
can learn motion features in unsupervised manner and
are capable of generating robust features. However, it has
several drawbacks related to its optimization process.

5.1 A quantitative analysis
• Hand-crafted approaches and deep learning approaches: A
small comparison

In order to have a general view on recognition accuracies
reported by hand-crafted approaches and deep learning
approaches, we have carried out a small performance com-
parison on KTH [48] dataset. This dataset has been used
to evaluate many action recognition solutions, both the
traditional approaches based on hand-crafted features and
deep learning based approaches over many years.

• A performance comparison between deep learning models

We provide a quantitative analysis of the deep learning ap-
proaches on a state-of-the-art benchmark for human action
recognition in realistic and challenging settings. Figure 19
shows our comparison based on the performance of many
deep learning solution on UCF-101 dataset that have been
reviewed in this paper. This comparison helps us to see
clearly the current state of this field and also provide the best
architectures proposed in the literature. The accuracies are
reported directly from the original papers and all of these
work use the same measure. We found that the networks
proposed by Varol et al. [168], Feichtenhofer et al. [195], Tran
et al. [142].

5.2 The future of DL for human action recognition
• Developing unsupervised learning models

As labeling of data is very costly in terms of money and
manpower, we expect that learning features directly from
videos in an unsupervised manner is a very important
research direction [89]. Unsupervised learning procedures
such as DBNs or deep autoencoders will continue to be de-
veloped strongly because they could learn features without
requiring labeled data or requiring very limited labeled data
in pre-training process.

• Deeper CNNs

The success of some very deep learning models such as
VGGNet [100], GoogLeNet [99], and ResNets [101] provided
that deeper CNN models can boost the recognition accuracy.
It appears that the new algorithms allow us to train deeper
network easier. For example, He et al. [101] released ResNets
in which it has fewer filters and lower complexity than
VGGNet [100]. Therefore, we expect deeper CNNs will be
more fully exploited in this field.

• Combining different deep learning models

Taking full advantage of the different deep learning models
and combining them into a single learning framework is
a trend in action recognition. Specifically, the use of CNNs
with LSTM-RNNs has improved the stare-of-the-art in many
benchmark datasets [203], [204], [205], [206], [207], [208],
[209], [210], [211], [212], [213]. We believe that this trend will
be continued in the future.

• Fusion of hand-crated and deep learning solutions

We found that hand-crafted features such as the trajectory
descriptors or optical flow frames have been used in most
of state-of-the-art DL models as reported in the work of
Varol et al. [168], Feichtenhofer et al. [195], Tran et al. [142],
and Wang et al. [77]. We expect much of future progress in
human action recognition to come from systems that use
both hand-crafted and DL solutions to solve challenges in
this field.

• Transfer learning

One of the main difficulty in training deep networks comes
from the scarcity of data. To solve this problem, many au-
thors explored a technique called ”transfer learning”. Instead
of training an entire deep network from scratch, we pretrain
the network on a very large dataset, and then use the
network either as an initialization for the task of interest.
We believe that this trend will be continued in computer
vision, including the human action recognition in video.

6 CONCLUSION

Our goal in carrying out this research is to bring readers
a detailed view of the development process and especially
of current progress of deep learning models applied to
recognize human action in video. A comprehensive review
of various DL architectures and their applications in action
recognition and related tasks has been provided over more
than two hundred related publications. Our analysis and
comparisons about the recognition accuracy between DL
based approaches and other techniques shown that deep
learning is at the moment the best choice for recognizing
and classifying human action as well as predicting human



18

Fig. 19. The recognition performance of different deep learning based solutions on HMDB-51 and UCF-101 datasets.

behavior. In addition, the characteristics of the most impor-
tant DL architectures for action recognition have been also
analyzed to provide current trends and open problems for
future works in this field. With a list of datasets in different
complexity levels, this paper will help interested readers in
choosing approximate algorithms and datasets to develop
new solutions. Although there has been significant progress
over the last years, there are still many challenges in ap-
plying DL models to build vision-based action recognition
systems and to bring their benefits to our life. We are still
looking forward to new DL based approaches to improve
the performance of recognition systems while decreasing
computational cost and requiring less labeled data. We hope
this survey is helpful for researchers in this field.
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[134] G. Chéron, I. Laptev, and C. Schmid, “P-CNN: Pose-based CNN
features for action recognition,” in Proceedings of the IEEE Interna-
tional Conference on Computer Vision, 2015, pp. 3218–3226.

[135] M. A. Giese and T. Poggio, “Neural mechanisms for the recogni-
tion of biological movements,” Nature Reviews Neuroscience, vol. 4,
no. 3, pp. 179–192, 2003.

[136] R. Sigala, T. Serre, T. Poggio, and M. Giese, “Learning features
of intermediate complexity for the recognition of biological mo-
tion,” in International Conference on Artificial Neural Networks.
Springer, 2005, pp. 241–246.

[137] H. Jhuang, T. Serre, L. Wolf, and T. Poggio, “A biologically
inspired system for action recognition,” in 2007 IEEE 11th In-
ternational Conference on Computer Vision, Oct 2007, pp. 1–8.

[138] H.-J. Kim, J. S. Lee, and H.-S. Yang, “Human action recognition
using a modified convolutional neural network,” in International
Symposium on Neural Networks. Springer, 2007, pp. 715–723.

[139] S. Ji, W. Xu, M. Yang, and K. Yu, “3D convolutional neural
networks for human action recognition,” IEEE transactions on
pattern analysis and machine intelligence, vol. 35, no. 1, pp. 221–231,
2013.

[140] K. Wang, X. Wang, L. Lin, M. Wang, and W. Zuo, “3D human
activity recognition with reconfigurable convolutional neural
networks,” in Proceedings of the 22nd ACM international conference
on Multimedia. ACM, 2014, pp. 97–106.

[141] L. Wang, Y. Qiao, and X. Tang, “Action recognition with
trajectory-pooled deep-convolutional descriptors,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2015, pp. 4305–4314.

[142] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri,
“Learning spatiotemporal features with 3D convolutional net-
works,” in 2015 IEEE International Conference on Computer Vision
(ICCV). IEEE, 2015, pp. 4489–4497.

[143] P. Wang, W. Li, Z. Gao, J. Zhang, C. Tang, and P. Ogunbona,
“Deep convolutional neural networks for action recognition us-
ing depth map sequences,” arXiv preprint arXiv:1501.04686, 2015.

[144] T. Dobhal, V. Shitole, G. Thomas, and G. Navada, “Human activ-
ity recognition using binary motion image and deep learning,”
Procedia Computer Science, vol. 58, pp. 178 – 185, 2015.

[145] C. Liu, W. Xu, Q. Wu, and G. Yang, “Learning motion and
content-dependent features with convolutions for action recog-
nition,” Multimedia Tools and Applications, pp. 1–17, 2015.

[146] C. Cao, Y. Zhang, C. Zhang, and H. Lu, “Action recognition
with joints-pooled 3D deep convolutional descriptors,” in 25th
International Joint Conference on Artificial Intelligence, New York,
NY, USA, July, 2016.

[147] L. Mo, F. Li, Y. Zhu, and A. Huang, “Human physical activ-
ity recognition based on computer vision with deep learning
model,” in Instrumentation and Measurement Technology Conference
Proceedings (I2MTC), 2016 IEEE International. IEEE, 2016, pp. 1–6.

[148] S. Singh, C. Arora, and C. Jawahar, “First person action recogni-
tion using deep learned descriptors,” in in the 29th IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), Las Vegas,
USA, 2016.

[149] H.-H. Pham, L. Khoudour, A. Crouzil, P. Zegers, and S. A.
Velastin, “Exploiting deep residual networks for human action

http://neuralnetworksanddeeplearning.com/chap6.html
http://cs.stanford.edu/~quocle/tutorial2.pdf
http://cs.stanford.edu/~quocle/tutorial2.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5264952
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5264952
http://dl.acm.org/citation.cfm?id=104279.104290
http://dl.acm.org/citation.cfm?id=104279.104293


22

recognition from skeletal data,” Computer Vision and Image Under-
standing, vol. 170, pp. 51–66, 2018.

[150] P. Huy Hieu, L. Khoudor, A. Crouzil, P. Zegers, and S. A.
Velastin Carroza, “Exploiting deep residual networks for human
action recognition from skeletal data,” 2018.

[151] H. H. Pham, H. Salmane, L. Khoudour, A. Crouzil, S. A. Velastin,
and P. Zegers, “A unified deep framework for joint 3d pose
estimation and action recognition from a single rgb camera,”
Sensors, vol. 20, no. 7, p. 1825, 2020.

[152] H.-H. Pham, L. Khoudour, A. Crouzil, P. Zegers, and S. A.
Velastin, “Learning to recognise 3d human action from a new
skeleton-based representation using deep convolutional neural
networks,” IET Computer Vision, vol. 13, no. 3, pp. 319–328, 2019.

[153] H. H. Pham, H. Salmane, L. Khoudour, A. Crouzil, P. Zegers,
and S. A. Velastin, “Spatio–temporal image representation of 3d
skeletal movements for view-invariant action recognition with
deep convolutional neural networks,” Sensors, vol. 19, no. 8, p.
1932, 2019.

[154] H.-H. Pham, L. Khoudour, A. Crouzil, P. Zegers, and S. A. Ve-
lastin, “Skeletal movement to color map: A novel representation
for 3d action recognition with inception residual networks,” in
2018 25th IEEE International Conference on Image Processing (ICIP).
IEEE, 2018, pp. 3483–3487.

[155] ——, “Learning and recognizing human action from skeleton
movement with deep residual neural networks,” 2017.

[156] H. H. Pham, H. Salmane, L. Khoudour, A. Crouzil, P. Zegers, and
S. A. Velastin, “A deep learning approach for real-time 3d human
action recognition from skeletal data,” in International Conference
on Image Analysis and Recognition. Springer, 2019, pp. 18–32.

[157] H.-H. Pham, “Architectures d’apprentissage profond pour la re-
connaissance d’actions humaines dans des séquences vidéo rgb-d
monoculaires: application à la surveillance dans les transports
publics,” Ph.D. dissertation, Université Paul Sabatier-Toulouse
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