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Abstract—When imaging through a semi-reflective medium 
such as glass, the reflection of another scene can often be found in 
the captured images. It degrades the quality of the images and 
affects their subsequent analyses. In this paper, a novel deep 
neural network approach for solving the reflection problem in 
imaging is presented. Traditional reflection removal methods not 
only require long computation time for solving different 
optimization functions, their performance is also not guaranteed. 
As array cameras are readily available in nowadays imaging 
devices, we first suggest in this paper a multiple-image based depth 
estimation method using a convolutional neural network (CNN). 
The proposed network avoids the depth ambiguity problem due to 
the reflection in the image, and directly estimates the depths along 
the image edges. They are then used to classify the edges as 
belonging to the background or reflection. Since edges having 
similar depth values are error prone in the classification, they are 
removed from the reflection removal process. We suggest a 
generative adversarial network (GAN) to regenerate the removed 
background edges. Finally, the estimated background edge map is 
fed to another auto-encoder network to assist the extraction of the 
background from the original image. Experimental results show 
that the proposed reflection removal algorithm achieves superior 
performance both quantitatively and qualitatively as compared to 
the state-of-the-art methods. The proposed algorithm also shows 
much faster speed compared to the existing approaches using the 
traditional optimization methods.  
 

Index Terms—Image reflection removal, deep learning, blind 
image separation, generative adversarial network 
 

I. INTRODUCTION 

IGITAL photography has become a daily activity for many 
people. While in every few months a new and more 

advanced digital camera is launched to the market, there are still 
problems in imaging that cannot be fully resolved with the 
existing imaging devices. One of them is reflection removal. It 
is common to capture images with reflection of unwanted scene 
in daily photography. The problem arises when taking pictures 
through a semi-reflective material, such as imaging the outside 
scenery through a window, or taking picture of underwater 
objects from above the water surface, etc. It is important to 
remove the unwanted reflection in the image since it does not 
only affect the visibility of the desired scene but also introduces 

ambiguity that perturbs the subsequent analysis on the image. 
To solve the problem, traditionally photographers make use 

of a polarizer lens to filter the reflection. However, it works well 
only when the reflection incident angles are close to the 
Brewster angle [1]. Alternatively, the reflection can also be 
removed using image processing approaches. In fact, reflection 
removal is a special topic of the blind image separation (BIS) 
problem.  For the problem of reflection removal, a reflection 
scene 𝐼ோ  is superimposed onto a background scene 𝐼஻ . The 
resulting scene 𝐼 can be described by an additive model as 
follows: 

𝐼 = 𝐼஻ + 𝐼ோ. (1) 

Separating 𝐼஻ and 𝐼ோ from 𝐼 is severely ill-posed since we have 
two unknowns but only one equation. Despite the difficulty of 
the problem, many solutions were developed in the past 20 
years [2-16] and claimed to give good performance. The most 
typical approaches are based on the independent component 
analysis [2-4]. These approaches extend the earlier works in 
blind signal separation to the two-dimensional space. They 
assume the images are statistically independent and are mixed 
in different ways such that multiple mixtures of the images can 
be captured. Such assumption and requirement are difficult to 
fulfill in general imaging applications. Another type of BIS 
method is based on the sparse representation of images [5, 6]. 
They require only a single observation of the scene but assume 
that the different components in the image have different 
morphological structures. Such assumption is difficult to 
achieve for most reflection removal problems since in most 
cases the morphological structures of the background and 
reflection images are the same. So rather than just relying on 
the images’ sparse representations, different priors were added 
to constrain the optimization process. Most priors that the 
previous methods adopted are gradient based, such as gradient 
sparsity and gradient independence [7-10]. The former one is a 
well-known property of natural images; and the latter one is 
based on the observation that the strong gradients (such as 
edges) of the background and reflection images are normally 
non-overlapped. However, the effect of just adding these priors 
in the optimization process is still limited due to the huge 
variety of natural images.   

Quite recently, the learning-based approaches, such as deep 
neural networks (DNN), are also applied to the problem of 
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reflection removal [11, 12]. Both the approaches in [11] and [12] 
claim to achieve reflection removal using only a single 
observed image. To accomplish this, a number of priors need to 
be applied to constrain the problem. However, none of these 
priors is strong enough to clearly distinguish the background 
and reflection in the image. For instance, [11] assumes the 
reflection is blurrier than the background and trains two 
convolutional neural networks (CNNs) to exploit this property. 
The same assumption is also used in [12] although the high-
level features of images are also taken into account when 
training the CNN. Indeed, the assumption that the reflection is 
blurry is often invalid, as it is also pointed out in [12]. It 
introduces the robustness problem to both approaches in 
general applications. 

With only a single image, the reflection removal problem is 
too unconstrained to solve. Researchers also considered using 
multiple images. Comparing to single-image based methods, 
multiple-image based solutions often show better performance. 
In fact, recent advance in digital imaging technology has 
allowed multiple images of a scene to be captured conveniently 
for general users. By taking multiple images of the scene from 
different viewing angles, we can obtain the depth information 
of the scene, which is a very useful cue to identify the 
background and reflection since it is rare to have two 
uncorrelated images having the same depth. In [8], the different 
homographies of the background and reflection are adopted for 
their separation. When the multiple images are aligned to the 
same view and combined using the background homography, 
the reflection will be largely misaligned and become blurred. 
Then a low rank decomposition method is applied to remove 
the reflection from the combined image. However, the method 
will work only when the background can be approximated as a 
plane (such as a painting or a scene far away from the camera). 
If the background also has a depth range, some parts of it will 
also be misaligned and removed. Another multiple-image 
approach using the depth information is described in [9]. In that 
method, the scale-invariant feature transform (SIFT) flow is 
used to register the dominant background edges. Since the 
reflection will fail to register due to its weak intensity, their 
edges can be separated according to the extent of alignment. 
However, due to the weak reflection assumption, the method 
will fail if the reflection is not particularly weak, which is hard 
to avoid in real scenes. In [10], the difference of the optical 
flows of the background and reflection images are adopted for 
their separation. This method however can easily fall into the 
local minimum because many variables need to be regularized 
simultaneously. An accurate initial guess is needed to guide the 

optimization process to the desired solution. Recently, light 
field cameras are also adopted in the reflection removal 
problem [13, 14] since image depth can be obtained from light 
field images effectively. However, the approach in [13] has 
stringent requirements on the orientation of the camera. 
Furthermore, both approaches in [13] and [14] assume that the 
background and reflection have absolutely different depths. 
Due to the error in depth estimation, these methods often fail to 
perform when the depths of the background and reflection are 
close to each other. It will be even worse if some of the 
components of the background and reflection share the same 
depth range, which indeed frequently happens in practical 
situations.  For this reason, we recently proposed a reflection 
removal algorithm [15, 16] based on a new model as shown in 
Fig. 1. The model assumes a shared depth region of the 
background and reflection thus allows some of the components 
in the background and reflection scene to have the same depth 
values. The new model leads to a more robust algorithm. 
However, due to the massive optimization processes, the 
algorithm is rather time consuming which hinders its practical 
application.  

In this paper, a new multiple-image based reflection removal 
algorithm using deep neural networks is proposed. For the 
proposed algorithm, multiple images of a scene are captured to 
evaluate the depth of the image edges using a CNN. Based on 
the edge independence property, the new algorithm classifies 
the background and reflection edges based on their depth value. 
The proposed algorithm also follows the model in Fig. 1 that it 
allows the background and reflection edges to have a shared 
depth range (layer II in Fig. 1). The edge pixels in the shared 
depth region, which are error prone, are not used in the 
reflection removal process. Rather, they are regenerated based 

Fig. 2. The flowchart of the entire framework. 

 
 

Fig. 1. The model adopted by the proposed algorithm. In this model, 
Layer I and III comprise the edges of the reflection and background 
images respectively with distinct depth values. Layer II is shared by 
the background and reflection images. It contains their edge pixels 
with similar depth values.  
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on those in layer I and layer III in Fig. 1 which we have higher 
confidence about their classes (reflection or background). The 
original reflection removal problem is thus converted to 
become an edge regeneration problem. To regenerate the 
missing edges (in the shared depth region) from the classified 
edges, we adopt a Wasserstein generative adversarial network 
(WGAN) [17]. Recently, GANs [18] has drawn much attentions 
from researchers due to their strong ability in generating new 
samples following the statistical characteristics of the training 
dataset. Due to such property, GANs have been successfully 
applied to various inverse problems, like super-resolution [19], 
inpainting [20] and denoising [21]. A GAN contains a generator 
producing new samples and a discriminator jointly trained to 
evaluate the difference of the generated samples from the real 
samples. The goal is to train a generator that can synthesize new 
samples following similar distributions of the ground truths 
such that they cannot be distinguished by the discriminator. 
From an analysis of the images with reflection, we notice that 
there is a significant difference between their statistical 
distribution and that of normal images. A GAN can learn 
through the massive training process to generate the required 
data that follow the distribution of normal images to regenerate 
the image edges in the shared depth region. However, the 
training of GAN is a minimax process, which can be unstable 
and difficult to converge. To conquer this difficulty, we adopt 
WGAN which applies the Wasserstein distance to its loss 
function [17]. The training of WGAN is much faster and can 
converge in a more stable manner than the original GAN. Based 
on the estimated background edges, we use another auto-
encoder to extract the background image from the original one. 
The flowchart of the entire algorithm is shown in Fig. 2. 

To summarize, our main contributions of this paper are as 
follows: 
1) We propose a novel deep learning based algorithm to solve 
the ill-posed reflection removal problem. This approach has no 
pre-requisites as in the previous approaches on the property of 

the reflection image (such as blurriness [11, 12] or weak 
intensity [9]). It also does not have the restrictions as in the 
previous approaches due to the use of different motion models 
[8-10] and the need of accurate initialization of the parameters 
[10]. 
2) For images with reflection, their depth is known to be 
ambiguous in general. We develop a new CNN approach that 
directly estimate from the multiple-image input the depth 
values along the image edges. Due to the edge independence 
property, we can classify many of the edge pixels as belonging 
to the background or reflection without ambiguity. 
3) Since the edges in the shared depth region are error prone, 
we regenerate these edges by using a WGAN. Thus, we convert 
the original reflection removal problem to be an edge 
regeneration problem. We also show that an image with 
reflection has a significant difference in its statistical 
distribution from that of normal images. A WGAN can learn 
through the massive training process to generate the required 
data that follow the distribution of normal images. 
4) Instead of using the traditional time-consuming 
optimization process, we use another auto-encoder to extract 
the background image from the original one based on the 
estimated background edges. High level features are adopted in 
the training of the auto-encoder and the input is also pre-
processed to remove the strong edges of reflection. They both 
contribute to the improved performance of the proposed 
algorithm.  
5) Since DNN techniques are adopted in all components of the 
proposed algorithm, a significant improvement in the 
computation speed is achieved as compared to the traditional 
optimization approaches. 

The rest of the paper is organized as follows: after the 
introduction in Section I, we describe the CNN we used to 
estimate the depth values of the image edges in Section II. In 
Section III, we present the WGAN which is used to regenerate 
the missing background edges. In Section IV, we introduce the 
auto-encoder to extract the background image based on the 
estimated background edges. In Section V, we show the 
experimental, comparison and ablation analysis results. Finally, 
we draw the conclusion in Section VI. 

II. ESTIMATING THE DEPTH OF IMAGE EDGES 

Image based depth estimation has been extensively studied 
for a few decades. The main strategy is to match the feature 
points in stereo image pair or multiple images taken at slightly 
different viewpoints [22-24]. However, for images with 
reflection, the background and reflection overlap each other in 
each pixel. Since usually they have different depths, image 
patches that are matched in the background images will become 
unmatched after the reflection images are superimposed. Fig. 3 
shows an example that an image pair (Fig. 3(a)) is 
superimposed with another image pair (Fig. 3(b)). It can be seen 
that a pair of matched background patches in Fig. 3(a) will have 
large difference after the reflection images are superimposed in 
Fig. 3(b). Depth estimation using the patch matching method on 
images with reflection obviously will have large error. However, 

                
 

                
                                            MSE=0.0144                                                  MSE=0.0285 

  (a) Original image pair                        (b) Image pair with reflection 
 

Fig. 3. (a) An image pair of a scene taking at slightly different viewing 
angles. The boxes show a pair of matched patches in the two images. 
(b) The image pair in (a) is superimposed by another image pair. The 
boxes show the same patches of (a) but now have large difference.  
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based on the gradient independence property, the strong 
gradients (such as edges) of the background and reflection 
seldom overlap each other. Therefore, instead of matching 
image patches, we estimate the depth by matching only the 
edges of different images. To achieve this, an Edge Depth 
Estimation Network is designed using a CNN with architecture 
as shown in Fig. 4. The network contains eight layers with 256 
channels at the beginning, 128 channels in middle six layers and 
one channel in the last layer for outputting the depth map. The 
kernel size is 5x5. There are batch normalization layers and 
ReLU following every convolutional layer except the last one. 
We assume images from 5 different viewing angles are 
available. The middle one is selected as the reference image. 
The subsequent reflection removal procedure will be applied 
only to the reference image. The other images are for depth 
estimation. All images are stacked together and fed to the 
proposed network for estimating the depth along the edges of 
the reference image. Similar to [25, 26], we train the network 
by minimizing the loss ℒ஽  between the gradients of the 
reference image 𝐼௖ and the other images 𝐼௡ defined as follows:  

ℒ஽ = ∑ ቛ𝐴௡(𝑥) ∙ 𝐼௡(𝑥) − 𝐴௡(𝑥) ∙ 𝐼௖ ቀ𝑥 + 𝐵௡,௖ ∙௡,௫

𝑑(𝑥)ቁቛ
ଶ

, 
(2) 

where d is the depth; x is the pixel coordinate; n is the index of 
the images; and 𝐵௡,௖  is the baseline difference between the 
reference image and the nth image. In (2), 𝐴  represents the 
gradient map. Hence, only the image edges are considered in 
the loss function. Note that in this loss function, we do not need 
any ground truth depth map. This unsupervised training strategy 
can avoid the difficulty of collecting the labels of the samples. 
In the testing phase, the input 5 images are stacked and fed into 
the network, which directly output the depth map of the edges 
of the reference image. In Fig. 5, a brief comparison is made 
between our approach and another CNN based multiple-image 
depth estimation method [27]. For the ease of visualization, the 
depth values of only the strong edge points are shown in Fig. 5. 
Method [27] uses the image patch matching method for depth 
estimation and we can find many errors in the estimation result. 
For instance, both the background and reflection are estimated 
to have the same depths in the top right-hand corner of the 
image. The error is caused by the aforementioned problem that 
the patch matching method can have large error when applying 
to images with reflection. In contrast, the proposed approach 
which is based on image edge matching gives much higher 
accuracy as shown in Fig. 5.  

The estimated depth values will be used to classify the image 
edges as belonging to the background or reflection. The 
background edges are then used to help in extracting the 
background image. The details are described in the following 
sections. 

III. EDGES REGENERATION USING WGAN 

As mentioned in Section I, background and reflection scenes 
do not necessarily have different depths. It is frequent that some 
of their components share the same depth range. Even if they 
have totally different depth ranges, edges having similar depth 
values are always difficult to be accurately classified due to the 
possible error in depth estimation. To solve the problem, we 
suggest that the edges in the shared depth region, which are 
error prone, should not be used in the reflection removal process. 
Rather, we regenerate the background edges in the shared depth 
region based on those having more distinct depth values. It is 
achieved by the proposed Edge Regeneration Network as 
shown in the third functional block in Fig. 2. We first extract 
the edges in layer I and III of the model in Fig. 1. We apply the 
k-means clustering method as in [16] to obtain two depth 
thresholds 𝐾ଵ  and 𝐾ଶ  (𝐾ଶ > 𝐾ଵ  ). Details of determining the 
thresholds can be found in [16]. Without loss of generality, we 
assume the background has a larger depth range than the 
reflection. It is just a change of symbols if it is the other way 
round. Thus, edges with depth values smaller than 𝐾ଵ  are 
classified as the reflection edges (layer I in Fig. 1). Edges with 
depth values larger than 𝐾ଶ  are classified as the background 
edges (layer III in Fig. 1). Those in between are classified as in 
the shared depth region (layer II in Fig. 1). The background 
edges in the shared depth region will be regenerated by using a 
WGAN. The details will be described in the following sub-
sections. 

A. Wasserstein Generative Adversarial Networks 

Compared to CNN which only minimizes the distance in the 
loss functions, GAN targets to produce samples that are close 
to the ground truth and cannot be distinguished by a 
discriminator. The learning process of a GAN can be described 
by a minimax optimization as follows: 

min
ீ

max
஽

𝔼௫∈ఞൣlog൫𝐷(𝑥)൯൧ + 𝔼௭∈𝒵 ቂlog ቀ1 − 𝐷൫𝐺(𝑧)൯ቁቃ, (3)

where 𝔼 refers to the expectation operator; 𝐺 and 𝐷 represent 
the generator and discriminator respectively. 𝐺  is trained to 

 
Fig. 4. The architecture of the Edge Depth Estimation Network.  

     
(a)                                 (b)                                     (c) 

Fig. 5. (a) The input image with reflection (only the reference image 
is shown); (b) the edge depth estimated using method [27]; (c) edge 
depth estimated using the proposed network. In (b) and (c), the red and 
blue colors represent the large and small depth values.   
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map the input 𝑧, which follows the distribution 𝒵 to the target 
x, which follows another distribution χ. A discriminator D is 
jointly trained to distinguish the output of 𝐺(𝑧) from the real 
sample x by maximizing a loss function. The goal is to train a 
generator G which can generate fake data that the discriminator 
D cannot distinguish. At that time, the output of 𝐺(𝑧) should be 
very close to the target x. However, the training of GAN is 
unstable and difficult to converge. Therefore, we adopt WGAN 
which inherits the ability of GAN but shows stable and fast 
convergence. It is achieved by using the Wasserstein distance 
in its loss function plus a few slight modifications to the training 
process. The learning process of WGAN can be described as 
follows: 

min
ீ

max
஽

𝔼௫∈ఞ[𝐷(𝑥)] − 𝔼௭∈𝒵ൣ𝐷൫𝐺(𝑧)൯൧. (4) 

In the training, it also requires to remove the sigmoid activation 
in the last discriminator layer and clip the weight range of the 
discriminator to force it to be 1-Lipschitz [17]. With such 
modifications, we can efficiently train a WGAN to estimate the 
background edges. 

B. Using WGAN for edge regeneration 

We consider WGAN as a suitable tool for this problem 
because of its strong ability in synthesizing new data following 
a given statistical distribution. A study was made to understand 
the difference in distribution between an image with and 
without reflection. We made use of about 100 real-life images 
(with reflection) from a dataset [28]. Since the background 

ground truths are also provided in the dataset, we can compute 
the histograms of these images with and without reflection. Fig. 
6 shows the resulting histograms of only the edge points of 
these images. It can be seen that there is a significant shift in the 
bias and skewness for the images with reflection. It is because 
light is additive. Images with reflection in general have higher 
intensity than normal images. Such difference in distribution 
can be fully exploited by WGAN through massive training 
when generating the edge points of the background from the 
original image with reflection.          

Different from the traditional applications of WGAN (such 
as image-to-image translation, etc.) that a large degree of 
freedom is allowed for the image generated, an effective 
reflection removal algorithm is expected to give an output as 
close to the background image as possible. The problem is more 
like an inverse problem than image generation. To enhance the 
ability of WGAN in generating the missing edges of the 
background, we suggest a structure similar to the conditional 
GAN [29]. Rather than just fooling the discriminator, the 
objective of the generator is revised to also ensuring the output 
is close to the ground truth background edges 𝐸஻ in an L2 sense. 
Hence, when the results of the discriminators are incorporated, 
it forms a typical regularized minimization process as follows: 
𝐸෨஻ = min

ீಳ

‖𝐺஻(𝑧) − 𝐸஻‖ଶ
ଶ

− 𝜆ଵ ቀ𝐷஻൫𝐺஻(𝑧)൯ + 𝐷ோ൫𝐸 − 𝐺஻(𝑧)൯ቁ, 
(5)

where 𝐸 is the image edges; 𝐸஻ is the ground truth background 
edges and 𝜆ଵ  is the Lagrange multiplier to balance the two 
terms in (5). Note that the discriminator 𝐷஻ is trained to give a 
large value if 𝐺஻(𝑧) gives an output close to the ground truth 
background edges and vice versa, whilst the discriminator 𝐷ோ 
is trained to give a large value if 𝐸 − 𝐺஻(𝑧) gives an output 
close to the ground truth reflection edges and vice versa. So, 
they combine to form a prior of 𝐺஻(𝑧) to regularize the first 
term in (5), which is a typical approach used in the inverse 
problem. Note that if 𝐺஻(𝑧) gives the background edges, 𝐸 −

𝐺஻(𝑧) will give the reflection edges. Thus, the term 𝐷ோ൫𝐸 −

𝐺஻(𝑧)൯ strengthens the prior with the discriminator 𝐷ோ. 
The architectures of the generator and discriminator are 

shown in Fig. 7. The structure of the generator 𝐺஻ is similar to 
a U-net [30] with skip connections, which has been shown to be 
effective in the inverse problem in [20]. The two discriminators 
𝐷஻ and 𝐷ோ have the same CNN structures with 6 downsampling 
layers as shown in Fig. 7. The training of the networks can be 
performed in an iterative manner as in the original WGAN. For 
each training image, an input vector 𝑧 is formed by stacking its 
edges 𝐸 , the initially estimated background edges 𝐸஻

଴  and 
reflection edges 𝐸ோ

଴ (that is, the edges in layers III and I in Fig. 
1, respectively). They are sent to the proposed WGAN to guide 
the generator and discriminators to generate the background 
edges in the shared depth region following the distribution in 
the background image. Assume that 𝑚  samples of the 
background and reflection image ground truths and 𝑚 samples 
of the training images are obtained. We can train the generator 
𝐺஻  by updating its parameters using the gradient descent 
method to minimize the following function: 

    Red channel 

Green channel 

Blue channel 
 

Fig. 6. Distributions of the edges of normal images (green), and with 
reflection (blue).  
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෍ ‖𝐺஻(𝑧(𝑖)) − 𝐸஻(𝑖)‖ଶ
ଶ

௠

௜ୀଵ

− 𝜆ଵ ൬𝐷஻ ቀ𝐺஻൫𝑧(𝑖)൯ቁ

+ 𝐷ோ ቀ𝐸 − 𝐺஻൫𝑧(𝑖)൯ቁ൰ . 

(6) 

The trained generator 𝐺஻ is then used to train the discriminators 

𝐷𝐵 and 𝐷𝑅. Assume another 𝑚 samples of the background and 
reflection image ground truths and 𝑚 samples of the training 

images are obtained, the parameters of 𝐷𝐵 and 𝐷𝑅 are updated 
using the gradient ascent method (plus weight clipping) to 
maximize the following cost functions: 

෍ 𝐷஻(𝐸஻(𝑖)) − 𝐷஻൫𝐺஻(𝑧(𝑖))൯
௠

௜ୀଵ
; (7)

෍ 𝐷ோ(𝐸ோ(𝑖)) − 𝐷ோ൫𝐸 − 𝐺஻(𝑧(𝑖))൯
௠

௜ୀଵ
. (8)

In (8), 𝐸ோ  is the ground truth reflection edges, which can be 
derived from the ground truth reflection image. The trained 𝐷஻ 
and 𝐷ோ  are then used to train 𝐺஻  again to obtain a better 

generator. The process repeats until converged. In the testing 
phase, the input 𝑧, which comprises the edges 𝐸 of the input 
image, the initial background edges 𝐸஻

଴ and reflection edges 𝐸ோ
଴, 

is fed to the trained generator 𝐺஻ to obtain an estimate of the 
background edges 𝐸෨஻ . The reflection edges 𝐸෨ோ  can also be 
obtained by masking out 𝐸෨஻ from 𝐸. A background binary edge 
map 𝑀෩஻  is also obtained by selecting edges in 𝐸෨஻ whose 
gradient magnitudes are above a threshold 𝜎. We empirically 
set 𝜎 = 0.05 in our experiment. We then feed 𝐸෨஻ and 𝑀෩஻ to the 
Background Image Extraction Network as shown in Fig. 2 to 
obtain the reflection-free background image. Fig. 8 shows an 
example of 𝑀෩஻ obtained from the proposed Edge Regenerating 
Network. We denote the binary edge masks for 𝐸 and 𝐸஻

଴ as 𝑀ா 
and 𝑀஻

଴  respectively. We can see that 𝑀ா  contains both the 
background and reflection edges, while the initial background 
edge map 𝑀஻

଴ only contains a portion of the background edges. 
As shown in Fig. 8(d), the proposed Edge Regeneration 
Network successfully regenerates a large amount of missing 
background edges while ignoring most of the reflection edges. 

Fig. 7. The network structures of the generator and discriminators.  

      
                    (a)                                   (b)                                       (c)                                      (d)                                        (e)                                     (f) 

Fig. 8. (a) The input image with reflection. (b) The binary edge map 𝑀ா. (c) The initial background edge map 𝑀஻
଴. (d) The estimated background 

edge map using the proposed Edge Regeneration Network. (e) The extracted background image based on the edge map in (d). (f) The reflection 
obtained by deducting the background image from the input image. The mean of (f) is adjusted to the input image for the ease of visualization. 
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IV. BACKGROUND IMAGE EXTRACTION BASED ON EDGES 

In [15-16], we have demonstrated that, by using the traditional 
optimization method, we can extract the background image 
from the original one (with reflection) if the edges of the 
background are given. However, the required iterative process 
is very time-consuming. To be compatible with the other 
components of the algorithm, we consider also using the highly 
efficient DNN for this problem.  

To the best of our knowledge, there are very few DNN 
approaches for extracting the background images based on their 
edges. The only one we are aware of is the I-CNN in the method 
CEILNet [11]. However, the performance of I-CNN is rather 
unstable that the resulting image can lose many background 
details while keeping the reflection residual. It is because I-
CNN works based on the assumption that the reflection is blurry. 
When the image contains reflection with strong edges, it is 
difficult for I-CNN to totally remove them. To solve the 
problem, we develop a new Background Image Extraction 
Network, which has an auto-encoder structure the same as that 
in Fig. 7 (upper). To remove the strong edges of the reflection 
remained in the resulting image, we pre-process the input image 
by removing the reflection edges. To do so, we first compute 
from the estimated background edge map 𝑀෩஻  a residual map 
𝑀෩஻ത = 𝑀ா − 𝑀෩஻ , which mainly indicates the positions of the 
reflection edges. Then, we obtain an image 𝐼ெഥೃ

= ൫𝐼௖ −

𝐼௖ ∙ 𝑀෩஻ത ൯ , which is the original reference image without the 
reflection edges. Both 𝐼ெഥೃ

 and the background edges 𝐼ெಳ
=

൫𝐼௖ ∙ 𝑀෩஻൯  are stacked as the input signal z and fed to the 
proposed Background Image Extraction Network. For training 
the network, we first use an L2 norm loss in (9) to confine the 
resulting image to follow the ground truth background at pixel 
level, 

ℒ௥௘௖
ூ = ‖𝐺ூ(𝑧) − 𝐼஻‖ଶ

ଶ, (9) 

where 𝐼஻ is the ground truth background image and 𝐺ூ(𝑧) is the 
network output given the input 𝑧 . In addition, we add a 
perceptual loss in (10) to ensure the resulting image to follow 
the human perception, 

ℒ௣
ூ = ฮ𝑉൫𝐺ூ(𝑧)൯ − 𝑉(𝐼஻)ฮ

ଶ

ଶ
, (10) 

where 𝑉  represents the output of the 14th layer of the pre-
trained VGG-16 network. Using the intermediate responses of 
high-level network features is an effective way to measure the 
perceptual similarity [31]. Thus, the following overall loss 
function is used to train the proposed Background Image 
Extraction Network:  

ℒூ = ℒ௥௘௖
ூ + 𝜆ଶℒ௣

ூ , (11) 

where 𝜆ଶ  is used to balance the two loss functions. At the 
testing phase, the estimated background edge map 𝑀෩஻ obtained 
from the Edge Regeneration Network and the reference image 
𝐼௖  are used to obtain 𝐼ெഥೃ

 and 𝐼ெಳ
. They are then stacked 

together and fed to the Background Image Extraction Network. 
Fig. 8(e) and (f) show an example of extraction result and its 
residual (reflection layer) using the estimated background edge 
map in Fig. 8(d). We can see that the proposed network 
successfully extracts the background image from the original 
one based on the background edge map. 

A brief comparison with I-CNN is shown in Fig. 9. To isolate 
the performance in background extraction, both the proposed 
Background Image Extraction Network and I-CNN use the 
estimated background edge map generated by the Edge 
Regeneration Network. Since the reflection is not particularly 
blurred in the synthesized image, we can see that the strong 
edges of the reflection remain in the result of I-CNN. We also 
notice that many background details are missing. The proposed 
Background Image Extraction Network can well recover the 
background components while removing the reflection, since 
there is no assumption about the blurriness of the reflection and 
we also incorporate the human perception in the training 
process. More detailed comparisons can be found in Section V.  

V. EXPERIMENTS AND EVALUATION 

For evaluating the performance of the proposed approach, we 
compare it with the state-of-the-art methods both quantitatively 
and qualitatively.  

A. Training details 

We assume that five images of slightly different viewing 
angles are available as the input of the proposed Edge Depth 
Estimation Network. For convenience, we obtain the required 
images for the training of the network by using a light field (LF) 
camera, which can directly capture array images of the target 
scene in a single shot. We extract five of the captured images 
and input them to the network. For quantitative evaluation, we 
synthesize the required training images with reflection by 
randomly adding two sets of LF images together with different 
weights. More specifically, we capture 318 sets of LF images 
and resize them to 256 × 256 pixels. They are randomly added 
together and finally 112,225 images with reflection are 
synthesized as the training samples. To further increase the 
training samples, we augment the data by cropping the images 
into many 128 × 128 patches at every interval of 16 pixels, 
then randomly flipping and rotating them at every 90 degrees. 
The Edge Depth Estimation Network is trained using the 
ADAM solver [32] with learning rate 2 × 10ିହ, 𝛽ଵ = 0.9 and 
𝛽ଶ = 0.999 . For both the Edge Regeneration Network and 

                     
                 Synthesized input      Ground truth 𝐼஻       Ground truth 𝐼ோ      

      
  (a)                       (b)                        (c)                      (d) 

Fig. 9. The background extraction results using the I-CNN and the 
proposed Background Image Extraction Network. (a) and (b) are the 
extracted background and its residual, respectively, using the Edge
Depth Estimation Network + Edge Regeneration Network + I-CNN. 
(c) and (d) are the extracted background and its residual, respectively,
using the Edge Depth Estimation Network + Edge Regeneration 
Network + the proposed Background Image Extraction Network. 
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Background Image Extraction Network, we only use the flipped 
and rotated images to augment the dataset. It is because a 
cropped patch may not have sufficient amount of edges for 
training, as edges are sparse in nature. Similar to [17], we use 
the RMSprop solver [33] to train the generator and the 
discriminators of the Edge Regeneration Network with learning 
rates 2 × 10ିସ and 2 × 10ିହ respectively. For the Background 
Image Extraction Network, we also use the RMSprop solver [33] 
with learning rate 2 × 10ିସ for its training. The parameters 𝜆ଵ 
and 𝜆ଶ are set as 2.5 × 10ିଷ and 1.25 respectively. The training 
and testing are both performed on a computer with Core i7 
7820X CPU using a GTX 1080 Ti. 

B. Quantitative evaluation 

A quantitative comparison is made between the proposed 
algorithm and a few recent methods, including the traditional 
optimization based approaches such as SID [8], LS-SIFTF [9], 
and LS-DS [13]; as well as two CNN-based methods CEILNet 
[11] and PLNet [12]. Except LS-DS which is implemented by 
us according to their paper, other methods are implemented by 
the source codes published in their websites. Because LS-
SIFTF and SID require relatively large disparities between 
images, the images we captured using the LF camera with small 
baselines cannot be directly used to test these two approaches. 
To solve the problem, we put the LF camera on a tripod and 

shift the camera up and down to five preset heights. For each 
height, we capture one set of LF image for each scene. Using 
only the central view of each LF image, we can obtain, for each 
scene, five images of relatively large disparities. We capture 20 
groups of such images of different scenes and create ten groups 
of images with reflection by adding ten of them to the other ten 
with the weights 0.6 and 0.4. These images are used to test the 
LS-SIFTF and SID methods. On the other hand, the method LS-
DS requires LF images as input. For each group of LF image 
captured, this time we just use one of them for each scene. We 
extract the central 5 × 5 images of each LF image so that we 
have twenty 5 × 5  images. They are mixed with a similar 
method as mentioned above to form ten testing images (with 
reflection) for LS-DS. CEILNet and PLNet are single-image 
based reflection removal methods, thus we directly input the 
central view of each LF image to test these networks. Because 
LS-SIFTF, SID, LS-DS can only perform well with relatively 
higher resolution images, we feed images with resolution 
625 × 434  to those methods and resize their results to 
256 × 256  pixels for comparison. CEILNet and PLNet are 
directly fed with images with size 256 × 256 pixels. Fig. 10 
shows one of the comparison results based on the testing images 
mentioned above. It can be seen that the proposed algorithm 
gives the best result compared to other methods. The average 
PSNRs of all the testing algorithms are shown in Table I. 
Because the results of LS-SIFTF and SID can have large bias 
in the mean value which can give very low PSNRs, we 
normalize the mean values of all the results to be the same as 
the ground truths. As shown in Table I, the proposed method 
significantly outperforms the other competing methods. It is 
because all other methods have different assumptions about the 
input images. For instance, LS-SIFTF requires the gradients of 
the background to be much larger than the reflection; SID 
requires the background to be planar; LS-DS requires the 
background and reflection to be at different sides of the focal 
plane and the normal line of the camera must be perpendicular 
to the scene; CEILNet and PLNet have a stringent assumption 
that the reflection must be blurry. They all introduce the errors 
to the reflection removal process in case the input images do not 
follow exactly the respective assumptions.  

C. Ablation analysis 

To understand the effectiveness of different components of 
the proposed networks, an ablation analysis is carried out based 
on the quantitative evaluation above. First, we investigate the 
importance of the proposed Edge Regeneration Network. As 
mentioned above, the objective of the Edge Regeneration 
Network is to regenerate the background edges of which the 
depth values are similar to those of the reflection. Without the 
network, we can only classify them to be either belonging to the 
background or reflection. To do so, we use the same k-means 
clustering method as in [16] but only two clusters are generated 
for the classification of every edge pixel based on its depth. The 
background edges are then fed to the Background Image 
Extraction Network. As shown in Table I, the average PSNR of 
the recovered background images is reduced by about 1.3 dB 
without the Edge Regeneration Network. It shows the 
importance of the network to the proposed reflection removal 
algorithm.   

TABLE I 
THE AVERAGE PSNRS OF THE BACKGROUND IMAGES GENERATED BY 

DIFFERENT METHODS WITH RESPECT TO THEIR GROUND TRUTHS.  
Method  PSNR of the recovered background 
Synthetic input 13.094 
LS-SIFTF [9] 18.912 
SID [8] 15.488 
LS-DS [13] 18.855 
CEILNet [11] 17.714 
PLNet [12] 19.092 
Proposed w/o Edge 
Regeneration  

22.774 

Proposed w/o 
discriminators 

23.224 

Proposed w/o 𝐼ெഥೃ
 23.340 

Proposed w/o 𝐼ெಳ
 23.220 

Proposed  24.031 
 

       
                   LS-SIFTF                 SID                     LS-DS 

       
                    CEILNet                PLNet                 Proposed 
Fig. 10. The background extraction results using different approaches.
The original images and the synthesized image are shown in Fig. 9 (top 
row). 
 



 10 

Second, we show how the discriminators in the Edge 
Regeneration Network contribute to the estimation of the 
background edges 𝐸෨஻. We compare using the proposed WGAN 
(consists of the generator jointly trained with the discriminators 
using the loss functions (6) to (8)) and only the generator 
(trained without the discriminators) for estimating 𝐸෨஻  of the 
above images used in the quantitative evaluation. Fig. 11 shows 
the fitted distributions of the estimated background edges using 
the proposed WGAN and only the generator. We can see that 
the background edges given by WGAN has the distribution very 
close to that of the ground truth. It is because WGAN tends to 
constrain the generated samples following the distributions of 
the ground truths, such that the discriminators cannot 
distinguish them from the real ones. Without the discriminators, 
the generator can only give the estimation in the mean square 
sense, which is known to have problem in dealing with the 
transients in the data (such as image edges). Table I also shows 
that without the discriminators, the average PSNR of the 
recovered background images decreases by about 0.8 dB. It 
shows the contribution of the discriminators to the proposed 
algorithm. 

Finally, we also evaluate the importance of the input terms 
𝐼ெಳ

, 𝐼ெഥೃ
for the Background Image Extraction Network. As 

mentioned in Section IV, 𝐼ெಳ
 is the estimated background 

edges while 𝐼ெഥೃ
 is the original image with the estimated 

reflection edges removed. Although they provide related 
information to the Background Image Extraction Network to 
recover the background image, they have to be input together 
to the network to achieve the best performance. Without any 
one of them, the overall PSNR will decrease by about 0.7 dB.   

D. Qualitative evaluation 

For qualitative evaluation, we compare the visual quality of 
the extracted background and reflection images using different 
methods. In this evaluation, the testing images are directly 
captured in real-life environment, such as in front of a glass, etc., 
so that reflection of unwanted scene is added to the image. Since 
we do not have the ground truth background of these images, 

we can only evaluate the performance by visual inspection. In 
Fig. 12, we show the results using different methods. As shown 
in the figure, LS-SIFTF [9] cannot correctly separate the 
reflections from the backgrounds when both of them have 
strong gradients. The performance of it is only relatively 
reasonable for the fourth scene whose reflection is relatively 
weak. However, there are still many residuals remained in the 
regions with strong reflections. For SID [8], it assumes the 
background layer is planar and uses the homography to register 
the background while blurring the reflection. Thus, it can only 
deal with planar background scenes. In fact, even the 
background is planar, the features of the reflection can affect 
the homography estimation. Therefore, we can see that the 
resulting images are blurry due to inaccurate registration. For 
method [13], it requires the background and reflection to have 
an absolutely different depth ranges and it also requires the 
camera to be perpendicular to the target scene. Such stringent 
requirements to the pose and photography environment 
introduce much difficulty to remove the reflection in practice. 
For CEILNET [11] and PLNet [12], they assume the reflection 
is much smoother than the background. They fail to remove the 
strong and sharp reflection components in the images. Without 
the abovementioned limitations, the proposed method 
successfully extracts the backgrounds and separates the 
reflections for all scenes as shown in Fig. 12.  

E. Running time 

We also compare the running time of different testing 
methods by taking the average processing times of these 
methods on five real-life images. This time we only evaluate 
the computational cost regardless of performance. Therefore, 
we feed images with size 256 × 256 to all methods. The results 
are shown in Table II. It can be seen that traditional 
optimization-based methods such as [8], [9], [13] and [16] use 
much longer times compared to the DNN based methods, such 
as CEILNET, PLNet and the proposed one. It is because those 
optimization-based methods require iterative operations on 
huge matrices, which can take very long time. In contrast, the 
feed-forward architectures of different DNN approaches 
efficiently utilizes the massive parallel structure of GPU. They 
can complete the whole process within only one second. 

VI. CONCLUSION 

In this paper, we propose a novel approach to solve the 
reflection removal problem. The proposed approach fully 
utilizes the deep neural network techniques in estimating the 
edge depths, regenerating the edges with potential classification 

 
      R             G 

 
      B 
Fig. 11. The fitted distributions of the estimated background edges 𝐸෨஻

given by the proposed WGAN and only the generator (trained without 
the discriminators). R, G, and B refer to the red, green and blue 
channels of the image, respectively. 

TABLE II. 
THE AVERAGE EXECUTION TIMES OF DIFFERENT METHODS  

 
Method Average Time 
LS-SIFTF [9] 130.59 s 
SID [8] 58.95 s 
LS-DS [13] 17.01 s 
LS-LFGS [16] 69.51s 
CEILNet [11] 0.82 s 
PLNet [12] 1.15 s 
Proposed 0.88 s 
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errors, as well as extracting the background image based on its 
edges. The proposed method does not have any pre-requisite 
requirements on the intensity or smoothness of the reflection 

image. It also avoids the limitations due to the motion models 
used in the traditional multiple-image based reflection removal 
methods. The proposed approach shows superior performance 

 B:        

                               R:         
                                 Proposed                 CEILNet                   PLNet                  LS-SIFTF                    SID                       LS-DS

 B:         

                    R:         
                                  Proposed                 CEILNet                   PLNet                  LS-SIFTF                    SID                       LS-DS 

 B:         

                               R:          
                                  Proposed                 CEILNet                   PLNet                  LS-SIFTF                    SID                       LS-DS 

 B:         

                    R:         
                                         Proposed                 CEILNet                   PLNet                  LS-SIFTF                    SID                       LS-DS 
 
Fig. 12. The comparison of different methods on real-life images with reflection. We adjust the mean values of the results to the input image 
for the ease of visualization. ‘B’ and ‘R’ represent the background and reflection respectively. 

 

Input 

Input 

Input 

Input 
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over the state-of-the-art methods. It also shows significant 
improvement on the computation speed compared to the 
existing approaches using traditional optimization methods. 
The current networks are only trained with synthetic images. 
We would expect the performance can be further improved if 
the networks can be trained with real-life images with reflection. 
However, extra measures would be required to label these 
images. It will be one of our future works.   
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