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Seeing your sleep stage: cross-modal distillation
from EEG to infrared video

Jianan Han, Shaoxing Zhang, Aidong Men, Yang Liu, Ziming Yao, Yan Yan, Qingchao Chen)

Abstract—It is inevitably crucial to classify sleep stage for
the diagnosis of various diseases. However, existing automated
diagnosis methods mostly adopt the “gold-standard” Electroen-
cephalogram (EEG) or other uni-modal sensing signal of the
PolySomnoGraphy (PSG) machine in hospital, that are expensive,
importable and therefore unsuitable for point-of-care monitoring
at home. To enable the sleep stage monitoring at home, in this
paper, we analyze the relationship between infrared videos and
the EEG signal and propose a new task: to classify the sleep
stage using infrared videos by distilling useful knowledge from
EEG signals to the visual ones. It is different from previous video
classification and multi-modal analysis tasks, mainly in that (i)
the temporal duration of the infrared video is relatively long (10
hours per night); (ii) and the semantic gap between the EEG and
infrared video is disparate and much larger than conventional
cross-modal data in multimedia analysis such as video and audio.
To establish a solid cross-modal benchmark for this application,
we develop a new dataset termed as Seeing your Sleep Stage
via Infrared Video and EEG (S3V E). S3V E is a large-scale
dataset including synchronized infrared video and EEG signal
for sleep stage classification, including 105 subjects and 154,573
video clips that is more than 1100 hours long. Our contributions
are not limited to datasets but also about a novel cross-modal
distillation baseline model namely the structure-aware contrastive
distillation (SACD) to distill the EEG knowledge to infrared video
features. The SACD achieved the state-of-the-art performances
on both our S3V E and the existing cross-modal distillation
benchmark. Both the benchmark and the baseline methods will
be released to the community. We expect to raise more attentions
and promote more developments in the sleep stage classification
and more importantly the cross-modal distillation from clinical
signal/media to the conventional media. Code and open datasets
are available at https://github.com/SPIResearch/SACD.

Index Terms—sleep stage classification, dataset, EEG, infrared
video, cross-modal distillation

I. INTRODUCTION

IT is of significance to estimate the sleep quality and stage
accurately, as it is directly related to the phenomenon

(phenotype) of chronic disease and mental disease. According
to the recent scientific research results, millions of chronic and
mental disease patients have sleep related problems that are
highly correlated to daily life dis-functioning and even traffic
accidents etc. It is essential to tackle this global healthcare
problems by measuring the sleep quality accurately and in-
time especially at home.
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PKU-OPPO Innovation Fund BO202103.

Existing analysis methods and sleep quality or stage classi-
fication approaches adopt the usage of EEG signal as the “gold
standard” sensing modality; however, it is time-consuming and
costly to estimate the quality in the hospital via analyzing and
diagnosing the EEG signal from the PSG machine. In addition,
the annotation efforts and training of clinical workers to use
and diagnosis are expensive. Moreover, it is nearly impossible
to setup PSG machine at home as it is expensive and difficult
to operate on. Besides, the PSG operation mode needs to attach
tens of sensors on the patients’ head and they sometimes fell
off, which generates inaccurate results. Therefore, it is of
huge demand and extremely essential to estimate the sleep
quality/stage using the portable and point-of-care sensors
and solutions at home.

In this paper, we propose a novel cross-modal methodology
to solve the previous barriers, enabling point-of-care sleep
stage monitoring at home. We propose to sense the human
body visually via an infra-red camera video synchronized with
the PSG EEG signal. As shown in the Fig. 1 (a), with the help
of EEG signal features and distilling EEG knowledge to the
visual features, we investigate the possibility, capability and
limitations of distilled infra-red visual features to classify the
sleep stage.

To enable the developments of point-of-care healthcare
research and distillation methods from clinical to visual modal-
ity, to our best knowledge, we are the first to collect a
large-scale cross-modal distillation dataset, namely S3V E,
including in total 1,100 hours synchronized infra-red videos
and EEG signals, 105 subejcts from the real-world hospital and
154,573 multi-modal clips to investigate the problem of sleep
stage classification. Besides the datasets, we also raise and
analyze the following challenges of cross-modal distillation
between the EEG and the infra-red data.

Challenge 1: the large cross-modal semantic gap between
EEG and IR signals. EEG signal represents the intrinsic
features of the sleep stage and is regarded as the gold-
standard clinical diagnosis modality. However, the IR videos
are commonly used for monitoring external characteristics of
the subjects, e.g. motion, events and abnormal behaviour of
the subjects. The two synchronized data in our S3V E are
less correlated and with a large semantic gap than those in
the conventional audio-video classification benchmark, e.g.
UCF51. ( please see Fig. 1 (b) for more details). Therefore,
we argue that directly aligning the cross-modal features of the
same instance may lead to inferior distillation performance
and the collapsed joint embedding space.

Challenge 2: the appearances of the infra-red sleep
videos are similar globally and the differences among
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Fig. 1. (a). diagram of the task: cross-modal distillation from EEG to infrared video (b). semantic gap between video and EEG modality. The example in the
figure is selected from clips with both labels N1; the EEG signal can be successfully judged, but the second term is judged as W through the video signal;
In this N1 sleep state , some unknowing short-term movements affect the judgment of the IR video. For this example, the video cannot “see” the similarity
of the two EEG signals, and the small movements of the legs and hands are equivalent to the confounding factor of the IR video modality.

different classes’ videos are subtle locally. As shown in Fig.
1 (b), the global similarity between inter-class visual features
are caused by the confounded similar background and scene.
How to design a loss function to reflect and reveal the fine-
grained contrast between visual pairs of the same or different
classes remains a challenge in our dataset.

To tackle the first challenge, we propose to align the
relationship structure formed by multiple cross-modal clip
features instead of aligning the individual instance. Due
to the large semantic gap in our scenario, directly pulling
the cross-modal features of the same instance may lead to
inferior distillation performance and the collapsed joint em-
bedding space. Therefore, we alternates to align the structural
information. The intuition is that in spite of the instance-level
semantic gap, the uni-modal structure relationships should be
similar among multiple instances as a group. In addition, the
cross-modal data exhibit unique temporal characteristics and
a strong temporal correlation among the features in a mini-
batch is observed. Formulating both points as a constraint, we
propose to build a graph among multiple instances in each
unimodal data and regularize the consistency of two unimodal
relationship structures.

To tackle the second challenge, we propose to use the con-
trastive learning framework to learn the fine-grained “con-
trast” from the subtle differences in the IF video. However,
conventional cross-modal contrastive learning is limited in our
scenario, because the negative pairs are normally selected from
the cross-modal features of different instances, which have
large semantic gaps. Therefore, the normal negative pairs are
not “hard” enough which cannot reflect and reveal the fine-
grained contrast required in our setup. Therefore, we proposed
to design two K-hard negative memory bank for the EEG
and visual modality respectively, selecting the hard negative

sample set in the online manner. In addition, we propose to use
the symmetric contrastive cross-modal distillation to reduce
the cross-modal semantic gap.

To sum up, we made the following contributions in this
paper:
• To our best knowledge, we proposed a new and the first

dataset and benchmark to investigate cross-modal distil-
lation between the clinical EEG signal and the IF videos.
We provided extensive experiments and comparisons with
conventional distillation methods in the dataset.

• We also propose a novel cross-distillation method termed
as Structure-aware contrastive distillation (SACD), in-
cluding the structure-aware cross-modal alignment mod-
ule and the dual memory banks for the contrastive learn-
ing.

• Our method achieves SOTA results on both our bench-
mark and the conventional distillation benchmark, e.g.
UCF51.

II. RELATED WORKS

A. Various Modalities of Sleep Stage Classification

Accurate sleep stage classification has been of great interest
in analysing sleep quality and determining the effectiveness
of treatment. As the EEG signal is considered as the “gold-
standard” for sleep stage classification, The most mainstream
approach is classifying and analyzing sleep stage by employ-
ing physiological electrical signals. In addition to PSG-based
sleep grading and apnea-related studies, there are many other
approaches. For example, Goederen et al. [1] used broadband
radar to analyze children’s sleep stages and sleep status. Deng
et al. [2] designed adaptive vertical box (AV-Box) based
breathing/snoring detection using a decision tree classifier
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for sleep stage classification. Korkalainen et al. [3] identified
the sleep stages from the photoplethysmogram (PPG) signal
obtained with a simple finger pulse. Yi et al. [4] extracted
a total of 74 features, including heart rate variability (HRV),
features, respiratory rate variability (RV) features, and linear
frequency cepstral coefficients (LFCC) from bed sensor data
and performs sleep stage classification. Unlike the above
methods, we are the first to systematically investigate the
use of infrared sleep video for sleep stage classification and
have developed a new dataset.

B. PSG-based Sleep Stage Classification Datasets and Meth-
ods

Sleep Stage Classification Datasets: Various physio-
electrical signal datasets have been collected for sleep
research. The Sleep Heart Health Study (SHSS) was a multi-
center cohort sleep study [5] [6], whose two dataset versions,
SHHS-1 and SHHS-2, contained the polysomnograms (PSG)
data of 6441 and 3295 subjects respectively. The PSG data
consist of multi-channel physio-electrical signals, including
the Electroencephalogram(EEG) (C3-A2 and C4-A1),
Electrooculogram (EOG), Electromyogram (EMG), Thoracic
excursions (THOR) and abdominal excursions (ABDO), etc.
The SleepEDF-20 and SleepEDF-78 were obtained from the
PhysioBank [7], including 20 and 78 subjects respectively.
The data contains 2 EEG channels (Fpz-Cz and Pz-Oz).
The Montreal Archive of Sleep Studies (MASS) dataset [8]
was collected including the whole-night sleep data from
200 subjects (103 females and 97 males), aged from 18-76.
It mainly consists of about 20 EEG channels, plus EOG,
EMG, ECG, and respiration signals. Different from the
previous datasets, to our best knowledge, we proposed a
novel cross-modal dataset to promote multi-modal learning
for sleep stage classification, including the synchronous IR
videos and the EEG signals.
PSG-based Automated Sleep Stage Classification Methods:
Multiple sleep classification methods have been proposed
using the previously mentioned datasets. Conventional
machine learning methods extracted time-frequency analysis
features and applied the Support Vector Machine (SVM),
random forest, wavelet transform and information entropy
algorithms [9] [10] [11]. However, these methods incorporated
strong prior knowledge and hand-crafted features, therefore
the classification accuracy relies on the feature qualities.
Recently, deep learning based methods have been the
mainstream for sleep stage classification. For single-channel
EEG classification, the AttnSleep [12] used the multi-
resolution convolutional neural network (MRCNN). The
dilated convolution and synthetic minority oversampling
technique (SMOTE) [13] also achieved competitive results.
As for methods using multi-channel EEG signals, the
BrainSleepNet [14] captured the comprehensive features
of multi-channel EEG signals. The MSTGCN [15] and
GraphSleepNet [16] used the structure-aware encoders for
automatic sleep staging. In addition, a joint CNN framework
[17] adopted temporal information as a context to predict
sleep stages. However, our dataset consists of sleep data

of 105 subjects and most differently, we leveraged the
synchrounous EEG and infra-red videos to analyze and
trian the classification model, which is not available in the
above datasets. To our best knowledge, we are the first to
investigate the usage of EEG signals and video for sleep
stages classification.

C. Cross-modal distillation methods

Knowledge distillation (KD): The KD [18] [19] [20] [21]
methods transfer knowledge from the teacher to the student
network, by supervising the student network using the pseudo
labels. Komodakis et al. [22] used an attention-based distilla-
tion method to match the activation-based and gradient-based
spatial attention maps. The flow of solution procedure (FSP)
[23], generated by computing the Gram matrix of features
across layers, was used to transfer knowledge. The RKD [24]
captures cross-instance relations by designing a loss function
to penalize the structure variations. Li et al. [25] developed a
new framework to correct noisy labels by using knowledge
learned from small clean datasets and semantic knowledge
graphs. Different from them, we not only pull the features
between the student and the teacher directly, but also allows
the student network to learn the relative positional rela-
tionships between instances in the teacher’s network during
the distillation process. This relative positional relationship,
specifically (which instances are close, far, and how they are
distributed), within a mini-batch, is what we call “structure.”
Hence the name of our distillation method is “structure-
aware.”
Structure—aware distillation methods: Structure-aware
distillation adopts the idea of distilling knowledge from
structural data. The CRCD [26] estimates the mutual relation
and transfers structured knowledge from anchor teacher to
anchor student in a contrastive learning framework. Pairwise
distillation methods distilled pairwise and holistic similarities
[27]. The similarity-preserving KD [28] constrains the
similarity between teacher network features and the student
one, which complements the conventional distillation methods.
However, different from their works, we propose to a new
method use graph neural network to model the similarity
relationship between different modalities, by updating the
“node” and “edge” inside one modality, forming an entire
graph-level representation to describe this modality and
then take them closer.
Cross-modal distillation using contrastive learning: Most
recently, KD methods using the contrastive learning pulls the
representations of positive pairs but push the negative pairs.
The Contrastive Multiview Coding (CMC) [29] is a cross-view
learning method to align different views of the same instances
by contrastive learning. The Contrastive Representation Dis-
tillation (CRD) [30] transfers knowledge by instance-level
contrastive learning and uses a large memory bank to store
negative samples. Chen et al. [31] proposed to use contrastive
learning to distill information from the image and audio to
video analysis. Different from other contrastive learning KD
method, we proposed a novel dual-modality K-hard negative
queues, storing the negative samples of the sleep stages. In
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TABLE I
CHARACTERISTICS OF FIVE SLEEP STAGES.

Sleep stages Characteristics
W Awake. An EEG contains β waves when the eyes are closed and α waves when the eyes are open.
N1 Transitions from W to other stages. Cranial apex waves are present in later stages.
N2 Spindles or unawakening associated K-complex waves are present.
N3 High amplitude low frequency σ wave appears.
REM There is rapid eye movement and typical sawtooth wave

addition, we designed the symmetric contrastive distillation
losses, leveraging negative pairs from two modalities.

III. DATASETS AND BENCHMARKS

A. Problem Formulation

Sleep disordering has become an important problem and it
is of great significance to establish a sleep stage classification
standard for sleep medicine. The American Academy of Sleep
Medicine (AASM) standard [32] sets out the rules, termi-
nology and techniques for sleep and related events. AASM
divides human sleep into five stages, including the Rapid Eye
Movements(REM ), Wake(W ), Non REM1 (N1), Non REM2
(N2) and Non REM3 (N3). The characteristics of each stage
are shown in the following Table I [33].

B. Datasets and benchmarks construction

Data Collection. We collected the synchronized EEG and
the infra-red video signals from the Peking University Third
Hospital. The dataset collection time spans more than two
yearsIn order to ensure the diversity of subjects in the dataset,
we selected subjects of different ages (the youngest is 7
years old; the oldest is 70 years old), genders, and sleep
apnea indices. Through consulting with a clinical expert, we
formulated the training, validation, and test sets accordingly.
The data collection time is approximately from 9:30pm to
7:30am the next day.
Annotations. In the process of constructing the dataset annota-
tions, the coarse-grained annotations are firstly generated from
the PSG machine, and then they are inspected and examined by
five well-trained sleep apnea physicians. In this process, some
unreasonable and mis-classified labels are modified through
discussions to achieve agreements. To eliminate the effects of
subjective diagnosis, weekly cross-checks will be performed to
ensure the agreed consensus. Conflicted annotations and opin-
ions are collectively discussed and voted so that the annotation
agreements within each subject should be more than 95%. At
present, the above annotation protocol is widely recognized by
various medical institutions and hospitals, and is considered
to be the “gold-standard” for sleep stage classification.

C. Dataset Statistics and Properties

The time duration statistics. As shown in the upper left sub-
figure in Fig. 2, we collected PSG signals and the synchronous
infrared videos in our dataset, including the monitoring of
105 subjects’ (82 Males and 23 Females) whole night data,
consisting of 154,573 data clips. Each clip is 30 seconds long

Fig. 2. Statistical information on our dataset. The top left subfigure shows the
distribution of male and female cases in the dataset; The bottom left subfigure
shows the distribution of each AHI-related group case in the dataset; The
right-hand subfigure shows the distribution of each sleep stage in the dataset.

and the whole dataset contains 1124 hours’ data. The number
of clips per subject ranges from 1080 to 1360.

The Apnea-Hypopnea Index (AHI) distribution. The med-
ical community usually classifies AHI meaningful into four
clinically significant groups(<5, 5-15, 16-30, >30). The above
four groups correspond to normal, mild obstructive sleep
apnea (OSA), moderate obstructive sleep apnea (OSA), severe
obstructive sleep apnea (OSA), respectively. As shown in the
bottom left subfigure of Figure 2, out of the 105 patients in
our dataset, 30 are normal, 30 are mild, 20 are moderate, and
25 are severe.

Sleep stage distribution. Adult’s sleep cycle lasts about 90 to
100 minutes, alternating about four to five times in a night. As
shown in the right subfigure of the Fig. 2, there are five stages,
where W represents wake period, N1 denotes the sleepy
phase, which lasts about five minutes that describes the period
between awake and falling asleep. N2 represents the period
of light sleep, and with feeling of falling or weightlessness
during sleep, as well as sudden body twitching. N3 is a deep
sleep phase, in which brain wave activity drops to 1-2 seconds,
and the respiration and heart rate reach the lowest. Deep sleep
period accounts for about 20% of the sleep time per night.
REM is a period of rapid eye movement, in which the eyes
begin to move rapidly and the blood pressure, heart rate and
respiration rate are more active than in the Non-REM stage.
As shown in the right subfigure in Figure 2, in our dataset,
there are 55,878, 5909, 40,522, 20,237 and 12,290 clips in W ,
N1, N2, N3 and REM stages respectively.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

Fig. 3. Overall network architecture of cross-modal distillation.

IV. METHOD

A. Overall Framework

The overall architecture is shown in Fig. 3, where we are
given the ith synchronized EEG signal si, the ground-truth
sleep stage annotation yi and the Infra-red video vi collected
from real-world subjects in the hospital (see more analysis
and statistics of the dataset in section III-B). Given the video
encoder Ev and EEG signal encoder Es, the conventional
cross-entropy loss LCE is utilized to train Ev , Es and the
EEG and Infra-red classifiers Cs and Cv respectively as the
following Eq.(1):

min
Ev,Es,Cv,Cs

∑
i

LCE(Cv(Ev(vi)), yi)+LCE(Cs(Es(si)), yi).

(1)
The aim of our proposed method is not only to train an

Infra-red video classification network, but to distill the cross-
modal knowledge and discriminative structural information
from the clinically-recognized “gold-standard” EEG feature
Es(s) to the portable and point-of-care visual infra-red video
feature Ev(v). If it is achieved, we are able to classify
the sleep stage using the infra-red video features only at
home. Our intuition is that the infra-red video can capture
the visual appearance patterns of the sleeping subjects but
EEG signal cannot. However, the EEG signal can capture the
intrinsic features of the brain electric signal that are clinical
relevant but the videos cannot. Therefore, we argue that there
exists a huge semantic gap between infra-red video feature
distribution P (Ev(vi)) and the EEG signal one P (Es(si))
and their features complement each other in the sleep stage
classification.

To distill the discriminative knowledge from P (Es(si)) to
P (Ev(vi)), the first challenge is to tackle the cross-modal
semantic gaps. We propose a structure-aware cross-modal

distillation module, consisted of two graphical neural networks
Gv and Gs to model the unimodal inter-sample relationships
Gv(Ev(v)) and Gs(Es(s)) respectively. Then we propose to
reduce the cross-modal gaps of inter-sample relationships by
reducing their structural distance loss LD based on a metric D.
The optimization is shown in the following Eq.(2) and more
details are described in Section IV-B.

min
Ev,Es,Gv,Gs

∑
v,s

LD(Gv(Ev(v)), Gs(Es(s))). (2)

Reducing the structural cross-modal gap does not align
the fine-grained semantic concepts between EEG and visual
embedding space. To distill the discriminative and fine-
grained knowledge from P (Es(si)) to P (Ev(vi)), we propose
a cross-modal contrastive distillation framework utilizing two
hard-negative memory selectors that stores the K-hardest
negative samples based on the EEG and the video anchor
samples. Specifically, our cross-modal contrastive distilla-
tion framework trains the encoders based on the contrastive
learning loss LC(vi, si, vj , sh) in Eq.(3), where vi, si are
the ith cross-modal sample as the anchor points, while the
vj , sh are the negative pairs optimally selected based on
our novel K−hardest negative sample selection module. The
selection module consists of two memory queues designed
for two modalities respectively. In our cross-modal contrastive
distillation, the positive pairs are the synchronized features
< Ev(vi), Es(si)) > but our selection module leveraged two
negative pairs vj and sh, that are selected optimally from EEG
and the visual memory queue Qs and Qv respectively. The se-
lection criterias are as follows: for a cross-modal target anchor
pair vi, si, the hard negative pair are selected as vj and sh
respectively, where j = argmax(Es(si)

T
Ev(vj)), for ∀vj ∈

Qv and h = argmax(Ev(vi)
T
Es(sh)), for ∀sh ∈ Qs. This
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procedure maintains and aligns the fine-grained cross-modal
semantic embedding. More details are shown in Section IV-C.

min
Ev,Es

∑
v,s

LC(Ev(vi), Ev(vj), Es(si), Es(sh)). (3)

Besides the feature space semantic alignment, we also
adopt the conventional class prediction space distillation as
shown in the following Eq.(4). We utilized and reduced the
well-known Jenson-Shannon-Divergence (JSD) between the
visual prediction distribution P (Cv(Ev(v))) and the EEG one
P (Cs(Es(s))). The overall optimization is shown in Eq.(5)
where λ1,λ2 and λ3 are hyper-parameters.

min
Ev,Es,Cv,Cs

JSD(P (Cv(Ev(v))), P (Cs(Es(s)))). (4)

minLCE + λ1LD + λ2LC + λ3JSD. (5)

B. Structure-aware coarse-grained semantic alignment

To distill the knowledge from clinical signal to IR videos,
the two synchronized data in our S3V E are less correlated and
with a large semantic gap than those in the conventional audio-
video classification benchmark, e.g. UCF51 [34]. Therefore,
we argue that directly pulling the cross-modal features of the
same instance and pushing the features of different instances
may lead to inferior distillation performance and the collapsed
joint embedding space.

To tackle the previous challenge, we propose to align the
relationship structure formed by multiple cross-modal clip
features instead of from the individual instance. Our intuition
is that in spite of the instance-level semantic gap, the uni-
modal structure relationships should be similar among mul-
tiple instances as a group. In addition, the cross-modal data
exhibit unique temporal characteristics and a strong temporal
correlation among the features in a mini-batch is observed.
Formulating both points as a constraint, we propose to build
a graph among multiple instances in each unimodal data
and regularize the consistency of two unimodal relationship
structures.

More specifically, given the ith clip of an input mini-
batch, Es(xi) and Ev(xi) denotes the output features of two
modalities’ graph level encoders. Below, we take the video
and EEG signal vi, ei as an example, Each graph G = (V,E)
is represented as sets of nodes V and edges E,

h(0)vi = MLPnode (xvi) (6)

eij = MLPedge

(
xvij

)
(7)

The output of Ev(xi) : h(0)vi is a 64-dimensional vector,through
an MLP, the hidden node vector h(0)vi ’s dimension is 128, and
the edges vector eij’s dimension is 64 . Nodes are transfer
information in the propagation layers. After the t − th pass,
the propagation layer maps a node representations h(t)i to new
node representations h(t+1)

i , here node’s dimension have not
change. Fm is an MLP work on the concatenated inputs of
h
(t)
i , h(t)j and eij , here the output vector dimension here is

Fig. 4. Two K-hard negative memory bank structure diagram, and a
momentum updated Encoder to generate momentum updated embeddings
stored in a large memory bank.

512-dim. then we utilize weighted summation based on graph
attention mechanism A [35] to update node features. Through
multiple layers of propagation, the representation for each
node will accumulate information in its local neighborhood.

mj→i = Fm

(
h
(t)
i , h

(t)
j , eij

)
(8)

Here Fm is an MLP on the concatenated inputs including
neighbor node features and edge features.

h
(t+1)
i = A

h(t)i ,
∑
j∈δi

mj→i

 (9)

After the t−th layer propagation, a graph level representation
O(Gv) can form through a READOUT function and a graph
level MLPG , and here we choose a fully connected layer as
the READOUT function. O(Gv) is a 1024-dim vector.

O(Gv) =MLPG(READOUT{h(t)i : Xvi} ∈ V ) (10)

we use Euclidean similarity to compute the structural distance
loss LD between Gv and Ga :

LD = E(Ge,Gv)(max, r − d(Gv, Ga))
d(GV , Ga) = ||O(Gv) −O(Gv)||

2 (11)

where γ > 0 is a margin parameter.

C. Hard-negative fine-grained cross-modal contrastive learn-
ing

As mentioned in the introduction section, the IR video
appearance features are less discriminative than the EEG
signal, especially since the inter-class differences are locally
subtle in the video. To distil the discriminative EEG feature to
the ambiguous visual ones, usage of the contrastive learning
strategy–pulling positive pairs and pushing away the negative
ones seems a straightforward choice. However, conventional
cross-modal contrastive learning is limited in our scenario
because the negative pairs are normally selected from the
cross-modal features of different instances, which have large
semantic gaps. Therefore, the normal negative pairs are not
“hard” enough, which cannot reflect and reveal the fine-
grained contrast required in our setup. Furthermore, the current
contrastive learning method usually obtains negative samples
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in the same batch, and the number of negatives directly affects
the contrastive loss. For our task, since the distribution of clips
within a batch is usually flat, the number of negative samples is
insufficient, and it is possible to take negative samples within
one class to indirectly affect the classification performance.

To tackle the challenges, we propose two K-hard negative
memory bank Figure 4 for the EEG and visual modality
respectively, selecting the negative sample set in the online
manner. In addition, we propose to use the symmetric con-
trastive cross-modal distillation to reduce the cross-modal
semantic gap.

Specifically, each K-hard negative memory bank stores the
first K hardest negative pairs for each class categories, pre-
serving the global hard negative sample features in the dataset
level. This helps ensure that the contrast in the optimization
are fine-grained. In addition, to shrinkage the cross-modal se-
mantic gap, we proposed the two-way symmetrical contrastive
learning loss as shown in the following equation(12) :

LDN
=

N∑
n=1

{[α− S(F vn , F sn) + S(F vn , F
s
i )]+

+[α− S(F vn , F sn) + S(F vj , F
s
n)]+}

(12)

where α is the margin we set 0.2 here and can be tuned using
the validation sets. S(·) is the similarity function in the feature
space. F vn , Esn is the output feature from encoder Ev and Es
, which are consistent with the description in IV-A. i and j
are the index for the hard negatives , n is the anchor index
for distillation and N denotes the batch size.

Specifically, we used two K-hard negative memory bank to
enlarge the hard negative sample set, the memory bank MB

stores the feature representation of historical samples with a
size of m. We rewrite the formula as:

LKDN
=

K∑
k=1

N∑
n=1

{[α− S(F vn , F sn) + S(F vn , F
s
k )]+

+ [α− S(F vn , F sn) + S(F vk , F
s
n)]+}

(13)

During the network training, we dynamically update the mem-
ory bank by discarding the oldest items and feeding the new
batch of embedded features, where the memory bank acts
as a queue. And we also keep the class label along with
representation in the memory bank to filter the negatives.The
update method of memory bank we use is Momentum updated
Encoder (MuEncoder) [36]. The memory bank structure is
shown in the figure 4.

V. EXPERIMENT

A. Dataset Splits

Because some samples have individual reasons (short sleep
time, difficulty falling asleep, strange posture, etc.), we re-
duced the samples by 3 to 102 subjects.

According to the sleep apnea indexes (no apnea, mild apnea,
moderate apnea, severe apnea), samples at each apnea stage
are subdivided, and 80% of each apnea stage is taken as the
training set (Among them, 20% were chosen as the validation
set), the last 20% of each apnea stage is taken as the testing set.
Twenty people are used for the test to ensure that the training

and testing are equally distributed. Therefore, the clip number
of the train set is 102,519, the clip number of the validation
set is 20,503, and the clip number of the test set is 31,551.

B. Implementation Details and Metrics

To be fair and comprehensive, we use R(2+1)D-18 [37] and
R3D-18 [38] as the video student network, which is pretrained
in Kinetics-700 [39] and Moments in Time [40] and fine-tuned
in our dataset (S3V E). We use AttnSleep [12] as the EEG
teacher network, which is only trained on our dataset, and the
model weights of the teacher network are kept frozen during
training. The video network baseline is trained by SGD with
a learning rate of 0.001, and a weight decay of 0.0005. When
training, our batch size is set to 16; we trade off computational
efficiency and set the size of the memory bank as 256, the
number of negatives K as 64. The hyperparameters λ1, λ2
and λ3 are set to 0.5, 1 and 1. The dimension of the latent
feature space is 512. We do not add projections on the network,
but linear projections can be added to map all embeddings to
the same dimension. The video clips are cropped to 320×240
and each clip contains about 750 frames. During the testing
phase, just the IR sleep video was used for classification.

We adopted the following three evaluation metrics to mea-
sure the performance of the sleep classification: the accuracy
(ACC), macro-averaged F1-score (MF1) and Cohen Kappa (κ)
[41].They are calculated as follows:

ACC =

∑
c∈CS TPc

N
(14)

MF1 =

∑
c∈CS F1c

5
(15)

where TPc and F1c are the true positive and per-class F1 score
of class c ∈ CS , respectively, and N is the total number of test
samples. κ is a statistical measure of the interrater agreement
(IRA) level calculated as:

κ =

∑
c∈CS pcc −

∑
c∈CS pc+p+c

1−
∑
c∈CS pc+p+c

=
pa − pe
1− pe

(16)

where pcc represents the percentage of epochs classified as
category c by the network and the annotated label simultane-
ously,and pc+ and p+c represent the percentages of epochs
classified as category c by the network and annotated label,
respectively.

C. Results and Comparisons

We compare our SACD with the only infrared video base-
line models without any distillation, and six state-of-the-art
other distillation methods (Fitnet [42], PKT [43], CRD [30],
IFD [44], CMC [29], CCL [31]). For the fairness and
comprehensiveness of the experiments, we train each model
on the same experimental setup but replace the distillation
objective based on their open-source implementation.

As shown in Table II, our method achieves state-of-art in
the accuracy (ACC), macro-averaged F1-score (MF1), Cohen
Kappa (κ) and per-class accuracy. By comparison, we found
that CRD [30] and CCL [31] are the two most powerful
opponents. Both methods apply contrastive learning, which
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TABLE II
COMPARISON RESULTS (%) AMONG SACD AND STATE-OF-ART MODELS. THE BEST VALUES ON S3V E DATASET ARE HIGHLIGHTED IN BOLD.

THE NUMBER FOLLOWING ± REPRESENTS THE STANDARD DEVIATION OF MULTIPLE EXPERIMENTS.

Overall Metrics Per-class Accuracy
EEG Baseline Distillation Method Accuracy MF1 κ W N1 N2 N3 REM

- Baseline R(2+1)D 52.5 46.6 0.47 64.7 41.3 48.4 47.8 57.3
- Baseline R3D 52.8 46.9 0.37 64.7 41.4 49.0 48.0 58.0

Fitnet 56.1 49.9 0.49 68.5 47.2 55.9 53.8 61.8
PKT 58.1 51.2 0.53 71.2 47.8 56.3 54.0 62.9
CRD 62.3 55.8 0.56 73.8 49.8 58.8 57.1 66.4

Attnsleep IFD 61.1 54.0 0.57 73.0 49.9 58.8 57.1 65.1
CMC 58.9 53.1 0.53 71.5 46.2 56.9 55.0 63.2
CCL 62.3 57.0 0.56 74.4 50.1 58.7 53.8 64.7

SACD(ours) 64.4±0.45 58.9±0.40 0.60±0.38 75.6±0.56 51.0 ±0.36 60.2±0.42 59.3±0.45 67.8+0.45
Fitnet 54.6 47.8 0.46 67.0 45.2 51.9 49.8 59.5
PKT 55.7 48.6 0.49 69.6 46.2 52.3 50.1 59.8
CRD 58.3 51.9 0.50 70.2 47.8 55.0 53.2 62.4

DeepSleepNet IFD 57.2 51.3 0.49 69.8 46.8 54.0 53.4 61.2
CMC 55.5 50.8 0.48 68.5 44.8 53.0 51.0 59.5
CCL 58.7 52.3 0.52 71.0 47.7 54.7 50.8 61.0

SACD(ours) 60.7±0.52 54.6±0.39 0.54±0.45 72.2+0.60 48.4±0.36 56.2±0.38 55.3±0.42 63.8±0.45
Fitnet 54.9 48.9 0.48 67.7 45.5 52.2 50.1 60.0
PKT 57.5 51.0 0.50 51.4 48.0 54.1 51.7 61.6
CRD 60.5 53.9 0.53 72.6 48.7 57.0 55.1 64.6

Modified-SEN IFD 59.0 53.0 0.51 71.7 48.6 55.6 54.8 63.0
CMC 57.0 51.1 0.51 70.0 46.6 54.5 52.4 61.2
CCL 60.6 54.2 0.53 72.8 49.6 56.5 52.7 62.8

SACD(ours) 62.6±0.45 55.6±0.48 0.56±0.38 73.8±0.52 49.5±0.45 58.5±0.55 57.3±0.48 66.1±0.36

TABLE III
VIDEO CLASSIFICATION ON THE PUBLIC DATASET UCF51. METRIC:TOP1 ACCURACY (%). KNOWLEDGE IS TRANSFERRED FROM AUDIO MODALITY TO

IMPROVE THE VIDEO RECOGNITION MODEL.

UCF51
Methods Baseline R(2+1)D Fitnet PKT RKD CRD CMC CCL SACD(ours)

Audio to Video 57.5 48.4 53.2 53.0 60.3 59.2 64.9 66.0

indirectly shows that contrastive learning can significantly
improve the cross-modal tasks. However, we are using a
new contrastive learning method which has enabled us to
achieve an overall lead in all evaluation metrics. Specifically,
our method SACD is 11.9% (52.5%-64.4%) higher than the
baseline in terms of accuracy, and there is also a 12.3%
(46.6%-58.9%) and 0.13 (0.47-0.60) increase in both MF1 and
κ, respectively. Compared to our next closest rival CCL, we
are also 2.1% (62.3%-64.4%), 1.9% (57.0%-58.9%) and 0.04
(0.56-0.60) higher in ACC, MF1 and κ, respectively; and our
method is also higher than the CCL in all five separate sleep
stages, as shown in the TABLE II. The above results show that
our method SACD has superior performance on our dataset
S3V E and outperforms other SOTA methods under various
evaluation metrics.

To demonstrate that our cross-modal distillation method
works not only under a single EEG modality baseline (At-
tnSleep), we also performed experiments similar to the pre-
vious section under more SOTA EEG baselines. Therefore,
we chose DeepSleepNet [45] and a single-channel version
of SEN-DAL [46] (no EOG signal is input, only a single-
channel EEG signal is input, and the two output heads of
Label Prediction and Domain Classification are still retained)
as the EEG modality baseline, and the experimental results
are shown in TABLE II. When DeepSleepNet is selected
as the EEG modality’s baseline, our SACD exceeds other
cross-modal distillation methods, including CRD and CCL,
in the S3V E dataset. Specifically, compared to the IR video
modality baseline, SACD outperforms ACC, MF1 and κ by
6.1% (54.6%-60.7%), 6.8% (47.8%-54.6%) and 0.08 (0.46-

0.54), respectively. In addition to this, SACD is superior to
existing SOTA methods in per-class accuracy. When a single-
channel version of SEN-DAL (Modified-SEN) is chosen as
the baseline for our EEG modality, our SACD outperforms
the baseline by 7.7% (54.9%-62.6%), 6.7% (48.9%-55.6%)
and 0.08 (0.48-0.56) for ACC, MF1 and kappa, respectively.
Furthermore, compared to our most competitive rival CCL, our
SACD improves by 2% (60.6%-62.6%), 1.4% (54.2%-55.6%)
and 0.03 (0.53-0.56) for ACC, MF1 and κ, respectively. In
terms of per-class accuracy, our methodology is significantly
better than the current one, except for the N1 stage, where
our SACD is slightly lower than the CCL.

To illustrate that our proposed distillation method is not
only applicable to our S3V E dataset, we also conduct ex-
periments on the UCF51 [34] public dataset. UCF51 is a
subset of UCF101 that contains audio in videos, including
6,845 videos from 51 action classes. We use the public split 1
for evaluation. We choose the pre-trained audio encoder 1D-
CNN14 [47] trained on AudioSet [48] as the teacher and freeze
its parameters. The experimental results are shown in TABLE
III and our SACD also obtains the state-of-the-art consistently
and improves over the prior methods. Specifically, in terms
of ACC, our SACD improved by 8.5% (57.5%-66.0%) over
the baseline method and by 1.1% (64.9%-66.0%) over CCL.
The results show that our method can also achieve superior
distillation results on other datasets.

In general, the above-mentioned mainstream distillation
methods we compare include single-modal distillation and
cross-modal distillation, and the latter three methods also apply
contrastive learning. Compared with them, we first introduce
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TABLE IV
SLEEP STAGE CLASSIFICATION FOR IR+EEG. METRIC:TOP1 ACCURACY

(%). (In Experiment A, We use a single fully connected layer as the
prediction head; In Experiment B, We use three fully connected layers as
the prediction head. Experiment C is a version of the released gradients
from Experiment A; Experiment D is a version of the released gradients

from Experiment B. In experiment E, we use our SACD to distill IR video
information (frozen gradients) onto the EEG baseline. In experiment F, we
use our SACD to distill IR video information (released gradients) onto the
EEG baseline. In experiment G, we use CCL to distill IR video information

(released gradients) onto the EEG baseline)

Per-class Accuracy
Methods Accuracy W N1 N2 N3 REM

Baseline R3D
(only IR video) 52.8 64.7 41.3 48.4 47.8 57.3

Baseline Attnsleep
(only EEG) 78.8 92.8 54.1 74.2 78.7 70.4

Experiment A 79.3 93.4 54.8 74.5 78.7 70.8
Experiment B 80.4 94.0 55.5 75.3 79.4 71.8
Experiment C 84.4 96.1 59.2 80.2 84.3 76.1
Experiment D 85.5 96.9 60.5 81.8 85.6 77.4
Experiment E 80.6 94.2 55.5 75.6 79.8 72.2
Experiment F 85.3 96.7 60.1 81.5 85.3 77.4
Experiment G 83.2 95.0 58.7 79.6 82.0 74.3

structural similarity across modalities, aiming to improve the
ability to deal with weak inter-class gaps while narrowing the
semantic gap. Secondly, we apply two K-hard negative sam-
ples to train highly transferable sample visual representations.
Experimental results demonstrate that our method significantly
improves cross-modal distillation on the S3V E dataset. It
also indicates that it can do sleep stage classification with
reasonable accuracy from IR sleep videos alone.

D. Evaluation of sleep stage using both the EEG and IR
modality

Our starting point is to distill the knowledge of the EEG
modality to the IR video, and we also verified our conjecture
using experiments In section V-C. This section will analyze
the complementary information in EEG and IR modalities. In
other words, is it beneficial to provide better predictions if we
combine information from these two modalities? As EEG and
IR data are naturally synchronized in the data collection, the
simplest and most effective fusion method is the late-fusion
on the features that can fully consider the interactions and
correlations between each modality. We use AttnSleep [12] as
the EEG teacher network trained on the C3 (Channel 3) data in
the S3V E training set for 58 epochs. The five-class sleep stage
classification using EEG data achieves the accuracy of 78.8%
on the validation set. For the IR baseline, we chose R3D-
18, trained for 80 epochs on our dataset S3V E. As shown
in the second row of TABLE II, the sleep stage classification
accuracy for IR video is 52.8%. We first save the weights of
the two networks, then perform the inference operation on the
80 subjects of the training set and save the encoded features
of the EEG encoder and IR video encoder of each clip. The
two model output feature dimensions must be consistent, and
we perform two experiments using 512 and 3000 dimension
features as the output, respectively. The experimental results
show little difference between the results of the two choices.

As shown in TABLE IV, high accuracy (78.8% for overall
ACC, 92.83% for stage W , 54.18% for stage N1, 74.16% for
stage N3, 78.74 for stage N3, and 70.48% for stage REM )
can already be achieved using only the EEG baseline, because
EEG is the “gold-standard” in sleep stage classification. In
experiment A, we concatenate the two 512-dimensional ten-
sors saved by the EEG and IR video encoder and use a fully-
connected layer with an input dimension of 1024 and an output
dimension of 5 as the prediction module. We train the network
for 100 epochs, and the results are in TABLE IV. It is easy
to observe that the accuracy improvement of various classes
is not obvious. Specifically, 0.5% (78.8%-79.3%) for overall
accuracy; 0.6% (92.8%-93.4%) for stage W; 0.6% (54.2%-
54.8%) for stage N1; 0.3% (74.2%-74.5%) for stage N2; 0%
(78.7%-78.7%) for stage N3; 0.4% (70.4%-70.8%) for stage
REM. We argue that the slight improvement in classification
accuracy might be because the parameters of a single MLP
classification module are not big enough to cover the dataset.
Then we select more fully-connected layers for feature-level
fusion. As shown in TABLE IV, in experiment B, we use
three fully-connected layers as the prediction module. Their
input and output dimensions are:

• Input 1024 dimensions, output 256 dimensions.
• Input 256 dimensions, output 64 dimensions.
• Input 64 dimensions, output 5 dimensions.

We use the SGD to train this prediction module for
100 epochs and the results are significantly improved com-
pared to Experiment A. Specifically, experiment B obtains
1.3% (78.8%-80.1%) improvement in overall accuracy; 1.3%
(92.8%-94.1%) for stage W ; 1.4% (54.1%-55.5%) for stage
N1; 1.1% (74.2%-75.3%) for stage N2; 1.1% (78.7%-79.8%)
for stage N3; 1.3% (70.5%-71.8%) for stage REM . In both
Experiments A and B, we freeze the gradients of the encoders
and train only the later linear projection. In contrast, in Ex-
periments C and D, we release the gradients of the encoders.
The experimental results show that the accuracy of the sleep
grading has a significant improvement of 5.6% (78.8%-84.4%)
and 6.7% (78.8%-85.5%), respectively, over using only the
EEG baseline AttnSleep.

To observe the performance of reverse distillation from the
IR video to the EEG modality, we again design Experiment
E and Experiment F , which are the frozen gradients version
and the released gradients version, respectively. It can be
observed that the results of reverse distillation reached 80.6%
and 85.3%, which is already extremely close to the fusion
version of the experiment. In addition, we also perform a
complementary experiment G (the released gradients version
of the CCL distillation method based on the reverse distillation
from IR video to EEG modality), whose overall accuracy is
2.1% (83.2%-85.2% ) lower than ours for the same setup.

From these results, we can draw the following conclusions:

• Sleep stage classification accuracy improves by using
the feature-level fusion of EEG and IR videos.

• Most importantly, we show that complementary in-
formation exists between the two modalities. In other
words, studying the cross-modal distillation of IR and
EEG modalities makes sense.
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Fig. 5. Visualization of hyperparametric analysis. (a) shows the relationship between hyperparameters λ2 and λ3 and the overall classification accuracy for
the case of fixed λ1=0.5; (b) shows the relationship between hyperparameters λ1 and λ3 and the overall classification accuracy for the case of fixed λ2=1.0;
(c) shows the relationship between hyperparameters λ1 and λ2 and the overall classification accuracy for the case of fixed λ3=1.0.

TABLE V
THE COMPLETE ABLATION ON LOSS FORMULATION. METRIC:TOP1

ACCURACY (%).

Per-class Accuracy
Methods Module Accuracy W N1 N2 N3 REM

baseline(v0) LCE 52.2 64.7 40.3 48.4 47.8 57.3
v1 LCE+LC+LJSD 56.1 67.7 43.8 52.0 50.4 59.2
v2 LCE+LD+LC 62.3 73.4 49.0 58.0 57.2 65.8
v3 LCE+LD+LJSD 60.1 71.5 45.6 55.4 54.5 63.6
v4 LCE+LD+LJSD+LC′ 61.1 72.4 46.8 56.7 55.8 64.6

ours LCE+LD+LC+LJSD 64.4 75.6 51.0 60.2 59.3 67.8

• If the cross-modal distillation method is good enough,
the accuracy of distillation from IR video to EEG
modality can be achieved with essentially the same
accuracy as the feature fusion version.

VI. ANALYSIS

A. Ablation Analysis

To demonstrate that each loss function we use is necessary,
we remove a particular loss function item by item and observe
the change in overall accuracy and per-class accuracy.

As shown in TABLE V, the specific experimental setup
is as follows. Experiment v0 removes our proposed LC , LD
and LJSD losses, keeping only the cross-entropy loss LCE ;
Experiment v1 removes the LD loss compared to the complete
SACD; Experiment v2 removes the LJSD loss compared to
the complete SACD; Experiment v3 removes the two-way K-
hard negative loss LC compared to the complete SACD; It
is worth noting that the LC′ in Experiment v4 represents
only a single direction of LC , and this set of experiment
is also designed to verify the necessity of the two way K-
hard Negative loss. TABLE V shows that Experiment v2
performed significantly worse than the complete SACD, with
2.1% (64.4%-62.3%) worse in overall accuracy and 2.2%
(75.6%-73.4%), 2.0% (51.0%-49.0%), 2.2% (60.2%-58.0%),
2.1% (59.3%-57.2%) and 2.0% (67.8%-65.8%). This suggests
that loss LJSD is effective and that the differences between
categories on LJSD are not significant. Next, we compare

the SACD with two ablation baselines. Experiment v4 and
Experiment v3, they are each removed one constraint at a time
(one-way K-hard Negative loss). It is easy to observe that the
first K-hard Negative contrastive learning significantly impacts
classification accuracy. Taking overall accuracy as an example,
when we progressively remove one-way K-hard Negative loss
and two-way K-hard Negative loss, the accuracy degrades
3.3% (64.4%-61.1%) and 4.3% (64.4%-60.1%), respectively.
It is worth noting that this loss function LC seems to be very
sensitive to different classes as its effects on the N1, N2,
and N3 stages are more significant than on the W and REM
stages. This confirms the benefit of our structure-aware coarse-
grained semantic alignment, and contrastive learning distills
more about N1, N2, and N3 stages information from EEG to
IR video modality. As shown in experiment v1 in TABLE V,
removing the LD loss function reduces the overall accuracy
of SACD by 8.3% (64.4% - 56.1%); the reduction in per-class
accuracy is similar to the decrease in overall accuracy (7.2%
to 8.9% per class). These results indicate that LD, LC , and
LJSD are complementary, and they work synergistically to
distill knowledge across modalities.

B. Quantitative Analysis

1) Hyperparameter Analysis: As described in section V-B,
our hyperparameters (λ1, λ2 and λ3) are selected as (0.5, 1,
1), the optimal ratio, reaching a overall classification accuracy
of 64.4%, λ1, λ2 and λ3 are the coefficients in front of the loss
function LD, LC and LJSD , respectively. It is what we have
obtained through a lot of comparative experiments. Next, we
will give more experimental results about hyperparameters.
Based on keeping other experimental settings constant, We
set the coefficient of lossLCE to always be only changed the
proportion of (λ1, λ2 and λ3).

To visualize the effect of different hyperparameter ratios on
the overall classification performance, as shown in Fig. 5, we
plot three figures, each fixing one parameter, to observe the
relationship between the change in the other two parameters
and the overall accuracy.
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Fig. 6. Normalized confusion matrices of the classification accuracies from our dataset S3V E. (a). confusion matrix for our method SACD. (b). confusion
matrix for baseline R(2+1)D. (c). confusion matrix for CCL [31].

Observing Fig. 5 (a), we can see that when we fix hyperpa-
rameter λ1 to 0.5 and change the value of (λ2, λ3) to (0.5, 1.0),
the overall accuracy reach the lowest value of 60.8% in this
group. When (λ2=1.0, λ3=1.0), the accuracy get the highest
value of 64.4% in this group of experiments, which shows
that when hyperparameter λ1 is fixed, increasing appropriate
hyperparameters λ2 and λ3 will improve the contribution to
the overall classification accuracy. However, when the two
values are rapidly increased to 10, the classification accuracy
rapidly decreases to 52%, which is not drawn due to the
view scale, thus showing the importance of the appropriate
hyperparameters.

Similar to the first set of experiments, we fix hyperparameter
λ2 to 1.0 and vary different values (λ1, λ3) to observe the
change in overall accuracy. As shown in Fig. 5 (b), when
(λ1=0.5, λ3=0.1), the overall classification accuracy come to
62.6%, which is the lowest value in this group of experiments;
when (λ2=0.5,λ2=1.0), the overall classification accuracy in-
crease to 64.4%, which is the highest value in this group of
experiments. When the value of (λ1, λ3) is changed from
(0.5, 1.0) to (1, 1), the accuracy decrease by 0.02% (64.4%-
64.2%), which also illustrates that the value of hyperparameter
λ1 cannot be increased without a limit. In Fig. 5 (c), we fix the
hyperparameter λ3= 1 and vary the values of hyperparameter
λ1 and hyperparameter λ2. When the value of (λ1, λ2) is (0.5,
0.1), the accuracy comes to 61.8%, which is the lowest value
in this set of experiments, and when the value of (λ1, λ2) is
(0.5, 1.0), the accuracy rises to 64.4% which is the highest
value in this set of experiments.

2) Confusion Matrix Analysis: Fig. 6 shows the results of
the confusion matrix predicted by the model. From left to
right are (a): our SACD confusion matrix, (b): the IR baseline
confusion matrix (c): the CCL confusion matrix. As can be
seen with the confusion matrices, the error rate of N1 is the
highest among all three methods. The poor performance of N1
can be attributed to the fact that many samples in N1 stage
are misclassified as W and N2 stages, since most samples

in the N1 stage belong to the sleep transition period [49]
[46]. In addition, it is also possible that the number of data in
stage N1 itself is relatively small compared to the other sleep
stages. Also, observing Fig. 6 (a), it can be found that, except
for REM , adjacent sleep stages generally tend to have higher
confusion rates than other non-adjacent stages. In contrast,
REM is more likely to be misclassified as a W1 stage. We
guess the possible reason is that N1 is a light sleep in the
immediate sleep stage, and there may be some small erratic
movements, such as manual and eye movements. However, in
REM , most dreams occur, and there are obvious rapid eye
movements. These similar features in the IR video could lead
to the occurrence of misclassification. Comparing Fig. 6 (a)
and Fig. 6 (c), we can see that we have a clear advantage over
CCL [31] in distinguishing the two sleep stages, REM and
N3, which will also be mentioned in the visualization analysis
section.

3) Statistical Correlation Analysis: To observe the correla-
tion between the model output and the AHI (interest to sleep
apnea physicians), a total of 102 data from the training and test
sets were subjected to statistical analysis. The details are as
follows: averaging all five sleep stage features output for each
individual throughout a night according to the ground truth
labels. The averaged results represent the “average condition”
of the person’s five sleep stages, all of which have a dimension
of 512 vectors. The AHI was divided into four levels (Normal:
<5, Mild: 5-15, Moderate: 16-30, Severe: >30) to create an
AHI feature distribution, which was adjusted into four one-
hot vectors. Fig. 7 (a) is the Spearman correlation between
the “average condition” of each individual’s five sleep stages
and the overall AHI distribution; Fig. 7 (b)-(e) is the Spearman
correlations between the “average condition” of each individ-
ual’s five sleep stages and the one-hot vector of each AHI
level. The p-value values are all less than 0.05, indicating our
statistical results are confident.

As shown in Fig. 7 (a), we can observe that the correlations
for N2 and N3 are significantly higher than those for W ,
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Fig. 7. Spearman correlation analysis of SACD’s output and AHI. (a) is the Spearman correlation between the “average condition” of each individual’s five
sleep stages and the overall AHI distribution; (b)-(e) is the Spearman correlations between the “average condition” of each individual’s five sleep stages and
the one-hot vector of each AHI class.

Fig. 8. Selective Tsne visualisation of all samples N2 and N3. Output
channels in N2 (Fig. 8 (a)) and N3 (Fig. 8 (b)) with AHI speatman correlation
coefficients larger than 0.4, green for AHI Normal (AHI <5) , blue for Mild
(5<=AHI<15), orange for Moderate (15<=AHI<=30), and red for Severe
(AHI >30).

N1, and REM . Consistent with our intuitive sense, there
should indeed be a more negligible correlation between the
characteristics of W and AHI, as the characteristics of a person
while awake are inherently less relevant to sleep apnea events.
As shown in Fig. 7 (b) and Fig. 7 (d), similar to the previous
analysis, N2 and N3 are significantly more correlated than W ,
N1, and REM , suggesting that N2 and N3 are more closely
related to whether they are Normal (AHI <5) or Sever (AHI
>30). This finding is helpful for clinical medicine, where sleep
apnea physicians can look primarily at these two sleep stages.
As shown in Fig. 7 (c), the N2, N3, and REM correlations
are more similar than the W and N1 stages. As shown in
Fig. 7 (d), the correlation between REM is higher than that
of the other sleep stages. This finding is inconsistent with our
intuition and worthy of further exploration.

We visualize the output features from the following two
perspectives to further visualize the correlation between the
model output features and the AHI. Fig. 8: Tsne [50] visu-
alization of the high weight channel for the average feature

Fig. 9. Tsne visualization of four sample N2 and N3 clips features. The
different colors represent the samples’ sleep N2 (Fig. 9 (a)) or N3 (Fig.
9 (b)) clips; Blue represents sample A; Pink represents sample B; Yellow
represents sample C; Brown represents sample D; their basic information is
shown in the TABLE VI, and we have also marked the “danger zones” where
the AHI is larger.

of all samples N2 and N3, respectively, and Fig. 9: tsne
visualization of the N2 and N3 clips (30s) features for the
four samples. As shown in Fig. 8, we make the selective
output of the N2 and N3 feature channels in Fig. 7 (a) that are
highly correlated with AHI. It is done by selecting all channels
with a spearman correlation greater than 0.4, which is also a
selective dimensionality reduction process. For N2, there are
17 such channels; for N3, there are 36 such channels; finally,
Visualization by Tsne, respectively. The different colors in Fig.
8 indicate different AHI levels, and we can observe that in (a),
the normal samples (green dots) are primarily located at the
top left of the figure, and the severe samples (red dots) are
primarily located at the bottom right of the figure. It can be
more clearly seen that certain features of the N2 output are
correlated with the AHI. Similarly, in Fig. 8 (b), the most
severe samples are located at the bottom left of the figure,
and the most normal samples are located at the top right of
the figure, which leads to a similar conclusion.
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TABLE VI
MESSAGE OF SAMPLES ABCD ; TST : TOTAL SLEEP TIME.

(NORMAL: <5, MILD : 5-15, MODERATE: 15-30, SEVERE: >30)

Index Data Gender Age Weight Sleep-related apnea-hypopnea Index
(AHI)

A 20210310 Male 37 108kg 94.2 TST
B 20200117 Male 31 66kg 0.4 TST
C 20210326 Female 58 58kg 6.9 TST
D 20210329 Female 65 64kg 26.2 TST

Fig. 10. Visualisation with Tsne [50], (a) is the feature embedding extracted
from S3V E test set using our method. (b) is the feature embedding extracted
from S3V E using baseline Res(2+1)D. (c) is the feature embedding extracted
from S3V E using CCL [31] (the orange represents W ; cyan represents N1;
blue represents N2; red represents N3; purple represents REM ).

While the Fig. 7 visualizations are performed on the average
features of all samples in the sleep stages, we next chose four
more representative samples and do Tsne [50] visualizations
of all their N2 and N3 clips. As shown in Fig. 9, unlike in
Fig. 8: the different colors in the figure represent different
samples, and each dot represents the 512-dimensional feature
distribution of a single clip for one sample. We also give the
basic information of the four individuals as a reference, as
shown in the TABLE VI. In Fig. 9 (a), it can be observed that
the larger the AHI, the more clips of the sample are distributed
in the lower right of the plot, especially the blue dots, with
a high AHI of 94.2 TST. A similar conclusion can be drawn
in Fig. 9 (b), where the larger the AHI, the more clips of
the sample are distributed in the lower left of the plot. These
two “danger zones” (areas of larger AHI) are drawn in the
diagram. Given a new subject, we can do a “feature portrait”
in the Tsne graph to get a rough guess of which AHI levels
it belongs to. We have discussed with sleep apnea physicians
the feasibility of this kind of “feature portrait” in practical
clinical application and have validated it on a number of new
examples.

C. Qualitative Results

1) Visualisation Analysis: To qualitatively understand video
representation and cross distillation, we analyze the SACD
with visualizations. When using Tsne [50] to visualize the
512-dimensional embeddings of the different sleep stages, we
can see that embeddings of different categories are grouped
into different clusters. The distances between dots in Fig.
10 represent the distances of embeddings in the higher di-
mensional space, and one can observe that the classification
results make the distances between identical classes (sleep
stages) closer and the distances between different classes
(sleep stages) farther, thus showing the success of our method.

Compared with the aggregation cluster of the baseline (Fig. 10
(b)) samples, the cluster of each class of our SACD (Fig. 10
(a)) is significantly more concentrated, which illustrates that
our method SACD’s embeddings from the same class have a
higher similarity. Compared to the aggregated clusters of CCL
[31] (Fig. 10 (c)), there are significantly fewer overlapping dots
of different colors, implying that our embeddings are more
accurate; specifically, the purple (REM ) and red (N2) parts
of Fig. 10 (c) are more confounded, whereas the species in
Fig. 10 (a) are significantly more clearly separated, indicating
that our method classifies better in REM and N3 and this
conclusion is corroborated by the section VI-B2 confusion
matrix analysis. In summary, the qualitative results show
that our SACD can learn discriminative video representations
of cross-modal distillation from EEG modality and that the
distillation performance is better than current state-of-the-art
distillation methods.

D. Qualitative Analysis on Cross-Modal Correspondence

To understand the cross-modal semantic correspondence
clearly, we provide examples of video-EEG correspondence
in Figure 11. We select five videos of five sleep stages for
analysis and gave the EEG waveforms of these five videos to
observe together. The five sleep infrared videos are misclassi-
fied using baseline R(2+1)D, but after our SACD distillation,
the results are correct. First, looking at the EEG waveform
figure, we can see that in Fig. 11 (a), the EEG waveform is
a beta wave, which usually appears in W [51]. In Fig. 11
(c), we can see the delta wave, which usually appears in N2
[51], and in Fig. 11 (e), the we can see the theta wave, which
usually appears in REM [51]. This waveform information
is easily determined by observing the EEG, indicating that
the EEG is the discernible modality with a prior knowledge
for these examples. And these information cannot be used
without the cross-modal distillation, resulting in “prediction
drift” that is prone to occur without distillation, such as
baseline R(2+1)D, and the results after distillation are all
correct. This demonstrates the usefulness of the EEG modality
for our distillation task and the effectiveness of our method.

In addition to these correct examples, we also find some
unsolvable examples in the experiment. As shown in Fig. 12
(a), both the baseline and our method have been misjudged.
We guess that the reason may be that these videos may be
at the critical point of sleep stage change. This speculation
has been mentioned in a number of previous studies [49]
[46]. It is reflected at the embedding level that the clustering
of feature embeddings may not be close enough. Our other
speculation is that the error is caused by the PSG labeling
process: the PSG gives a unique sleep classification for each
clip (30s) based on a combination of physiological signals,
with the potential problem that if the clips are partly in one
sleep stage and partly in another, then the PSG will give the
final label based on their proportion of the sleep stage. This
indirectly leads to less accurate labeling, especially when the
sleep stage is switched, and is more likely to be misclassified.
However, this problem is inherent to PSG and has nothing to
do with our algorithm, and we will find ways to correct this
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Fig. 11. IR video-EEG correspondence:visual representation of five sleep stages and their EEG waves. In these examples, our predictions are correct and
the baseline predictions are wrong. (a) a clip labeled by W . (b) a clip labeled by W . (c) a clip labeled by N2 . (d) a clip labeled by N3. (e) a clip labeled
by REM .

Fig. 12. Bad case examples: (a) example of sleep stage junction, previous clip is N3 and next clip is W . (b) Instance-level specificity, this instance’s
movement changes more frequently than normal instance

Fig. 13. Analysis of the main error types. (a) The most common error in the stage W , wrongly evaluated as stage N1; (b) The most common error in the
stage N1, wrongly evaluated as stage N2; (c) The most common error in the stage N2, wrongly evaluated as stage N1; (d) The most common error in the
stage N3, wrongly evaluated as stage N2; (e) coexisting errors;

problem in future research. In Fig. 12 (b), this is a special
instance that frequently moved throughout sleep. It gives us
the heuristic that compares to class-level. We should probably
pay more attention to the instance level when faced with these
special cases. In addition, sleep is a long-term problem; both
our method SACD and baseline do not take advantage of the
influence of time correlation, the correlation on the time axis
may help us a lot in S3V E, which is also our direction for
future work.

We produce the confusion matrice in VI-B2 for our method
SACD on the test set of S3V E to observe the most dominant
error types for each sleep stage. According to the confusion
matrix, we list the main error types corresponding to the five

stages, as shown in Fig. 13 . About Fig. 13 (a), in stage W , the
most dominant error is being misclassified as N1; We believe
that there may be some sleep-onset phases at the end of W
and the beginning of N1, where physical representations are
remarkably similar and complex to distinguish. About Fig. 13
(b), in stage N1, the most dominant error is being misclassified
as N2; About Fig. 13 (c), in stage N2, the most significant
errors are misclassified as N1 and N3, and here we have
chosen the example of misclassified N1 for illustration; It
may be that the proportion of N1 instances is relatively tiny,
and it is difficult to make better use of contrastive learning
to widen the gap between N2 and N1. This is a problem
of sample imbalance. Nevertheless, we expect to continue to
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collect some N1 data or use data enhancement methods in
the future. About Fig. 13 (d), in stage N3, the most dominant
error is being misclassified as N2; Similar to Fig. 13 (a),
this error belongs to the problem that the intersection time
is difficult to define. About Fig. 13 (e), in stage REM , the
most dominant error is being misclassified as N1; This error
is more interesting. N1 belongs to the light sleep stage, which
is more into sleep. Some samples will show that the body and
expression are not completely relaxed, which is similar to the
rapid eye movement in REM stage and the body movements
during dreaming—leading to misjudgment.

About Fig. 13 (f), this is a possible problem in any sleep
stage because the samples sometimes turn their heads to the
side of the wall, and the infrared camera cannot capture the
face; sometimes, the samples even cover their heads with
quilts. We are also unable to obtain more information; the
solution is to install an infrared camera on the edge just
above the wall to get infrared video information from multiple
viewing angles.

VII. CONCLUSIONS

In this paper, we propose a novel cross-modal distillation
dataset and benchmark for the multi-modal community. This
dataset bridges the gap between the clinical and the visual
modality and promotes the developments of the point-of-
care research. Besides the contribution of the dataset, we
also present a novel cross-modal distillation method that can
effectively reduce the cross-modal gap and facilitate the usage
of visual modality to classify the sleep stage. Experimental
results show that our method outperforms other SOTA methods
in both our dataset and the other benchmarks. With IR video
alone, the proposed method can also achieve considerable
sleep stage classification performance. We expect the proposed
method to be applied in a wider range of scenarios and hope
that more researchers will pay attention to the infrared sleep
video modality.
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