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Abstract

Existing matching-based approaches perform video ob-
ject segmentation (VOS) via retrieving support features from
a pixel-level memory, while some pixels may suffer from
lack of correspondence in the memory (i.e., unseen), which
inevitably limits their segmentation performance. In this
paper, we present a Two-Stream Network (TSN). Our TSN
includes (i) a pixel stream with a conventional pixel-level
memory, to segment the seen pixels based on their pixel-
level memory retrieval. (ii) an instance stream for the unseen
pixels, where a holistic understanding of the instance is ob-
tained with dynamic segmentation heads conditioned on the
features of the target instance. (iii) a pixel division module
generating a routing map, with which output embeddings of
the two streams are fused together. The compact instance
stream effectively improves the segmentation accuracy of
the unseen pixels, while fusing two streams with the adaptive
routing map leads to an overall performance boost. Through
extensive experiments, we demonstrate the effectiveness of
our proposed TSN, and we also report state-of-the-art per-
formance of 86.1% on YouTube-VOS 2018 and 87.5% on
the DAVIS-2017 validation split.

1 Introduction

Video Object Segmentation (VOS) is a fundamental task
in video analysis, and has been widely applied in computer
vision applications, such as video content editing and au-
tomatic driving. In recent years, semi-supervised VOS has
been developed extensively and achieved great progress. Its
goal is to separate specific object(s) from the background for
each frame in a video sequence, given the mask of the target
object(s) in the initial frame.

Top-performing works for semi-supervised VOS primar-
ily exploit the template matching technique, in which labels
are propagated from a reference set (i.e., the first frame with
a given annotation and the historical segmented frames) to
the query frame (i.e., the current frame) through matching.
Inspired from the memory network [35], STM [21] con-
structs a pixel-level memory with multiple historical frames,
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Figure 1: Visualization of segmenting with a pixel stream
alone. In the forward pass, the pixel stream (top row) fails
to segment the leg area correctly since it is unable to find
a correspondence in the reference frame. Our two-stream
network (bottom row) can address this issue effectively.

where pixel-level features are extracted and stored in the
memory. Afterwards, the query pixels are segmented based
on their retrieved reference features in the memory with
their pixel-wise matching affinity. Based on STM, most
follow-up works[27, 6, 28, 36, 2, 3, 40] are devoted to in-
vestigating solutions to obtain more accurate retrieval from
pixel-level memory. However, these methods still have trou-
ble in handling pixels not appeared in the reference frames
(i.e., unseen), which lack a correspondence in the pixel-level
memory. As shown in Figure 1, such approaches relying on
pixel-level memory fail to segment the emerging leg area
due to its absence in the reference.

In this paper, we propose a Two-Stream Network (TSN)
to address this issue. TSN mainly includes a pixel stream
and an instance stream, which are fused with a pixel divi-
sion module. The pixel stream is responsible for the seen
pixels as in previous methods, and these pixels can often
be accurately segmented because it is able to find similar
correspondences in the pixel-level memory. In contrast, the
instance stream is mainly in charge of segmenting the un-
seen pixels, which lack a correspondence in the pixel-level
memory. For segmentation, the instance stream generates
segmentation heads composed of dynamical kernels, which
are conditioned on the feature of each instance of the target
object. Integrating the instance-level information endows
the dynamic kernels in the instance stream with a holistic
understanding of the instance and reasoning ability, which
makes it more suitable for segmenting the unseen pixels.
To obtain the final segmentation results, the features of the
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two streams are weighted-aggregated with a routing map,
which is generated with a proposed pixel division module
and decide how much the a pixel should rely on the two
streams, respectively. We evaluate our TSN on two popu-
lar VOS benchmarks, i.e., DAVIS and YouTube, and report
the new state-of-the-art results. We summarize the main
contributions as follows,

• We propose a two-stream network for semi-supervised
VOS, which mainly includes a pixel stream, an instance
stream and a pixel division module to fuse them to-
gether.

• The proposed instance stream improves the segmen-
tation accuracy of the unseen pixels, attributing to its
dynamic convolution bank generated conditioned on
the features of the target instance. While the pixel
division module adaptively merges the outputs of the
two streams through the routing map, which effectively
improves the overall performance.

• TSN achieves the state-of-the-art results on two popular
VOS benchmarks, i.e., DAVIS and YouTube-VOS.

2 Related Work

Semi-supervised video object segmentation. Early semi-
supervised video object segmentation (VOS) methods [1, 18]
apply segmentation-by-detection scheme, where general seg-
mentation models are fine-tuned on the first annotated frame
to focus on specific targets. To tackle with the evolution of
object appearance over time, OnAVOS [33] online updates
the object-specific model along the video. For efficient infer-
ence, subsequent solutions [7, 22, 17] resort to motion cues
for temporal propagation, some of which [17, 9] propagates
object mask from the first frame to the succeeding frames
leveraging optical flow.

Recently, more researchers tend to formulate the semi-
supervised VOS task as a template matching problem, where
labels are propagated from a reference set to the query
frame through pixel-wise matching and retrieval. Prior
works [29, 8] employs siamese structure network to ex-
tract features from both template frames and the query
frame. VideoMatch [8] updates the template feature set
with segmented frames. Under the assumption of tempo-
ral continuity, FEELVOS [32] narrows the matching area
with the latest frame to a local range. CFBI [39] further
promotes FEELVOS [32] by establishing template sets for
foreground and background respectively. Utilizing memory
network [35, 4, 26], STM [21] constructs spatio-temporal
memory with multiple segmented frames. The success of
STM greatly encourages the development of matching based
solutions [16, 11, 12, 34, 27, 36, 6, 28]. EGMN [16] de-
velops a graph structure memory network, where memory

reading and writing are performed on each node sequentially.
STCN [2] improves matching accuracy applying the nega-
tive squared Euclidean distance as similarity metric. Later
works [3, 40, 19] introduce transformer [31] to VOS, where
matching and retrieval are carried out multiple times with
multiple attention layers. Joint [19] complements pixel-level
retrieval with an online updated discriminative branch addi-
tionally.

The aforementioned solutions classify pixels to fore-
ground/background based on their pixel-level retrieval. How-
ever, pixels not appeared in the past frames emerge along the
video, which may be unable to find correspondence in the
reference. We propose to disentangle the query pixels with a
routing map calculated based on the residual of the feature of
query and their corresponding retrieval. The value of resid-
ual indicates whether pixels can find similar correspondence
in the reference.
Instance-level segmentation. Through global pooling the
feature of all foreground pixels, CFBI and RPCM [39, 38]
generate object-level embedding for channel re-weighting
on query feature. For instance segmentation, CondInst [30]
generates dynamic segmentation heads for each instance.
In this work, we construct an instance-level memory with
segmentation heads dynamically generated integrating each
instance of the target object.

3 Our Approach

3.1 Overview of the Two-Stream Network

Given a video sequence of length T and the mask annota-
tion of its first frame, semi-supervised VOS aims to segment
the subsequent frames sequentially. For the current frame
It, i.e., query frame, a reference set S = {(Ii,M i)}Ni=1 is
usually constructed with N historical frames and their cor-
responding masks. Under the semi-supervised VOS setting,
we propose a Two-Stream Network (TSN). As illustrated in
Figure 2, the proposed TSN includes an instance stream, a
pixel stream, a pixel division module and a fusion module.
The pixel stream is deployed to segment the query frame with
a conventional pixel-level memory, in which the reference
features are retrieved through affinity calculation and fea-
ture aggregation with features of query frame. The instance
stream is specially designed to tackle with those unseen
pixels which lack correspondance in the memory. Toward
this end, we construct the segmentation heads composed of
dynamically generated kernels. In order to determine the
unseen pixels, we present the pixel division module. It gen-
erates a routing map based on the difference between the
aggregated feature and the feature of the query frame, which
is then leveraged to select pixels without correspondance in
the memory. Finally, the fusion module merges the output
embeddings of the two streams with the routing map, and
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Figure 2: The overview of Two-Stream Network (TSN), which consists of an instance stream, a pixel stream, a pixel division
module and a fusion module. The instance stream and the pixel stream process the query frame respectively. The pixel
division module generates a routing map to seperate the seen and the unseen pixels, and the fusion module merges the output
embeddings of the two streams weighed on the routing map.

decodes to a segmentation result. In the following sections,
we describe each module in details.

3.2 Pixel Stream

The pixel stream is responsible for segmenting the seen
pixels, for they are able to retrieve reliable correspon-
dences from a pixel-level memory to support segmentation.
Following STCN [2], a conventional pixel-level memory
{KM , VM} is constructed with reference frames and their
masks in the pixel stream. For memory retrieval, a pixel-wise
affinity is calculated and then used to aggregate reference fea-
tures. Finally, A mask embedding carrying label information
is generated.

Specifically, key encoder EncK is applied to encode the
query frame It and the reference frames into key features
KQ = {KQ(p)} ∈ RHW×Ck and KM = {KM (q)} ∈
RNHW×Ck , where p and q are the spatial locations, N
is the number of frames in the reference set. Spatial di-
mensions H = sHim and W = sWim, where Him and
Wim corresponds to the spatial dimension of the image and
s to the stride of the backbone in TSN. The affinity ma-
trix A ∈ RHW×NHW is then calculated through non-local
matching between the query key and the reference key. For
each p and q, the affinity is calculated as,

A(p, q) =
exp(C(KQ(p),KM (q)))∑
q exp(C(KQ(p),KM (q)))

(1)

C is a similarity function, where we adopt negative squared
Euclidean distance as STCN [2]. Support feature RV ∈
RHW×Cv is aggregated through weighted sum of the value
feature VM of reference frames with the matching affinity A,

RV (p) =
∑
q

(A(p, q) · VM (q)) (2)

The aggregated feature RV is then concatenated with F t

and processed with a residual block, obtaining the mask
embedding FPix ∈ RHW×Cv of the pixel stream.

3.3 Instance Stream

To address the issue of the unseen pixels lacking reliable
correspondence in the pixel-level memory, we design the in-
stance stream. Segmentation heads {f1, ..., fN} composed
of dynamic convolutions are generated by a kernel predictor
Pred, conditioned on the value feature {V 1

M , ..., V
N
M } of

each instance of the target object. The deep feature of the
query frame is processed by all heads, and the results are
averaged element-wisely to generate the final mask embed-
ding.

Particularly, an instance-level memory Meminst =
{f i}, i = 1, 2, ..., N composed of N segmentation heads
is constructed. Each segmentation head is composed of three
1× 1 convolution layers with channels of 8, and each layer
is activated by a ReLU function except for the last one. The
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Figure 3: Details of the dynamic kernel predictor Pred,
which generates parameters for each segmentation head dy-
namically.

parameters of each segmentation head are dynamically gen-
erated from a instance of the target object, characterizing
the instance-level cues of the target object, such as the over-
all appearance and the spatial size. In practice, we do not
generate segmentation heads for the reference frames where
objects does not appear. A dynamic kernel predictor Pred is
deployed to generate parameters, taking as input a learnable
embedding Einit ∈ R1×Cv as well as the value feature of
the n-th reference frame V n

M ∈ RHW×Cv , and outputs a
vector θ ∈ R1×K for each segmentation head, The value
feature V n

M ∈ RHW×Cv is encoded by value encoderEncV ,
taking as input the reference frame In and its corresponding
mask Mn. As shown in Figure 3, Pred is composed of three
transformer layers as [31], where Einit learns to gather the
object information from V n

M adaptively. The output vector
θ ∈ R1×K can be seen as the parameters of all three convo-
lution layers in a segmentation head concatenated together.

The instance stream segments the query frame It with
the constructed instance-level memory, taking as input its
deep feature F t ∈ RHW×Cv , and outputs mask embedding
FInst ∈ RHW×Cv . TheN segmentation heads inMemInst

segment F t respectively and average their results together
as follows,

OInst =
1

N
·
∑
i

f i
(
[w(F t), Coordi]

)
(3)

where w is a linear layer used to reducing the channel of F t

from 512 to 8, and [, ] represents concatenation along the
channel dimension. Coordi is a relative coordinate map tak-
ing the centroid of the object in reference frame In as origin.
Through concatenating the Coordi, the segmentation heads
are capable of memorizing the position and size information
of an instance, increasing their discriminative ability. The
concatenation of OInst and F t then goes through a residual
block, obtaining the mask embedding FInst ∈ RHW×Cv .

The previous solutions [39, 38] generate a single head
averaging all the reference frames. We find it may degrade
the discrimination ability of the segmentation head, since that
it is extremely difficult to memorize varying appearances and
spatial information of an object in one head. Additionally,
the computational costs are practically the same with TSN,

since the generation of a single head in [38] requires to attend
to a reference feature of size NHW × C every time. We
provide the quantitative comparison of these two solutions
in Table 3.

3.4 Pixel Division and Fusion

The pixel division module is deployed to classify the
query pixels into seen and unseen. A routing map is gener-
ated by the pixel division module based on the difference
between the aggregates key features and the feature of the
query pixels.

Specifically, feature RK = {RK(p)} ∈ RHW×Ck is
aggregated through weighted sum of the key feature KM

with the affinity matrix A as follows,

RK(p) =
∑
q

(A(p, q) · V K(q)) (4)

Then, the routing map W = {W (p)} ∈ RHW×1 can be
generated as,

W = S(F(D)) (5)

where F is a linear layer, S is the sigmoid function, and D
is the L2 function calculated as ||RK − KQ||2. Through
the value of W , the unseen pixels can be distinguished from
the seen pixels, since they tend to obtain larger residual for
lacking of similar correspondence in reference.

The fusion module merges the output embeddings of the
two streams weighted on the routing map, and decodes to
a final segmentation mask. Fusion with the routing map
can ensure that the segmentation results of the seen and the
unseen pixels come from the pixel stream and the instance
stream accordingly. The fusion process follows,

F = W · FInst + (1−W ) · FPix (6)

At the end, a decoder of FPN structure is adopted to decode
F to the final mask M t.

4 Experiments

To verify the effectiveness of the proposed Two-Stream
Network (TSN), we train a TSN-R50 which uses ResNet-
50 [5] as backbone following STCN [2], and a TSN-
SwinB using the strong swin transformer [14] as back-
bone. We evaluate our two models on two VOS benchmarks,
DAVIS [25, 23] and YouTube-VOS [37]. Ablation studies
are performed on the challenging YouTube-VOS [37] for
in-depth analysis. In the following sections, we first describe
the train and evaluation settings and then compare our TSNs
with the state-of-the-art semi-supervised VOS methods. Fi-
nally, the ablation studies are presented.
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Validation 2018 Split

Method G Js Ju Fs Fu

PReMVOS 66.9 71.4 56.5 75.9 63.7
A-GAME 66.1 67.8 60.8 - -
STM 79.4 79.7 72.8 84.2 80.9
CFBI 81.4 81.1 75.3 85.8 83.4
RMNet 81.5 82.1 75.7 85.7 82.4
LCM 82.0 82.2 75.7 86.7 83.4
SST 81.7 81.2 76.0 - -
HMMN 82.6 82.1 76.8 87.0 84.6
JOINT 83.1 81.5 78.7 85.9 86.5
STCN 83.0 81.9 77.9 86.5 85.7
AOT 83.8 82.9 77.7 87.9 86.5
RPCM 84.0 83.1 78.5 87.7 86.7
TSN-R50(Ours) 84.8 83.6 79.8 87.9 87.8
TSN-SwinB(Ours) 86.1 85.1 80.6 89.7 89.1

Validation 2019 Split

Method G Js Ju Fs Fu

CFBI 81.0 80.6 75.2 85.1 83.0
SST 81.8 80.9 76.6 - -
HMMN 82.5 81.7 77.3 86.1 85.0
JOINT 82.8 80.8 79.0 84.8 86.6
STCN 84.2 82.6 79.4 87.0 87.7
AOT 83.7 82.8 78.0 87.5 86.7
RPCM 83.9 82.6 79.1 86.9 87.1
TSN-R50(Ours) 84.6 83.1 80.2 87.2 87.8
TSN-SwinB(Ours) 86.0 84.8 80.9 89.1 89.2

Table 1: Qualitative comparison with different methods on
YouTube-VOS. Subscripts S and U represents the seen and
the unseen category respectively.

4.1 Datasets and Evaluation Metrics

DAVIS has two versions, DAVIS 2016 [23] contains 20
videos for validation, where each video has one annotated
object instance. DAVIS 2017 [25] is a multi-object extension
of DAVIS 2016, which provides 60 videos for training and
30 videos for validation. YouTube-VOS 2018 [37] is a large-
scale and challenging dataset for video object segmentation,
where the training set and validation set contains 3471 and
474 videos respectively. YouTube-VOS 2019 further adds
additional videos to validation split.

For DAVIS 2016 and 2017, we report the mean of region
similarityJ , contour accuracyF and their averageJ&F for
comparison, which are calculated with the standard DAVIS-
2017 evaluation toolkit. For YouTube-VOS 2018 and 2019,
we report J and F for both seen and unseen categories, and
the averaged overall score G, which are all obtained from
the Codalab server.

Method
2017 2016

J&F J F J&F J F

OnAVOS 67.9 64.5 71.3 85.5 86.1 84.9
OSVOS 59.2 56.6 61.8 80.2 79.8 80.6
RGMP 63.2 64.8 68.6 81.7 81.8 81.5
FAVOS 58.2 54.6 61.8 81.7 81.0 82.4
CINN 70.7 67.2 74.2 84.2 83.4 85.0
VideoMatch 62.4 56.5 68.2 81.9 81.0 80.8
PReMVOS 77.8 73.9 81.7 86.8 84.9 88.6
A-GAME 70.0 67.2 72.7 82.1 82.2 82.0
FEELVOS 71.6 69.1 74.0 82.2 81.7 88.1
STM 81.8 79.2 84.3 89.3 88.7 89.9
KMN 82.8 80.0 85.6 90.5 89.5 91.5
CFBI 81.9 79.1 84.6 89.4 88.3 90.5
RMNet 83.5 81.0 86.0 88.8 88.9 88.7
SST 82.5 79.9 85.1 - - -
HMMN 84.7 81.9 87.5 90.8 89.6 92
STCN 85.3 82.0 88.6 91.7 90.4 93.0
AOT 83.8 81.1 86.4 90.4 89.6 91.1
RPCM 83.7 81.3 86.0 90.6 87.1 94.0
TSN-R50(Ours) 86.2 82.8 89.6 91.0 90.1 91.8
TSN-SwinB(Ours) 87.5 84.0 91.0 92.2 90.8 93.5

Table 2: Qualitative comparison with different methods on
DAVIS. Methods with FS represents tested with full resolu-
tion videos instead of 480p. Bold and underline indicate the
best and the second-best performance respectively. R50 and
SwinB represent adopting ResNet-50 [5] and SwinB[14] as
backbone.

4.2 Training and Inference

Follow STM [21], we first pre-train TSN on the synthetic
dataset, then conduct main training on video dataset. Image
datasets [13] are used to generate synthetic video clips for
pre-train, where random affine transformations are adopted
for sequence synthesis. Cut&Paste strategy is also adopted
for data augmentation. Pre-train stage takes a total of 2×105

iterations with a constant learning rate of 1 × 10−5. The
training split of DAVIS [25] and YouTube-VOS [37] are used
for main training. For each training sample, three frames
are randomly collected from a video sequence, augmented
by random affine transformation with difference parameters.
The temporal interval range of frame collecting increases
from 1 to 25 in the first 1 × 104 iterations, and decreases
from 25 to 5 in the last 5× 104 epochs. The main training
takes a total of 2× 105 iterations, where poly learning rate
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decay with initial value of 4 × 10−5 is adopted. We use a
batch size of 4 and a patch size of 432 in both per-train and
main training stage. It takes about 32 hours to finish the
two stage training with 4 Tesla A100 GPUs. The parame-
ters of BatchNorm layers in both key and value encoders
are frozen for the whole training. We adopt Adam [10]
with standard momentum for the optimization of TSN-R50,
and AdamW [15] with weight decay of 1× 10−4 for TSN-
SwinB. To stablize training, Exponential Moving Average
(EMA) [24] is used for TSN-SwinB. The overall loss func-
tion of TSN is a combination of bootstrapped cross-entropy
loss and mask IoU loss [20]. Bootstrapped cross-entropy
loss is calculated following STCN [2], and mask IoU loss is
defined as,

LmIoU (Pi, Gi) = 1−
∑

p∈Ω min(P p
i , G

p
i )∑

p∈Ω max(P p
i , G

p
i )

(7)

where P and G is the predicted mask and ground-truth
mask of object i, Ω represents all pixels in mask P and
G. Top-k strategy with k = 20 is adopted during inference
as STCN [2].

4.3 Comparison with State-of-the-arts

The quantitative results of DAVIS 2016 and 2017 [23,
25] are shown in Table 2. On DAVIS 2017 validation set,
which is the multi-object extension of DAVIS 2016, the TSN
achieves a J&F score of 87.5% when testing with 480p
resolution videos, which is new state-of-the-art.

The quantitative results of YouTube-VOS 2018 and 2019
validation sets are presented in Table 1. Due to the large
amount of test videos, YouTube-VOS poses a huge chal-
lenge to VOS approaches. Our TSR achieves state-of-the-art
J&F performance on both 2018 and 2019 split, where the
averaging scores G are 86.1% and 86.0%, respectively. Vi-
sual comparisons are provided in Figure 4. As demonstrated
in video 6ae0cac484, STCN [2] and RPCM [38] have errors
segmenting the emerging person in the box. In contrast, our
TSR segments the emerging area more precisely owing to
the two-stream network. The segmentation ability of our
TSR is also demonstrated in video 62bf7630b3 for success-
fully avoid the disturbance brought by the emerging object
in the background. More visual results will be provided in
the supplementary material for comparison.

4.4 Ablation study

To evaluate the contribution of each component in the pro-
posed TSN, we conduct ablation study on the Youtube-2018
validation set. In the following, all comparison experiments
are conducted based on the TSN-R50 for time efficiency, and
models are trained with the video datasets only.

NHead NDepth Predictor J&F Jseen Junseen
N 3 Pred 83.8 82.8 78.4
1 3 Pred 83.0 82.2 77.0
N 3 GAP 83.5 82.3 78.2
N 1 Pred 83.2 82.3 77.3

Table 3: Ablation on several design choices of the in-
stance stream. NHead represents the number of heads in
the instance-level memory. NDepth represents the depth of
each head. GAP represents global average pooling.

Position map J&F Jseen Junseen
- 83.0 82.1 77.5

Sine 83.5 82.3 77.6
Rel coord 83.8 82.8 78.4

Table 4: Ablation on the design choices for position map.
Sine: the sine position encoding in [31]. Rel coord: relative
coordinate map in 3.

Instance stream. We further investigate several design
choices for the instance stream. Existing solutions [39, 38]
utilize object-level information for VOS. In [39, 38], an ob-
ject embedding is generated through global pooling on all the
reference frames together, which is then used to re-weight
the query feature. For comparison, we conduct ablation ex-
periments on the constructed instance-level memory. Model1
utilizes the proposed instance-level memory, whose segmen-
tation heads are generated from each instance of the target
object separately with the proposed predictor. Model2 aggre-
gates feature from all reference frames together generating
one segmentation head. In model3, parameter predictor
Pred is replaced with a global average pooling layer. In
model4, the output of Pred is multiplied directly onto the
query feature, rather than forming a segmentation head with
multi-layer convolutions. As shown in Table 3, the J&F of
model2 drops from 83.7 to 83.0. We speculate that mixing
all reference together may lead to information confusion,
which damages the discrimination capacity of the segmenta-
tion heads. The J&F also drops when replacing Pred with
global average pooling, indicating the predictor gathering in-
formation with attention learns a better object representation.
Model1 achieves better performance than model4, proving
the superiority of the dynamically generated convolutions.
Position map When segmenting with the instance-level
memory, we take as input the concatenation of the query
feature and a relative position map, which provides a strong
cue for segmentation. We also conduct ablation study to
investigate the design choices of the position map. As shown
in Table 4, removing position map leads to a significant
performance drop. We conjecture that through the relative
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Figure 4: Visual comparison of segmentation results on 6ae0cac484 and 62bf7630b3 of the challenging YouTube-VOS. We
present the results of STCN [2] and RPCM [38] for comparison.

Reference frame  
(GT mask) Routing map

1 5

95 105

Query frame  
(Segmented with Pixel Stream Only)

5

105

Figure 5: Visualization of the routing map. The area in the
dashed box on the query frame is the unseen area in the
reference frame. They have relatively large values on the
routing map (heat area).

position, the segmentation head can better realize the spatial
information of the object, such as spatial position and size.
Replacing the relative position map with the absolute sine
position encoding also decrease the performance slightly.
We speculate that the normalized relative coordinates are
easier to recognize than the sine position encoding, for each
head has only 8 channel.

Pixel division module. Being a critical module in the two-
stream network, pixel division module splits the query pixels
into seen and unseen through a routing map. To investigate
the dividing ability of the pixel division module, a visual-
ization of the routing map is presented in Figure 5. Pixels
that have been unseen in the reference frame appear in the
query frame, while the pixel stream is unable to classify
them correctly. On the routing map, the unseen pixels have
relatively large values, which makes their segmentation re-
sults mainly determined by the instance branch in our TSN.
Figure 6 plots the mean values of routing maps calculated

Temporal Percentage

M
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n(
R

ou
tin

g 
M
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)

     DAVIS 2017 
       Youtube-VOS

Routing Map 

Figure 6: Mean value of routing maps, calculated with the
difference between the t-th frame It and the first annotated
frame I1. The value of routing map increase over time,
indicating that unseen pixels are gradually emerging along
the video.

by the first annotated frame (I1) and each subsequent frame
(It). The mean values which characterize the differences
between each two frames raise along the video.

Fusion with Routing Map. The output embeddings are
fused weighted on the generated routing map. We provide
quantitative results to verify the effectiveness of the proposed
fusion strategy. Models with only instance stream, only pixel
stream and combining the two streams with an equal weight
are trained for comparison. As shown in Table 5, model fus-
ing the two streams with the routing map achieves the best
results. Performance of the model with only pixel stream
drops since its lack the ability to deal with the unseen pixels.
Combining the two streams with an equal weight also leads
to performance drop, because they may interfere with each
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Inst Pix J&F Jseen Junseen FPS

W 1-W 83.8 82.8 78.4 17.2
0 1 82.6 82.1 76.5 18.6

0.5 0.5 82.8 81.5 77.2 17.2
1 0 55.4 62.8 45.5 25.0

Table 5: Ablation on the two stream of TSN. Inst and Pix
represent the instance stream and the pixel stream, while
their value indicates the way of combining the two streams.
1st: combining the two streams with the generated routing
map. 2nd: only the pixel stream. 3rd: combining the two
streams with equal weights, which are spatial-invariant. 4th:
only the instance stream.

Pix Inst Inst + Pix (0.5) Inst + Pix (W)

Figure 7: Visual comparison of the proposed two streams.
Each stream owns its inherent characteristics. Simply fusing
them with equal weights is not enough to combine their
strengths.

other in areas where they are not skilled. The performance
drops severely when leaving only instance stream, indicat-
ing TSR still heavily relies on the pixel-level cue. Visual
comparison of the two streams are provided in Figure 7, pre-
senting that the pixel stream and the instance stream owns
their inherent characteristics. Simply fusing them with equal
weights is not enough to combine their strengths.

5 Conclusion

We have presented a Two-Stream Network for video ob-
ject segmentation task. Our work shows that it is greatly
beneficial in VOS to separate the pixels of the query im-
age into unseen and seen pixels with a routing map, and
process them with the object-wise and pixel-wise segmenta-
tion module respectively. We also propose a novel dynamic
kernel-based module to obtain the instance-level segmenta-
tion, which can encode the target object in its weights and
efficiently and accurately segment it in the query image. Our
framework achieves the new state-of-the-art performance
on both DAVIS and the large-scale YouTube-VOS and we
believe that the proposed framework is a simple and strong
baselines for further research.
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