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Abstract
©
In this paper, we present the first transformer-based model to address the challenging

g: problem of egocentric gaze estimation. We observe that the connection between the
o global scene context and local visual information is vital for localizing the gaze fixation
mj from egocentric video frames. To this end, we design the transformer encoder to embed
(@) the global context as one additional visual token and further propose a novel Global-
(@\| Local Correlation (GLC) module to explicitly model the correlation of the global token
(Q\| and each local token. We validate our model on two egocentric video datasets - EGTEA
S Gaze+ and Ego4D. Our detailed ablation studies demonstrate the benefits of our method.
Rl In addition, our approach exceeds previous state-of-the-arts by a large margin. We also
>< provide additional visualizations to support our claim that global-local correlation serves
E a key representation for predicting gaze fixation from egocentric videos. More details can

be found in our website (https://bolinlai.github.io/GLC-EgoGazeEst).

1 Introduction

Findings in cognitive neuroscience suggest that eye movements reflect cognitive processes [63],
which are essential for understanding human intention during daily activities [21]. Such an
understanding of visual attention and intention can be valuable for many applications, includ-
ing Augmented Reality (AR), Virtual Reality (VR), and Human-Robot Interaction (HRI).
While wearable eye trackers are a standard way to obtain measurements of gaze behavior,
they require calibration, consume significant power, and add substantial cost and complexity
to wearable platforms. Alternatively, prior works [1, 22, 23, 24, 34, 36, 44, 49, 52, 53] seek
to estimate the visual attention of the camera-wearer from videos captured from a first-person
perspective. This task is known as egocentric gaze estimation.

The key challenge in egocentric gaze estimation is to effectively integrate multiple gaze
cues into a holistic analysis of visual attention. Cues include the likelihood that different
scene objects are gaze targets (i.e. salience), the relative location of gaze targets within the
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Figure 1: Example of local correlation and global-local correlation for the task of egocen-
tric gaze estimation (predicting where the camera-wearer is looking using egocentric video
alone). The red dot represents the gaze ground truth (from a wearable eye tracker) and the
image patch that contains the gaze target has red edges. Global-local correlation models the
connections between the global context and each local patch, making it possible to capture,
e.g., the camera wearer and social partner are pointing at the salient object. In contrast,
local-local correlations may not yield an effective representation of the scene context.

video frame (i.e. center prior), and the patterns of camera movement that are reflective of
visual attention (i.e. head motions accompanying a gaze shift). Recently, the transformer
has achieved great success in various vision tasks by modeling the spatio-temporal corre-
lation among local visual tokens [12, 16, 32, 39, 41, 48, 50, 62]. However, the pairwise
comparisons performed by standard transformer Self-Attention (SA) are not optimized for
interpreting local video features in the context of the global scene. The example Fig. 1 illus-
trates the key role of comparisons between local patches and global context - the gaze target
is a salient object pointed at by both the camera wearer and another person. Such a salient
object can not be easily localized by only modeling the correlation of local patches.

This paper introduces a novel transformer-based deep model that explicitly embeds global
context and calculates spatio-temporal global-local correlation for egocentric gaze estima-
tion. Specifically, we design a transformer encoder that adopts a global visual token em-
bedding strategy to incorporate the global scene context. We then introduce a novel Global-
Local Correlation (GLC) module that highlights the connection between global and local
visual tokens. Finally, we adopt a transformer-based decoder to produce gaze prediction
output. We evaluate our approach on two egocentric video datasets — EGTEA Gaze+ [35]
and Ego4D [18]. Our proposed model is easy to incorporate into existing transformer-based
video analysis architectures, and we show that it yields an improvement of more than 3.9%
in F1 score over SOTA methods for egocentric gaze estimation. The code and pretrained
models will be made publicly available to the research community. In summary, this work
makes the following contributions:

* We introduce the first transformer-based approach to address the challenging task of
egocentric gaze estimation.

* We utilize a global visual token embedding strategy to incorporate global visual con-
text into self-attention, and further introduce a novel Global-Local Correlation module
to explicitly model the correlation between global context and each local visual token.

* QOur novel design obtains consistent improvement on the EGTEA Gaze+ [35] and
Ego4D [18] datasets and outperforms previous state-of-the-art methods by at least
3.9% on EGTEA and 5.6% on Ego4D in F1 score. Importantly, this is the first work
that uses the Ego4D dataset for egocentric gaze estimation, which serves as important
benchmark for future research in this direction.
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2 Related Work

The task of egocentric gaze estimation, is distinct from prior work on eye tracking [30, 43,
64] and gaze target prediction from the third person video [9, 10, 28, 46]. In the interest of
space, we limit our discussion to prior work on egocentric gaze estimation and related works
on transformer-based video representation learning and video saliency prediction.
Egocentric Gaze Estimation. Previous works have shown that gaze behavior plays an im-
portant role in recognizing human daily actions from egocentric videos [1, 22, 23, 24, 34,
36, 37, 38, 44, 49, 52, 53, 65]. Here, we discuss the most relevant works that develop deep
models for egocentric gaze estimation. Zhang et al. [65] used deep models and an adversarial
network to predict egocentric gaze location in future video frames. Huang et al. [22] incorpo-
rated temporal attention transition into saliency-based models for gaze estimation. Tavakoli
et al. [52] studied both top-down and bottom-up cues that contribute to gaze guidance. Park
et al. [49] introduced the novel problem of predicting joint attention during social interac-
tion using egocentric videos. Huang et al. [24] collected a new egocentric video dataset and
developed a graphical model to detect joint attention. Thakur et al. [53] proposed a multi-
modal network that uses both video and inertial measurement unit data for more accurate
egocentric gaze estimation. Naas et al. [44] developed a tiling scheme for gaze prediction
which enables a more efficient VR content delivery. Importantly, we are the first to develop
a transformer-based architecture to address the problem of egocentric gaze estimation.
Vision Transformer. Recently, vision transformers [14] have demonstrated superior perfor-
mance on image classification [13, 32, 40, 48, 58, 62], detection [5, 11, 12, 16], segmenta-
tion [8, 50, 55, 66, 67], saliency prediction [39, 41, 42] and video analysis [2, 4, 15, 33, 45,
56]. In this section, we focus on reviewing previous works that use vision transformers for
pixel-wise visual prediction and video understanding. Strudel et al. [S0] developed the first
transformer-based architecture for semantic segmentation. Cheng et al. [8] further unified
semantic, instance, and panoptic segmentation in one transformer architecture. Bertasius et
al. [4] proposed TimeSformer for video action recognition. A similar idea is also explored
in [2]. Fan et al. [15] designed a multiscale video transformer balancing computational cost
and action recognition performance. Ma et al. [42] expanded transformers to visual saliency
forecasting by using self-attention to capture the correlation between past and future frames.
Liu et al. [39] built a transformer-based model to detect salient objects on RGB-D images.
Inspired by these successful applications of transformer architectures, we present the first
work that uses a vision transformer to address the challenging task of egocentric gaze es-
timation. In addition, we introduce the novel Global-Local Correlation (GLC) module that
provides additional insight into video representation learning with self-attention.

Visual Saliency. Visual saliency prediction has been well studied in computer vision [3,
6, 7, 25, 26, 29, 31, 41, 47, 51, 54, 57, 60, 61]. We mainly review previous works on
saliency prediction from videos. Wang et al. [57] expanded image saliency models to videos
by incorporating a new branch to handle temporal information. Wu et al. [61] proposed
SalSAC, which shuffles features of different CNN layers and feeds them to a correlation-
based ConvLSTM. Wang et al. [60] used multiple spatio-temporal self-attention modules to
address the limitation of fixed kernel size in 3D models and to model long-range tempo-
ral dependencies. Chen et al. [7] decomposed video saliency prediction into spatial pattern
capture and spatio-temporal reasoning. Lou et al. [4]1] combined a convolutional network
and transformer architecture to model the long-range spatial context. While visual saliency
prediction localizes interesting spatial regions as potential attention targets, egocentric gaze
estimation seeks to determine the gaze target of the camera wearers as they interact with a
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Figure 2: Architecture of the proposed model. The model consists of four modules — (a)
Visual Token Embedding Module encodes the input into local tokens and one global token,
(b) Transformer Encoder is composed of multiple regular self-attention and linear layers,
(c) Global-Local Correlation Module models the correlation of global and local tokens,
and (d) Transformer Decoder maps encoded video features from Transformer Encoder and
GLC to gaze prediction. ¢ denotes concatenation along the channel dimension.

scene. Moreover, the scene context captured from egocentric video is complex and rapidly
changing, which requires a gaze estimation model with the ability of explicitly reasoning
about the correlation between local visual features and global scene context. In our experi-
ment section, we demonstrate that our proposed GLC module can significantly benefit gaze
estimation performance under this challenging setting.

3 Method

Given an input egocentric video clip with fixed length T and spatial dimension H x W, our
goal is to predict the gaze location in each video frame. Following [35], we consider the
gaze prediction as a probabilistic distribution defined on the 2D image plane.

Fig. 2 presents an overview of our proposed method. We use the recent multi-scale
video transformer (M ViT) architecture [15] as the backbone network for video representation
learning. We extend MViT by designing the Visual Token Embedding Module to generate
the spatio-temporal tokens of both local visual patches and global visual context and feed
them into the standard Multi-Head Self-Attention Module. We then utilize a novel Global-
Local Correlation (GLC) Module to explicitly model the correlation between global and local
visual tokens for gaze estimation. Finally, we make use of the Decoder Network to predict
the gaze distribution based on the learned video representation from the GLC module.

3.1 Transformer Encoder with Global Visual Token Embedding

Visual Token Embedding. We split the input video sequence into non-overlapping patches
with size s7 X sy X sy and adopt a linear mapping function to project each flattened patch into
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D-dimension vector space. Following MViT [15], this is equivalent to a convolutional layer
with a stride of s7 X sy X sW and a number of output channels of D. This operation results

into N tokens where N = == X ﬂ X W. In addition, the learnable positional embedding

E € RV*P is added to the local tokens Our key insight is to further embed global information
into a global visual token using convolutional operations, as illustrated in Fig. 2(a). Since
there is a single global token, it does not require positional embedding. In our experiments,
we examine multiple strategies to embed the global visual token.

Multi-Head Self-Attention Module. The N local tokens and one global token are fed into a
transformer encoder consisting of multiple self-attention blocks. The number of local tokens
is downsampled after each self-attention block, while the number of global tokens remains

1. Suppose the input of the j-th layer of encoder is X£j> = [x,(j)]jﬁl“ e RWi+D*D;j  \where

Nj is the number of local tokens, D; is the vector length of each token and xfj ) is the i-th
row of X £~’ ) denoting the i-th token of size 1 x D;. For simplicity, we omit subscript and
superscript of j and multi-head operation in the following equations. In each self-attention
layer, correlations are calculated in each token pair as shown in Fig. 2(b). They are used to

reweight values of each token after softmax. Formally, we denote the query, key and value
xD N+1 K(N""l)XD

matrices of each self-attention layer in an encoder block as Q (N+1) =[q,]l1,
(ki)Y and yTP [v;]¥!. The self-attention in transformer encoder is formulated as
Attention(Q,,K.,V.) = Softmax(Q.K! /ND)V, € RWN+DXD (1)

Finally, we attach a standard linear layer after the self-attention operation.

3.2 Global-Local Correlation

Even though global information has been explicitly embedded into the global visual token in
our model, the transformer encoder treats the global and local tokens equivalently as shown
in Eq. 1 and Fig. 2(b). In this case, global-local correlation is diluted by correlations among
the local tokens, limiting its impact on gaze estimation. In order to address this problem,
we propose to increase the available capacity to model global-local token interactions. Our
solution is a novel Global-Local Correlation module described in Fig. 2(c).

Formally, we denote the global token as the first row vector of X,, i.e.,x;. Thus g, ki
and v; are the query, key and value projected from the global token, respectively. To ex-
plicitly model the connection between global and local visual features, we only calculate the
correlation between each local token and the global token, i.e., Correlation(x;,x,), as well
as its self-correlation, i.e., Correlation(x;,x;). Then correlation scores are normalized by
softmax to further re-weight the values. We exploit a suppression matrix [40] SINHDX(NHD)
to suppress the correlation of other tokens, where

0, ifi=jorj=1
SIFDXVHD — [sijl,  sij = { A otkllerV\J/ise.] @

We assign zeros to the diagonal and the first column in § and set a large value A for the other
elements. We follow the empirical choice from the implementation of [40] and set A = 108
in our experiments. Formally, the proposed GLC can be formulated as the following:

GLC(QE,K67V€) = SOftmax((QeKeT —S)/\/B>Ve c R<N+1)XD (3)


Citation
Citation
{Fan, Xiong, Mangalam, Li, Yan, Malik, and Feichtenhofer} 2021

Citation
Citation
{Liu, Lin, Cao, Hu, Wei, Zhang, Lin, and Guo} 2021{}

Citation
Citation
{Liu, Lin, Cao, Hu, Wei, Zhang, Lin, and Guo} 2021{}


6 BOLIN LAI ET AL.: GLOBAL-LOCAL CORRELATION

In this way, we keep the values on the first column and the diagonal, and map them into
probability distributions, while values in other positions are nearly “masked out” after the
softmax. Residual connections and linear layers are also used in the GLC module as in the
regular self-attention block. Finally, the output tokens from the GLC are concatenated with
those from the transformer encoder in the channel dimension. We denote outputs of the GLC
and the last encoder block as X 9L€ € RN+1)xD and XS4 ¢ RIW+1)*D | The concatenation can
then be formulated as X, = X34 @ X 9LC ¢ RN+1)x2D " The fused tokens X, are subsequently
fed into the transformer decoder for gaze estimation.

3.3 Transformer Decoder

To produce the gaze distribution with the desired spatio-temporal resolution, we adopt a
decoder to upsample the encoded features. We utilize a transformer decoder based on the
multiscale self-attention block of MViT [15]. Suppose each decoder layer takes visual fea-
tures X4 € RTHW'*D" a5 inputs and the corresponding query, key and value matrices are
Q?H/WIXDI, K;H/W'XDI and V?H/W/XD'. As shown in Fig. 2(d), we replace the original
pooling operation for the query matrix with an upsampling operation implemented with tri-
linear interpolation and keep the pooling for the key and value matrices. Following [15], @d
is obtained by applying a deconvolutional operation on Q,, while I?d and ‘A’d are obtained
by applying convolutional operations on K; and V. Then, the output of self-attention is
calculated in the same way as Eq. 1. In addition, we keep the skip connection in the self-
attention layers and replace the pooling operation in skip connections with trilinear interpo-
lation, which produces the upsampled output with dimension THW x D'. Our decoder is
composed of 4 decoding blocks. Skip connections are used to combine intermediate fea-
tures of the encoder with corresponding decoder features. Finally, another linear mapping

function is used to output the final gaze prediction.

3.4 Network Architecture and Model Training

We adopt MVIT [15] as the backbone, with weights initialized from Kinetics-400 pretrain-
ing [27]. The token embedding stride is set as s = 2, sy = 4 and sy = 4 and the embedding
dimension is D = 96. The encoder is composed of 16 self-attention layers that are divided
into 4 blocks. The number of tokens is downsampled at the transition between two blocks.
We build the decoder with 4 decoder blocks corresponding to the 4 blocks in the encoder.
After getting raw output from decoder, softmax is applied on each frame with a temperature

exp(;i/T) PO . . ..

m where J;; is the logit at location (i, )
from the model and p;; is probability after softmax. In experiments, T is empirically set as 2.
We use KL-divergence loss to capture the difference between labels and predictions. More

details of the training parameters can be found in the supplementary.

7. This can be formally written as p;; =

4 Experiment

4.1 Datasets and Metrics

We conducted our experiments on two egocentric video datasets with gaze tracking data to
serve as ground truth —- EGTEA Gaze+ [35] and Ego4D [18]. The EGTEA dataset is captured
under the meal preparation setting, which involves a great deal of hand-object interactions.
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Methods EGTEA Gaze+ Ego4D

F1 Recall Precision Fl1 Recall Precision
MViT 43.0 578 354 409 574 31.7
MVIT + (a) 434 584 34.5 41.5 56.8 32.6
MVIT + (b) 435 592 344 414 573 324
MVIT + (c) 437 58.3 34.9 413 575 322
MVIT + (d) 439  59.0 34.9 417  57.6 32.7

MVIT + (d) + SA 44.1 588 353 42.1 585 32.9
MVIT + (d) + GLC 44.8 61.2 35.3 431 570 34.7

Table 1: Evaluation of different global embedding approaches and global-local correlation
module. (a)(b)(c)(d) are different global embedding strategies elaborated in Section 4.2. SA
and GLC denote regular self-attention and global-local correlation module, respectively.

We used the first train/test split from EGTEA in our experiments (8299 clips for training and
2022 clips for testing). The Ego4D dataset includes 27 videos of 80 participants totaling 31
hours with gaze tracking data captured under the social setting. We split the long videos into
5-second video clips and pick clips containing gaze fixation. More details of the selection of
clips with gaze fixations are discussed in supplementary. We used 20 videos (15310 clips)
for training and the other 7 videos (5202 clips) for testing. This is the first work that uses the
Ego4D dataset for egocentric gaze estimation, and we will make our split publicly available
to drive future research on this topic. Following [35, 36], we adopt F1 score, recall, and
precision as the evaluation metrics.

4.2 Experimental Results

The Design Choice of Global Visual Embedding. Our key insight is embedding the global
visual information into the transformer architecture for egocentric gaze estimation. Here, we
first explore 4 global visual embedding strategies — (a) direct max pooling on the input, (b)
max pooling on the unflattened local tokens, (c) convolutional layers on the input and (d)
convolutional layers on the unflattened local tokens.

As shown in Table 1, all four global embedding strategies improve the performance of
vanilla MViT model on both the EGTEA dataset and the Ego4D dataset. This result supports
our claim that global context is essential for gaze estimation. Among the four embedding
strategies, (d) achieves the largest performance improvement on both datasets (4+-0.9% on
EGTEA and +0.8% on Ego4D). This indicates that convolutional layers and the embedded
local tokens can facilitate the learning of global context. Thus, we use this strategy in the
following experiments. Note that all baseline methods use the same transformer decoder.
Evaluation of Global-Local Correlation. We also evaluate the Global-Local Correlation
(GLC) module of our model. As presented in Table 1, our full model — MViT+(d)+GLC
outperforms the baseline MViT by +1.8% on EGTEA dataset and 4+2.2% on Ego4D dataset.
Specifically, the GLC module contributes to a performance gain of 4-0.9% on EGTEA Gaze+
and +1.4% on Ego4D (comparing to MViT+(d)). This result suggests that the GLC can
break down the mathematical equivalence of global and local tokens in regular self-attention,
thereby “highlighting” the global-local connection in the learned representation.

Does the Performance Improvement Come from Additional Parameters? It is possible
that the performance of our model benefits from additional parameters in the GLC module.
In Table 1, we report the results of another baseline model, where we replace the GLC
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Methods F1  Recall Precision
Center Prior 10.7 32.0 6.4
GBVS [20] 15.7 45.1 9.5
EgoGaze [34] 16.3 16.3 16.3
SimpleGaze 31.3 418 16.1
Deep Gaze [65] 345 431 28.7
Gaze MLE [36] 26.6 357 21.3
Joint Learning [36] 340 427 28.3
Attention Transition [22] 37.2  51.9 29.0
I3D-R50 [17] 409 572 31.8
“MviT 430 578 354
Ours 44.8 61.2 35.3

Table 2: Comparison with previous methods on EGTEA Gaze+. Our complete model is
highlighted. The proposed model outperforms previous approaches by a significant margin.

Methods F1 Recall Precision
Center Prior 149 219 11.3
GBVS [20] 180 472 11.1
Attention Transition [22] 36.4  47.6 29.5
I13D-R50 [17] 375 525 29.2

- MviT 409 574 317
Ours 43.1 57.0 34.7

Table 3: Comparison with previous methods on Ego4D. Our complete model is highlighted.
The model shows consistent superiority over other state of the arts on all metrics.

module with a regular self-attention (SA) layer. Interestingly, the additional SA layer has
minor influence on the overall performance (+0.2% on EGTEA and 0.4% on Ego4D). In
contrast, our model outperforms this baseline by +0.7% on EGTEA and +1.0% on Ego4D.
This result indicates that the performance boost of our method does not simply come from
the additional parameters of GLC. Instead, the explicit modeling of the connection between
global and local visual features is the key factor in the performance gain.

Comparison with Previous State-of-the-Art. In addition to these studies to evaluate the
components of our model, we compare our approach with prior work. Results are presented
in Table 2 and Table 3. Interestingly, the baseline MViT model easily outperforms all pre-
vious works that use CNN-based architectures on both the EGTEA dataset and the Ego4D
dataset. In addition, our proposed method outperforms the best CNN model by +3.9% on
F1, +4.0% on recall and +3.5% on precision. On Ego4D, our method surpasses the best
CNN model by +5.6% on F1, +4.5% on recall and +5.5% on precision. These results
demonstrate the superiority of using a transformer-based architecture for egocentric gaze es-
timation as well as the effectiveness and robustness of our proposed method. We note that
the improvement of our model is more prominent on Ego4D than EGTEA Gaze+. We spec-
ulate that this is because the Ego4D videos with gaze tracking data are captured under social
interaction scenarios that contain interactions with both people and objects, and thus require
the model to more heavily consider the global-local connections (e.g. the visual information
about a social partner’s gesture to an object) to predict the gaze. Another possible reason is
that the Ego4D dataset has more samples to train the transformer-based model.
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Video Frame Att. Transition 1I3D-R50 MVIT Ours

Figure 3: Visualization of gaze estimation. The first sample is from EGTEA Gaze+ and
the second is from Ego4D. Estimated gaze is represented as a heatmap overlayed on input
frames. Green dots denote the ground truth gaze location.

Video Frame  Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7

Figure 4: Visualization of the eight heads in global-local correlation module. The first sam-
ple is from EGTEA Gaze+ and the second is from Ego4D. Green dots denote gaze location.

4.3 Remarks

Visualization of Predictions. We visualize predictions of our model and other previous
methods in Fig. 3. Attention transition [22] tends to overestimate gaze area which includes
more uncertainty and ambiguity. I3D-R50 [17] and vanilla MViT [15] architectures run
into failure modes when there are multiple objects and people in the scene. In contrast, our
model, by explicitly modeling the connection between the global and local visual tokens,
more robustly predicts the egocentric gaze distribution from the input video clip.

What has been learned by the Global-Local Correlation module? We additionally em-
pirically analyze our proposed GLC module. We first calculate the correlation of the global
token and each local token, and then normalize the calculated weights into a probabilistic
distribution. A higher score suggests that the GLC captures a stronger connection between
the particular local token and the global context. We reshape and upsample these weight
distributions to form a heatmap, which we overlay with the original input. Since the GLC
module applies a multi-head operation, we visualize the results from different heads in Fig. 4.
Interestingly, the correlations captured by the GLC heads are quite diverse. We observe that
the GLC module does assign different weights to local tokens, thereby capturing the different
global-local connections for each token. Another important finding is that some heads learn
to attend to background pixels to prevent the model from omitting important scene context.
We provide further commentary in the supplementary.
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5 Conclusion

In this paper, we develop a transformer-based architecture to address the task of estimating
the camera wear’s gaze fixation based only on egocentric video frames. Our key insight
is that our global visual token embedding strategy, which encodes global visual information
into the self-attention mechanism, and our global-local correlation (GLC) module, which ex-
plicitly reasons about the connection between global and local visual tokens, facilitate strong
representation learning for egocentric gaze estimation. Our experiments on the EGTEA
Gaze+ and Ego4D datasets demonstrate the effectiveness of our approach. We believe our
work serves as an essential step in analyzing gaze behavior from egocentric videos and pro-
vides valuable insight into learning video representations with transformer architectures.
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Supplementary

This is supplemental material for the paper titled "In the Eye of Transformer: Global-
Local Correlation for Egocentric Gaze Estimation". We organize the content in the following
way:

* A —Data Processing

* B — Implementation Details

* C - Experiments on Action Recognition

¢ D — Details of Different Global Visual Embedding Strategies

* E — More Visualization Examples of Gaze Estimation

F — Future Work

A Data Processing

At training time, we randomly sample 8 frames from each video with a sampling interval
of 8 as input (i.e. selecting 8 frames from a 72-frame window with equal spacing). All
videos are spatially downsampled to 256 in height while keeping the original aspect ratio.
We further implement multiple data augmentations including random flipping, shifting, and
resizing. We then randomly crop each frame to get an input with dimensions 8 x 256 x 256.
The output from the decoder is a downsampled heatmap with dimension 8 x 56 x 56. For
visualization, the output heatmap is upsampled to match the input size by trilinear interpo-
lation. At inference time, the input clip is center-cropped. For gaze labels, we generate a
gaussian kernel centered at the gaze location in each input frame with a kernel size of 19 fol-
lowing [10]. We use a uniform distribution for frames where gaze is not tracked in training
and only calculate metrics on frames with fixated gaze in testing as in [35]. For the EGTEA
Gaze+ [35] dataset, we determine which frames to calculate metrics on by using the pro-
vided label of gaze fixations and saccades. On the Ego4D [18] dataset, no label of gaze type
is available. We calculate the euclidean spatial distance of gaze between adjacent frames and
consider the tracked gaze to be a saccade if the distance is above a threshold, and treat it as
fixation otherwise. We adopt an empirical threshold of 40.

B Implementation Details

We show the parameter details of each layer in Table 5. Data is input to the local token
embedding module to get local tokens. Then, these tokens are fed to the global token em-
bedding module which consists of three convolutional layers and one linear layer. Both local
and global tokens are flattened into vectors of length of 96. In the following encoder, Global-
Local Correlation Module (GLC), and decoder blocks, the number of local tokens is either
downsampled or upsampled, while the number of global tokens remains as one. Hence we
write the number of tokens in the output size as (1 global token + number of local tokens).
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Methods Cls Token Pooling Topl-Acc Top5-Acc Mean Cls Acc
MVIT [15] v 64.64 89.22 54.02
MVIT [15] v 63.45 88.72 55.34
MVIiT + Global Token v 64.44 88.72 55.28
MVIiT + Global Token v 63.06 88.53 54.15
MVIT + Global Token + GLC v 64.79 88.67 56.77
MVIiT + Global Token + GLC v 65.33 89.12 57.26

Table 4: Results of action recognition on EGTEA Gaze+. We implemented two methods for
classification — adding an additional class token or using global average pooling. “-"" means
the result is unavailable. The complete models are highlighted.

After generating the output from decoder block4, a convolutional layer is applied only on the
local tokens to compress the 8 channels to 1. We then convert this to a probability distribution
by applying softmax to each frame.

C Experiments on Action Recognition

In addition to egocentric gaze estimation in the main paper, we also examine the application
of our GLC module to the egocentric video action recognition task, and find that our method
performs competitively with methods designed specifically for this task on EGTEA Gaze+.
To this end, we remove the decoder in the gaze estimation model and keep only the visual
token embedding, transformer encoder, and GLC modules. Generally, there are two ways to
obtain activity class category prediction: adding a class embedding token at the first layer of
transformer, or using pooling across all global tokens to obtain a final embedding. Then a
fully-connected layer followed by softmax is used to predict probabilities for each category.
We implement both strategies and compare our approaches with previous works in Table 4.
We conduct these experiments only on EGTEA Gaze+ [35] using the same split as gaze
estimation. Note that the Ego4D [18] social benchmark does not contain action labels.

For vanilla MViT [15], class token embedding performs better than the pooling opera-
tion. For both methods, simply adding global embedding has a minor influence on the overall
performance (—0.2% on top1 accuracy, —0.5% on top5 accuracy and +1.32% on mean class
accuracy while using the class token, and —0.39%, on topl accuracy, —0.19% on top5 ac-
curacy and —1.19% on mean class accuracy while using pooling layer). This result suggests
that simply adding global context as an additional token has minor influence on the action
recognition performance.

In addition, adding our GLC module can only improve the model performance by a
small margin when using class token embedding to predict action classes. We hypothesize
that this is because only the class token is input into the linear layer for final prediction and
re-weighted tokens from GLC are left unused. In contrast, when applying global average
pooling on all local tokens, GLC improves topl, top5 and mean class accuracy over the
counterpart that doesn’t use GLC (MViT+Global Token) by +2.27%, +0.59% and +3.11%,
respectively. Gains over corresponding the MViT baseline are +1.88%, +0.4% and +1.92%
on the three metrics. These results indicate our proposed GLC module is a robust and general
design that also improves the action recognition performance. However, the impact on action
recognition is smaller compared with egocentric gaze estimation.

We note that our model achieves a competitive performance for action recognition on
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Video Frame  Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7 Head 8

Figure 5: Visualization of the eight heads in global-local correlation module for action recog-
nition.

EGTEA Gaze+ without additional design for this specific task. Our top1 accuracy of 65.33%
exceeds Wang et al. (2020) [59] by +1.23%, and is only a —1.17% difference from Hao
et al. (2022)’s [19] recent state-of-the-art method for this benchmark of 66.5%. We also
want to emphasize that we conduct these action recognition experiments to demonstrate the
generalization ability of our proposed GLC module rather than aim to produce SOTA results
on action recognition.

Additionally, we visualize the global-local correlation weights of the GLC in Fig. 5.
Importantly, the learned global-local correlation is vastly different from the gaze distribution
when the model is trained for action recognition; in contrast, a stronger connection between
the learned global-local correlation and gaze distribution can be observed when the model
is trained for gaze estimation (see Fig. 8). How to design a weakly-supervised model for
egocentric gaze estimation remains an open question.

D Details of Different Global Visual Embedding Strategies

We present further details of the four global visual embedding strategies we studied in Sec-
tion 4.2 of the main paper. As demonstrated in Fig. 6, (a) implements max pooling on input
frames directly, and (b) implements max pooling on local visual tokens. For (c) and (d), we
replace max pooling operations in (a) and (b) with a sequence of convolutional layers. The
specific parameters of (d) are detailed in Table 5. For global embedding in (c), input video
frames are fed into a convolutional layer that is identical to the layer used for local token
embedding (i.e., kernel is 3 x 7 x 7 and stride is 2 x 4 x 4.) Then, the output is passed to a
sequence of convolutional layers identical to (d).
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(a) max pooling (b) max pooling
ﬁ Conv - : Conv o E
(c) Conv ——— (d) Conv

L o |

Figure 6: Four different approaches of global visual token embedding.

E More Visualization Examples of Gaze Estimation

More visualizations of gaze prediction of both our model and previous state-of-the-art ap-
proaches are presented in Fig. 7. Our proposed model can accurately predict the gaze dis-
tribution even when the scene context is very complicated, while the other three approaches
may be misled by background objects or produce predictions with too much uncertainty.

We provide more examples of GLC visualizations in Fig. 8. The 8 heads capture features
of different areas which is consistent with the examples in the main paper. On the EGTEA
Gaze+ dataset, the maps produced by heads 1, 4, 5, and 8 highlight pixels around the gaze
point with different uncertainty (which is illustrated by the size of highlighted area). The
other four heads focus on surrounding objects and leave gaze areas unattended. As for the
Ego4D data, only head 3 captures the wearers’ attention, while the other heads fully focus on
the backgrounds in different aspects. This supports our key conclusion in the main paper that
our GLC module learns to model human attention by setting different weights from local to
global tokens, capturing many facets of scene information (both around the gaze target and
in the background) in the multi-headed attention mechanism.

F Future Work

In this paper, we studied the explicit integration of global scene context for egocentric gaze
estimation and proposed a novel modeling approach for this problem. We also showed the
results of our proposed architecture on egocentric action recognition in this supplementary
material to demonstrate our model’s generalization ability. Our findings also point to several
exciting future research directions:

* QOur proposed GLC module has the potential to address other video understanding
tasks including visual saliency prediction in third-person video, active object detec-
tion, and future forecasting. We plan to study the effect of our method on those tasks
in our future work.

* Our modeling work can be expanded to understanding human gaze behavior associated
with multiple sensing modalities, especially in the social conversation setting. An
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Video Frame Att. Transition [3D-R50 MVIT
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Figure 7: Visualization of gaze estimation. Both successful cases (in green box) and failure
cases (in red box) of our model are demonstrated. Green dots present ground truth.
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Video Frame Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7

A

Figure 8: Visualization of the eight heads in the Global-Local Correlation module. Green
dots represent the ground truth.
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exciting future direction is incorporating audio signals into egocentric gaze estimation.

e Qur proposed GLC fails to learn the gaze distribution when the model is trained to
predict the action labels. How to design a weakly supervised model for egocentric
gaze estimation using action labels is an interesting problem.
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Stages Operators Output Size
data - 8 x 256 x 256
Conmv(3x7Tx17, 96
local token embedding onv(3x7x7, 96) 96 x 4 x 64 x 64
stride 2 x4 x 4
Conv(3 x 3 x 3, 96)
Conv(3 x 3 x 3, 96)
global token embedding Conv(3 x 3 x 3, 96) 96 x 1
Linear(24576)
stride of each conv 1 x2 x?2
tokenization flattening and concatenation 96 x (1+4 x 64 x64)
MSA(96
encoder block1 (96) x 1 192 x (1+4 x 64 x 64)
MLP(384)
MSA(192
encoder block2 (192) X2 384 x (144 x32x32)
MLP(768)
MSA(384
encoder block3 (384) x 11 768 x (1+4x 16 x 16)
MLP(1536)
MSA(768
encoder block4 (768) x2 768 x (1+4x8x38)
MLP(3072)
GLC(768)
global-local correlation MLP(3072) x1 | 1536 x(1+4x8x8)

concatenation in channel

MSA(1536

decoder blockl ( ) x 1 768 x (1+4x16x16)
MLP(3072)
MSA(768

decoder block2 (768) x 1 384 x (144 x32x32)
MLP(1536)
MSA (384

decoder block3 (384) x 1 192 x (1+4 x 64 x 64)
MLP(768)
MSA(192

decoder block4 (192) x 1 96 x (148 x 64 x 64)
MLP(384)

IxIxl1,1
head Conv(1>x1x1, 1) 8 x 64 x 64

stride 1 x 1 x 1

Table 5: Architecture of the proposed model.
Conv(kernel size, out put channels). Numbers of input channels of multi-head self-attention
are shown in the parenthesis of MSA. Dimensions of the hidden layer in multi-layer percep-
trons are listed in parenthesis of MLP. In tokenization, local and global tokens are reshaped
and concatenated. In global-local correlation, the output is concatenated with its input in the
channel dimension. Head only takes local tokens as input.

Convolutional layers are denoted as



