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Abstract

Instance segmentation on 3D point clouds has been at-
tracting increasing attention due to its wide applications,
especially in scene understanding areas. However, most ex-
isting methods operate on fully annotated data while man-
ually preparing ground-truth labels at point-level is very
cumbersome and labor-intensive. To address this issue,
we propose a novel weakly supervised method RWSeg that
only requires labeling one object with one point. With these
sparse weak labels, we introduce a unified framework with
two branches to propagate semantic and instance informa-
tion respectively to unknown regions using self-attention
and a cross-graph random walk method. Specifically, we
propose a Cross-graph Competing Random Walks (CRW)
algorithm that encourages competition among different in-
stance graphs to resolve ambiguities in closely placed ob-
jects, improving instance assignment accuracy. RWSeg gen-
erates high-quality instance-level pseudo labels. Exper-
imental results on ScanNet-v2 and S3DIS datasets show
that our approach achieves comparable performance with
fully-supervised methods and outperforms previous weakly-
supervised methods by a substantial margin.

1. Introduction
With the rapid development of 3D sensing technology,

point cloud based scene understanding has become a popu-
lar research topic in recent years. Instance segmentation is
one of the most fundamental tasks in this field and has many
applications in robotics, autonomous driving, AR/VR, etc.
Given a 3D point cloud depicting a scene, this task requires
predicting not only a semantic category but also an instance
id to differentiate objects at point level. Many deep learn-
ing methods have been developed for this task, showing
promising results. However, most of these methods operate
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Figure 1. Comparisons of our approach RWSeg with two recent
weakly supervised 3D instance segmentation methods and the
fully-supervised baseline on two datasets. Our method achieves
better results than other weakly supervised methods with the same
amount of weak annotations.

on point-wise fully annotated data to supervise the network
training.

Manually creating data annotations at point level is very
cumbersome and labor-intensive. Although some tools have
been adopted to assist, the average time used to annotate one
scene is about 22.3 minutes on ScanNet-v2 dataset [10]. To
alleviate this issue, several types of weak annotations have
been proposed, such as scene-level annotation, subcloud-
level annotation [47], 2D image based annotation and 3D
bounding box annotation [1, 8]. However, not all weak la-
bel types are easy to obtain in practice. In this work, we
adopt the annotation method used in SegGroup [40] and
“One Thing One Click” [33], which only requires anno-
tating a single point for each object. As shown in Figure
2, this results in very sparse initial annotations, with less
than 0.02% of total points requiring labeling. According to
[40, 33], this annotation method takes less than two minutes
per scene, significantly reducing the need for human effort.

Tao et al. [40] and Tang et al. [39] have investigated the
”One-thing-one-click” approach to address the challenge of
weakly supervised 3D instance segmentation. These tech-
niques construct graphs on top of the over-segmentation
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Figure 2. Pipeline of our proposed weakly supervised method for 3D instance segmentation. The input point cloud is annotated with a
single point for each object (enlarged for better visualizations). We use a 3D U-Net backbone based on submanifold sparse convolution
[17] to extract point features. Next, we apply average pooling to the points within the same supervoxel. To facilitate semantic feature
propagation, we utilize a self-attention module. Finally, our novel Cross-graph Competing Random Walks (CRW) module leverages the
inputs from both branches to generate high-quality pseudo labels for further network training.

outcomes and apply Graph Convolution Network (GCN)
or inter-superpoint affinity for label propagation. However,
these approaches encounter some issues. SegGroup [40] re-
lies solely on a cross-entropy loss for its semantic predic-
tion with a greedy algorithm for clustering, hence lacking
instance-related information. Besides, this method is only
designed for the purpose of generating pseudo labels, and
therefore requires to utilize these pseudo labels as ground-
truth to train a separate network for prediction. 3D-WSIS
[39] utilizes an offset loss and an affinity loss to produce
better discriminative features, but their graph is based on the
over-segmented point clouds, and the feature of each super-
voxel is simply obtained through average pooling of point
features and coordinates. The size of supervoxels can vary
significantly in their setup, and the initial weak labels can be
located at any part of objects, resulting in an unbalanced at-
traction to neighboring nodes. This may lead to difficulty in
identifying precise boundaries, particularly when multiple
instances are located close to each other.

In this paper, we propose a novel weakly supervised
learning approach, named RWSeg, for 3D point cloud in-
stance segmentation. With only one point annotation per
instance, we focus on two key considerations: (1) effective
feature propagation is critical for generating high-quality
pseudo labels, and (2) leveraging the interactions among in-
stance graphs can be beneficial in finding more accurate in-
stance boundaries and improving the quality of clustering.
To address the limitations of previous methods, we are moti-
vated to develop a unified structure for both feature learning
and feature propagation.

Convolutional Neural Network (CNN) can extract good
local features. However, long-range dependencies can
hardly be captured due to its relatively small receptive field.

The limitations of CNNs in capturing long-range dependen-
cies are exacerbated in weakly supervised learning scenar-
ios, where only a limited number of certain labels are avail-
able to supervise the training process. To this end, we intro-
duce a self-attention module after the 3D CNN backbone,
which can effectively propagate long-range information to
unknown regions.

For instance pseudo label generation, a customized ran-
dom walk algorithm on point-level is developed for 3D
weakly instance segmentation. The point clouds are first
split by their categories, and for each category, multiple in-
stance graphs are built and random walk propagation is per-
formed on each of them. The total energy on each individual
graph is identical, based on the assumption that same-class
objects tend to have similar sizes. A competing mechanism
is designed to perform collaborative propagation on multi-
ple instance graphs. To sum up, the key contributions of our
work are as follows:

• We design a unified framework for weakly supervised
3D instance segmentation. To enhance the feature
propagation, we introduce a self-attention module to
capture long-range dependencies.

• We propose a novel algorithm to perform collabora-
tive propagation on multiple instance graphs to gen-
erate high-quality instance pseudo labels. The de-
signed competing mechanism helps to resolve ambigu-
ous cases in 3D instance segmentation task.

• With significantly fewer annotations, our method
bridges the gap between weakly supervised learning
and fully supervised learning in 3D instance segmen-
tation.



2. Related Work

Fully supervised 3D segmentation To effectively pro-
cess unstructured and unordered 3D data , current fea-
ture learning methods can be broadly categorized into two
types: point-based methods [28, 37, 38, 41, 49, 53, 13, 18]
and voxel-based methods [16, 17, 23, 27]. Voxel-based
approaches involve transforming data into 3D volumetric
grids, whereas point-based methods operate directly on the
individual points. Instance segmentation on point clouds
can be seen as a joint task of segmentation and localiza-
tion. Proposal-based methods [45, 24, 51, 14] detect object
boundaries explicitly and then perform binary mask seg-
mentation as the final output. On the other hand, proposal-
free methods [45, 32, 46, 35, 26, 25, 19, 6, 29, 12] directly
regress instance centroids without performing the detection
task. Jiang et al. [25] utilized a submanifold sparse convolu-
tion [17] based 3D U-net and proposed to use a breadth-first
search clustering algorithm on dual coordinate sets.

Weakly supervised segmentation Numerous weakly su-
pervised methods have been proposed for image segmen-
tation [3, 22, 36, 34, 2, 55, 5]. Wei et al. [48] proposed
the first weakly supervised approach for point cloud seman-
tic segmentation, utilizing Class Activation Map (CAM) to
generate point-level pseudo labels with subcloud-level an-
notations. Several subsequent works [50, 44, 33, 11] also
addressed weakly segmentation on point clouds with lesser
supervision. There have been limited attempts to solve 3D
weakly supervised instance segmentation. Hou et al. [21]
designed a pre-training method to assist prediction, while
Tao et al. [40] proposed Seggroup with graph convolution
network (GCN) for instance label propagation. However,
Seggroup lacks the ability to learn discriminative features
for separating instances. Tang et al. [39] proposed to learn
discriminative features and use inter-superpoint affinity for
label propagation. However, their method did not fully uti-
lize all the spatial information and may affect their perfor-
mance on ambiguous cases. Liao et al. [1] and J. Chibane
et al. [8] proposed using 3D bounding boxes as supervi-
sion. However, box annotation provides much richer infor-
mation than clicking one point per instance, and most non-
overlapped objects can already be defined by 3D bounding
box. This may lessen the significance of their work.

3. Method

In this section, we first introduce our data annotation set-
ting for point cloud instance segmentation in Section 3.1.
Then, Section 3.2 describes our training strategy. Lastly,
Section 3.3 and 3.4 present our approach in detail, includ-
ing network architecture, semantic branch, instance branch
and proposed pseudo label generation algorithm.

Figure 3. Learning cycle of our proposed weakly supervised
method for 3D Instance Segmentation.

3.1. Weak Annotation

Following SegGroup [40], we adopt the annotation set-
ting of one point per object, as shown in Figure 2. To cre-
ate initial pseudo labels, we spread the labels from anno-
tated points to nearby points within the same supervoxel
segment. These segments are generated by unsupervised
over-segmentation method [15] based on the surface nor-
mals of points. Points within the same segment have high
internal consistency, which are used as the initial ground-
truth to supervise the network training.

3.2. Learning Strategy

As shown in Figure 3, the network training of our
method consists of two stages. The first stage is supervised
by the initial weak labels. Afterward, predictions with high
confidence from our pseudo label generation algorithm are
further updated as new ground-truth labels for next stage
training. With this learning strategy, the quality of learned
features can be consistently improved

3.3. Network Architecture

Our network takes point cloud P ∈ RN×3 as input
where N is the number of points in P . It uses a shared U-
Net backbone and two separate branches for point-level se-
mantic feature learning and instance centroid regression. In
the semantic branch, a self-attention based module is used
to further enhance semantic features, especially for those
regions without supervision. Following that, our proposed
Cross-Graph Competing Random Walks (CRW) algo-
rithm leverages learned features and existing ground-truth
weak labels to generate instance-level pseudo labels. With
refined weak labels, the network can be further trained to
produce better features. All proposed modules are within
the unified framework, as shown in Figure 2.

Semantic segmentation branch The submanifold sparse
convolution [17] based backbone network can extract point-
wise features with good local information capturing. How-
ever, to enhance the network’s ability to capture long-range
feature dependencies and extend its receptive field, we pro-
pose incorporating a self-attention module to further refine
the semantic features. In order to reduce the computa-
tional complexity of self-attention and ensure local geomet-
ric consistency, we utilize a supervoxel generation method



[31]. Specifically, for each supervoxel set, we apply aver-
age pooling to both point coordinates and semantic features.
Following [42, 54], we build a self-attention layer across all
the supervoxels and then interpolate the output to the orig-
inal size of the input point cloud. During training, we use
a conventional cross-entropy loss HCE with incomplete la-
bels to supervise the process. The structure diagram and
formulas of the self-attention module are provided in the
supplementary.

Instance centroid offset branch Parallel to the semantic
branch, we apply a 2-layers MLP upon point features to pre-
dict point-wise centroid shift vector di ∈ R3. The instance
centroid q̂ is defined as the mean coordinates of all points
with the same instance label. Following [25], We use an L1

regression loss and a cosine similarity based direction loss
to train the offset prediction. We only consider foreground
points with weak labels or pseudo weak labels for supervi-
sion. With initial weak labels, real centroids of instances
can hardly be inferred. However, we found it is still benefi-
cial to apply offset loss, as it can help to slightly shift points
towards inner part of objects.

The final joint loss function can be written as

Ljoint = Lsem + Loffset. (1)

3.4. Pseudo label Generation

After training with the initial weak labels, we now have
a network that can make semantic prediction and offset pre-
diction, which can be further utilized to generate pseudo in-
stance labels. However, due to the limited supervision used
during model training, the quality of the prediction may not
be very accurate at the first iteration. To address this issue,
we propose a random walk-based algorithm to generate re-
liable pseudo labels for unlabelled points.

In this section, we first describe how we construct an in-
dividual graph in Figure 4 and then present the details of
cross-graph competing mechanism and the clustering algo-
rithm in Figure 5. The core idea of our algorithm is to
enable interactions among instance graphs and gradually
updates seeding points until reaching a signal equilibrium
state.

Building graph on the point cloud According to the
semantic predictions from the semantic branch S =
{s1, s2, ..., sN} ∈ RN on point clouds P , we treat each
foreground semantic category as a target group. For each
group, we build K fully connected and undirected instance
graphs, with K being the number of instances. As shown
in Figure 4, the nodes of each graph are points from all K
instances. Each node in each graph is associated with an ini-
tial binary label (score), as detailed in the paragraph below.
The K instance graphs have the same nodes and edges, with

Figure 4. Illustration of a single instance graph. The nodes on
graph are connected by undirected edges. The edge weights are
determined by the transition matrix A in Eq. (5). The initial node
values are determined by the vector b0 in Eq. (2) For this example,
the initial values of the three green nodes are 1/3.

the only difference being they have different initial graph
node score vectors.

For the l-th instance graph, its initial graph node score
vector bl0 is defined by its binary instance label mask ml,
with the i-th element ml

i = 1 if the i-th node (point) has an
instance label of l. The i-th element of bl0 is:

b
l(i)
0 =

{
1∑n

j=0 ml
j

ml
i = 1

0 otherwise,
(2)

where n is the number of nodes in the graph. The pro-
cess of normalizing seeding points’ initial scores involves
dividing them by the total number of nodes correspond-
ing to the same instance id. This normalization aims to
achieve equitable allocation of the initial potential among
instance graphs, thereby preventing any undue advantage
for instances having a larger number of positive weak la-
bels.

The random walk operation on each graph can be mod-
eled with an n×n transition matrix A. Aij ∈ [0, 1] denotes
the transition probability between i-th and j-th nodes, with
a higher value indicating a higher transition probability.

To build transition matrix A, we first consider a pairwise
kernel function to derive a symmetric affinity matrix W ,
which helps to enhance local smoothness. For each edge
connecting the i-th and j-th nodes, we define its weight as:

Wij = exp(−∥(xi + di)− (xj + dj)∥2
2σ2

), (3)

where σ is a hyperparameter, xi and xj are point coordi-
nates. We use the predicted offset vector d from the instance
branch to shift points from their original coordinates toward
their instance centers. Node pairs with small euclidean dis-
tances in the 3D space tend to have high similarities.

Next, we formulate the transition matrix A by the fol-
lowing rules. Specifically, we assign a weight of zero to the
edges connecting nodes belonging to different instance la-
bels, in order to restrict the direct interaction between them.



Figure 5. Illustration on Cross-graph Competing Random Walks (CRW). Our algorithm takes a group of points from the same semantic
category as input and constructs K graphs according to the number of instances. Proposed method enables the interactions among the
same positioned nodes on K instance graphs. Point score can be suppressed or enhanced after cross-graph competition, thereby affecting
the following seeding points update strategy. High score points enjoy the priority to be grouped first. After performing several iterations,
instance graphs are merged to generate the final output prediction.

Aij =

{
0 L̂i ̸= L̂j

Wij otherwise
, (4)

where L̂i and L̂j are the instance labels of two nodes.
Lastly, transition matrix A needs to be normalized:

Aij =
Aij∑
j∈n Aij

. (5)

This transition matrix A is shared among each group of
instance graphs.

Random walk algorithm is performed by repeatedly ad-
justing node vector b via the transition matrix A. At t-th
iteration, the adjustment can be expressed as

blt+1 = αAblt + (1− α)bl0, (6)

where α ∈ [0, 1] is a blending coefficient between prop-
agated scores and the initial scores.

When repeatably applying unlimited random steps on a
graph, it will reach equilibrium. The final steady-state of
random walk algorithm can be written as

bl(∞) = (1− α)(I − αA)−1bl0. (7)

Cross-graph Competing Random Walks (CRW) On
top of the random walk algorithm, we design a mecha-
nism to encourage competitive interactions among instance
graphs, in Figure 5. Intuitively, the idea is to suppress a
point’s activation score in the current graph if its scores in
other instance graphs are relatively high. However, the level
of repulsive effect needs to be well controlled. Otherwise,

Algorithm 1 Cross-graph Competing Random Walks (CRW)

Input: coordinates X = {x1, x2, ..., xN} ∈ RN×3; num-
ber of instances per category K = {k1, k2, ..., ks} (s is the
total number of valid classes); hyperparameter α, θ; max it-
eration number t1max and t2max; instance weak labels L̂;
semantic prediction S; offset prediction D
Output: Instance pseudo label prediction P

1: for id in foreground semantic IDs do
2: for S ∈ id do
3: build K instance graphs ;
4: construct affinity matrix W via Eq. (3);
5: construct transition matrix A via Eq. (4);
6: normalize transition matrix A via Eq. (5);
7: for l = 1 to K do
8: initialize graph node vector via Eq. (2);
9: while t1 ≤ t1max do

10: for l = 1 to K do
11: propagate one step via Eq. (6);
12: t1 ← t1 + 1

13: while t2 ≤ t2max do
14: adjust node vectors via Eq. (8)
15: for l = 1 to K do
16: reinitialize vector via Eq. (2);
17: update top θ as new seeding points
18: propagate one step via Eq. (6);
19: t2 ← t2 + 1

20: pi ← argmax (b(i))

21: pi ← L̂j if under the same mask
22: return P



Figure 6. The qualitative visualization results of generated pseudo labels on ScanNet-v2 dataset[10]

Figure 7. The qualitative visualization results of generated pseudo labels on S3DIS dataset [4]

too strong repulsive effects are likely to distort the results
from the random walk.

Based on the random walk results, we apply a softmax
function to every node score to adjust the probability distri-
bution over the K instance graphs. Elements in the score
vector are re-scaled to the range of [0, 1], and the score val-
ues of the same positioned nodes on K instance graphs are
summed to 1.

bl(i) =
exp(bl(i))

∑K
j=1 exp(b

j(i))
, (8)

where bl(i) denotes the score of the i-th node on l-th
graph. In this simple manner, we bring repulsive interaction
among instance graphs. A point that receives less compe-
tition from other instance graphs will be adjusted to a rela-
tively higher score, and vice versa.

Then, for each instance, we pick a fixed percentage θ
(i.e. 50%) of newly predicted pseudo labels with high con-
fidence to be updated as seeding points for the next iteration.
The selection is based on the sorted node scores. Only unla-
belled points can be considered as new seeding points. Our
approach gradually groups relatively confident points into
seeds and performs a random walk step at each iteration.

4. Experiments

Datasets In this section, we show our experimental re-
sults on two public datasets: ScanNet-v2 [10] and S3DIS
[4] to show the effectiveness of our proposed method.
ScanNet-v2 dataset [10] is a popular 3D indoor dataset con-
taining 2.5 million RGB-D views in 1513 real-world scenes,
covering 20 semantic categories. The evaluation metrics of
3D instance segmentation are mean average precisions at
different overlap percentages, i.e., mAP@0.25, mAP@0.5
and mAP respectively. S3DIS dataset [4] has 272 scenes
under six large-scale indoor areas. Unlike ScanNet [10], all
13 classes including background are annotated as instances
and require prediction. We use the mean precision (mPre)
and mean recall (mRec) with an IoU threshold of 0.5 as the
evaluation metric.

Implementation details We set the voxel size as 2cm for
submanifold sparse convolution [17] based backbone, fol-
lowing [25]. Our network is trained on a single GPU card.
For each stage of training, the backbone network and self-
attention module are trained sequentially, with a batch size
of 4 and 2 respectively. We set γ and δ in the self-attention
module as two-layer MLPs with the hidden dimension of 64
and 32 respectively. For CRW algorithm, we set hyerparam-



Semantic mIoU Label wall floor cab bed chair sofa table door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn avg

MPRM [48] Scene 47.3 41.1 10.4 43.2 25.2 43.1 21.9 9.8 12.3 45.0 9.0 13.9 21.1 40.9 1.8 29.4 14.3 9.2 39.9 10.0 24.4
MPRM [48] Subcloud 58.0 57.3 33.2 71.8 50.4 69.8 47.9 42.1 44.9 73.8 28.0 21.5 49.5 72.0 38.8 44.1 42.4 20.0 48.7 34.4 47.4

SegGroup [40] 0.02% 71.0 82.5 63.0 52.3 72.7 61.2 65.1 66.7 55.9 46.3 42.7 50.9 50.6 67.9 67.3 70.3 70.7 53.1 54.5 63.7 61.4

RWSeg (Ours) 0.02% 88.8 94.4 80.2 82.4 85.9 91.2 76.5 76.6 78.2 87.5 66.3 64.1 67.7 85.6 86.9 88.9 92.4 71.5 91.7 75.3 81.6

Table 1. Pseudo label quality of semantic segmentation (category-level) on ScanNet-2 [10] training set.

Instance AP Metric cab bed chair sofa table door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn avg

RWSeg (Ours)
AP 59.0 65.9 70.3 82.1 59.3 38.2 54.0 68.0 54.7 35.6 35.8 48.0 73.9 80.6 88.4 44.6 85.4 54.3 61.0

AP50 85.7 94.2 93.8 90.3 87.1 60.8 77.1 84.5 81.6 79.9 74.1 69.7 92.1 92.4 97.8 82.3 97.4 77.6 84.4
AP25 96.4 99.0 98.3 95.7 95.2 87.0 91.6 91.5 92.8 96.3 93.9 87.5 99.2 97.4 99.3 95.8 100.0 92.8 95.0

Table 2. Pseudo label quality of instance segmentation on ScanNet-2 [10] training set.

eters α = 0.2, t1max = 1, t2max = 5 and θ as 50%. Due to
GPU memory limit, we subsample the input point cloud to
CRW if the point number is above 25k. Last output remains
at original resolution. For network training, we use Adam
solver for optimization with an initial learning rate of 0.001.

Pseudo label evaluation As shown in Table 1 and Table
2, we present the quality of our generated pseudo labels
based. Reported final pseudo labels are created after two
stages of network training. Our network is trained only on
the training set of ScanNet-v2 [10] with 1201 scenes, no ex-
tra data is needed. In Table 1, the semantic quality of our
pseudo labels largely outperforms previous methods by at
least 20.2%. Besides, we also report the instance quality of
pseudo labels in Table 2. However, no available data from
other methods can be used for comparison at present. Our
qualitative pseudo labels can be used by any fully super-
vised method to resolve their annotation cost issue.

Prediction evaluation Different from weakly supervised
methods like SegGroup [40] that require training another
a new network for prediction, we can directly adopt other
methods on the same network for prediction without retrain-
ing. Here we employ a Breadth-First Search (BFS) clus-
tering algorithm from PointGroup [25] to our network. In
Table 3, we compare the prediction results with fully super-
vised PointGroup [25] and other weakly supervised meth-
ods on ScanNet-v2 [10] validation set.

Our method significantly outperforms SegGroup [40]
and 3D-WSIS [39] over all evaluation metrics, generally
by an absolute margin of around 10 points. Remarkably,
with only 0.02% of annotated points, we achieve compa-
rable results with fully supervised method [25]. We also
report the instance segmentation results on ScanNet-v2 [10]
test set in Table 4. Our method again performs significantly
better than other weakly supervised methods which use the
same amount of annotations. For S3DIS [4] dataset, we re-
port Area 5 and 6-fold cross validation results in Table 5.

Method Supervision AP AP50 AP25

Full Supervision:
PointGroup [25] 100% 34.8 56.9 71.3

Init+Act. Point Supervision:
CSC-20 (PointGroup) [21] 20 pts/scene - 27.2 -
CSC-50 (PointGroup) [21] 50 pts/scene - 35.7 -

SPIB [1] 100% Box - 38.6 61.4
Box2Mask [8] 100% Box - 59.7 71.8

TWIST [9] 1% 9.6 17.1 26.2
TWIST [9] 5% 27.0 44.1 56.2
TWIST [9] 10% 30.6 49.7 63.0
TWIST [9] 20% 32.8 52.9 66.8

One Obj One Pt Supervision:
SegGroup (PointGroup) [40] 0.02% 23.4 43.4 62.9
3D-WSIS [39] 0.02% 28.1 47.2 67.5

RWSeg (Ours) 0.02% 34.7 56.4 71.2

Table 3. Instance segmentation results on ScanNet-v2 [10] valida-
tion set. Methods marked with brackets represents using generated
pseudo labels to train another fully-supervised method.

Method Supervision AP AP50 AP25

Full Supervision:
SoftGroup [43] 100% 50.4 76.1 86.5
HAIS [7] 100% 45.7 69.9 80.3
SSTNet [30] 100% 50.6 69.8 78.9
OccuSeg [19] 100% 48.6 67.2 78.8
PointGroup [25] 100% 40.7 63.6 77.8
3D-MPA [14] 100% 35.5 61.1 73.7
MTML [26] 100% 28.2 54.9 73.1
3D-BoNet [51] 100% 25.3 48.8 68.7
3D-SIS [24] 100% 16.1 38.2 55.8
GSPN [52] 100% 15.8 30.6 54.4

One Obj One Pt Supervision:
SegGroup (PointGroup) [40] 0.02% 24.6 44.5 63.7
3D-WSIS [39] 0.02% 25.1 47.0 67.8

RWSeg (Ours) 0.02% 34.8 56.7 73.9

Table 4. Instance segmentation results on ScanNet-v2 [10] test set.



Area 5 6-fold
Method Supv. mPre mRec mPre mRec

Full Supervision:
PointGroup [25] 100% 61.9 62.1 69.6 69.2

One Obj One Pt Supervision:
SegGroup (PointGroup) [40] 0.02% 47.2 34.9 56.7 43.3
3D-WSIS [39] 0.02% 50.8 38.9 59.3 46.7

RWSeg (Ours) 0.02% 60.1 45.8 68.9 56

Table 5. Instance segmentation results on S3DIS [4] dataset.

4.1. Ablation Study

In this section, we proceed to study the impacts of dif-
ferent components of our proposed method. Table 6 shows
the network performance at different stages of training. We
use “Self-Attn” to represent the self-attention module in our
network. In the setting of “3D U-Net + Self-Attn”, we
freeze the backbone network and only train self-attention
module, which shows the effectiveness of this component.
Stage 1 training is supervised by initial weak labels. And
Stage 2 training is supervised by the generated pseudo la-
bels from our algorithm at the end of Stage 1. With our
training strategy, the quality of semantic features can be
steadily improved.

mIoU Method train set val set

Stage 1 3D U-Net 74.6 61.7
Stage 1 3D U-Net + Self-Attn 78.9 66
Stage 2 3D U-Net 80 68.4
Stage 2 3D U-Net + Self-Attn 81.6 70.3

Table 6. Ablation study for network components. “3D U-Net”
indicates our backbone network, and “Self-Attn” means our pro-
posed self-attention module for feature propagation. Evaluated on
ScanNet-v2 [10] validation set.

Ablations on Cross-graph Competing Random Walks
(CRW) To make fair comparisons on clustering algo-
rithms for pseudo label generation, we train a PointGroup
[25] backbone network with initial weak labels. On top
of the shared network, we evaluate the performance of our
CRW and other baseline methods in Table 7. “PointGroup
BFS” represents a popular Breadth-First Search algorithm
used in fully supervised 3D instance segmentation. K-
means [20] is a simple yet powerful unsupervised cluster-
ing algorithm to separate samples in K groups of equal
variance. Its character suits our task very well by nature.
However, we found K-means is very sensitive to noise. The
performance highly depends on the quality of semantic pre-
dictions and shift vectors. In contrast, our CRW is more
robust and works well in different situations.

Figure 8 shows the change of seeding regions during
the process of Cross-graph Competing Random Walks. At
each step, the top 50% of the new predictions on unlabelled
points are added as seed. It can be seen that new seeding

Baseline Methods AP AP50 AP25

PointGroup BFS [25] 15.8 32.4 58.9
K-means† [20] 14.5 28.5 66.9
K-means‡ [20] 23.5 44.1 72.5

CRW† (Ours) 53.2 80.6 95.2
CRW‡ (Ours) 55 82 95.9

Table 7. Comparison with pseudo label generation baseline meth-
ods on ScanNet-v2 [10] training set. Methods marked with † are
based on original coordinates. Methods marked with ‡ are based
on shifted coordinates. BFS uses both sets of coordinates.

Figure 8. Visualized example of CRW’s seeding regions at differ-
ent iterations.

points tend to be distributed at those regions relatively far
from other seeds, as a result of cross-graph competition.

Iteration number (t2max) 0 1 5 10

chair AP ↑ 64.2 66.3 67.4 67.4
bookshelf AP ↑ 48.1 51.0 52.3 52.3

Table 8. Impact of the competing mechanism and iteration num-
ber on CRW (θ = 50%). Evaluated in AP for chair and bookshelf
class on ScanNet-v2 [10] training set. t2max = 0 represents the
converged results from the basic RWSeg without competing mech-
anism.

The impact of using multiple random walk steps in
Cross-graph Competing Random Walks (CRW) is shown
in Table 8. As we expected, cross-graph competition is use-
ful to resolve those ambiguous cases in instance segmen-
tation, where objects from same category are compactly
placed. Meanwhile, for those sparsely placed object cate-
gories, such as bathtub and door, their instance segments
can already be well defined by proposed basic random walk
algorithm. Competitions usually not exist for such cases.

5. Conclusion
In this paper, we propose a novel weakly supervised

method for 3D instance segmentation on point clouds. With
significantly fewer annotations, our network uses a self-
attention module to propagate semantic features and a ran-
dom walk based algorithm with cross-graph competition to
generate high-quality pseudo labels. Comprehensive exper-
iments show that our method achieves solid improvements
on performance. The limitations of our method are dis-
cussed in the supplementary material.
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Collaborative Propagation on Multiple Instance Graphs
for 3D Instance Segmentation with Single-point Supervision

(Supplementary Material)

Figure 1. More Qualitative Comparison on ScanNet v2 [1] validation set.
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Figure 2. The detailed structure of 3D U-Net backbone with submanifold sparse convolution [2].

1. Additional Qualitative Results
In this section, we show some more visualization results of generated pseudo labels on the training set of ScanNet dataset

[1]. As shown in Figure 1, initial instance weak labels are first derived from “one object one point” weak annotations.
Then, the proposed method RWSeg can propagate information to unlabelled points. Generated pseudo labels are compared
with fully annotated ground-truth for semantic segmentation and instance segmentation respectively. The results show our
high-quality pseudo labels have very similar patterns to the actual annotations and contain only minor errors.

2. Network Architecture Details
In this section, we present the detailed structure of our 3D U-Net backbone with submanifold sparse convolution [2] and

self-attention module. The backbone network is originally introduced by Graham [3] and has been widely used for feature
extraction in point cloud segmentation tasks [4, 5, 6, 7, 8, 9]. The core idea of submanifold sparse convolution is to efficiently
process spatially-sparse data, otherwise using normal 3D convolution can be very computationally expensive.

Backbone network In Figure 2, the backbone network takes the sparse voxelized representation of point cloud as input.
The U-Net structure is mainly built based on sparse convolution (SC) layers and submanifold sparse convolution (SSC)
layers. SC(m, f, s) represents a downsampling sparse convolution (SC) layer with feature dimension m, kernel size f and
stride s. Residual connection is used to contain two submanifold sparse convolution (SSC) layers. Deconvolution represents
an inverse operation of sparse convolution (SC). The output of the backbone network is split into the semantic branch and
offset branch. The semantic branch further utilizes a self-attention layer for feature propagation. For offset branch, point
feature vectors are transformed via a two-layer MLP to the dimension of 3, which is then supervised by a regression loss for
predicting the centroid shift vectors.

Self-attention module Figure 3 illustrates the process of representing each supervoxel set V = p1, p2, ..., pi as a super-
point. This is achieved by performing an average pooling operation on both the semantic features S and the point coordinates

2



Figure 3. Illustration of self-attention module in semantic branch for feature propagation. ⊕ denotes the broadcasting addition and ⊗
denotes the element-wise multiplication. Rel. Pos. represents the relative positional similarity of input coordinates.

X for all points belonging to the set. Following [10, 11], we first perform linear transformations of the input semantic features
SV to three matrices as query, key, and value (Q,K, V ). Then, matrix A captures the similarity between queries and keys
and also includes encoded positional information for adjustment. This can be written as

Q = SVWQ, K = SVWK , V = SVWV , (1)

A = γ(
QK⊤
√
d

) + δ(XV , XV), (2)

where d is the dimension of Q and V , XV the coordinates of supervoxels, γ is a mapping function via MLP, δ is a
positional similarity function via MLP. The output of self-attention can be formulated as

Attn(SV) = σ(A)(V̄ + δ(XV , XV)), (3)

where σ(·) is a softmax activation function. V̄ denotes a symmetric matrix created by repeatedly expanding V .
Lastly, refined semantic features are interpolated to the original size in point cloud. The training process is supervised by

a conventional cross-entropy loss HCE with incomplete labels. We define the semantic loss as

Lsem = − 1

N

N∑

i=1

HCE(yi, ĉi). (4)

where ĉi is the weak semantic label. Unlabelled points are ignored here.
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Offset loss function Following [6], We use a L1 regression loss and a cosine similarity based direction loss to train the
offset prediction,

Loffset =
1∑
i mi

∑

i

||di − (q̂i − pi)||·mi −
1∑
i mi

∑

i

di
||di||2

· q̂i − pi
||q̂i − pi||2

·mi. (5)

where m = {m1, ...,mN} is a binary mask. The value of mi indicates whether point i is on an instance or not. This
means we only consider foreground points with weak labels for supervision.

3. Ablations on Self-attention Module
In Table 1, we perform ablation study on self-attention module by blocking relative position feature on ScanNet v2 [1].

The structure with relative position feature broadcasting addition to both feature branch and attention branch can bring more
performance gain.

Relative position usage Train Val
Baseline - backbone only 74.6 61.7
None 77.3 64.1
Feature branch only 77.6 64.3
Attention branch only 78.3 65.3
Feature branch + Attention branch 78.9 66

Table 1. Ablations on Self-attention Module

4. Random Walk with multiple Steps
This section explains how to inference the equation as the final steady-state of the random walk algorithm (From Eq.6 to

Eq.7 in original paper).
Random walk algorithm is performed by repeatedly adjusting node vector b via transition matrix A. At t-th iteration, the

adjustment can be expressed as

blt+1 = αAblt + (1− α)bl0, (6)

where bt is the existing node vector derived at the previous random walk step, b0 is the initial node vector, α ∈ [0, 1] is a
blending coefficient between propagated score and initial score.

For random walk with multiple steps, we use t to represent the t-th iteration and Expand Eq. (6) to

blt+1 = (αA)t+1bl0 + (1− α)
t∑

i=0

(αA)ibl0. (7)

Applying t→∞, since α ∈ [0, 1], the first term in Eq. (7) turns into

lim
t→∞

(αA)t+1bl0 = 0. (8)

For the second term with matrices can be expanded as

lim
t→∞

t∑

i=0

(αA)ibl0 = (I − αA)−1bl0, (9)

where I is the identity matrix. Thus, the final steady-state of random walk algorithm can be written as

bl(∞) = (1− α)(I − αA)−1bl0. (10)
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Figure 4. Illustration of competing mechanism in CRW. This example shows the effect of competition on two different nodes (x3 in red,
y3 in purple).

5. Competing Mechanism in CRW
For illustrative purposes, we present an example in Figure 4. In this case, the foreground category consists of three instance

graphs, each with a distinct seeding point marked in green, blue, and yellow, respectively. Node x3 (in red) has two nodes
in the same position, x1 and x2. At step t, their node scores are determined by their overall distance to the seeding points.
Since x1 is far from the seeding points marked in green, its score will be low after a random walk step, whereas x3, which is
closer to the seeding points marked in yellow, will have a higher score. After applying SoftMax normalization to the scores
of x1, x2, and x3, the output score for x3′ at step t+ 1 will be high, as it faces less competition from the other two nodes.

Similarly, we have a node y3 with two same-positioned nodes, y1 and y2, placed in the center of three instances. At step
t, the scores of y1, y2, and y3 are all high. However, during normalization, y3 receives a strong repulsive effect from y1 and
y2. Thus, the output score y3′ at step t+ 1 will be low.

Finally, the proposed algorithm compares the node scores at step t+1. In this case, the node x3′ will have a higher priority
to be grouped into seeds than y3′. This is because node x3′ is highly likely from the instance in yellow, whereas there is
lower confidence in y3′. Therefore, we leave this node to be grouped in the later steps.

6. Ablations on hyperparamters in CRW
In Table 2, we show the experimental results with varying hyperparameters for the competing mechanism in CRW. The

considered baseline is the proposed baseline random walk algorithm, which is represented by t2max = 0.
The table illustrates that a lower update percentage θ typically leads to better results but requires more iterations t2max,

as it gradually groups the most confident points with our competing mechanism. The improvements over the random walk
baseline are consistently observed. As discussed in the paper, the extent of the improvement depends on the distribution of
the dataset. Notably, the proposed design in CRW is particularly effective in solving challenging cases, such as those with
compacted objects of the same class.
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Update percentage θ Iteration number t2max AP (chair) AP (bksf)
N.A. 0 64.2 48.1
80% 5 66.7 (+2.5) 49.9 (+1.8)
50% 5 67.4 (+3.2) 52.3 (+4.2)
20% 5 67 (+2.8) 53.4 (+5.3)
20% 20 67.3 (+3.1) 54.4 (+6.3)
10% 50 67.3 (+3.1) 55.1 (+7.0)

Table 2. Experiments with different CRW hyperparameters on ScanNet v2 [1]

Figure 5. Limitations of RWSeg on S3DIS [12] dataset. (a) generated supervoxels (b) initial instance weak labels (c) generated instance
pseudo labels (d) ground-truth instance labels

7. Additional Analysis in CRW
After conducting experiments with various values of hyperparameters for t1max and α, we have observed that our al-

gorithm can converge after just a single random walk step. Further increasing the iteration number of t1max only results
in marginal improvements. We argue that the fully connected graph used in our algorithm has a wide influence field. This
means that it can exert its influence over a large area, and consequently, reduces the need for multiple random walk steps.

Hyperparameter α ∈ [0, 1] is used to control the trade-off between propagated node values and initial node values. Intu-
itively, it prevents deviating too fast from initial segmentation values. In our experiments, different values of α create a minor
influence on the final converged results (less than 0.2% in mAP). However, if we set the value of α to 1 to remove the effect
from initial values, the performance of random walk is dropped by 1% in mAP.

8. Limitations of RWSeg
In S3DIS [12] dataset, some background stuff such as walls, ceilings, boards are also treated as instances by their setting.

As shown in Figure 5 (d), walls are intentionally labeled as separate instances, even though they are part of the background.
Additionally, these walls can vary greatly in size, which poses a challenge for our method. Our method is primarily designed
for common instance types and may struggle to make accurate predictions on these cases, especially with limited initial weak
labels. In practice, one possible solution is to use surface normals as a clue and apply unsupervised plane estimation methods.
However, this is beyond the scope of this work and goes beyond our objectives.
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