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ABSTRACT
Sports analytics has been an up-and-coming field of research among
professional sporting organizations and academic institutions alike.
With the insurgence and collection of athlete data, the primary goal
of such analysis is to improve athletes’ performance in a measurable
and quantifiable manner. This work is aimed at alleviating some of
the challenges encountered in the collection of adequate swimming
data. Past works on this subject have shown that the detection
and tracking of swimmers is feasible, but not without challenges.
Among these challenges are pool localization and determining the
relative positions of the swimmers relative to the pool. This work
presents two contributions towards solving these challenges. First,
we present a pool model with invariant key-points relevant for
swimming analytics. Second, we study the detectability of such
key-points in images with partial pool view, which are challenging
but also quite common in swimming race videos.
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1 INTRODUCTION
Sports analytics has been an up-and-coming field of research among
professional sporting organizations and academic institutions alike.
With the insurgence and collection of athlete data, the primary
goal of such analysis is to try and improve athletes’ performance
in a measurable and quantifiable manner. This goal is in contrast
to traditional coaching methods in which a coach relies solely on
experience and methods that seem to work well. A more ideal
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situation would be to have coaches utilize both experience and
data to better direct the training of their athletes. This practice has
started to appear in sports where adequate data is readily available
[2, 9]. Unfortunately, adequate data is hard to obtain and is generally
not easily available in most sports. This work is concerned with the
automated collection of swimming data in a competition setting.

Previous works on this topic [13, 22] have shown that the de-
tection and tracking of swimmers is possible, however, they each
face their own challenges. For example, [13] assumes that video of
swimmers is captured by a static camera and that the entire pool is
visible. This is generally not the case as the equipment and facilities
to do so are expensive and limited. In [22], which does not assume
a static camera, different drawbacks are observed. Long-term track-
ing of swimmers who leave the camera’s field of view is difficult
due to the challenges of re-identification. Furthermore, there is no
trivial way to automatically map any collected swimmer analytics
to any given swimmer in the field of view. To overcome such chal-
lenges, other automated analytics solutions [13, 20], introduce field
localization as a method for producing results that are more robust
to the mentioned issues.

In the context of this work, pool localization can be characterized
by a homography that maps a given frame to a base frame. An
example can be seen in Figure 1 where the given frame is seen in
Figure 1b and the base frame is seen in Figure 1a. The projection of
the given frame onto the base image can be seen in Figure 1c.

Localization of the pool would allow a system to know what
portion of the pool is being observed at any given time. If this
is known, then the system would also know the position of any
detected swimmer relative to the boundaries of the pool, and also
the lanes in which they swim. With the successful completion
of such a task, the mentioned problems can be overcome. This
work presents two main contributions towards solving the above
challenges, which we consider to be the beginnings of an automated
pool localization method that can handle general pool images:

(1) We present a pool model called base pool with invariant
key-points relevant for swimming analytics.

(2) We study detectability of such key-points in images with
partial pool view, by training a deepmodel for such key-point
detection.

This paper is structured as follows. First, an overview of related
work is presented in Section 2. In Section 3, the method of pool
localization and the details related to reproducing the results are
presented. Section 4 goes over how well the methods worked, the
meaning of the results given, and what can be done to improve
the results. Lastly, some finial thoughts for moving forward are
presented in Section 5.
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(a) Base pool model (b) 8×50 Pool

(c) Sample image transformed by human generated homographic
projection to fit over the base pool image.

Figure 1: An example of pool localization characterized by a
simple homographic projection.

2 RELATEDWORK
There are many methods for localization described in the literature,
but most of those are geared toward object detection and localiza-
tion [4]. The problem of sports field localization is more specific, in
the sense that many properties of the field to be localized are known
a priori; as a consequence, more assumptions can be made allow-
ing for more elaborate solutions. Broadly, previous work on sports
field localization can be divided into the following two categories:
hand-crafted methods, and deep-learning-based solutions.

There are many well-defined methods for extracting the lines,
circles and ellipsoids that make up sports fields utilizing traditional
image processing methodology [10]. As a result, there are many
hand-crafted methods for localizing a sports field that build upon
such methods [3, 6, 12, 19].The approach in [3] utilizes SIFT fea-
tures [16] in combination with the RANSAC algorithm [8] as a base-
line method to compare to. The methods in [6, 12] utilize a myriad
of different classical processing methods to extract the points and
lines of the field of play and then use these extracted lines and
points to produce a homography [14], which effectively localizes
the field of play. It should be noted that [19] utilizes deep learning
to match a segmentation map in a dictionary of maps that define
a particular homography, by which the image being considered is
localized. Thus, this method could also be categorized as a deep
learning-based solution. However, the traditional image processing
methods also proposed in their work were more successful than the
deep learning-based counterpart. Many of the mentioned works
produced very respectable results and thus give a strong argument

for approaching the problem of pool localization with hand-crafted
methodology.

Deep learning has become very popular in the last decade. Ac-
cordingly, there aremany options for applying deep learningmodels
to solve large-scale problems in computer vision. Works from [5, 7,
15, 17] apply a variety of methodologies that rely on deep learning
to do the brunt of the localization work. The approach in [15] is con-
sidered by some as one of the first machine learning-based methods
for sports field localization utilizing deep learning. They implement
a segmentation network that separates the field pixels from the non-
field pixels. Once completed, the resulting segmentation is utilized
by another loss-function-based system to predict the vanishing
points of the two sets of parallel lines that make the field bound-
aries of the field in the image in question. Once the vanishing points
are calculated, the field can be characterized by a homography, and
thus is localized. The work presented in [7] is a comprehensive
report on how to robustly localize a sports field from broadcast
video, which contains many different views (zoomed in and out),
and commercial breaks. The data produced for this broadcast video
was homography transform parameters for each frame in the video
to a base field model. The model employed in their solution was
trained to take a frame and produce a vector that characterizes
the frame’s homography. Lastly, the work reported in [5, 17] relies
on the detection of so-called key-points that are generally unique
and represent a point whose location is known in both the base
model and the image in question. With enough key-points correctly
detected in a given image, a homography can be computed, and
thus, the given image is localized. Both works rely on variations
of the widely utilized U-Net [18] to produce segmentation maps or
volumes in which each channel is associated with one key-point
and represents the probability of finding that key-point in the in-
put image. The point with the highest probability is chosen as the
predicted location of the corresponding key-point. Once again, the
above mentioned works perform very well and make the selection
of a methodology for pool localization difficult.

Pool localization is a special case of general sports field local-
ization. However, to our knowledge, there is no work currently
available that automatically localizes a swimming pool given an
image with partial pool view, i.e., an image where only a portion of
the pool is observed. The only known (to us) reference on the topic
is [13], however, it focuses on pool localization in images of the
entire pool, from a calibrated static camera with known internal and
external camera parameters. Besides this, the topic of swimming
pool localization is relatively untouched. Unfortunately, this also
means that there is a severe lack of data to be utilized for research.

3 METHODS
Given the large body of related work on other sports, a key-point
detection methodology similar to [5, 17] is chosen as the preferred
method of localization in this work. To implement such a method,
the appropriate data is required. As key-point detection is being
implemented, a model must be proposed such that consistent key-
points are collected for any given pool. In addition, images of pools
must be obtained that are sufficiently different such that the model
can learn to generalize the detection of proposed key-points. Once
data is available, a deep learning model can be constructed and
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trained. With such a trained model, the detectibility of the pro-
posed key-points can be approximated by considering the key-point
detection performance of the created model.

3.1 Base Pool Model
The base pool model, seen in Figure 2, is what defines where and
what key-points should be identified in any given image. Humans
are very good at recognizing objects in their environment that are
the same across different points of view, unfortunately, computers
are not. A set of possible points, must be defined such that they
are consistently recognized and learned by a key-point detecting
algorithm.

When constructing this key-point set, one must consider what
constitutes a good key-point and what types of pools should such
key-points be defined. In this work, we consider 9 different types
of pools which can be categorized by two numbers in the following
notation “𝑛 × 𝑚”, where 𝑛 is the number of lanes and 𝑚 is the
length of the pool.𝑚 can take values of 25 and 50, known as short
course meters (SCM) and long course meters (LCM) respectively. 𝑛
represents the number of lanes in the pool being localized and can
take values of 6, 8, 10, 12, 16, and 20, 𝑛 can only be greater than 10 if
𝑚 is SCM. When pools have 𝑛 values of 12, 16, and 20 they contain
a bulkhead, seen in Figure 6e, and 6d which separates one sub-pool
from another; this is a common occurrence in SCM competitions.
Given the possible pool types, we propose the following pool model
seen in Figure 2 for which Table 1 gives definitions of each key-point
location.

The image in Figure 2 defines 96 different key-points which
are unique within any pool setting considered in this work. For
ease of communication, each of these 96 key-points can be referred
by one into one of the following classes, wall left, right, top, and
bottom, bulkhead left and right, and finally floating right and left.
All key-point classes have numbers, either in the range of [0, 12]
for classes that represent lanes or [0, 8] for classes that represent
the length of the pool. Pools also tend to differ in the number of
lane-ropes1 that divide the pool, for example an ten lane pool can
have 9, 10, or 11 lane-ropes. As such the key-points marked as
bumpers seen in figure 2 are explicitly considered as points that
may more may not exist. Bumpers are defined as the lane-ropes
that divided the wall from the outside lanes. In Figure 6c there are
bumpers separating lanes 8 and 1 from the wall top and bottom.
The floating key-points are different than traditional key-points
utilized for homography creation. When considering their location
in the base frame they are invariant in the vertical direction only,
that is, there is infinitely many locations in the horizontal direction
that a floating point may be. If you look carefully, each key-point
that has the same class is roughly mutable with another. That is, for
example, wall left 2 is identical to wall left 3. What differentiates
mutable key-points is their location relative to each other key-point
in that class and their count relative to the top and bottom walls.
Note the locations and numbers of specific key-points are chosen
such that they are most similar across all different pools. This is
to allow the detection model to have an easier time recognizing
similar key-points in different pools. These thoughts considered,
there is likely an innumerable number of ways to select key-points
and their locations, the proposed model is only one of those such

enumerations. Lastly, while it is not known if the chosen key-points
are optimal in terms of detectability, they are essential in that they
allow for robust characterization of the pool in a given image.

3.2 Data
With the pool model defined, the next step is to collect images of
pools for localization. In an ideal situation, examples suitable for
training models are independent and identically distributed. How-
ever, as with most deep learning training data, collecting example
images is not trivial, competition pools are not plentiful in a given
area, they are generally spread over large distances, and as such,
this limited the number of pools that could be utilized for this work.
With these details noted, video footage from five pools, in various
configurations, was collected. Unfortunately, each frame from a
video is highly dependent on the next, to mitigate this issue, images
taken from each video are sampled every 15-30 frames, depending
on how the video was collected. In addition, all video footage was
taken from a minimum of three maximally different viewpoints in
the pool, which increased the independence of all collected images
from one pool. The collected video is landscape and portrait with a
minimum resolution of 1080p (16x9) and at 30 frames per second.
Lastly, all the videos showcase all nine pool types mentioned in
Section 3.1. The images were annotated utilizing the Computer
Vision Annotation Tool (CVAT) [21]. The amount of data collected
and the type can be viewed in Table 2. Three main pool categories
are depicted in this table, pools with six, eight, and ten lanes. Please
note that an eight lane pool can have eight or 16 lanes depending
on if there is a bulkhead present in the images or not; the same
goes for six and ten lane pools. In total, 1,352 frames were used for
training and 284 frames were used for testing.

3.3 Key-point Detector
The key-point detector utilized in this work is a slight variation of
the popular U-net [18], utilized by [5] and [17] which incorporates
a res-net style encoder to the u-net architecture. Like in the men-
tioned works, the output of the key-point detector will be a volume
𝑉 ∈ R𝑀×𝑁×𝐶 such that𝑀 and 𝑁 is the resolution of the input and
𝐶 is the total number of possible key-points, that is 96 in this pool
model. It is important to note that the detector has no idea that each
key-point has a class, the classes are defined simply for eases of
communication. The model will be trained to predict a distribution
for each channel𝐶 in𝑉 such that each channel encodes the position
of a predefined key-point. This distribution is forced by making the
prediction layer of the model the soft-max activation function [11].
If a key-point is not present in a given input the associated target
distribution for the corresponding channel𝐶 is flat. If a key-point is
present in a given input the associated target distribution is a delta
function at the location of the key-point in the frame. In contrast
to [18] the output volume will be the same size as the input, this
is because many key-points in the input frames are found at the
edges of the input. This modification to u-net is implemented by
zero-padding all convolutions such that they do not have a reduced

1A lane-rope is a rope running the length of a pool, separating each lane from one
another or the wall, if a lane-rope is separating the wall from a lane it is known as a
bumper.
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Figure 2: Proposed pool model and respective key-point locations.

key-points KP# Description
Wall Left [1, 11] Defined as the intersection of the number lane-rope and the left wall. 1 and 11 don’t exist at times.
Wall Left 0 & 12 Defined as the bottom left corner and top left corner of the pool respectively.
Wall Right [1, 11] Same as wall left but on the right side of the pool.
Wall Right 0 & 12 Defined as the bottom right corner and top right corner of the pool respectively.
Floating Left [1, 11] Defined as the intersection of the left side of a number lane-rope and the edge of the frame. 1 and 11 don’t exist at

times.
Floating Left 0 & 12 Defined as the intersection of the left side of the bottom and top walls, respectively, and the edge of the frame.
Floating Right [1, 11] Same as floating left but on the right side of the pool.
Floating Right 0 & 12 Same as floating left but on the right side of the pool.
Bulkhead Left [1, 11] Defined as the intersection of the right side of a number lane-rope and an existing bulkhead. 1 and 11 don’t exist at

times.
Bulkhead Left 0 & 12 Defined as the intersection of the right side of the bottom and top walls respectively, and an existing bulkhead.
Bulkhead Right [1, 11] Defined as the intersection of the left side of a number lane-rope and an existing bulkhead. 1 and 11 don’t exist at

times.
Bulkhead Right 0 & 12 Defined as the intersection of the left side of the bottom and top walls respectively, and an existing bulkhead.
Wall Top [0, 8] Defined every 5m of the length of the pool on the top wall. T4 is not present when bulkheads are present.
Wall Bottom [0, 8] Same as wall top but on the bottom wall of the pool.

Table 1: Summarizes the location of key-points in Figure 2
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Pool Type Number Images Taken Data-set
20x25 48 Test

20x25 and 10x50 234 Training
16x25 and 8x50 180 Test
16x25 and 8x50 899 Training

6x25 56 Test
6x25 119 Training

Table 2: Summary of data used for training and testing

output resolution. The described model is implemented utilizing
the Tensorflow Keras [1] package.

3.3.1 Detection Accuracy and Optimization Loss. To train and quan-
tifiably evaluate the key-point detection model, the following equa-
tions must be defined. Because the key-point detection model was
predicting distributions, the optimization function utilized in this
work is the cross-entropy loss [11], defined in Equation 1, where
𝑦𝑖 ∈ R𝑀×𝑁 is the target and ℎ𝑖 ∈ R𝑀×𝑁 is the predicted channel.
In this implementation, the loss of each channel in the volume is
summed with equal weight to create the final loss function for a
given input image.

𝐿(𝑦,ℎ) = −
𝐶∑︁
𝑗=1

𝑁×𝑀∑︁
𝑖=1

𝑦
( 𝑗)
𝑖

lnℎ ( 𝑗)
𝑖

(1)

The accuracy of detecting key-points for a given input is defined
by Equation 2, which is the harmonic mean of the precision and
recall (Equations 3, and 4) of the detections produced for a given
image [11]. In Equations 3 and 4 𝑡𝑝 refers to the number of true
positives, that is key-points detected correctly by the model. 𝑓 𝑝
is the number of false positives or the number of times the model
thought there was a key-point when there actually was not or
the model predicted one but its location was predicted incorrectly.
Lastly, 𝑓 𝑛 is the number of times the model did not predict a key-
point when in fact it should have. For all mentioned equations,
the output is in the range of [0, 1] and the closer to 1 the result is,
the better the performance. To obtain the accuracy across a set of
images the 𝐹1 score of each image is averaged.

𝐹1 = 2 · 𝑟𝑒𝑐𝑎𝑙𝑙 · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(2)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓 𝑝
(3)

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓 𝑛
(4)

3.3.2 key-point Detection Training. key-point detection training
was implemented utilizing the Tensorflow Keras API [1]. The train-
ing procedure was a standard training pipeline utilizing a training
and test data set. The training deviated from the standard procedure
in terms of memory management, which had to be considered to
deal with the large tensors associated with the key-point detection
methodology. This is because the input images had a resolution of
1080 × 1920, therefore, propagating tensors through the network
and even creating the expected target volume 𝑉 ∈ R𝑀×𝑁×𝐶 of
floating-point numbers requires a lot of memory. To deal with this

problem the input images were scaled down by a factor of 3.75. In
addition to the reduced resolution, the batch size of each epoch was
set to one. This is also due to memory issues, but also because the
images are different in resolutions. Because of the small data set,
some image augmentation was implemented in the form of random
contrast augmentation. Other augmentation methods were not at-
tempted as the position of the labels is related to their key-point
definition. Accordingly, simply applying augmentation methods
that changed the position of a key-point would not make sense by
definition of some key-points. Lastly, the optimizer utilized in the
training process was the Adam Optimizer [1], which was given a
learning rate of 1𝑒-4.

3.3.3 Detecting Predicted key-points. Unlike thework in [17] and [5],
which utilized a confidence channel as one of the channels in the
volume𝑉 to determine which channels have key-points. This work
measures the entropy, which is defined in Equation 5, of each out-
put channel. Where 𝑦 ∈ R𝑀×𝑁 is a distribution of a particular
channel 𝐶 of resolution𝑀 × 𝑁 , being equal to the input resolution.
In each distribution the model gives the highest values to the loca-
tion where it thinks the key-point corresponding to that channel is
located in the frame.

𝐻 (𝑦) = −
𝑀×𝑁∑︁
𝑖=1

𝑦𝑖 ln𝑦𝑖 (5)

Because each channel represents a distribution, if the entropy of
a channel is lower than a flat distribution multiplied by a constant
𝛽 ∈ [0, 1], that is 𝐻 (𝑦) < 𝛽 ln(𝑁 · 𝑀), then it can be considered
to be predicting the key-point it represents. The location of the
key-point it represents is the location of the maximum value in the
output tensor.

4 RESULTS
This section gives a summary of how the key-point detector per-
formed. Firstly, the training is discussed, then the detection accu-
racy, and then a discussion of the reported results is presented.

4.1 Training
Reported in Figure 3 is the per-frame average accuracy over the
entirety of each test sequence as a function of epochs. It is worth
noting that many different numbers of epochs were tried however
it seemed that after 30 epochs the accuracy levels off.

4.2 Accuracy Results
In this section, the accuracy of key-point detection is presented.
Figure 4 details the per-frame average F1-Score over pools with
different numbers of lanes as a function of 𝛽 for which the correct
pixel tolerance is five pixels. Seen in Figure 5, the per-frame average
F1-Score over pools with different numbers of lanes as a function of
pixel tolerance. Table 3 shows the precision, recall, and F1-Score of
the test sequences, for each key-point class the model can predict.
The “Total” column of the table reports the number of total key-
points in the corresponding class that could be detected by the
model. This column is necessary as some key-points are simply
not present in some testing sequences. When this is the case the
corresponding row has a value of zero and “-”. In both Figure 5
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Figure 3: Training Plot

and Table 3, each pool type is given an optimal beta value based
on the results seen in Figure 4. Furthermore a pixel tolerance of
five was chosen in this table for two reasons. Firstly, the chosen
key-point detection method is very similar to the one presented
in [5], in which a pixel tolerance of five was also chosen for input
images of the same size or smaller. Secondly, anything less than five
pixels would start to introduce noise in the key-point data. This is
because key-points that are physically close to the camera take up
substantially more pixels than key-points farther away. As such it
is unclear what constitutes the exact position of a key-point. Lastly,
Figure 6 gives five example images from the testing sequences to
give a visual of how the model performs on the input data.

In Appendix A, Table 4 gives the performance of the detector
similar to Table 3 however, each key-point is broken down such
that the performance of each point can be observed.

4.3 Discussion
In this section, first, we discuss the results of training the key-
point detector. Then, we look at the estimated detectability of the
proposed pool key-point model by observing howwell the proposed
detector trains and performs on the collected pool sequences.

Observing the accuracy as a function of epochs in Figure 3, there
is no sign of a performance decrease due to over-fitting. While
this may be true, the overall accuracy is reasonably low and the
test accuracy is much higher than the training accuracy. This is
uncommon, as generally, the training data does better than the
testing data. The reason for this large difference in values is likely
because some pools are easier to detect key-points in than others.
In particular, it seems that six-lane pools are easier to detect key-
points from than other pools because they have fewer key-points to
detect; in addition, the pool can fit into more of the field of view. In
comparison, a 16x25 pool which has more key-points and a much
smaller fraction of the pool fits in the field of view. Referring to
Table 2, roughly 20% of the testing sequences are from a six-lane
pool, while 8% of the training is from a six-lane pool. The same
phenomenon is observed with 8x50 pools, which have no bulkheads,

Class Precision Recall F1 Total
6 Lanes 𝛽 = 0.15

Wall Left 0.1556 0.0726 0.0990 97
Wall Right 0.2778 0.0494 0.0839 107
Floating Left 0.9192 0.8621 0.8897 407
Floating Right 0.9712 0.9118 0.9406 397
Bulkhead Left - - - 0
Bulkhead Right - - - 0
Wall Top 0 0 0 74
Wall Bottom 0 0 0 64

8 Lanes 𝛽 = 0.9
Wall Left 0.5683 0.8301 0.6747 311
Wall Right 0.7105 0.7892 0.7478 346
Floating Left 0.7756 0.8941 0.8307 1510
Floating Right 0.7901 0.9112 0.8463 1459
Bulkhead Left 0.0580 0.2801 0.0961 377
Bulkhead Right 0.0220 0.0909 0.0355 386
Wall Top 0.3009 0.7893 0.4357 350
Wall Bottom 0.1277 0.2530 0.1697 251

10 Lanes 𝛽 = 0.7
Wall Left 0.0929 0.2682 0.1380 183
Wall Right 0.4444 0.5140 0.4767 217
Floating Left 0.8235 0.8435 0.8333 315
Floating Right 0.7350 0.8741 0.7986 297
Bulkhead Left 0.1268 0.3708 0.1890 338
Bulkhead Right 0.2161 0.3942 0.2791 358
Wall Top 0.1996 0.2450 0.2200 301
Wall Bottom 0 0 0 86

Table 3: Key-point class accuracy for pools with different
numbers of lanes, with a pixel tolerance of five pixels.

compared to 16x25 pools which have bulkheads, and thus more
key-points to detect.

Figure 4 displays the F1 Score of the model as a function of 𝛽 , the
control parameter selecting how confident the detector must be for
a key-point prediction to be considered predicted. What this plot
shows is that at roughly 0.1 < 𝛽 < 0.995 the model predicts mostly
the same, quantitatively speaking. This means that any values of
𝛽 > 0.995 or 𝛽 < 0.1 would result in less optimal results, in terms
of an F1 score. Qualitatively speaking, while the F1 performance of
the model seems to be roughly the same for 0.1 < 𝛽 < 0.995, when
𝛽 is higher there tends to be larger precision values in exchange for
lower recall values, and when 𝛽 is lower the opposite is observed.
This result is to be expected as a higher 𝛽 corresponds to a higher
entropy which means less certainty about the given prediction.

Figure 3 shows that after a pixel tolerance of five pixels the F1
score changes at a roughly different rate. This may indicate that
the five pixel tolerance suggested in [5] is indeed a good value to
choose as the tolerance for measuring key-point prediction quality.

In Table 3, the detector performs the best on most floating key-
points, does reasonably well with wall left/right/bottom key-points,
and struggles with the rest. There may be a few reasons for this.

Firstly, the lack of performance for wall bottom key-points is
understandable. The wall closest to the camera gets the smallest
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Figure 4: Average accuracy (F1) of the test sets vs different
values of 𝛽 , the control parameter selecting how confident
the detector must be for a key-point prediction to be consid-
ered predicted. A prediction is considered correct if it is with
five pixels of the ground truth.

Figure 5: Average accuracy (F1) of the test sets vs different
correct localization tolerance values. The 𝛽 value is set at
the optimal value of beta for each type of pool, that is, 0.15,
0.9, and 0.7, for six, eight, and ten lanes respectively.

fractional field of view. This is due to the physics of cameras in
general, that being, the farther something is away from the camera,
the more of that thing that can be captured by such camera. Ac-
cordingly, there is very little context for the model to reason about
the location and class of the key-points present. Annotation of such
key-points is easier as the annotator can use temporal knowledge
to find key-points. Furthermore, this may indicate that detectability

(a) 16x25 F1 = 0.766 (b) 6x25 F1 = 0.750

(c) 8x50 F1 = 0.960

is related to the relative fraction of the pool observed in the image.
As such the detectability of wall bottom key-points is low.

Higher performance was expected for the bulkhead points. Ob-
serve Figure 6e, for which the bulkhead right key-points are de-
tected less accurately. These key-points should be easy to detect.
Observing the training data from a similar viewpoint, the bulkhead
line that makes the intersection with the lane-ropes is almost al-
ways closely accompanied by the flags that cross the pool, this likely
impeded the detector. To show that the bulkhead can be detected,
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(d) 20x25 Left F1 = 0.529

(e) 20x25 F1 = 0.477

Figure 6: Visual results of the key-point detector

Figure 6d gives examples of the model detecting bulkhead points. It
also seems the model may have had trouble with the bulkheads due
to a lack of data. Given adequate data, the detectability is higher
than the wall bottom key-points.

Overall wall top key-points were detected poorly. Having an F1
score of 0, 0.4357, and 0.2200 for six, eight, and ten lanes respectively,
is not good performance. However, in one sequence, they were
detected well. Observe Figure 6c, in which the wall top key-points
are detected well. The practiced eye will note that the lane-ropes
give markers that sometimes guide the location of the wall top and
bottom key-points. The pool in Figure 6c has lane-rope markers
that were very well placed. As such it seems the model was able
to pick up on these placements. Another explanation for the good
wall top key-point detection is that the training data from this pool
had double samples from the same location. As such, the model
was trained on the same viewpoint as the test sequence. This may
indicate that wall top key-points are more affected by changes in
viewpoints compared to floating and wall left/right key-points.

Wall right and left key-points should be reasonably easy to detect,
and for the most part, they are. The model can confuse them with
bulkhead points, however, that is not observed often. The main
lack of performance in the wall left and right key-points is due to
ordering mismatches, occlusions, and choosing the same point as
different key-points. An example can be seen in Figure 6e for which
the true lane five wall right key-point is marked as key-point six
and as such the rest of the key-points are incorrect.

Floating left and right points are by far the most reliably detected.
Intuitively they should be the easiest to detect as their points are

the result of the most dominant lines in the image intersecting
with the edge of the frame. As was mentioned in the comment
about the wall left and right points, their ordering can sometimes
get mismatched and as a result, an entire frame can be detected
incorrectly. However, overall they are very detectible key-points.

The “bumper key-points”, which are defined as the key-points
resulting from the lane-ropes separating the outside lanes from
the pool walls, were accounted for reasonably well. When a pool
had bumpers the model was able to detect their existence and
account for them in the key-point ordering for the floating and wall
left/right key-points. This is very important for the creation of a
pool homography because the existence of bumpers or lack thereof,
can change the perceived length of the pool. An example of the
model noticing bumpers can be seen in Figure 6b, and 6c.

Overall in Figure 6 the model seems to mainly lose performance
due to ordering key-points. That is if the model misses a lane’s
key-point, it is more likely the rest of the lanes are incorrect. The
other cause of miss detection is simply placing key-points in the
wrong place or not finding them at all. This may suggest the model
architecture of the key-point detector may need to be changed
allowing for a model to properly reason about the relative locations
of the key-points. It might also suggest that it needs more of the
pool to properly reason about what is going on.

5 CONCLUSION
The purpose of this work is to create a starting point for the reg-
istration of partial pool images. To achieve this task the detection
of key-points was proposed for which a homography can be built,
as seen in Figure 1c. A pool model was proposed which defines
key-points within a general pool. After training a basic key-point
detector to detect the proposed key-points, all but the wall bot-
tom key-points, which are still recommended, seem like reasonable
locations for key-points. Beyond the proposed key-points in this
work, there do not seem to be many more well-defined locations for
key-points in an image of a pool. For further work on this subject,
a better detector should be considered. Model architectures that
increase the receptive field of the model must be tested. More data
augmentation methods should be employed. The target function
should be made more sophisticated such that the learning algorithm
is rewarded for putting key-points close to the ground truth. Higher,
image resolutions should be used in training. Lastly, other methods
of field localization, considered in section 2 should be explored and
compared in a meaningful manner to the results found in this work.
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A DETAILED KEY-POINT RESULTS

Table Of key-point Detection Accuracy for Each key-point
Pool Type 6x25 𝛽 = 0.15 16x25 and 8x50 𝛽 = 0.90 20x25 𝛽 = 0.70

key-point Prec Rec Total KPs Prec Rec Total KPs Prec Rec Total KPs
Wall Left 0 0 0 3 0.2000 1.0000 10 0 0 2
Wall Left 1 0 0 3 0.2727 1.0000 11 - - 0
Wall Left 2 1.0000 0.5000 6 0.8947 0.9444 19 0 0 6
Wall Left 3 0 0 9 1.0000 0.9615 25 0 0 9
Wall Left 4 0 0 11 0.9032 0.9032 31 0 0 13
Wall Left 5 0.4000 0.1538 13 0.8000 0.7000 35 0.0625 0.1667 16
Wall Left 6 0 0 16 0.3590 0.4667 39 0 0 17
Wall Left 7 - - 0 0.5750 0.8519 40 0 0 18
Wall Left 8 - - 0 0.7000 0.8750 40 0.1905 0.2353 21
Wall Left 9 - - 0 - - 0 0.4800 0.9231 25
Wall Left 10 - - 0 - - 0 0.1852 0.6250 27
Wall Left 11 0 0 18 0.4103 1.0000 39 - - 0
Wall Left 12 0 0 18 0.1364 0.4286 22 0.1034 1.0000 29
Wall Right 0 0 0 4 0.7000 1.0000 10 0 0 5
Wall Right 1 0 0 5 0.1538 1.0000 13 - - 0
Wall Right 2 0 0 9 1.0000 0.8400 21 0.2500 1.0000 8
Wall Right 3 0 0 11 1.0000 0.9355 29 0.2727 0.3333 11
Wall Right 4 0.5000 0.0769 13 1.0000 0.2500 11 0.5000 0.4375 14
Wall Right 5 0 0 15 0.4048 0.3696 42 0.7778 0.7778 18
Wall Right 6 1.0000 0.2500 16 0.8511 0.8000 47 0.2632 0.2500 19
Wall Right 7 - - 0 0.6939 0.6182 49 0.7826 0.6667 23
Wall Right 8 - - 0 0.8600 0.9348 50 0.2400 0.2727 25
Wall Right 9 - - 0 - - 0 0.3333 0.3226 30
Wall Right 10 - - 0 - - 0 0.5938 0.5938 32
Wall Right 11 0 0 17 0.3182 0.9333 44 - - 0
Wall Right 12 1.0000 0.1176 17 0.8333 1.0000 30 0.8750 1.0000 32
Floating Left 0 0.9020 0.8679 53 0.9012 0.8639 162 0.8500 0.7727 40
Floating Left 1 1.0000 0.5660 53 0.3168 0.9623 161 - - 0
Floating Left 2 0.9400 0.9400 50 0.8052 0.7799 154 0.9750 0.9070 40
Floating Left 3 0.9583 0.9787 47 0.8667 0.8609 150 0.9167 0.8250 36
Floating Left 4 0.8667 0.8667 45 0.8000 0.8056 145 0.7879 0.8387 33
Floating Left 5 0.8500 0.7907 43 0.8652 0.8592 141 0.8966 0.9286 29
Floating Left 6 0.7561 0.7750 40 0.9051 0.9118 137 0.8276 0.9231 29
Floating Left 7 - - 0 0.9191 0.9398 136 0.7500 0.7500 28
Floating Left 8 - - 0 0.9213 0.9590 127 0.7727 0.6800 22
Floating Left 9 - - 0 - - 0 0.6500 0.9286 20
Floating Left 10 - - 0 - - 0 0.8421 0.8421 19
Floating Left 11 1.0000 0.9737 38 0.2931 0.9189 116 - - 0
Floating Left 12 1.0000 1.0000 38 0.9383 0.9744 81 0.7895 0.8824 19
Floating Right 0 0.9800 0.9423 52 0.8834 0.9057 163 0.7561 0.8378 41
Floating Right 1 1.0000 0.5294 51 0.4313 0.9718 160 - - 0
Floating Right 2 0.9574 0.9574 47 0.7516 0.7372 153 0.8500 0.9189 40
Floating Right 3 1.0000 1.0000 45 0.8844 0.8966 147 0.8378 0.9118 37
Floating Right 4 0.9767 0.9767 43 0.8865 0.8929 141 0.6774 0.8077 31
Floating Right 5 0.9512 0.9512 41 0.9185 0.9254 135 0.7586 0.9167 29
Floating Right 6 0.8750 0.8750 40 0.8855 0.8923 131 0.7500 0.8077 28
Floating Right 7 - - 0 0.8346 0.9217 127 0.8750 1.0000 24
Floating Right 8 - - 0 0.9407 0.9823 118 0.5714 0.7500 21
Floating Right 9 - - 0 - - 0 0.8125 0.8667 16
Floating Right 10 - - 0 - - 0 0.6250 0.9091 16
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Continuation of Table Of key-point Detection Accuracy for Each key-point
Pool Type 6x25 𝛽 = 0.15 16x25 and 8x50 𝛽 = 0.90 20x25 𝛽 = 0.70

key-point Prec Rec Total KPs Prec Rec Total KPs Prec Rec Total KPs
Floating Right 11 1.0000 0.9744 39 0.3153 1.0000 111 - - 0
Floating Right 12 1.0000 1.0000 39 0.9589 0.8974 73 0.5714 0.8889 14
Bulkhead Left 0 - - 0 0 0 37 0 0 3
Bulkhead Left 1 - - 0 0 0 37 0 0 3
Bulkhead Left 2 - - 0 0.1944 1.0000 36 0 0 15
Bulkhead Left 3 - - 0 0.0294 0.0312 34 0.2000 0.5714 20
Bulkhead Left 4 - - 0 0 0 34 0.0357 0.1000 28
Bulkhead Left 5 - - 0 0.3235 0.4074 34 0.5000 1.0000 30
Bulkhead Left 6 - - 0 0.0303 0.5000 33 0 0 34
Bulkhead Left 7 - - 0 0.0303 0.1429 33 0.3514 1.0000 37
Bulkhead Left 8 - - 0 0.0303 1.0000 33 0 0 39
Bulkhead Left 9 - - 0 - - 0 0.2683 1.0000 41
Bulkhead Left 10 - - 0 - - 0 0.1667 0.7778 42
Bulkhead Left 11 - - 0 0 0 33 - - 0
Bulkhead Left 12 - - 0 0 0 33 0 0 46
Bulkhead Right 0 - - 0 0 0 38 0 0 7
Bulkhead Right 1 - - 0 0 0 38 0 0 7
Bulkhead Right 2 - - 0 0 0 37 0 0 17
Bulkhead Right 3 - - 0 0 0 36 0.1304 0.1429 23
Bulkhead Right 4 - - 0 0 0 35 0 0 27
Bulkhead Right 5 - - 0 0 0 35 0 0 32
Bulkhead Right 6 - - 0 0 0 35 0.1429 1.0000 35
Bulkhead Right 7 - - 0 0.2424 1.0000 33 0.4474 0.8500 38
Bulkhead Right 8 - - 0 0 0 33 0.7381 0.8857 42
Bulkhead Right 9 - - 0 - - 0 0.4524 0.7600 42
Bulkhead Right 10 - - 0 - - 0 0.4773 0.6176 44
Bulkhead Right 11 - - 0 0 0 33 - - 0
Bulkhead Right 12 - - 0 0 0 33 0.2045 0.4737 44
Wall Top 0 0 0 18 0.4000 0.7368 35 0.6667 0.6875 33
Wall Top 1 0 0 16 0.3824 1.0000 34 0.1429 0.2273 35
Wall Top 2 - - 0 0.2581 0.5714 31 0 0 37
Wall Top 3 - - 0 0.2558 0.6471 43 0.4146 0.5000 41
Wall Top 4 - - 0 0.2895 1.0000 38 - - 0
Wall Top 5 - - 0 0.2340 1.0000 47 0.0476 0.2500 42
Wall Top 6 - - 0 0.3846 0.7500 39 0.3250 0.2955 40
Wall Top 7 0 0 21 0.2250 0.6923 40 0 0 39
Wall Top 8 0 0 19 0.2791 0.7059 43 0 0 34
Wall Bottom 0 0 0 5 0.2000 0.4286 15 0 0 13
Wall Bottom 1 0 0 13 0 0 21 0 0 16
Wall Bottom 2 - - 0 0.2000 0.8571 30 0 0 16
Wall Bottom 3 - - 0 0 0 41 - - 0
Wall Bottom 4 - - 0 0 0 12 - - 0
Wall Bottom 5 - - 0 0.2549 0.2889 51 0 0 13
Wall Bottom 6 - - 0 0.2250 0.2647 40 0 0 18
Wall Bottom 7 0 0 20 0.2692 0.4375 26 0 0 10
Wall Bottom 8 0 0 26 0 0 15 - - 0

End of Table
Table 4: This table provides the precision and recall of all the key-point detections for all 96 key-points that can be predicted
by the model, as well as the number of possible detections in the ground truth. The precision and recall were calculated by
assuming that predicted key-points were correct if they were within 5 pixels of the ground truth.
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