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ABSTRACT

COVID-19 pandemic continues to spread rapidly over the world and causes a tremendous crisis in
global human health and the economy. Its early detection and diagnosis are crucial for controlling
the further spread. Many deep learning-based methods have been proposed to assist clinicians in
automatic COVID-19 diagnosis based on computed tomography imaging. However, challenges still
remain, including low data diversity in existing datasets, and unsatisfied detection resulted from
insufficient accuracy and sensitivity of deep learning models. To enhance the data diversity, we design
augmentation techniques of incremental levels and apply them to the largest open-access benchmark
dataset, COVIDx CT-2A.Meanwhile, similarity regularization (SR) derived from contrastive learning
is proposed in this study to enable CNNs to learn more parameter-efficient representations, thus
improving the accuracy and sensitivity of CNNs. The results on seven commonly used CNNs demon-
strate that CNN performance can be improved stably through applying the designed augmentation
and SR techniques. In particular, DenseNet121 with SR achieves an average test accuracy of 99.44%
in three trials for three-category classification, including normal, non-COVID-19 pneumonia, and
COVID-19 pneumonia. And the achieved precision, sensitivity, and specificity for the COVID-19
pneumonia category are 98.40%, 99.59%, and 99.50%, respectively. These statistics suggest that our
method has surpassed the existing state-of-the-art methods on the COVIDx CT-2A dataset.

1. Introduction
The Coronavirus Disease 2019 (COVID-19) has become

a worldwide pandemic and infected over 493million people
till April 2022 [1]. Its increasingly high infectivity and
fatality rate due to strain variation are threatening human
health and damaging the global economy [2–4]. The efficient
reproductive number of the virus in many countries remains
high, as reported in [5], indicating COVID-19 continues
spreading quickly around the world. Thereby, a timely and
efficient diagnosis is crucial for the treatment of COVID-19
positive patients and the control of further disease spread.

In the early diagnosis of COVID-19 infection, real-time
reverse transcription polymerase chain reaction (RT-PCR)
is the primary choice due to its convenience and high speci-
ficity. However, research results [6–8] have suggested that
RT-PCR is not sensitive enough that some infected patients
turned out to be positive even after several negative tests.
These false-negative cases might continue to infect their
close contacts without isolation or develop into severe ill-
ness. Chest computed tomography (CT) is a supplementary
screening tool to RT-PCR since CT has higher sensitivity in
detecting infection, indicated by institutes [9–11]. The high
cost and hours of scanning time of CT are not affordable
for all institutes. Thus CT can be more suitable in some
scenarios where patients have suspicious negative RT-PCR
tests, or patients are in need of timely diagnosis, or the RT-
PCR test kits are undersupplied.

Since the pandemic started, researchers have been ex-
ploring the potential of convolutional neural networks
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(CNNs) in COVID-19 CT classification and reported high
accuracy without clinician intervention. CNNs are a kind of
deep learning technique dominating computer vision tasks.
For example, Gunraj et al. [12] introduced a large-scale
open-access COVID-19 CT dataset (COVIDx CT-1) and
trained a COVID-19-specific tailored CNN on it. Panwar
et al. [13] utilized transfer learning to inherit cross-domain
knowledge to improve the model performance. All these
researches reveal that CNNs have the potential to serve as
an assistant to help clinicians in COVID CT diagnosis.

Although CNNs have achieved remarkable results in
CT diagnosis, challenges remain before they can be put
into practical use. Deep learning methods often require
large-scale standard datasets, while the existing COVID-
19 CT datasets are insufficient. Also, CT scans collected
from different institutes have inconsistent characteristics like
orientation, brightness, etc. The trained models might be
more sensitive to these irrelevant information rather than
the pneumonic pathologies that really matter. Furthermore,
the increasingly great capability of CNN-based models may
not be fully fulfilled given the limited data sources. Hence,
methods for learning more parameter-efficient representa-
tions are crucial for mitigating the data insufficiency issue
and improving the classification performance.

By addressing these problems above, a more reliable
COVID-19 CT classification system can reduce the work-
load of clinicians and provide more accurate and sensitive
computer-aided diagnoses. Motivated by these factors, this
study aims to use deep learning techniques to improve
the COVID-19 CT classification performance of commonly
used CNNs. Particularly, to alleviate the data insufficiency
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and enhance the data diversity, we design and apply augmen-
tation of incremental levels on the currently largest COVID-
19 CT benchmark dataset (COVIDx CT-2A) [14]. Mean-
while, to find the optimal selection of CNN architectures and
augmentation combinations, we explore seven commonly
used CNN architectures under seven augmentation settings.
The CNNs include SqueezeNet1.1 [15], MobileNetV2 [16],
DenseNet121 [17], ResNet-18/34/50 [18], and InceptionV3
[19]. Meanwhile, contrastive learning is one promising self-
supervised method for enabling deep learning models to
learn more parameter-efficient features. We propose the sim-
ilarity regularization (SR) derived from contrastive learning
to learn more parameter-efficient representations and im-
prove CNN classification. The experimental results demon-
strate that SR can improve the classification performance of
CNNs stably and surpass conventional contrastive learning.
Our main contributions are summarized as follows:
a) We investigate the impacts of augmentation and model

selection in COVID-19 CT classification for three
classes, including normal, non-COVID-19 pneumonia
(NCP), and COVID-19 pneumonia (CP).

b) We propose SR as a regularization term for learning
more parameter-efficient representations. Comparisons
between seven models with or without SR are con-
ducted. The experimental results demonstrate that SR can
improve classification stably without extra introduced
model parameters during the test interface.

c) Our proposed model DenseNet121-SR achieves 99.44%
test accuracy, and 98.40% precision, 99.59% sensitivity
and 99.50% specificity for COVID-19 positive class,
achieving the state-of-the-art.

d) On other COVID-19 CT datasets, i.e., SARS-CoV2 and
COVIDx CT-1, our DenseNet121-SR outperforms the
existing methods in terms of efficiency and accuracy.

e) We extend the study to seven classic natural datasets and
find that our DenseNet121-SR is superior to the original
DenseNet121 for all tasks, indicating that our method can
be generalized to general classification problems.

2. Related Works
2.1. COVID-19 Related Researches

CNNs are increasingly improving the COVID-19 CT
classification with advanced algorithms and enhanced
datasets. Numerous CNN-based methods achieving high
accuracy have been proposed, indicating the potential of
CNNs in assisting practical diagnosis. Some representative
methods on four benchmark datasets are listed in Table 1.

In the COVID-19 CT classification, there exist no golden
standard datasets so far. The four widely employed open-
access datasets [12, 14, 20, 27] in Table 1 differ in many as-
pects, including patient/scan distribution, collection sources,
dataset size, class numbers, labelling quality, etc. Particu-
larly, COVID-CT [27] and SARS-CoV-2 [20] are two small
binary-classification datasets containing 812 and 2, 482 CT
scans for COVID-19 positive and non-COVID classes, re-
spectively. Gunraj et al. released a larger dataset COVIDx

CT-1 [12] consisting of 104, 009 scans for normal, NCP and
CP classes upon which the authors later built COVIDx CT-2
[14]. COVIDx CT-2 is the largest existing dataset containing
194, 922 CT scans, combined from multiple data sources.
Generally, data-driven methods like CNNs depends heavily
on dataset size. This can be drawn from the classification
metrics in Table 1 that the methods trained on larger datasets
can roughly achieve higher performance. To ensure both the
data diversity and satisfactory results, our study employs
COVIDx CT-2A [14] as our target dataset.

Despite the various datasets, many CNN-based methods
have been developed to continuously boost the classification
performance. In particular, researchers often use transfer
learning [13, 21–25, 33] or ensemble learning [22, 23,
25, 33, 34] to overcome the data insufficiency in small-
scale datasets like SARS-CoV-2 and COVID-CT. For ex-
ample, Jaiswal et al. [24] and Panwar et al. [13] utilized
transfer learning to pre-train the weights of VGG19 and
DenseNet201 on ImageNet and then fine-tuned on SARS-
CoV-2, achieving 96.25% and 94.04% accuracy, respec-
tively. Besides, ensemble learning, merging the decisions
from multiple models into a more balanced decision, has
been widely applied in some works through different merg-
ing approaches like weighted sum [25], voting [22], and
fuzzy rank-based fusion [23]. However, ensemble learning
is rarely applied in large-scale datasets like COVIDx CT-1/2
[12, 14]. Specifically, COVID-Net CT-1/2 L [12, 14] are two
light-tailored CNNs whose architectures are finely designed
by automatic neural architecture searching. The two models
are extremely parameter-efficient and achieved 94.5% and
98.1% accuracy with only 0.45MB and 1.40MB parameters,
respectively. Another research [32] employed ResNet-50x1
pre-trained on ImageNet-21k and fine-tuned on COVIDx
CT-2A, achieving 99.2% accuracy.

Drawn from the reviewed research works above, deep
learning models can achieve higher performance in COVID-
19 CT classification through the approaches that: 1) train
models over data of higher diversity; 2) with finely designed
neural networks; 3) ensemble the decisions from multiple
models; 4) inherit out-of-domain classification knowledge.
Although models can benefit from these aspects, the expen-
sive computational cost of neural architecture searching and
large-scale pre-training, and long execution time caused by
over-parameterization should be considered as well.

2.2. Contrastive Learning
In recent years, supervised deep learning models of

increasing complexity and depth have shown great progress
in many large-scale applications like ImageNet classifica-
tion [18, 19]. However, directly applying these models to
COVID-19 datasets of smaller scales might cause over-
parameterization. It means that model capacities cannot
be fully fulfilled and the extracted representations are not
parameter-efficient. One promising approach to addressing
the issue is contrastive learning.

In the deep learning field, it is widely recognized that
the model performance depends on the quality of their
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Table 1
Comparison of classification metrics between multiple deep learning methods in four datasets. The precision, sensitivity, and
specificity metrics are for COVID-19 positive class only. (The decimal places are kept consistent as reported in the publications.)

Dataset Method Params. (M) Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)

SARS-CoV-2 [20]

Alshazly et al. [21] 86.74 99.4 99.6 99.8 99.6
Silva et al. [22] 4.78 98.99 99.20 98.80 -
Kundu et al. [23] 132.86 98.93 98.93 98.93 98.93
Jaiswal et al. [24] - 96.25 96.29 96.29 96.21
Panwar et al. [13] 20.55 94.04 95.30 94.04 95.86
Jangam et al. [25] 202.87 93.5 89.91 98 -
Wang et al. [26] - 90.83 95.75 85.89 -

COVID-CT [27]

Chen et al. [28] - 88.5 89.9 88.6 -
He et al. [29] 0.55 86 - - -
Polsinelli et al. [30] 1.26 85.03 85.01 87.55 81.95
Jangam et al. [25] 202.87 84.73 78.15 94.9 -
Wang et al. [26] - 78.69 78.02 79.71 -

COVIDx CT-1 [12] Gunraj et al. [12] 1.40 99.1 99.7 97.3 99.9
Ter-Sarkisov [31] 34.14 91.66 90.80 94.75 -

COVIDx CT-2A [14]
Zhao et al. [32] 23.51 99.2 98.5 98.7 99.5
Gunraj et al. [14] 0.45 98.1 97.2 98.2 98.8
Gunraj et al. [12] 1.40 94.5 90.2 99.0 95.7

learned representation. Contrastive learning, also known as
contrastive self-supervised representation learning, is one
framework aiming at learning efficient representations with-
out human-specified labels. In general, the main idea of
contrastive learning is to project inputs into an embedding
space where the embedded vectors of similar samples are
closer while dissimilar ones are apart. More formally, for
visual tasks, a pair of views augmented from one image is
considered as a positive pair while pairs of views from dif-
ferent images are considered as negative pairs. Hence, con-
trastive learning models aim to maximize the representation
similarity between positive pairs and minimize that between
negative pairs. In practical tasks, contrastive learning often
pre-trains the front representation extractors of deep learning
models in a self-supervised manner, and then fine-tunes the
pre-trained weights in a conventional supervised manner.

The state-of-the-art contrastive learning frameworks in-
clude MoCo [35, 36], SimCLR [37, 38], SimSiam [39],
SwAV [40], BYOL [41], etc. These frameworks mainly
differ in terms of loss function, representation projection,
and negative pair formation [39]. And the differences further
determine their requirements on complexity of augmentation
policies and batch size. Normally, in order to obtain satis-
factory result, contrastive methods depends on a large batch
size to cover enough negative pairs [35–38]. Among these
models, BYOL, SwAV and SimSiam are the contrastive
frameworks requiring no negative pairs. In ImageNet linear
classification experiments [39], BYOL achieves relatively
better performance. This explains that we select BYOL as
the basic framework for SR calculation as in Section 3.2.

The success of contrastive learning has emerged some
applications in COVID-19 CT diagnosis [28, 29, 42]. He et
al. [29] employed a MoCo-like [35] framework to enhance

the CT scans representations extracted by DenseNet169 and
fine-tuned the network, achieving 86% accuracy on COVID-
CT [27]. Similarly, Chen et al. employed the MoCo-v2-
like [36] framework on the same dataset and reached 88.5%
accuracy within six shots. Li et al. [42] put the contrastive
loss as a regularization term and trained their CMT-CNN
in an end-to-end manner, obtaining 93.46% accuracy. These
studies suggest contrastive learning can boost classification
performance by learning more efficient representations.

3. Method
3.1. Augmentation of Incremental Levels

Data augmentation is vital for improving the perfor-
mance of deep learning models, especially for contrastive
learning [36, 37]. However, the optimal selection for
COVID-19 CT augmentation has not been studied. Inspired
by the literature in Section 2, we design and evaluate a series
of augmentation operations of incremental levels as follows
where "+" denotes the appended augmentation based on
the previous level: Level 0: No augmentation; Level 1 +
RandomResizedCrop: Randomly obtain an image crop of
size in the range [0.08, 1] of the original size 256× 256, and
then randomly scale the crop according to an aspect ratio in
the range [3∕4, 4∕3]. The scaled crop is finally resized to the
original size; Level 2 + Horizontal flip: Randomly flip the
input image horizontally with 50% using probability;Level 3
+ RandAugment [43]: Randomly apply rand augment twice
with magnitude 9 and magnitude standard deviation 0.5;
Level 4 + Random Erasing [44]: Select a rectangle region
of the input image and do pixel-wise erasing with 25% using
probability. The size of the selected region are randomly
picked in the range [0.02, 1∕3] of the image size. Level 5
+ Mixup [45]: Mix two in-batch images up with a ratio �
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Figure 1: The overall structure of the models with our proposed similarity regularization in training interface. The two projectors,
g1 and g2, and the online predictor p are implemented by non-linear MLPs. After training, only the online encoder f1 and fully
connected layer FC are preserved in testing.

subjecting to a beta distribution, � ∼ B(1, 1). The mixup
process for images IA and IB can be formatted as IA(x, y)
= �IA(x, y) + (1− �)IB(x, y), where (x, y) denotes the pixel
coordinate; Level 6 + CutMix [46]: Switch from Mixup to
Cutmix with 50% probability. Randomly replace a square
region in the original image with a region in another in-batch
image. The region size is randomly determined, subject to
the squared root of a beta distribution B(1, 1).

The visualization of the augmented scans is demon-
strated in Fig. 4 in Appendix A. Specifically, RandomRe-
sizedCrop and horizontal flip are two commonly used aug-
mentation operations in both supervised [18, 19] and self-
supervised learning [36–38, 41]. Since contrastive learn-
ing requires more complicated augmentation [37], the two
stronger augmentations, RandAugment and Random Eras-
ing, are further introduced in levels 3 and 4. Their imple-
mentations and parameters refer to [47, 48]. In levels 5
and 6, mixup and cutmix are two augmentations enabling
higher data diversity by fusing in-batch images. In these
two levels, we mainly experiment on whether such sample-
fusing augmentations can improve COVID-19 classification.
By comparing the performance of models under these in-
cremental augmentation levels, an appropriate augmentation
strategy for COVID-19 CT scans can be established.

3.2. Similarity Regularization
Most mainstream conventional CNNs contains two

parts, a representation extractor f and a followed fully
connected layer FC. The extractor f aims to extract the
distinguishable representations of given inputs, and FC
predicts the class probability distribution by summarizing
the extracted representations. This forward propagation is
demonstrated as the top branch in Fig. 1. More formally,
the input image x is first transformed to a view v by a
random on-the-fly augmentation operation t ∼ T where T
denotes an infinite collection of augmentation operations.
Subsequently, the representation extractor f converts the
input view v to a representation embedding vector ℎ = f (v).
The followed FC predicts the class probability distribution
based on its obtained representation, ŷ = FC(ℎ). The
training target of such a classifier is to minimize the class

probability distribution distance between the prediction ŷ
and the ground truth y according to the cross-entropy loss
in Eq. (1), where i ∈ {0, 1, 2} denotes the class index.

(y, ŷ) = −
2
∑

i=0
yi log ŷi (1)

In this conventional fully supervised scenario, the
trained representations aim at better projecting to human-
specified class distribution. However, this manner af-
fects data efficiency, robustness or generalization [49]. In-
stead, contrastive learning enables learning more parameter-
efficient representations from inputs themselves instead of
the specified annotations. We thus incorporate it in common
CNNs to improve their representation learning ability.

The overall structure of our method is illustrated in Fig.
1. We keep the conventional supervised classifier unchanged
in the top branch while introducing a contrastive learning
framework in the bottom branch. As in Section 2.2, con-
trastive learning is to maximize the representation similarity
between positive pairs. We punish the positive-pair repre-
sentation distance as a regularization term beside the cross-
entropy loss, naming the term similarity regularization (SR).

Particularly, the contrastive framework is a siamese net-
work like most mainstream frameworks [37–39, 41], con-
sisting of an online network and a target network. The target
network can be seen as a moving average of the online one.
Given two views v1 and v2 augmented from the same input
image x, the representation extractors f1 and f2 in two
networks extract their corresponding latent representation
vectors, ℎ1 = f1(v1) and ℎ2 = f2(v2). To avoid representa-
tions heavily affected by SR, the representation vectors then
projected to another embedding space where z1 = g1(ℎ1)
and z2 = g2(ℎ2), as in [38, 41]. Since the projectors g1 and g2
share slightly different feature spaces, the online projection
z1 is further projected to p(z1) of same dimension via online
predictor p. The cosine representation similarity  of value
in range [−1, 1] can be measured according to Eq. (2).

(p(z1), z2) =
⟨p(z1), z2⟩

‖p(z1)‖2 ⋅ ‖z2‖2
(2)
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where ⟨⋅, ⋅⟩ and ‖⋅‖2 are inner product and L2 norm no-
tations, respectively. A higher value indicates two vectors
are of higher similarity. To penalize a low cosine similarity
between positive pairs and scale the penalty in range [0, 1],
SR can be calculated as Eq. (3).

(p(z1), z2) = 2−2(p(z1), z2) = 2−
2⟨p(z1), z2⟩

‖p(z1)‖2 ⋅ ‖z2‖2
(3)

Hence, for a positive pair (v1, v2), its total loss containing
both cross-entropy loss and SR is written as in Eq. (4).

(z1, z2, y, ŷ) = (1 − 
)(y, ŷ) + 
(p(z1), z2) (4)

where 
 is a scale factor for balancing the conventional cross-
entropy loss and the introduced SR.

(v2, v1) is the symmetric positive pair with respect to
(v1, v2).We calculate the losses for both symmetric pairs and
take their mean as the final loss for fast convergence.

SR as a regularization term may raise the concern if
it will dominate the combined loss and thus degrade the
classification. To remove the concern and find an appropriate
scheduler for 
 , we design three strategies as listed below. i
denotes the current training iteration number.

Constant (default) : 
 is set to be a constant value during
all training iterations, 0.5 by default.

Linear Decay : 
 decays linearly to a minimum value

min = 0.01 along N training iterations according to
Eq. (5).


i = 
min + (1 − i
N

)(1 − 
min) (5)

Cosine Decay : 
 decays to a minimum value 
min = 0.01
along N training iterations according to cosine an-
nealing scheduler as in Eq. (6).


i = 
min +
1
2
(1 + cos i�

N
)(1 − 
min) (6)

Besides, after training, we throw away all the compo-
nents except the online representation extractor f1 and the
fully connected layer FC. Hence, introducing SR in training
will not slow down the test interface. The training pseu-
docode of models with SR is demonstrated in Algorithm 1.

4. Results and Analysis
4.1. Dataset Description

In this paper, we mainly train and evaluate our proposed
method using the largest existing open-access COVID-19
CT dataset, COVIDx CT-2A2. Specifically, the dataset con-
trains three classes, including normal, non-COVID-19 pneu-
monia (NCP), and COVID-19 pneumonia (CP). Its class
distribution is summarized in Table 2. The dataset is of
high diversity, containing scans of 3, 745 patients from eight
open-access sources. It should be noted that the scans from
the same patient are in one subset, preventing information
leakage from training to validation or testing.

2https://www.kaggle.com/hgunraj/covidxct

Algorithm 1: Algorithm for training models with
our proposed similarity regularization.
Inputs: batch size B; iterationsN ; network components

f1, f2, g1, g2, p, FC; cross entropy criterion ;
SR criterion ; loss scale factor 
; momentum
rate �.

for i = 1 toN do
Sample a minibatch {(xk, yk)}Bk=1;
for k = 1 to B do

// Augmentation and predict representation

t1 ∼ T , t2 ∼ T ;
v1 = t1(xk), v2 = t2(xk);
ℎ(1)1 = f1(v1), ℎ

(1)
2 = f2(v2);

ℎ(2)1 = f1(v2), ℎ
(2)
2 = f2(v1);

// Calculate cross-entropy

ŷ(1) = FC(ℎ(1)1 ), ŷ(2) = FC(ℎ(2)1 );
CE
k = 0.5(yk, ŷ(1)) + 0.5(yk, ŷ(2));

// Calculate similarity regularization

pz(1)1 = p(g1(ℎ
(1)
1 )), z(1)2 = g2(ℎ

(1)
2 );

pz(2)1 = p(g1(ℎ
(2)
1 )), z(2)2 = g2(ℎ

(2)
2 );

Stop gradient for z(1)2 and z(2)2 ;
SR
k = 0.5(pz(1)1 , z

(1)
2 ) + 0.5(pz(2)1 , z

(2)
2 );

end
// Scale the batch loss and update networks

Set 
i according to applied scheduler;
total =

1
B

∑B
k=1[(1 − 
i)

CE
k + 
iSR

k ];
Update f1, g1, p, FC by back-propagating total;
// Momentum update weights of f2 and g2
f2 = (1 − �)f1 + �f2;
g2 = (1 − �)g1 + �g2;

end
Return f1 and FC;

Table 2
Class distribution of the employed COVIDx CT-2A dataset.

Set Normal NCP CP Total

Training 35, 996 25, 496 82, 286 143, 778
Validation 11, 842 7, 400 6, 244 25, 486
Testing 12, 245 7, 395 6, 018 25, 658

4.2. Experimental Setting
In this paper, we keep the hyper-parameters consistent in

all experiments for fair comparisons. The codes are imple-
mented by PyTorch. We implement the CNN backbones and
image augmentation by torchvision and timm [48] libraries,
respectively. For acceleration, we train models on Torch
distributed data parallelism on four Nvidia V100 GPUs with
apex mixed precision of level O1. Besides, to alleviate the
randomness concern, we obtain the experimental statistics
by averaging the measurements in three distinct trials.

During training, CT scans are resized to 256 × 256 in
3 channels using bicubic interpolation and normalized by
ImageNet mean and std. In the test interface, 256 × 256
CT scans are cropped from the center of resized 293 × 293
original images. This is empirically good as the center crop
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can preserve the main lung regions. To avoid models from
being too confident in one-class prediction, label smoothing
[19] of smoothing factor 0.1 is applied in the cross-entropy
in augmentation levels 0 − 4. While in augmentation level
5 or 6, in-batch paired labels are mixed up based on mixed
inputs (See [45, 46] for more details).

The optimizer we used is Adam with 10−6 weight decay.
After a 5-epoch linear warmup [50] from 5 × 10−7, we use
cosine annealing scheduler to decay the learning rate from
5 × 10−4 to 5 × 10−7 in the later 45 epochs. The batch size
is set to be 64 in each process. Besides, the gradients are
clipped to be no larger than 5.0 to avoid overflow.

In the SR calculation, the projectors g1, g2 and predictor
p have the same multi-layer perceptron (MLP) architecture
that consists of two linear layers connected by a batch
normalization layer and a ReLU activation layer. The front
linear layer projects the inputs to 512-D embedding vectors
and the later linear layer outputs 128-D vectors. The analysis
for the dimension setting is in Appendix B. The momentum
rate � for updating f2 and g2 is 0.99, a median value among
contrastive frameworks [35, 39–41].

4.3. Results of ResNets under Incremental
Augmentation Levels

We first compare the performance of ResNets with or
without SR under the incremental augmentation levels de-
signed in Section 3.1 to determine an appropriate augmenta-
tion policy for the coming experiments. The averaged test ac-
curacies are listed in Table 3. Since SR requires calculating
the similarity between two augmented views, models with
SR cannot be implemented under augmentation level 0.

Table 3
Test accuracy comparison between original ResNets and
ResNets with proposed SR under incremental augmentation
levels. ResNet is abbreviated as R. The scale factor scheduler
for scaling SR is the default constant scheduler 
 = 0.5.

Augmentation Method CNN Backbone

R18 R34 R50

Level 0 Original 91.28 92.28 91.57

Level 1 Original 99.10 99.00 98.89
+SR(Ours) 99.23 99.27 99.09

Level 2 Original 99.17 99.11 99.00
+SR(Ours) 99.27 99.39 99.19

Level 3 Original 99.11 99.06 99.08
+SR(Ours) 99.26 99.29 99.20

Level 4 Original 99.12 99.09 99.13
+SR(Ours) 99.40 99.43 99.31

Level 5 Original 97.49 97.34 97.66

Level 6 Original 98.50 98.69 98.91

Table 3 shows that the original ResNets achieve the
highest accuracy in level 2 and cannot be improved in the
following levels, heavily degraded in levels 5 and 6. The

degradation may result from the fact that sample-fusing
augmentation sometimes transfers the pneumonic patholo-
gies from CP/NCP cases to normal cases. We thus do not
perform SR in levels 5 and 6. Different from the origi-
nal ResNets, ResNets with SR continue to improve after
level 2 and achieve the highest accuracy in level 4. This
is consistent with the findings in many contrastive learning
research works that contrastive learning requires stronger
augmentation than supervised models [36, 37, 51]. Hence,
we select level 4 as the basic augmentation level for the
following experiments. Overall, it is observed that SR can
improve the classification performance of ResNets stably
under all augmentation levels from 1 to 4.

4.4. Results under Augmentation Level 4
In this section, we extend the experiments to seven

widely used CNNs, including SqueezeNet1.1 [15], Mo-
bileNetV2 [16], DenseNet121 [17], ResNet-18/34/50 [18],
and InceptionV3 [19]. The experiments are under augmen-
tation level 4 and a constant scale factor scheduler 
 = 0.5.

From the results in Table 4, it can be seen that all our
models with SR surpass the original models in terms of
averaged test accuracy. The best model, DenseNet121 with
SR, achieves 99.44% accuracywith 7.33M parameters. Note
that the extra parameters will be thrown away after training
so that the parameters in the test interface are consistent for
a model with or without SR. Another observation is that,
in COVID-19 CT classification, the model performance is
not in strictly proportional to its capacity despite of model
architecture. This suggests that the fine design of model
architecture rather than simply expanding depth or width is
more valuable in this task, as supported in [12, 14, 30].

Figure 2: Confusion matrix for DenseNet121-SR in three trials.

Fig. 2 shows the confusion matrices for DenseNet121-
SR in three training trials. Based on the matrices, we mea-
sure the performance of the model in terms of averaged
accuracy, precision, sensitivity, and specificity, as listed in
Table 5. The results show that our DenseNet121-SR has
outperformed the state-of-the-art models in nearly all mea-
surements. Specifically, DenseNet121-SR achieves a high
sensitivity 99.59% for COVID-19 positive class, indicating
that the model has the potential to efficiently avoid COVID-
19 positive patients from being wrongly diagnosed.

Besides, to better understand the classification principles
of the model, its attention visualized by Grad-CAM [52] is
demonstrated in Fig. 6 in Appendix C.
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Table 4
Test accuracy of seven CNNs with or without SR under augmentation level 4, ordered by the number of parameters. The scale
factor scheduler for scaling SR is the default constant strategy 
 = 0.5. Note that the extra parameters introduced by SR will be
discarded in test interface after training.

Method Metric CNN Backbone

SqueezeNet MobileNet DenseNet ResNet18 ResNet34 InceptionV3 ResNet50

Original Params. (M) 0.69 2.12 6.63 10.66 20.30 20.78 22.42
Acc. (%) 98.22 99.02 99.05 99.08 99.06 99.22 99.12

+SR(Ours) Params. (M) 1.13 2.94 7.33 11.10 20.74 21.97 23.62
Acc. (%) 98.41 99.18 99.44 99.39 99.43 99.32 99.31

Table 5
Comparison of DenseNet121-SR with the state-of-the-art methods on COVIDx CT-2A dataset.

Method Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)

Normal NCP CP Normal NCP CP Normal NCP CP

COVID-Net CT-1 [12] 94.5 96.1 97.6 90.2 98.8 80.2 99.0 96.3 99.4 95.7
COVID-Net CT-2 S [14] 97.9 99.3 96.4 97.0 98.9 95.7 98.1 99.3 98.9 98.8
COVID-Net CT-2 L [14] 98.1 99.4 96.7 97.2 99.0 96.2 98.2 99.5 99.0 98.8
Bit-M [32] 99.2 99.8 98.9 98.5 99.3 99.6 98.7 99.8 99.6 99.5
DenseNet121-SR (Ours) 99.44 99.89 99.55 98.40 99.12 99.83 99.59 99.91 99.82 99.50

4.5. Results on Other Datasets
On other COVID-19 CT datasets Based on the ex-

perimental results aforementioned, we extend our method
to the other two COVID-19 CT datasets, i.e., SARS-CoV2
and COVIDx-CT-1. It should be noted that, for SARS-
CoV2, we train DenseNet121-SR over 200 epochs with
weights pre-trained on ImageNet because SARS-CoV2 con-
tains much fewer CT scans than the others. The results as
listed in Table 6 show that our method can be generalized
to other datasets and can achieve a high classification per-
formance. Comparing to the methods listed in Table 1, our
DenseNet121-SR with only 6.63 MB parameters is more
parameter-efficient and outperforms the reviewed methods.

Table 6
Classification results of DenseNet121-SR on SARS-CoV2 and
Covidx CT-1 datasets. The precision, sensitivity, and specificity
metrics are for COVID-19 positive class only.

Dataset Acc (%) Prec (%) Sens (%) Spec (%)

SARS-CoV2 99.20 99.47 98.93 99.46
COVIDx CT-1 99.78 99.56 99.84 99.74

On classic natural datasets Besides, extensive experi-
ments are conducted over seven natural datasets to further
evaluate the generalization ability of our method. To eval-
uate the effect of SR fairly, we keep the setting unchanged
as in Section 4.2 and initialize the model weights as pre-
trained on ImageNet. Table 7 demonstrates the classifica-
tion accuracy of DenseNet121 with or without SR on the
seven datasets, including FGVCAircraft [53], CIFAR10/100
[54], Describable Textures Dataset (DTD) [55], Oxford 102
Flowers [56], Oxford-IIIT Pets [57], and Stanford Cars [58].

It shows that DenseNet121-SR is superior to the original
model in all the tasks, indicating our proposed SR can be
generalized to general classification problems.

5. Ablation Study
The following ablation studies are conducted to better

investigate the effects of our proposed SR.
Fully self-supervised learning Contrastive learning is

widely adopted in pre-training CNNs that are fine-tuned later
for downstream tasks. In our methods, we turn the process to
an end-to-end manner by regularizing CNNs with proposed
SR derived from contrastive learning. Hence, a comparison
between SR and conventional contrastive learning is nec-
essary. Specifically, we design and measure the following
methods for comparison as follows.

a) Linear Evaluation. First pre-train the representation ex-
tractor f weights of which are frozen in the later FC fine-
tuning. The pre-training process is equivalent to setting

 = 1 in all training epochs as in Algorithm 1, and then
fine-tuning only the linear layers FC as usual. The fine-
tuning hyper-parameters include: 256 batch size, learning
rate decays from 40 to 4 × 10−6 according to cosine
decay scheduler [50]. The optimizer used is SGD. Linear
evaluation is simply conducted for verifying the effects
of contrastive learning in this task.

b) Two-stage training, self-supervised contrastive learn-
ing followed by conventional supervised learning. Pre-
training the representation extractor f and training
the entire CNN with pre-trained weights. The hyper-
parameters are consistent with others as in Section 4.2.

c) Apply SR to ResNets with a default constant 
 = 0.5.
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Table 7
Classification accuracy of DenseNet121 with or without SR over seven classic natural datasets.

Aircraft CIFAR10 CIFAR100 DTD Flowers102 OxfordIIITPet StanfordCars

DenseNet121 88.15 94.45 85.08 70.60 93.17 92.47 92.46
DenseNet121-SR (Ours) 88.18 94.47 85.08 71.01 94.42 92.88 92.55

Table 8
Test accuracy comparison between two-stage training and
end-to-end training with SR under incremental augmentation
levels. The scale factor scheduler for scaling SR is the default
constant scheduler 
 = 0.5.

Augmentation Method CNN Backbone

R18 R34 R50

Level 1
Linear Eval 95.47 92.89 92.32
Two-stage 99.17 99.17 99.04
+SR(Ours) 99.23 99.27 99.09

Level 2
Linear Eval 95.76 92.03 94.02
Two-stage 99.25 99.23 99.20
+SR(Ours) 99.27 99.39 99.19

Level 3
Linear Eval 93.92 93.88 95.08
Two-stage 99.26 99.29 99.24
+SR(Ours) 99.26 99.29 99.20

Level 4
Linear Eval 93.12 93.23 94.53
Two-stage 99.38 99.30 99.18
+SR(Ours) 99.40 99.43 99.31

The results for the designs above are listed in Table 8. It
can be observed that contrastive learning can learn efficient
representations that even a simple linear evaluation on the
pre-trained representation extractor can achieve over 92%
test accuracy. For the second method, two-stage contrastive
learning, the pre-trained weights from the representation
extractor might be hard to maintain in the later training
phase. Our introduced SR maintains the representation by
explicitly penalizing the representation difference for posi-
tive pairs. The results in Table 8 verify that ResNets with SR
surpass the two-stage contrastive learning method in most
experiments. Besides, it is worth noting that the end-to-end
training with SR does not require pre-training and thus saves
computational resources.

Decay strategy for 
 The two-stage contrastive learning
method can be approximate to run the SR Algorithm 1 with

 = 1 in pre-training and 
 = 0 in fine-tuning. The sharp
fall of 
 may destroy the maintained representation space
obtained in contrastive pre-training. To avoid the potential
negative impact, we designed two mild 
 decay strategies
in Section 3.2 despite of the constant 
 strategy. From the
results demonstrated in Fig. 3, we can conclude that SR with
all designed 
 strategies can stably improve the classification
accuracy. And SR is insensitive to the 
 strategy setting
since all strategies have comparable performance. Due to the
simplicity of the 
 strategy (
 = 0.5 in all iterations) and its

slight superiority in level 4 augmentation, we select it as the
default strategy in our experiments.

Figure 3: Accuracy of ResNets obtained with different 
 decay
strategies under incremental augmentation levels from 1 to 4.
The baselines are the original models without introduced SR.
The 
 value for the constant strategy is 0.5 by default while 

decays from 1.0 to 0.01 in linear and cosine strategies.


 value in constant strategy The ablation studies find
that a constant strategy, 
 = 0.5, can achieve the relatively
highest performance among the three strategies under level
4 augmentation. We vary the constant 
 value to evaluate its
robustness. See Appendix D for the detailed results.

6. Discussion
Since COVID-19 grows rapidly worldwide, designing

efficient and accurate classification systems is essential.
Although some methods [12, 14, 21, 22, 32] have claimed
a high classification accuracy (≈ 99%) on multiple datasets,
we argue that even a slight improvement can mitigate fur-
ther infection. Meanwhile, some high-performance methods
require considerable computational resources, making them
hard to be deployed into practical healthcare systems. Hence,
designing more efficient models with an affordable number
of training parameters should also be noted.

In this paper, we propose an incremental augmenta-
tion strategy and SR to improve the CNN classification
performance on three COVID-19 CT datasets. The results
illustrate that appropriate augmentation can significantly
alleviate the data limitation problem in COVID-19 CT clas-
sification. Meanwhile, our proposed SR further improves
the classification performance of seven CNNs by enhanc-
ing their representation learning ability. Specifically, on the
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largest dataset COVIDx CT-2A, our model DenseNet121-
SR achieves 99.44% accuracy and 99.59% sensitivity with
only 6.63MBparameters in the test interface, outperforming
all the reviewed state-of-the-art methods. Besides, we eval-
uate DenseNet121-SR on the other two datasets, achieving
99.78% and 99.20% accuracy on COVIDx CT-1 and SARS-
CoV2, respectively. To further justify the effect of SR,we ex-
tend the DenseNet121-SR to seven classic natural datasets,
illustrating SR can be generalized to general classification
tasks. Furthermore, since SR derives from contrastive learn-
ing, we compare traditional contrastive learning and end-to-
end training with SR in ablation studies. The comparison
demonstrates that SR is superior in classification accuracy
and training efficiency and is robust to its hyper-parameter
setting.

Despite the achieved promising performance, the lim-
itations of our method exist. Our method requires either
large amounts of training data or pre-training on other
large-scale datasets. The high performance of our models
with SR partly owes to the efforts of workers collecting
numerous CT scans. For smaller-scale datasets like SARS-
CoV2, the backbone of our method requires pre-training.
The pre-training on ImageNet helps improve the accuracy
from around 98% to 99.20% in the DenseNet121-SR case.
Besides, due to the lack of computational resources, we can
hardly evaluate other contrastive frameworks. Meanwhile,
we cannot redesign the CNN backbones to better balance
computational efficiency and classification performance be-
cause of the substantial computational loads of neural archi-
tecture searching and pre-training. For future work, we will
explore redesigning the network backbone, pre-training the
redesigned backbones on large-scale datasets, and making
networks more explainable in COVID-19 CT diagnosis.

7. Conclusion
This paper aims to improve the CNN performance for

COVID-19 CT classification by enabling CNNs to learn
parameter-efficient representations from CT scans. We pro-
pose the SR technique derived from contrastive learning and
apply it to seven commonly used CNNs. The experimental
results show that SR can stably improve the CNN classifica-
tion performance. Together with a well-designed augmenta-
tion strategy, our model DenseNet121-SR with 6.63MB pa-
rameters outperforms the existingmethods on three COVID-
19 CT datasets, including SARS-CoV2, COVIDx CT-1,
and COVIDx CT-2A. Specifically, on the largest available
dataset COVIDx CT-2A, DenseNet121-SR achieves 99.44%
accuracy, with 98.40% precision, 99.59% sensitivity, and
99.50% specificity for the COVID-19 pneumonia category.
Furthermore, the extensive experiments on seven classic
natural datasets demonstrate that SR can be generalized to
common classification problems.
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A. Augmentation Visualization
The augmented CT scans under designed augmentation

level from 1 to 6 are visualized in Fig. 4. These augmentation
operations keep the main pneumonic pathologies reserved
while enhancing the dataset diversity.

Figure 4: Illustration of applied incremental augmentation of
six levels. On the right side, six groups of images are augmented
from the same left COVID-19 positive scan. These groups from
top to down are in the augmentation levels from 1 to 6. The
bottom left normal scan is the auxiliary original image that
only participated in Mixup/Cutmix augmentation in levels 5
and 6. The left two scans are from COVIDx CT-2A.

B. Effect of Projection Size
The output dimension, or named projection size, of both

the projector and predictor in SR calculation are set to be 128
as default. We keep the hidden dimension 512 unchanged to
avoid redundant computation while varying the projection
size to analyze its effect in terms of classification accuracy.
As visualized in Fig. 5, the differences between the classifi-
cation accuracy for models except for SqueezeNet are small
(≤ 0.2%). This indicates that the hyper-parameter setting in
our proposed SR is robust.

C. Attention Visualization
To understand the behavior of our model, we visual-

ize the attention of DenseNet121-SR on three CT scans
in different classes as in Fig. 6. It can be observed that

Figure 5: Impact of projection size in SR calculation.

our model mainly focuses its attention on some suspicious
regions where the pathologies may exist.

D. Effect of Constant 
 Strategy
The constant 
 value still requires studies for finding its

effects on model performance. We thus vary the 
 value in
constant strategy from 0.1 to 0.9with 0.2 interval and repeat
the experiments for CNNs with SR under augmentation
level 4. As shown in Fig. 7, SR can improve the CNN
classification performance when 
 value is in an appropriate
range near [0.5, 0.7]. In particular, a smaller 
 cannot fully
fulfill the advantage of SR and sometimes even degrades
the model capacity as in SqueezeNet1.1 case. Meanwhile,
setting 
 to a large value like 0.9 is also risky since SR
dominates the total loss while the primary cross entropy for
classification is slighted.
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Figure 6: Attention of DenseNet121-SR visualized by Grad-CAM. The three groups of CT scans and heatmaps from left to right
are in class normal, NCP, and CP, respectively. The highlighted parts are the regions based on which CNNs classify the CT scans.

Figure 7: Accuracy of seven CNNs with SR controlled by constant 
 scale factor strategy, under augmentation level 4. 
 varies
from 0.1 to 0.9 with 0.2 interval.

Y. Xu et al.: Preprint submitted to Elsevier Page 12 of 12


