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ABSTRACT (293/300) 

Osteosarcoma is the most common primary bone cancer whose standard treatment includes pre-

operative chemotherapy followed by resection. Chemotherapy response is used for predicting 

prognosis and further management of patients. Necrosis is routinely assessed post-chemotherapy 

from histology slides on resection specimens where necrosis ratio is defined as the ratio of necrotic 

tumor to overall tumor. Patients with necrosis ratio ≥90% are known to have better outcome. 

Manual microscopic review of necrosis ratio from multiple glass slides is semi-quantitative and 

can have intra- and inter-observer variability. In this study, we propose an objective and 

reproducible deep learning-based approach to estimate necrosis ratio with outcome prediction from 

scanned hematoxylin and eosin (H&E) whole slide images (WSIs). To conduct our study, we 

collected 103 osteosarcoma cases with 3134 WSIs to train our deep learning model, to validate 

necrosis ratio assessment, and to evaluate outcome prediction. We trained Deep Multi-

Magnification Network to segment multiple tissue subtypes including viable tumor and necrotic 

tumor in pixel-level and to calculate case-level necrosis ratio from multiple WSIs. We showed 

necrosis ratio estimated by our segmentation model highly correlates with necrosis ratio from 

pathology reports manually assessed by experts where mean absolute differences for Grades IV 

(100%), III (≥90%), and II (≥50% and <90%) necrosis response are 4.4%, 4.5%, and 17.8%, 

respectively. Furthermore, we successfully stratified patients to predict overall survival (OS) with 

𝑝 = 10−6  and progression-free survival (PFS) with 𝑝 = 0.012 . Our reproducible approach 

without variability enabled us to tune cutoff thresholds, specifically for our model and our data 

set, to 80% for OS and 60% for PFS. Our study indicates deep learning can support pathologists 

as an objective tool to analyze osteosarcoma from histology for assessing treatment response and 
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predicting patient outcome. Our osteosarcoma segmentation model and code have been released 

at https://github.com/MSKCC-Computational-Pathology/DMMN-osteosarcoma.  

  

https://github.com/MSKCC-Computational-Pathology/DMMN-osteosarcoma
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INTRODUCTION 

Osteosarcoma is the most common primary bone cancer with an incidence of  4-5 cases per  million 

worldwide in a year(1). Induction chemotherapy prior to surgery is the standard of care for 

osteosarcoma patients (2). Multiple studies have shown that necrosis ratio, defined as ratio of 

necrotic tumor to overall tumor, from histologic assessments of resected samples is one of the 

important prognostic factors which correlates with patient outcome (3-8). The necrosis response 

of tumor to chemotherapy is graded as Grade I (no or very little response), Grade II (≥50% and 

<90% response), Grade III (≥90% response), or Grade IV (no viable tumor) (8). The 5-year overall 

survival rate for patients whose necrosis ratio is greater than 90% is approximately 80%(6). 

However, manually assessing tumor necrosis from multiple hematoxylin and eosin (H&E)-stained 

slides is semi-quantitative and is prone to inter- and intra-observer variability. In one study, it was 

shown that necrosis ratio estimation of osteosarcoma on a H&E sectioned slide at different time 

points had interclass correlation coefficient of 0.652 between 6 pathologists(9). 

Deep learning, a subfield of machine learning, has been widely investigated on analyzing whole 

slide images (WSIs) due to its nature of objectivity and reproducibility(10, 11). In osteosarcoma, 

multiple groups have developed deep learning models to segment viable tumor and necrotic tumor 

(12-16). While these models achieved acceptable performance, neither comparison with manually 

assessed necrosis ratio nor correlation with patient outcome data have been performed.  

In this study, we propose a complete pipeline that segments multiple tissue subtypes including 

viable tumor and necrotic tumor in pixel-level from multiple WSIs to estimate case-level necrosis 

ratio in an objective and reproducible manner and to correlate the estimated necrosis ratio with 

overall survival and progression-free survival outcome data. Figure 1 shows the block diagram of 

our proposed method. For pixel-wise segmentation, we used Deep Multi-Magnification 
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Network(17) to accurately segment multiple tissue subtypes. From segmentation predictions of 

multiple WSIs, case-level necrosis ratio can be calculated by counting the number of pixels of 

viable tumor and necrotic tumor on WSIs. We used this data to correlate overall survival (OS) and 

progression-free survival (PFS). Additionally, we were able to tune the cutoff threshold to stratify 

patients specifically for our segmentation model and our data set. The technical details of the 

method and proof of concept have been previously published at a machine learning conference 

(18). In this work we extended our method to the largest known cohort of digital slide images from 

patients with osteosarcoma. The main aims of our study are: (1) to collect the largest osteosarcoma 

data set, (2) to develop and release a pixel-wise osteosarcoma segmentation model, (3) to estimate 

case-level necrosis ratio and compare with manually assessed ratio from pathologists, and (4) to 

correlate necrosis ratio with overall survival and progression-free survival outcome data. 

 

MATERIALS AND METHODS 

Data Set 

After Institutional Review Board approval, osteosarcoma cases with resection materials available 

at Memorial Sloan Kettering Cancer Center (MSKCC) were selected. All cases had preoperative 

chemotherapy followed by resection. Detailed treatment information was available on 84 cases 

and the patients received combination chemotherapy including cisplatin, doxorubicin, high dose 

methotrexate, and/or etoposide or ifosfamide. The resected specimens are routinely sliced along 

the long axis and one to three representative slabs are mapped and labelled as per anatomical 

orientation. After routine processing, the hematoxylin and eosin-stained slides are examined 

microscopically for necrosis assessment (necrotic tumor divided by the overall tumor). The 

pathology reports were reviewed and the documented percentages of therapy-related changes were 
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recorded. Whenever available, the follow-up data was retrieved from the clinical database. During 

our previous study(18), we collected 55 cases with 1578 WSIs. To increase our data set, we 

collected 48 additional cases with 1556 WSIs digitized in 20× magnification by Aperio AT2 

scanners at MSKCC. In total, we have 103 cases with 3134 WSIs, where mean and median of the 

number of WSIs per case is 30.4 and 27, respectively. We used 75 WSIs from 15 training cases 

which were selected based on heterogeneous percentage of necrosis and the distribution of seven 

classes (viable tumor, necrosis with bone, necrosis without bone, normal bone, normal tissue, 

cartilage, and blank). We annotated a subset of whole slide images from the training cases 

presenting distinctive morphological patterns of the seven classes which was sufficient for the 

model to learn the patterns. The remaining 88 cases were used to test our segmentation model. 

Since pathologists microscopically review all glass slides to assess necrosis ratio, we utilized all 

whole slide images on testing cases to calculate necrosis ratio. First, 80 cases were used to evaluate 

necrosis ratio estimation after excluding 8 cases missing necrosis ratio in pathology reports. Next, 

we used 77 cases to predict overall survival (OS) after excluding 3 cases missing OS outcome data. 

Lastly, 66 cases were used to predict progression-free survival (PFS) after excluding one case 

missing metastasis status and 10 cases who presented with metastases at the time of diagnosis. 

Figure 2 shows a CONSORT flow diagram of our data set. To the best of our knowledge, this is 

the largest osteosarcoma data set. 

 

Tissue Segmentation 

Case-level necrosis ratio consists of the ratio of the area of necrotic tumor to the area of overall 

tumor on a set of osteosarcoma slides. Therefore, accurate pixel-wise segmentation would be 

necessary to count the number of pixels for viable tumor and the number of pixels for necrotic 
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tumor on a set of osteosarcoma WSIs and to estimate the case-level necrosis ratio. WSIs are made 

up of giga-pixels which cannot be processed as one image due to their large size. Instead, they 

need to be processed in patches which are cropped square-shaped regions from the WSIs. In this 

study, we used Deep Multi-Magnification Network (DMMN)(17) that processes a set of patches 

in size of 256×256 pixels in 20×, 10×, and 5× magnifications centered at the same coordinate to 

accurately generate pixel-wise tissue segmentation predictions of a patch in size of 256×256 pixels 

in 20× magnification. 

To train the segmentation model, we used Deep Interactive Learning(18) to efficiently annotate a 

limited set of osteosarcoma training cases. Deep Interactive Learning applies an iterative approach 

of correcting (or annotating) mislabeled regions from a previous model and finetuning the model 

with the additionally corrected patches to a training set. In this study, we finetuned the model 

generated in our previous work(18) segmenting seven classes including viable tumor, necrosis 

with bone, necrosis without bone, normal bone, normal tissue, cartilage, and blank. Specifically, 

we observed regions with treatment effect with an increased density of inflammatory cells, 

macrophages, and stromal cells were incorrectly labeled as viable tumor by the previous 

segmentation model. To finetune the model with these morphological patterns we included two 

additional cases with 26 WSI containing these patterns to the training set. Without any additional 

manual annotation, these mislabeled regions from the two cases were extracted in patches with the 

corresponding correct labels (necrosis without bone). For optimization, we used weighted cross 

entropy as our loss function with stochastic gradient descent with a learning rate of 5×10-6, a 

momentum of 0.99, and a weight decay of 10-4 for 10 epochs. The final model was selected based 

on the highest mean intersection-over-union on the validation set which is a subset of the training 

set not used for optimization. 
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Since giga-pixel WSIs are too large to be segmented at once, we segmented patches starting from 

a window at the top, left corner of the WSIs and sliding the window to horizontal and vertical 

directions by 256 pixels until the entire WSIs are segmented. We did not use Otsu Algorithm(19) 

because we observed some necrosis regions can be excluded due to their pixel intensities. All of 

the implementation for training and inference was done on PyTorch(20) and all experiments were 

conducted on an Nvidia Tesla V100 GPU. WSIs and their segmentation predictions were 

visualized by our MSKCC slide viewer(21). 

After all the WSIs in a case are segmented, a case-level necrosis ratio from multiple WSIs 

estimated by the deep learning model, 𝑟𝐷𝐿, is calculated by 

𝑟𝐷𝐿 =
𝑝𝑁𝑇

𝑝𝑉𝑇 + 𝑝𝑁𝑇
 

where 𝑝𝑉𝑇 and 𝑝𝑁𝑇 are the number of pixels for viable tumor and necrotic tumor, respectively. We 

compared necrosis ratio estimated by our deep learning model with necrosis ratio estimated by 

pathologists from pathology reports to evaluate if our segmentation model can reproduce manually 

assessed necrosis ratio by experts. 

 

Patient Stratification 

Based on necrosis ratio calculated by our segmentation model, we were able to stratify patients to 

predict patient outcome. We collected overall survival (OS) and progression-free survival (PFS) 

outcome data from patient charts and plotted Kaplan-Meier curves. Since reproducible estimation 

of necrosis ratio without any variability is now possible with our deep learning model, we not only 

tried the well-known cutoff threshold at 90%(6) but also tuned the cutoff threshold with an interval 

of 10% to objectively investigate various cutoff thresholds specifically for our segmentation model 

and our data set. The log-rank test was performed to evaluate patient stratification. 
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RESULTS  

Necrosis Ratio Assessment 

Figures 3 and 4 show multi-class segmentation predictions on WSIs and zoom-in images, 

respectively. By overlaying the multi-class segmentation predictions on testing WSIs using our 

MSKCC slide viewer(21), we visually validated that our segmentation model can accurately 

segment seven tissue subtypes. We observed the model was not able to segment well certain 

morphological patterns such as isolated viable tumor cells and chondroid foci, shown in 

Supplementary Fig. S1. 

To quantitatively evaluate our segmentation model, we compared necrosis ratio manually assessed 

by experts from pathology reports (denoted as 𝑟𝑃𝑅) and necrosis ratio objectively assessed by our 

deep learning model (denoted as 𝑟𝐷𝐿) using absolute difference between them. Our hypothesis is 

that our deep learning model would be able to calculate necrosis ratio close to the ratio manually 

assessed by experts. Therefore, we used absolute difference as our metric which is defined as 

|𝑟𝑃𝑅 − 𝑟𝐷𝐿|. Table 1 shows mean, median, and standard deviation of absolute differences in various 

grades where Grade IV necrosis response is defined as cases whose necrosis ratio is 100%, Grade 

III necrosis response as cases whose necrosis ratio is greater than or equal to 90% but less than 

100%, Grade II necrosis response as cases whose necrosis ratio is greater than or equal to 50% but 

less than 90%, and Grade I necrosis response as cases whose necrosis ratio is less than 50% (8). 

Mean absolute differences for Grades IV, III, II, and I necrosis response are 4.4%, 4.5%, 17.8%, 

and 39.2% and median absolute differences for Grades IV, III, II, and I necrosis response are 5.9%, 

2.9%, 18.4%, and 38.6%, respectively. The scatter plot of the 80 testing cases is shown in 

Supplementary Fig. S2. Necrosis ratio assessment shows our segmentation model can generate 
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accurate predictions especially in Grades IV, III, and II necrosis response. We further analyzed the 

model using outcome data of testing cases to evaluate if our deep learning model can be clinically 

used, described in the next section. 

  

Outcome Prediction 

We plotted Kaplan-Meier curves and calculated the log-rank 𝑝 -values to evaluate outcome 

predictions, shown in Fig. 5. Based on manual assessment from pathology reports at the 

conventional 90% cutoff threshold on 77 testing cases, we achieved 𝑝 = 0.054 for overall survival 

(OS) outcome. Based on automated assessment from our deep learning model at the 90% cutoff 

threshold, we achieved 𝑝 = 0.0021, showing our deep learning model can successfully stratify 

patients for OS outcome. Since there is no variability caused by our deep learning model, we 

propose an objective approach to investigate various cutoff thresholds specifically for our 

segmentation model and our data set. With the interval of 10%, we achieved 𝑝 = 10−6 at the 80% 

cutoff threshold. Furthermore, we predicted progression-free survival (PFS) outcome data on 66 

testing cases using our deep learning model and achieved 𝑝 = 0.012 at the 60% cutoff threshold. 

The 𝑝-values from various cutoff thresholds are shown in Supplementary Table S1. 

 

DISCUSSION 

In this study, we developed a deep learning-based approach to estimate case-level necrosis ratio 

from multiple hematoxylin and eosin (H&E) stained osteosarcoma whole slide images (WSIs) 

where necrosis ratio is known to correlate with prognosis(3-8). Specifically, we trained Deep 

Multi-Magnification Network(17) to objectively and reproducibly segment multiple tissue 

subtypes including viable tumor and necrotic tumor in pixel-level to calculate necrosis ratio. By 
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comparing with manually assessed necrosis ratio from pathology reports, we verified that the 

estimation of necrosis ratio performed by our deep learning model is accurate. Furthermore, we 

stratified patients in overall survival (OS) and progression-free survival (PFS) based on necrosis 

ratio. Due to its objective manner, we were able to tune the cutoff threshold to stratify patients 

specifically for our trained model and our data set. In our study, the segmentation model achieved 

𝑝 = 10−6 at the 80% cutoff threshold for OS and 𝑝 = 0.012 at the 60% cutoff threshold for PFS. 

To our knowledge, we have conducted the first study with the largest osteosarcoma cohort to 

compare manually assessed necrosis ratio from pathology reports to objectively assess necrosis 

ratio from our deep learning model and successfully stratify patients to predict OS and PFS based 

on objectively assessed necrosis ratio.  

High intra- and inter-observer variability of histological subtypes of in-situ and invasive cancer  

and necrosis percentage by manual microscopic assessment of H&E sections has been addressed 

in various cancer types such as lung(22, 23), breast(24), and colon(25). While necrosis ratio from 

histologic slides has been well-proven as a prognostic factor in osteosarcoma(3-8), this visual 

estimation of necrosis remains subjective(9). Even if detailed standardized diagnostic criteria are 

established, reducing variability would be challenging if necrosis ratio needs to be estimated from 

30 or more glass slides. 

Deep learning with digitized histopathology images can be used as a tool to avoid these 

variability(10, 11) because deep learning models can objectively and consistently generate the 

same output given the same input. In this study, we used Deep Multi-Magnification Network 

(DMMN)(17) to accurately segment viable tumor and necrotic tumor in pixel-level which is the 

most basic element in an image. After segmentation of osteosarcoma WSIs, we evaluated our 

model performance using manually assessed necrosis ratio from pathology reports and patient 
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outcome data. To be more clinically relevant, we compared necrosis ratio from our segmentation 

model with necrosis ratio from pathology reports with a hypothesis that our segmentation model 

can reproduce necrosis ratio estimated by experts. While necrosis ratio estimated by our 

segmentation model highly correlates with necrosis ratio manually assessed by experts for cases 

with high necrosis ratio, we observed cases from Grade I necrosis response generally have higher 

absolute difference. Manual assessment of necrosis ratio is known to be highly subjective. For 

example, in their study of necrosis assessment by pathologists, Kang et al (9) showed that necrosis 

ratio assessed by 6 expert pathologists demonstrated interclass correlation coefficient of 0.652 for 

10 cases. Additionally, high absolute differences from Grade I necrosis response may be related 

to imprecise subjective estimation of low percentage of necrotic tumor (<50%) which is much 

below the cutoff threshold (90%) used to determine good and poor prognosis (6).  

Additionally, we stratified patients based on necrosis ratio estimated by our model to predict 

overall survival (OS) and progression-free survival (PFS) outcome data. Based on the log-rank 

test, we verified that our segmentation model can achieve more significant stratification than 

human experts. In addition, we were able to tune the cutoff threshold specifically for our 

segmentation model and our data set due to its objective and reproducible manner. There are some 

previous studies which have attempted to find the optimal cutoff threshold of  necrosis ratio as a 

strong indicator of prognosis using manual assessment, but high intra- and inter-observer 

variability has precluded effective conclusions (9, 26). With a deep learning model, it would be 

possible to objectively and reproducibly select the optimal cutoff threshold stratifying patients with 

the lowest log-rank 𝑝-value.  

There are several limitations in our study. During our qualitative evaluation of segmentation 

predictions, we observed our segmentation model tends to miss some viable tumor such as isolated 
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tumor cells and chondroid foci, potentially causing overestimation of necrosis ratio. Our 

segmentation model was designed to segment in tissue-level, not in cell-level. Although our model 

can segment regions with dense areas of viable tumor cells, it misses isolated viable tumor cells 

because the model was not trained by cell-level annotations. Combining with a cell segmentation 

model(27) which can detect isolated viable tumor cells, we can further improve the estimation of 

necrosis ratio. Chondroid foci were underrepresented in our training set. By including more regions 

with rare patterns to the training set using Deep Interactive Learning(18) or generating synthetic 

histology images with the rare patterns using generative adversarial networks(28), we would be 

able to finetune the model to accurately segment them. We additionally observed artifacts caused 

during slide preparation (bone dust, stain precipitate) can lead to mis-segmentation which is a 

common challenge in all digital and computational pathology(29, 30). Training a more robust 

segmentation model by including artifacts in the training set would be desired. Lastly, this study 

was done with a data set from a single institution. For a more comprehensive study to improve 

segmentation and to select the optimal cutoff threshold, collecting a multi-institutional data set 

would be necessary. 

In summary, we have conducted experiments to objectively and reproducibly estimate necrosis 

ratio from multiple osteosarcoma whole slide images using a deep learning-based segmentation 

model. Our experimental results demonstrated high correlation between manually assessed 

necrosis ratio by pathologists and automatically calculated necrosis ratio by our segmentation 

model, indicating our segmentation model can successfully estimate osteosarcoma necrosis ratio 

from multiple slide images. Furthermore, we were able to stratify patients to predict overall 

survival and progression-free survival by additionally tuning the cutoff threshold in an objective 

manner. As intra- and inter-observer variability is an intrinsic phenomenon in the manual and semi-
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quantitative estimation of necrosis ratio, adopting deep learning-based models for a more objective 

assessment of necrosis ratio can pave the way for more prospective studies to assess treatment 

response and outcome in osteosarcoma patients. 
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FIGURE LEGENDS 

Figure 1. Block diagram of our proposed method. Top: An osteosarcoma case with multiple slides 

is currently assessed via a microscope to estimate necrosis ratio and to predict outcome. Bottom: 

Deep learning-based segmentation by Deep Multi-Magnification Network(17) is used to segment 

https://github.com/MSKCC-Computational-Pathology/DMMN-osteosarcoma
https://github.com/MSKCC-Computational-Pathology/DMMN-osteosarcoma
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multiple tissue subtypes, to count the number of pixels for viable tumor (VT) and necrotic tumor 

(NT) to estimate necrosis ratio, and to predict outcome. 

 

Figure 2. Our osteosarcoma data set containing 103 cases with 3134 whole slide images (WSIs). 

Fifteen cases were used to train our segmentation model and the other 88 cases were used to test 

the model. More specifically, 80 cases were used to evaluate necrosis ratio assessment, 77 cases 

were used to predict overall survival (OS), and 66 cases were used to predict progression-free 

survival (PFS). 

 

Figure 3. Multi-class segmentation of two osteosarcoma whole slide images. Viable tumor is 

segmented in red, necrosis with bone in blue, necrosis without bone in yellow, normal bone in 

green, normal tissue in orange, cartilage in brown, and blank in gray. 

 

Figure 4. Segmentation of (A,B) viable tumor, (C,D) necrosis with bone, and (E,F) necrosis 

without bone. Viable tumor is segmented in red, necrosis with bone in blue, necrosis without bone 

in yellow. 

 

Figure 5. Outcome prediction. (A) Patient stratification based on overall survival (OS) outcome 

at the conventional 90% cutoff threshold from manually assessed pathology reports achieving 

p=0.054. (B) Patient stratification based on OS outcome at the same 90% cutoff threshold from 

our deep learning model achieving p=0.0021. The deep learning model performed a better 

stratification than manual assessment of glass slides. (C) Patient stratification based on OS 

outcome at the 80% cutoff threshold from our deep learning model achieving p=10-6. The cutoff 
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threshold for our deep learning model and our data set can be tuned to have better stratification 

due to its objective and reproducible manner. (D) Patient stratification based on progression-free 

survival (PFS) outcome at the 60% cutoff threshold from our deep learning model achieving 

p=0.012. 

 

REFERENCES 

1. Ottaviani G, Jaffe N. The epidemiology of osteosarcoma. Cancer Treat Res. 2009;152:3-

13. 

2. Provisor AJ, Ettinger LJ, Nachman JB, Krailo MD, Makley JT, Yunis EJ, et al. 

Treatment of nonmetastatic osteosarcoma of the extremity with preoperative and postoperative 

chemotherapy: a report from the Children's Cancer Group. Journal of clinical oncology : official 

journal of the American Society of Clinical Oncology. 1997;15(1):76-84. 

3. Davis AM, Bell RS, Goodwin PJ. Prognostic factors in osteosarcoma: a critical review. 

Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 

1994;12(2):423-31. 

4. Glasser DB, Lane JM, Huvos AG, Marcove RC, Rosen G. Survival, prognosis, and 

therapeutic response in osteogenic sarcoma. The Memorial Hospital experience. Cancer. 

1992;69(3):698-708. 

5. Huvos AG, Rosen G, Marcove RC. Primary osteogenic sarcoma: pathologic aspects in 20 

patients after treatment with chemotherapy en bloc resection, and prosthetic bone replacement. 

Archives of pathology & laboratory medicine. 1977;101(1):14-8. 



19 
 

6. O'Kane GM, Cadoo KA, Walsh EM, Emerson R, Dervan P, O'Keane C, et al. 

Perioperative chemotherapy in the treatment of osteosarcoma: a 26-year single institution review. 

Clinical sarcoma research. 2015;5:17. 

7. Raymond AK, Chawla SP, Carrasco CH, Ayala AG, Fanning CV, Grice B, et al. 

Osteosarcoma chemotherapy effect: a prognostic factor. Seminars in diagnostic pathology. 

1987;4(3):212-36. 

8. Rosen G, Caparros B, Huvos AG, Kosloff C, Nirenberg A, Cacavio A, et al. Preoperative 

chemotherapy for osteogenic sarcoma: selection of postoperative adjuvant chemotherapy based 

on the response of the primary tumor to preoperative chemotherapy. Cancer. 1982;49(6):1221-

30. 

9. Kang J-W, Shin SH, Choi JH, Moon KC, Koh JS, kwon Jung C, et al. Inter-and intra-

observer reliability in histologic evaluation of necrosis rate induced by neo-adjuvant 

chemotherapy for osteosarcoma. Int J Clin Exp Pathol. 2017;10(1):359-67. 

10. Srinidhi CL, Ciga O, Martel AL. Deep neural network models for computational 

histopathology: A survey. Medical Image Analysis. 2021;67:101813. 

11. Van der Laak J, Litjens G, Ciompi F. Deep learning in histopathology: the path to the 

clinic. Nature medicine. 2021;27(5):775-84. 

12. Anisuzzaman D, Barzekar H, Tong L, Luo J, Yu Z. A deep learning study on 

osteosarcoma detection from histological images. Biomedical Signal Processing and Control. 

2021;69:102931. 

13. Arunachalam HB, Mishra R, Daescu O, Cederberg K, Rakheja D, Sengupta A, et al. 

Viable and necrotic tumor assessment from whole slide images of osteosarcoma using machine-

learning and deep-learning models. PloS one. 2019;14(4):e0210706. 



20 
 

14. Fu Y, Xue P, Ji H, Cui W, Dong E. Deep model with Siamese network for viable and 

necrotic tumor regions assessment in osteosarcoma. Medical Physics. 2020;47(10):4895-905. 

15. Mishra R, Daescu O, Leavey P, Rakheja D, Sengupta A, editors. Histopathological 

diagnosis for viable and non-viable tumor prediction for osteosarcoma using convolutional 

neural network. International Symposium on Bioinformatics Research and Applications; 2017: 

Springer. 

16. Mishra R, Daescu O, Leavey P, Rakheja D, Sengupta A. Convolutional neural network 

for histopathological analysis of osteosarcoma. Journal of Computational Biology. 

2018;25(3):313-25. 

17. Ho DJ, Yarlagadda DVK, D’Alfonso TM, Hanna MG, Grabenstetter A, Ntiamoah P, et 

al. Deep multi-magnification networks for multi-class breast cancer image segmentation. 

Computerized Medical Imaging and Graphics. 2021;88:101866. 

18. Ho DJ, Agaram NP, Schüffler PJ, Vanderbilt CM, Jean M-H, Hameed MR, et al., editors. 

Deep interactive learning: an efficient labeling approach for deep learning-based osteosarcoma 

treatment response assessment. International Conference on Medical Image Computing and 

Computer-Assisted Intervention; 2020: Springer. 

19. Otsu N. A threshold selection method from gray-level histograms. IEEE transactions on 

systems, man, and cybernetics. 1979;9(1):62-6. 

20. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. Pytorch: An 

imperative style, high-performance deep learning library. Advances in neural information 

processing systems. 2019;32. 

21. Schüffler PJ, Geneslaw L, Yarlagadda DVK, Hanna MG, Samboy J, Stamelos E, et al. 

Integrated digital pathology at scale: A solution for clinical diagnostics and cancer research at a 



21 
 

large academic medical center. Journal of the American Medical Informatics Association. 

2021;28(9):1874-84. 

22. Wang C, Durra HY, Huang Y, Manucha V. Interobserver reproducibility study of the 

histological patterns of primary lung adenocarcinoma with emphasis on a more complex 

glandular pattern distinct from the typical acinar pattern. International journal of surgical 

pathology. 2014;22(2):149-55. 

23. Warth A, Stenzinger A, von Brünneck A-C, Goeppert B, Cortis J, Petersen I, et al. 

Interobserver variability in the application of the novel IASLC/ATS/ERS classification for 

pulmonary adenocarcinomas. European respiratory journal. 2012;40(5):1221-7. 

24. Gomes DS, Porto SS, Balabram D, Gobbi H. Inter-observer variability between general 

pathologists and a specialist in breast pathology in the diagnosis of lobular neoplasia, columnar 

cell lesions, atypical ductal hyperplasia and ductal carcinoma in situ of the breast. Diagnostic 

pathology. 2014;9(1):1-9. 

25. Viray H, Li K, Long TA, Vasalos P, Bridge JA, Jennings LJ, et al. A prospective, multi-

institutional diagnostic trial to determine pathologist accuracy in estimation of percentage of 

malignant cells. Archives of Pathology and Laboratory Medicine. 2013;137(11):1545-9. 

26. Li X, Ashana AO, Moretti VM, Lackman RD. The relation of tumour necrosis and 

survival in patients with osteosarcoma. International orthopaedics. 2011;35(12):1847-53. 

27. Graham S, Vu QD, Raza SEA, Azam A, Tsang YW, Kwak JT, et al. Hover-net: 

Simultaneous segmentation and classification of nuclei in multi-tissue histology images. Medical 

Image Analysis. 2019;58:101563. 



22 
 

28. Deshpande S, Minhas F, Graham S, Rajpoot N. SAFRON: Stitching Across the Frontier 

Network for Generating Colorectal Cancer Histology Images. Medical Image Analysis. 

2022;77:102337. 

29. Janowczyk A, Zuo R, Gilmore H, Feldman M, Madabhushi A. HistoQC: an open-source 

quality control tool for digital pathology slides. JCO clinical cancer informatics. 2019;3:1-7. 

30. Schömig-Markiefka B, Pryalukhin A, Hulla W, Bychkov A, Fukuoka J, Madabhushi A, 

et al. Quality control stress test for deep learning-based diagnostic model in digital pathology. 

Modern Pathology. 2021;34(12):2098-108. 

 

  



23 
 

Grades Range Mean Median Standard 

Deviation 

Number of 

cases 

Grade IV 

necrosis 

response 

𝑟𝑃𝑅 = 100% 4.4 5.9 2.7 3 

Grade III 

necrosis 

response 

90% ≤ 𝑟𝑃𝑅
< 100% 

4.5 2.9 4.4 23 

Grade II 

necrosis 

response 

50% ≤ 𝑟𝑃𝑅
< 90% 

17.8 18.4 10.0 19 

Grade I 

necrosis 

response 

0% ≤ 𝑟𝑃𝑅
< 50% 

39.2 38.6 17.9 35 

All Grades 0% ≤ 𝑟𝑃𝑅
≤ 100% 

22.8 17.9 20.0 80 

 

Table 1. Mean, median, and standard deviation of absolute differences on various grades based on 

necrosis ratio from pathology reports, denoted as 𝑟𝑃𝑅. 
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SUPPLEMENTARY INFORMATION 

Figure S1. Mislabeled regions from our segmentation model. (A,B) Our model was designed to 

segment tissue components. Although the model can segment dense viable tumor cells, it misses 

isolated viable tumor cells. (C,D) Our model mislabeled chondroid foci which need to be labeled 

as viable tumor due to the lack of sufficient examples of their morphological pattern in our training 

set. Regions with red, blue, yellow, green, orange, brown, gray indicates prediction of viable 

tumor, necrosis with bone, necrosis without bone, normal bone, normal tissue, cartilage, blank by 

our segmentation model, respectively. 

 

Figure S2. Scatter plot between necrosis ratio from pathology reports and necrosis ratio from our 

deep learning model. Red, green, orange, and blue dots represent cases with Grade IV, Grade III, 

Grade II, and Grade I necrosis response, respectively. 

 

Cutoff Thresholds Overall Survival Progression-Free Survival 

90% 2.1×10-3 0.027 

80% 1.4×10-6 0.057 

70% 7.4×10-6 0.018 

60% 3.4×10-5 0.012 

50% 9.4×10-3 0.072 

Table S1. Log-rank p-values for overall survival (OS) and progression-free survival (PFS) 

outcome data with various cutoff thresholds for our segmentation model. Finding a cutoff 

threshold for better stratification is possible for our deep learning-based segmentation model 

because deep learning is objective and reproducible. The minimum p-value for OS is achieved at 

the 80% cutoff threshold and the minimum p-value for PFS is achieved at the 60% cutoff threshold, 

highlighted in bold. 
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