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Abstract

Self-attention based transformer models have been dom-
inating many computer vision tasks in the past few years.
Their superb model qualities heavily depend on the exces-
sively large labeled image datasets. In order to reduce the
reliance on large labeled datasets, reconstruction based
masked autoencoders are gaining popularity, which learn
high quality transferable representations from unlabeled im-
ages. For the same purpose, recent weakly supervised image
pretraining methods explore language supervision from text
captions accompanying the images. In this work, we propose
masked image pretraining on language assisted representa-
tion, dubbed as MILAN. Instead of predicting raw pixels or
low level features, our pretraining objective is to reconstruct
the image features with substantial semantic signals that are
obtained using caption supervision. Moreover, to accommo-
date our reconstruction target, we propose a more efficient
prompting decoder architecture and a semantic aware mask
sampling mechanism, which further advance the transfer
performance of the pretrained model. Experimental results
demonstrate that MILAN delivers higher accuracy than the
previous works. When the masked autoencoder is pretrained
and finetuned on ImageNet-1K dataset with an input reso-
lution of 224×224, MILAN achieves a top-1 accuracy of
85.4% on ViT-Base, surpassing previous state-of-the-arts by
1%. In the downstream semantic segmentation task, MILAN
achieves 52.7 mIoU using ViT-Base on ADE20K dataset, out-
performing previous masked pretraining results by 4 points1.

1. Introduction

In recent years, we have seen a wide adoption of applying
natural language processing (NLP) techniques in computer
vision (CV) tasks. The vision transformer (ViT) model [19]
applies the self-attention based transformer architecture to
vision tasks and have achieved remarkable performance.
However, training ViT models requires much larger labeled
datasets to avoid overfitting, such as ImageNet-22K [14] and

1Code is available at https://github.com/zejiangh/MILAN.

JFT-300M [48]. Explicitly labeling large image datasets is
hardly affordable.

Reconstruction based self-supervised pretraining can ex-
tract semantic information from unlabeled data, and has be-
come a popular method to reduce the reliance on very large
labeled datasets in both NLP and CV. It is first exemplified by
BERT [16] in NLP. Acting like a masked autoencoder [53],
BERT randomly masks some percentage of the input word
tokens and learns to reconstruct the vocabularies of those
masked tokens. Works in [3, 25, 56, 61] adopt similar tech-
niques in CV to address the data-hungry issue of ViT models.
A large percentage of the input image patches are randomly
masked with the goal of reconstructing them.

The mask autoencoders can be extended in several direc-
tions. Unlike the masked word tokens in NLP, which contain
rich semantic information, the masked image patches only
contain low-level pixel data. Several works [3, 9, 18] ex-
plore more abstract reconstruction targets, aiming to learn
higher level visual concepts. However, those methods still
only retrieve semantic signals from raw image pixels, which
by itself is a difficult task. In addition, the selection of the
reconstruction targets heavily influences the decoder design
in autoencoders, as the decoder serves to reconstruct the
masked features with the guidance from the encoder’s output
representations. Full fledged transformer blocks are used in
the decoder of MAE [25] to reconstruct masked input patches
pixel by pixel, whereas lightweight linear layer is adopted in
the decoder of MaskFeat [56] to reconstruct local features
of the image. Thus, if we were using more semantic pre-
serving reconstruction targets, a task tailored decoder archi-
tecture would be required. Furthermore, different sampling
strategies (e.g., grid, block, random) of the input image
patches affect the final performance of masked image pre-
training [25, 61]. Majority of prior arts [2, 3, 9, 18, 25, 56, 61]
sample the masked patches uniformly at random since it is
unbiased and can guarantee coverage. However, it is indiffer-
ent to more discriminative image patches and unimportant
ones, thus may suffer from slow training convergence [31].

In this work, we analyze three highly correlated aspects in
masked autoencoders: the reconstruction target, the decoder
design, and the mask sampling strategy. We propose a new
approach called MILAN, which performs masked image
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Figure 1. (a) The overall flow of MILAN. The masked autoencoder uses the outputs of the CLIP model as the reconstruction target. An
efficient prompting decoder freezes the features of the encoding tokens and only updates the mask tokens. A semantic aware sampling
is used to guide the selection of the unmasked image patches. The reconstruction loss is computed on the representation features of both
masked and unmasked patches. (b) A detailed diagram of the prompting decoder. (c) The attention computation in the prompting decoder.

pretraining on language assisted representations. In specific:

(1) We recognize the limitation of extracting semantic
signals from raw image pixels alone. But such signals are
readily available in the captions accompanying the images.
Recent works such as CLIP [43], SLIP [40], and COCA [64]
explore the use of caption supervision to learn image rep-
resentations on abundant image-text pairs obtained from
the Internet. The output image features from those mod-
els implicitly contain semantic information that facilitates
the interpretation of the image contents. In this work, we
take the image features coming out of the CLIP image en-
coder [43] as the reconstruction targets for the masked image
pretraining, which benefits from natural language supervi-
sion and encourages the model to learn high level visual
concepts. More interestingly, we will show that the quality
of the representation improves on the targets after masked
image pretraining.

(2) We realize the tight coupling between the decoder
architecture and the reconstruction targets. We design an ef-
ficient prompting decoder suitable for reconstruction targets
that are latent representations containing affluent semantic
signals. It freezes the encoder’s output representations of
the unmasked patches and uses them as “fixed prompts” to
reconstruct the features of the masked patches. Prompting
decoder achieves higher accuracy and reduces the decoding
computational cost simultaneously.

(3) Different image patch sampling strategies impact pre-
training efficiency. Since our reconstruction targets provide

global structure information of the images, we propose a
semantic aware mask sampling mechanism to discriminate
semantically important image patches from the insignificant
background patches, which improves representation quality
and pretraining efficiency.

(4) Combining the three aspects leads to our MILAN
framework (Figure 1). Experimentally, our ViT-Base and
ViT-Large models pretrained and finetuned on ImageNet-1K
dataset achieve 86.4% and 88.3% top-1 accuracy, respec-
tively. Moreover, MILAN significantly boosts the linear
probing accuracy compared to reconstruction based and
language-image based pretraining methods, and achieves
state-of-the-art performance on the downstream object de-
tection, instance segmentation, and semantic segmentation
tasks.

2. Methodology
2.1. Overview

The overall flow of MILAN is illustrated in Figure 1(a).
We use a masked autoencoder architecture similar to MAE
[25]. The encoder transforms the unmasked patches into
latent representations. The decoder reconstructs the repre-
sentations of the masked patches assisted by the features
of the unmasked patches. We use the latent features that
the CLIP image encoder produces from the full image as
the reconstruction targets, which are contextualized repre-
sentations based on the global structure of the image and
caption information. The attention map is extracted from
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(a) MAE pretrained (b) CLIP image encoder (c) MILAN pretrained (d) MILAN finetuned

Figure 2. t-SNE visualization of the learned features from ViT-Base obtained by different pretraining methods. We plot the features before
the final linear head. We use images of randomly sampled 20 classes in ImageNet-1K validation split.

the last self-attention layer of the CLIP image encoder and
is used to construct a semantic aware sampling distribution
to sample unmasked patches. The sampled patches are sent
into the encoder and mapped to the latent feature space. We
design a prompting decoder that freezes the encoder’s output
when hallucinating the features of the masked patches from
mask tokens. As shown in Figure 1(b), the query of the
attention block in the prompting decoder only contains the
features of mask tokens. The key and value matrices com-
prise both the encoder’s outputs and the features of mask
tokens. The masked patches’ features from the prompting
decoder and the unmasked patches’ features from the en-
coder are combined at the end. We re-order the combined
full set of features to align with the targets, and compute the
reconstruction loss.

MILAN differs from its closely related MAE in: 1) the
targets we predict are latent representations obtained with
language guidance, whereas MAE reconstructs raw pixels;
2) mask sampling in MILAN is more adapted to patches’
discriminativeness in contrast to MAE’s uniform sampling;
3) our prompting decoder does not update the encoder’s
output and thus is more efficient.

2.2. Reconstruction target: language assisted rep-
resentation

The reconstruction target is a crucial component in
masked image pretraining. It influences the semantics of
the learned latent representations. Language naturally con-
tains rich semantics, while such information is more difficult
to extract from image pixels directly. Thus, an image-text
pair provides more meaningful learning signals than an im-
age alone. In practice, texts accompanying images can be
easily obtained at scale in the form of image captions. Such
large unlabeled image-text datasets foster a series of weakly-
supervised image pretraining methods [34, 40, 43, 47] with
caption supervision. It is expected that the visual represen-
tations learned with language guidance can provide afflu-
ent semantic information. Therefore, we take the language
assisted representations as the reconstruction target in our
masked image pretraining framework.

In this work, we primarily use the pretrained CLIP [43]
model to generate the reconstruction targets. CLIP is trained
on a dataset containing images and free-form text captions
with InfoNCE loss [51]. The model has an image encoder
and a text encoder, both using the transformer architecture.
The encoded image and text features are projected to the
same dimension and normalized. Given a batch of image-
text pairs, CLIP trains the image encoder and the text encoder
by maximizing the feature cosine similarity for the matching
image-text pairs in the batch while minimizing the cosine
similarity for all other non-matching pairs. Though without
labeling data, the image features are trained to be close to the
paired text features and distill the rich semantics embedded
in the text features. This is illustrated in Figure 2, where
the last layer features produced by MAE’s pretrained model,
CLIP’s image encoder, and our pretrained model are visu-
alized by t-SNE plots. As shown, the representations from
CLIP’s image encoder for each category tend to be grouped
together while the pretrained model from MAE cannot dis-
tinguish the visual concepts in diffferent categories. MILAN
adopts the image features from CLIP as the target and trains
the model with a more challenging masked prediction ob-
jective. The learned representations are better clustered for
different categories.

The pretraining objective of MILAN is formally de-
scribed as follows. Let fθ denote the CLIP image encoder,
whose weights θ are frozen. The masked autoencoder under
training comprises encoder gξ with weights ξ and decoder
hν with weights ν. From a given full image x, the CLIP
image encoder outputs the target features {tj}Nj=1 = fθ(x)
where N is the number of image patches. We mask a high
portion of patches in x, and obtain a masked image x̃. The
masked autoencoder outputs the reconstructed representa-
tions {pj}Nj=1 = (hν ◦ gξ)(x̃). We apply `2-normalization
to both the targets and reconstructions: t̄j = tj/‖tj‖2,
p̄j = pj/‖pj‖2 for j ∈ [N ]. Finally, we define the fol-
lowing mean squared error between the normalized target
features and reconstructed representations:

Lξ,ν = (1/N) ·
∑N

j=1
‖p̄j − t̄j‖22. (1)
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MILAN learns the weights ξ, ν of the masked autoencoder
by minimizing objective 1. Note that the reconstruction loss
is computed on the features of both masked and unmasked
patches.

2.3. Decoder design: prompting decoder

Since the decoder is discarded after pretraining, the en-
coder needs to learn rich semantic information in the latent
representations of the unmasked patches from the recon-
struction target. To achieve so, the functional roles of the
encoder and decoder need to be clearly segregated. All rep-
resentation learning for the unmasked patches is completed
in the encoder, while the decoder is only for predicting the
target features of the masked patches. However, in some
previous works [3,61], the decoder is as simple as one linear
layer, which may be insufficient to reconstruct the masked
representations, and portions of the encoder may serve as
the decoder. MAE [25] uses a deep decoder that not only
updates the mask tokens but also enhances the features of
the unmasked patches. Because our method reconstructs
language guided latent representations instead of raw pix-
els, the encoder’s outputs should only provide clues to the
decoder to complete the missing patches’ features without
being updated in the decoder. Otherwise, the representation
quality from the encoder becomes sub-optimal.

In MILAN, we propose a prompting decoder shown in
Figure 1(b), where the representations of the unmasked
patches from the encoder are frozen, serving as “fixed
prompts”. They are appended to the keys and values in each
attention module of the prompting decoder’s transformer
block while the queries only contain the features of mask
tokens. In specific, the multi-head attention (MHA) module
in Figure 1(b) performs the following operations:

MHA(X,Z) = Attn
(
XWq , cat(Z,XWk), cat(Z,XWv)

)
,

=

H∑
h=1

softmax(
XWh

q cat(Z,XWh
k )T

√
dh

)cat(Z,XWh
v )Wh

o .

(2)
In (2), X and Z are the features of mask tokens and the
encoder’s outputs, respectively. “Attn” is short for the
softmax attention operation. “cat” means concatenating
along the sequence dimension. H is the number of heads.
Wh
q ,W

h
k ,W

h
v ,W

h
o represent the query, key, value and out-

put projection weight matrices in each head. dh is the embed-
ding dimension in each head. As shown in Figure 1(c), our
prompting decoder only computes the self-attention among
the features of mask tokens and the cross-attention between
the encoder’s output and the features of mask tokens. More-
over, the FFN modules in the prompting decoder only com-
pute on the features of mask tokens.

Using the default 75% masking ratio, our prompting de-
coder reduces the decoding computation cost by 20% com-
pared to MAE [25]. More importantly, prompting decoder

improves the finetuning accuracy significantly, as will be
analyzed in Section 3.1.

2.4. Masking strategy: semantic aware sampling

To make the masked image pretraining a meaningful pre-
text task, previous works mask a very high portion of input
image patches uniformly at random. With this aggressive
masking strategy, it is possible that the remaining few visible
patches only contain background information, which may
not provide the important clues needed to reconstruct the
foreground objects buried in the piles of masked patches,
obstructing the model to learn transferable representations.
This becomes a more severe problem in our framework, be-
cause the latent representations from the encoder are frozen
in the decoding process. To ensure the representation quality
of the pretrained model, previous methods [2, 25, 56] usually
require very long pretraining epochs.

To improve the pretraining efficiency, we propose a se-
mantic aware mask sampling strategy that can make more
rational decisions on which patches to mask when using a
very high masking ratio. The idea is that the few visible
patches fed into the encoder cover important image regions
with high probabilities, so that the latent representations
from the encoder provide sufficient clues to the decoder to
predict the representations of the masked patches.

To discriminate the semantically important patches from
the unimportant ones, we use the attention weights from the
last self-attention layer in the CLIP image encoder, which
takes the patches of the entire image and an extra class token
as input. Denote the input features to the last self-attention
layer of the CLIP image encoder by [zclass; z1; ...; zN ] ∈
R(N+1)×d, where N is the sequence length and d is the
embedding dimension. The interaction between the class
token and other features is given by the following attention
mechanism:

sclass = softmax(qclassK
T /
√
d), (3)

where sclass ∈ R1×(1+N) is the attention vector of the class
token. qclass = zclassWq is the query vector of the class
token, and K = [zclass; z1; ...; zN ]Wk is the key matrix,
where the query and key projection matrices have dimensions
Wq,Wk ∈ Rd×d. For simplicity, we show a single-head at-
tention in (3). When multiple attention heads are present,
sclass is obtained by averaging over all the heads. Because
the class token from the last layer of the CLIP image en-
coder is used to align with the text embedding from the
text encoder, sclass reflects how much information one image
patch contributes to the output features of the CLIP image
encoder. The magnitude of the i-th element in sclass, denoted
by sclass(i), indicates whether the i-th patch is semantically
important or not. The attention vector sclass provides us
the premise to design a non-uniform sampling distribution.
Due to the softmax operation, we can regard sclass(i) as the

4



Method Training data Res. ViT-Base ViT-Large
Epochs Top-1 (%) Epochs Top-1 (%)

Supervised [50] IN1K 224 - 83.8 (+1.6) - 84.9 (+2.9)

contrastive or clustering based
MoCov3 [11] IN1K 224 300 83.2 (+2.2) 300 84.1 (+3.7)
DINO [6] IN1K 224 400 82.8 (+2.6) - -
Mugs [70] IN1K 224 1600 84.3 (+1.1) - -
iBOT [69] IN22K&1K 224 320 84.4 (+1.0) 200 86.3 (+1.5)

reconstruction based
BEiT [3] D250M+IN22K&1K 224 150 83.7 (+1.7) 150 86.0 (+1.8)
mc-BEiT [33] OI9M+IN1K 224 800 84.1 (+1.3) 800 85.6 (+2.2)
PeCo [18] IN1K 224 800 84.5 (+0.9) 800 86.5 (+1.3)
SimMIM [61] IN1K 224 800 83.8 (+1.6) - -
MaskFeat [56] IN1K 224 1600 84.0 (+1.4) 1600 85.7 (+2.1)
data2vec [2] IN1K 224 800 84.2 (+1.2) 1600 86.6 (+1.2)
CAE [9] D250M+IN1K 224 1600 83.9 (+1.5) 1600 86.3 (+1.5)
MAE [25] IN1K 224 1600 83.6 (+1.8) 1600 85.9 (+1.9)

language-image pretraining based
CLIP [43] OpenAI400M+IN1K 224 - 82.1 (+3.3) - 85.3 (+2.5)
MVP [57] OpenAI400M+IN1K 224 300 84.4 (+1.0) 300 86.3 (+1.5)

MILAN OpenAI400M+IN1K 224 400 85.4 400 87.8
Supervised [19] JFT300M+IN1K 384 90 84.2 (+2.2) 90 87.1 (+1.2)
BEiT [3] D250M+IN1K 384 800 84.6 (+1.8) 800 86.3 (+2.0)
SWAG [47] IG3.6B+IN1K 384 2 85.3 (+1.1) - -

MILAN OpenAI400M+IN1K 384 400 86.4 400 88.3

Table 1. Comparison of the finetuning top-1 accuracy on ImageNet-1K dataset. All models are pretrained with 224×224 input resolution.
We compare finetuning with both 224×224 and 384×384 resolutions. “Epochs” refer to the pretraining epochs. “-”: not reported by the
original paper. “IN, D250M, OI9M, IG3.6B” refer to ImageNet, DALL-E, OpenImages, and Instagram data, respectively.

probability of leaving the i-th patch unmasked in the input
image. Let r represent the masking ratio. The indices of
the unmasked patches are obtained by sampling a Multino-
mial distribution with probabilities {sclass(0), ..., sclass(N)}
for d(1− r)Ne trials without replacement.

3. Experiments
We pretrain the ViT-Base and ViT-Large models using MI-

LAN method on ImageNet-1K dataset for 400 epochs using
PyTorch framework on A100 machines. The detailed train-
ing setup and hyperparameters can be found in the appendix.
We use the CLIP ViT-Base and the CLIP ViT-Large image
encoders obtained from OpenAI’s paper [43] to produce the
reconstruction targets when pretraining our ViT-Base and
ViT-Large models, respectively.

3.1. Classification on ImageNet-1K

Finetuning results. Table 1 compares the finetuning accu-
racy on ImageNet-1K dataset using MILAN and previous
works on the ViT model architecture. We pretrain and fine-
tune the ViT models using ImageNet-1K dataset only. Since
the CLIP model we use is pretrained on OpenAI’s in-house

400M data, we also list it in the training data for MILAN.
However, we only use its image encoder’s output features as
the reconstruction target for our masked autoencoder. Even
though the supervised ViT models are pretrained on the
large JFT300M dataset with explicit human labels, MILAN
still outperforms them by a clear margin, e.g., improving
ViT-Base by +2.2%.

The self-supervised pretraining methods are divided by
using contrastive or reconstruction based objectives. We
also compare with large-scale weakly-supervised pretraining
using hashtag supervision [47] from an external dataset of
3.6 billion training samples. MILAN produces higher accu-
racy than all listed prior arts. Compared with MAE, MILAN
improves the accuracy by +1.8% for ViT-Base and +1.9%
for ViT-Large.

The CLIP model learns visual representations with lan-
guage supervision on a large image-text dataset. Finetuning
the CLIP image encoder does not lead to competitive ac-
curacy. However, when using the image features from the
pretrained CLIP model as the reconstruction target to train a
mask autoencoder, MILAN improves the accuracy by 3.3%
on ViT-Base.
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Method ViT-Base ViT-Large
Epochs Top-1 (%) Epochs Top-1 (%)

contrastive or clustering based
MoCov3 [11] 300 76.7 (+3.2) 300 77.6 (+6.7)
DINO [6] 400 78.2 (+1.7) - -
iBoT [69] 1600 79.5 (+0.4) 1000 81.0 (+3.3)

reconstruction based
BEiT [3] 800 56.7 (+23.2) 800 73.5 (+10.8)
SimMIM [61] 800 56.7 (+23.2) - -
MaskFeat [56] - - 1600 67.7 (+16.6)
CAE [9] 1600 70.4 (+9.5) 1600 78.1 (+6.2)
MAE [25] 1600 68.0 (+11.9) 1600 75.8 (+8.5)

language-image pretraining based
CLIP [43] - 66.5 (+13.4) - 70.5 (+13.8)
MVP [57] 300 75.4 (+4.5) - -

MILAN 400 79.9 400 84.3

Table 2. Comparison of the linear probing top-1 accuracy on
ImageNet-1K dataset. “Epochs” refer to the pretraining epochs of
various methods. All methods adopt 224×224 input resolution in
both pretraining and linear classifier tuning.

Linear probing results. Instead of finetuning the entire
model, we also perform linear probing by appending a linear
classifier after the final layer of the pretrained model, and
only finetune the linear classifier. Table 2 compares the top-1
accuracy on ImageNet-1K dataset using various pretraining
methods. As the results show, MILAN beats the accuracy of
reconstruction based and language-image pretraining based
approaches by a large margin. It matches (on ViT-Base) and
outperforms (on ViT-Large) previous best contrastive based
methods, which learn more linearly separable representations
by instance discrimination [11] or clustering [6], and are
known to be more effective in linear probing [8, 10, 24, 26].
More linear probing results by other variants of MILAN can
be found in the appendix.

3.2. Downstream tasks

Object detection and instance segmentation on COCO.
To verify the transferability of MILAN, we evaluate it on
COCO dataset [37] for object detection and instance segmen-
tation. Following MAE [25], the pretrained ViT backbones
are adapted to FPN [36] in the Mask R-CNN framework [27],
which is finetuned end-to-end on COCO training set to pro-
duce the bounding boxes (evaluated by box AP) and the
instance masks (evaluated by mask AP) simultaneously. The
results are shown in Table 3. Compared to supervised pre-
training, MILAN performs better in both tasks, achieving 4.7
and 2.6 points improvements by APbox and APmask on ViT-
Base, respectively. Compared with the previous best result
from MAE, which is obtained by 1600-epoch pretraining,
MILAN advances APbox and APmask by 2.3 and 0.6 points
on ViT-Base but only pretrains for 400 epochs.

Semantic segmentation on ADE20K. We also transfer our
pretrained models to semantic segmentation task on the
ADE20K dataset [68]. Following the training recipe pro-
vided by MAE [25], the ViT models pretrained on ImageNet-
1K dataset serve as the backbone of UperNet [59], and are
finetuned together with the segmentation layers. In Table
3, we report the mean intersection over union (mIoU) aver-
aged over all semantic categories. Our method significantly
improves the transferring results of ViT-Base to 52.7, sur-
passing MAE by 4.6 points.

3.3. Robustness evaluation

We evaluate the robustness of our models to adversarial
examples on ImageNet-Adversarial dataset [29] and dis-
tribution shifts on ImageNet-Rendition [28] and ImageNet-
Sketch [54] datasets. We only finetune our pretrained models
on the original ImageNet-1K training set and directly run in-
ference on these different validation sets, without any special-
ized finetuning. As shown in Table 4, MILAN significantly
outperforms previous state-of-the-art models. Compared
with more advanced architecture RobustViT that is specially
designed for robustness and is pretrained on ImageNet-22K,
MILAN with vanilla ViT-Base architecture achieves accu-
racy gains of 7.9%∼19.9% on these three datasets. When
using ViT-Base, MILAN also surpasses MAE by 26.3%,
15.8% and 11.8% on these three datasets, respectively.

3.4. Ablation study

We investigate the effectiveness of the different compo-
nents in MILAN through an ablation study in Table 5. More
ablation studies on other tasks can be found in the appendix.
Here, the results are based on pretraining a ViT-Base model
on ImageNet-1K dataset for 400 epochs, followed by a 100-
epoch finetuning. We tune the optimal learning rate for each
entry, including the MAE baseline.

(1) By changing the reconstruction target from raw pixels
to language guided representations provided by CLIP, the
top-1 accuracy is improved by 0.9% (#2 vs. #1 in Table 5).
We hypothesize that the CLIP target provides more semantic
learning signals for pretraining and encourages the model
to get a good grasp of the visual contents instead of the low
level statistics.

(2) On top of the CLIP target, replacing the original de-
coder in MAE by our prompting decoder further improves
the accuracy by 1.2% (#7 vs. #2 in Table 5). We also find that
the prompting decoder does not increase accuracy when the
raw pixels are reconstructed, as the MAE model does (#3 vs.
#1 in Table 5). This big difference can be explained by the
different pretraining objectives. When the targets are in the
latent space, the encoder’s output of the unmasked patches’
representations should be able to align with the targets with-
out requiring further updates in the decoder. Therefore, in
our case of using the CLIP target, the proposed efficient
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Method Epochs Object detection Instance segmentation Semantic segmentation
ViT-B / ViT-L APbox ViT-B / ViT-L APmask ViT-B / ViT-L mIoU

Supervised [27, 59] - 47.9 (+4.7) / 49.3 (+6.6) 42.9 (+2.6) / 43.9 (+4.3) 47.4 (+5.3) / 49.9 (+8.0)
MoCov3 [11] 300 47.9 (+4.7) / 49.3 (+6.6) 42.7 (+2.8) / 44.0 (+4.2) 47.3 (+5.4) / 49.1 (+8.8)
DINO [6] 300 46.8 (+5.8) / - 41.5 (+4.0) / - 47.2 (+5.5) / -
BEiT [3] 300 42.6 (+10.) / 53.3 (+2.6) 38.8 (+6.7) / 47.1 (+1.1) 45.7 (+7.0) / 53.3 (+4.6)
PeCo [18] 300 43.9 (+8.7) / - 39.8 (+5.7) / - 46.7 (+6.0) / -
SplitMask [20] 300 46.8 (+5.8) / - 42.1 (+3.4) / - 45.7 (+7.0) / -
CAE [9] 1600 50.0 (+2.6) / 54.5 (+1.4) 44.0 (+1.5) / 47.6 (+0.6) 50.2 (+2.5) / 54.7 (+3.2)
MAE [25] 1600 50.3 (+2.3) / 53.3 (+2.6) 44.9 (+0.6) / 47.2 (+1.0) 48.1 (+4.6) / 53.6 (+4.3)

MILAN 400 52.6 / 55.9 45.5 / 48.2 52.7 / 57.9

Table 3. Results of object detection and instance segmentation are obtained by using Mask R-CNN on COCO with an input resolution of
1024×1024. Semantic segmentation results are obtained by using UperNet on ADE20K with an input resolution of 512×512. All methods
use ViT models pretrained on ImageNet-1K as backbones. “Epochs” refer to the pretraining epochs. “-”: not reported by the original paper.

Method Parameters Adversarial (%) Rendition (%) Sketch (%)

Supervised [19] 86M / 307M 27.2 (+35.0) / 29.6 (+46.3) 49.4 (+14.7) / 50.9 (+25.7) 35.6 (+10.7) / 37.5 (+19.9)
Swin [38] 88M / - 35.8 (+26.4) / - 46.6 (+17.5) / - 32.4 (+13.9) / -
RobustViT [39] 92M / - 42.3 (+19.9) / - 52.6 (+11.5) / - 38.4 (+7.9) / -
MAE [25] 86M / 307M 35.9 (+26.3) / 57.1 (+18.8) 48.3 (+15.8) / 59.9 (+16.7) 34.5 (+11.8) / 45.3 (+12.1)

MILAN 86M / 307M 62.2 / 75.9 64.1 / 76.6 46.3 / 57.4

Table 4. Comparison of robustness to adversarial examples and distribution shifts on ImageNet datatsets. We evaluate the top-1 accuracy of
our MILAN models on different ImageNet validation sets, without any specialized fine-tuning. “-”: not reported by the original paper.

CLIP Prompting Semantic Epochs Top-1 (%)target decoder sampling

#1 Baseline (MAE) 400 (1600) 83.0 (83.6)
#2 X 400 83.9
#3 X 400 83.0
#4 X 400 83.3
#5 X X 400 83.3
#6 X X 400 84.1
#7 X X 400 85.1
#8 X X X 400 (1600) 85.4 (85.6)

#9 SLIP target X X 400 84.4

Table 5. Ablation study of different components in MILAN. All
results are obtained by pretraining and finetuning ViT-Base model
on ImageNet-1K dataset at 224×224 resolution.

decoder brings in significant accuracy improvements. While
in MAE, the encoder’s output requires transformations in
the decoder to map from the latent space back to raw pixels.
The results indicate that the decoder design is heavily corre-
lated with the reconstruction target. We realize the critical
coupling effect of these two components and propose mu-
tually beneficial design choices to boost the accuracy. That
means, prompting decoder is specifically designed for the
CLIP target and applying it to the pixel target is not ben-
eficial. But when applied to CLIP target, it improves the
accuracy significantly. To further illustrate this insight, we
provide visualizations of the learned representations from

MAE, MAE+CLIP target, and our MILAN method. As
shown in Figure 3, MILAN can better extract the important
visual contents inside the images compared to both MAE
and MAE+CLIP target. This suggests that replacing the
reconstruction target alone (MVP [57]) cannot achieve the
optimal performance; the prompting decoder and semantic
aware sampling contribute significantly to learning higher
quality visual representations on top of the CLIP target.

(3) The proposed semantic aware mask sampling strategy
is generally beneficial regardless of the reconstruction target.
After applying the CLIP target and the prompting decoder,
semantic aware sampling further improves the uniformally
random sampling by 0.3%, yielding the best 85.4% accu-
racy among different model variants (#8 vs. #7 in Table 5).
Semantic aware sampling slightly reduces the pretraining
difficulty and obtains lower training loss, because it favours
more important patches. Although the task becomes easier,
this sampling strategy facilitates the model to learn better on
objects related regions in the image and the learned repre-
sentation enjoys better accuracy.

(4) To demonstrate that masked image pretraining gen-
erally benefits from the language supervised reconstruction
targets, we use a different language-image model, SLIP [40],
to generate the image features as the reconstruction target
in MILAN. Reconstructing the image features from SLIP
still outperforms reconstructing raw pixels, surpassing MAE
by 1.4% (#9 vs. #1 in Table 5). SLIP incorporates con-
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(a) (b) (c) (d)
Figure 3. Visualizations of (a) original images and attention features
from the last self-attention layer of ViT-Base models pretrained by
(b) MAE, (c) MAE+CLIP target, and (d) MILAN.

trastive image self-supervision into language-image pretrain-
ing, and finetuning SLIP’s image encoder yields an accuracy
of 82.6%. Similar to our observation on CLIP, one more
step of reconstruction based pretraining by MILAN further
improves the representation quality, boosting the accuracy
by 1.8% compared to finetuning SLIP.

Finally, we note that a very long pretraing schedule is no
longer necessary for MILAN compared to MAE. Our method
enjoys much fewer epochs while achieving higher accuracy:
MILAN achieves 85.4% after a 400-epoch pretraining, while
MAE achieves 83.6% after a 1600-epoch pretraining.

4. Related Works
Masked image pretraining. Self-supervised pretraining
aims to learn transferable representations from unlabeled
data by a pretext task [4, 17, 21, 23, 32, 51, 66]. Recent
pretraining methods revitalize the use of denoising autoen-
coders [7, 41, 42, 53, 67] to train the vision transformer
with masked prediction objectives. The model receives
incomplete images with a large portion of the patches re-
moved and learns to reconstruct the missing contents pixel
by pixel [25, 35, 61]. To inject semantics into the repre-
sentations, BEiT [3], PeCo [18] and CAE [9] predict dis-
crete visual vocabularies produced from separately trained
tokenizers [44, 45, 52]. MaskFeat [56] finds that the local
gradient features produced by the manually-crafted HOG
descriptor surpasses more complex targets. Other works like
iBOT [69], data2vec [2], and [31] adopts self-distillation,
where the model reconstructs the masked patches’ represen-
tations produced by the exponential moving average of the
model. MILAN differs that it learns the masked autoencoder
by reconstructing the latent representations that embed rich
semantic information stemming from language supervision.

Moreover, we find that freezing the encoder’s output features
in the decoder is a critical factor when the model learns to
reconstruct the latent targets. Finally, we propose a semantic
aware mask sampling mechanism and alleviate the need for
very long pretraining.
Language-Image pretraining. Learning visual representa-
tions from language supervision is not new. Early work [22]
embeds images and texts into a shared semantic space so
that the model is able to recognize classes even without ex-
plicit labels. Other methods leverage the caption supervision
to train the vision model by completing the image caption-
ing task [15] or the masked language modeling task [46].
Recently, benefiting from contrastive training [65] and the
scalability of modern backbones, CLIP [43] and ALIGN [30]
learn strong visual representations on large-scale image-text
datasets, advancing the transfer performance on the down-
stream vision tasks. Later works improve CLIP by introduc-
ing more auxiliary loss functions to assist the image-text con-
trastive loss, such as image self-supervision loss [34,40], self-
distillation loss [12], and token-wise max similarity [62]. In
this work, MILAN further improves the representation qual-
ity of language-image pretraining by incorporating masked
image pretraining.
Contrastive learning. Contrastive methods [1,5,6,8,10,11,
24, 26, 49, 55, 58, 60] learn augmentation invariance by en-
forcing similarity between different views augmented from
the same image while avoiding model collapse. The learned
representations show high linear separability and are com-
monly evaluated by linear probing. However, contrastive
learning heavily depends on strong data augmentations and
effective negative sampling. In contrast, MILAN uses a
masked prediction objective with a reconstruction loss. Our
method learns powerful representations with much simpler
data augmentations.

5. Conclusion
The masked autoencoders can extract visual concepts

from the unlabeled raw image pixels, which reduces the
heavy reliance on large labeled datasets in computer vision
tasks. However, such visual concepts may still lag the rich
semantic data the image captions contain. Understanding
images assisted by language captions has also been explored
in the weakly supervised pretraining setting. The learned
features may easily be transferred to downstream tasks via
zero shot learning. However, finetuning those models di-
rectly may not reveal competitive results. In this paper,
we combined these two lines of work to use the outputs of
language-image pretraining as the reconstruction target for
masked autoencoders, proposed a more effective decoder
architecture and a semantic aware sampling mechanism. We
have shown that by combining the two methods in the self-
supervised pretraining, we can achieve better quality than
applying each method individually.
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A. Appendix
A.1. Implementation details

Pretraining on ImageNet-1K. We follow the pretrain-
ing recipe of MAE [25], using a publicly released code-
base 2. We only pretrain ViT models for 400 epochs. We use
AdamW optimizer with a momentum of (β1 = 0.9, β2 =
0.95), a mini-batch size of 4096 and an initial learning rate
of 2.4e− 3 (scaled based on lr = base_lr× batchsize/256
where base_lr = 1.5e − 4). The learning rate is linearly
warmed up for the first 40 epochs, and decayed to zero by
a cosine learning rate schedule. The weight decay is set to
0.05. For data augmentation, we only adopt random resized
crop to 224 × 224 resolution, random horizontal flip, and
normalization. The masking ratio is set to 75%. We use
the image features generated from pretrained CLIP models
with ViT image encoders as the reconstruction targets. The
wall-clock pretraining time of MILAN for ViT-Base and
ViT-Large models take 2 days and 3 days on a machine with
8 A100 GPUs, respectively. For reference, MAE requires
1600-epoch pretraining which takes 116 hours on ViT-Base
model.

Finetuning on ImageNet-1K. We follow the finetuning
recipe of MAE [25] but tune the optimal learning rates for
our models. We only finetune 100 epochs. We use AdamW
optimizer with a momentum of (β1 = 0.9, β2 = 0.999),
a mini-batch size of 1024 and an initial learning rate of
4e− 4 (scaled based on lr = base_lr× batchsize/256 where
base_lr = 1e − 4). The learning rate is linearly warmed
up for the first 5 epochs, and decayed to zero by a cosine
learning rate schedule. The layer-wise learning rate decay
factor is set to 0.65 for ViT-Base and 0.75 for ViT-Large. The
weight decay is set to 0.05. We adopt RandAugment [13],
and set label_smoothing = 0.1,mixup = 0.8, cutmix =
1.0, drop_path = 0.1(ViT-Base), 0.2(ViT-Large).

Linear probing on ImageNet-1K. We follow the linear
probing recipe of MAE [25]. We train the linear classifier for
100 epochs. We use LARS [63] optimizer with a momentum
of 0.9, a mini-batch size of 16384, and an initial learning rate
of 3.2 for ViT-Base and 1.28 for ViT-Large. The learning rate
is linearly warmed up for the first 10 epochs, and decayed
to zero by a cosine learning rate schedule. We do not use
mixup, cutmix, drop path, or color jittering, and the weight
decay is set to zero.

Objection detection and instance segmentation on
COCO. Following [25], the pretrained ViT models by MI-
LAN are adapted to FPN [36] in the Mask R-CNN frame-
work [27], and we finetuned end-to-end on COCO training

2https://github.com/facebookresearch/mae

set [37]. We use AdamW optimizer with a momentum of
(β1 = 0.9, β2 = 0.999), a mini-batch size of 16, and an
initial learning rate of 2e− 4. The layer-wise learning rate
decay is set to 0.75 for ViT-Base and 0.85 for ViT-Large. The
weight decay is set to 0.1 and the drop path rate is set to 0.1
for ViT-Base and 0.2 for ViT-Large. We adopt the standard
1× schedule: 12 epochs with the learning rate decayed by
10 at epochs 8 and 11. The input resolution is 1024× 1024.
We do not use multi-scale testing. We build upon a public
codebase 3 that reproduces MAE’s detection results.

Semantic segmentation on ADE20K. Following [25],
the ViT models pretrained on ImageNet-1K dataset by MI-
LAN serve as the backbone of UperNet framework [59],
and are finetuned together with the segmentation layers on
ADE20K dataset [68] for 160K iterations. We use AdamW
optimizer with a momentum of (β1 = 0.9, β2 = 0.999), a
mini-batch size of 16 and an initial learning rate of 3e− 5.
The learning rate is linearly warmed up for the first 1500 iter-
ations, and decayed to zero by a poly learning rate schedule.
The layer-wise learning rate decay is set to 0.9. The weight
decay is set to 0.05 and the drop path rate is set to 0.1. The
input resolution is 512 × 512. We do not use multi-scale
testing. We build upon a public codebase 4 that reproduces
MAE’s segmentation results.

A.2. More results

Ablation study on semantic segmentation task. We also
conduct an ablation study on the different components of MI-
LAN on the semantic segmentation task, as shown in Table 6.
The results are based on pretraining a ViT-Base model on
ImageNet-1K dataset for 400 epochs, followed by finetuning
UperNet on ADE20K by 160K iterations. We find that the
overall trend is consistent with our findings in the finetuning
results on ImageNet. By changing the reconstruction target
from raw pixels to image features produced from CLIP, the
mIoU is improved by 1.1 points (#2 vs. #1 in Table 6). On
top of the CLIP target, replacing the random masking in
MAE by our semantic aware sampling (#3 vs. #2 in Table 6)
or replacing the vanilla decoder in MAE by our prompting
decoder (#4 vs. #2 in Table 6) further improves the mIoU
by 1.2 and 2.7 points, respectively. Finally, applying both
the semantic aware sampling and the prompting decoder
leads to the best 52.7 mIoU, which is 3.5 points higher than
applying the CLIP target alone and 4.6 points higher than
the MAE baseline. These results provide extra evidence that
changing the reconstruction targets alone (e.g., MVP [57])
cannot achieve the optimal performance. The majority of the
accuracy gains come from more effective prompting decoder
and semantic aware sampling in our method.

3https://github.com/hustvl/MIMDet
4https://github.com/implus/mae_segmentation
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Method mIoU
#1 Baseline (MAE) 48.1
#2 + CLIP target 49.2
#3 + CLIP target + Semantic aware sampling 50.4
#4 + CLIP target + Prompting decoder 51.9
#5 + CLIP target + Prompting decoder + Semantic aware sampling 52.7

Table 6. Ablation study on different components of MILAN on the semantic segmentation task. All results are based on ViT-Base models
that are pretrained on ImageNet-1K and finetuned on the ADE20K dataset using the UperNet segmentation framework.

Method Top-1 (%)
#1 Baseline (MAE) 62.0
#2 + CLIP target 67.1
#3 + CLIP target + Semantic aware sampling 68.1
#4 + CLIP target + Prompting decoder 79.9
#5 + CLIP target + Prompting decoder + Semantic aware sampling 78.9

#6 #5 + Semantic aware probing 80.0

Table 7. Ablation study on different components of MILAN on the linear probing task. All results are based on ViT-Base models that are
pretrained on ImageNet-1K dataset at 224×224 resolution.

Ablation study on linear probing task. We further con-
duct an ablation study on the different components of MI-
LAN on linear probing task, as shown in Table 7. The results
are based on pretraining a ViT-Base model on ImageNet-1K
dataset for 400 epochs, followed by a 100-epoch linear clas-
sifier training. Consistent with our findings on finetuning
and semantic segmentation tasks, using CLIP target brings in
accuracy improvement. By changing the reconstruction tar-
get from raw pixels to the semantic preserving CLIP features,
the top-1 accuracy is boosted by 5% (#2 vs. #1 in Table 7).
On top of the CLIP target, replacing the random masking in
MAE by our semantic aware mask sampling (#3 vs. #2 in
Table 7) or replacing the original decoder in MAE by our
prompting decoder (#4 vs. #2 in Table 7) improves the accu-
racy by 1% and 12.8%, respectively. However, inconsistent
with our findings on finetuning and semantic segmentation
tasks, applying both the prompting decoder and the semantic
aware mask sampling simultaneously does not lead to the
best accuracy (#5 vs. #4 in Table 7). We hypothesize that
the encoder model is overly adapted to those unmasked im-
portant image patches when semantic aware sampling and
prompting decoder are applied together. In linear probing,
the pretrained encoder model receives full patches, and its
weights are frozen. Only the linear classifier’s weights are
updated. Thus, the model may not be able to cope with the
image patches that are less relevant or totally irrelevant to the
objects that need to be classified, and those features degrade
the performance of the linear classifier.

To support our speculation that the pretrained encoder
may be biased towards important patches, we perform a
semantic aware probing experiment, listed as row #6 in Table

7. Specifically, the pretrained model is obtained by MILAN
with CLIP target, prompting decoder and semantic aware
sampling. When finetuning the linear classifier as well as
performing inference on the validation dataset, we select
the top 50% important image patches. Only the selected
patches are fed into the frozen encoder model to obtain the
features to train the linear classifier. Although the classifier is
trained on features from incomplete inputs, semantic aware
probing improves the accuracy to 80% (#6 vs. #5 in Table 7),
indicating that the pretrained encoder model is more adept
at extracting features from semantically important patches.

From our ablation study on the linear probing task, we
find that MILAN with random masking gives better accu-
racy the ViT-Base model. In Table 8, we include linear
probing results obtained by applying MILAN with random
masking on both ViT-Base and ViT-Large models. Com-
pared with MILAN with semantic aware sampling, the linear
probing accuracies are further improved by 1% and 0.2%,
respectively. Compared with the state-of-the-art contrastive
method [69], MILAN with random sampling achieves higher
linear probing accuracy on both ViT-Base (+0.4%) and ViT-
Large (+3.3%) models.

MILAN vs. knowledge distillation. In MILAN, the de-
coder reconstructs the representations of the masked patches
with the assistance from the encoder’s output features of the
unmasked patches. The reconstruction loss is computed on
both the encoder’s output features of the unmasked patches
and decoder’s output features of the masked patches. Here,
we perform another ablation by removing the decoder from
MILAN. The pretraining objective becomes training the en-
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Method ViT-Base ViT-Large
Epochs Top-1 (%) Epochs Top-1 (%)

contrastive or clustering based
MoCov3 [11] 300 76.7 (+3.2) 300 77.6 (+6.7)
DINO [6] 400 78.2 (+1.7) - -
iBoT [69] 1600 79.5 (+0.4) 1000 81.0 (+3.3)

reconstruction based
BEiT [3] 800 56.7 (+23.2) 800 73.5 (+10.8)
SimMIM [61] 800 56.7 (+23.2) - -
MaskFeat [56] - - 1600 67.7 (+16.6)
CAE [9] 800 68.3 (+11.6) - -
MAE [25] 1600 68.0 (+11.9) 1600 75.8 (+8.5)

language-image pretraining based
CLIP [43] - 66.5 (+13.4) - 70.5 (+13.8)
MVP [57] 300 75.4 (+4.5) - -

MILAN w/ SAS 400 78.9 (+1.0) 400 84.1 (+0.2)
MILAN w/ RS 400 79.9 400 84.3

Table 8. Comparison of the linear probing top-1 accuracy on ImageNet-1K dataset. “SAS”: semantic aware sampling. “RS”: random
sampling. “Epochs” refer to the pretraining epochs of various methods. All methods adopt 224×224 input resolution in pretraining and
linear probing.

CLIP image encoder
FT on IN1K LP on IN1K OD on COCO IS on COCO SS on ADE20K

top-1 (%) top-1 (%) APbox APmask mIoU

ViT-Base 86.7 81.6 55.0 47.5 55.3
ViT-Large 87.8 84.3 55.9 48.2 57.9

Table 9. Comparison of using different CLIP image encoders to produce the reconstruction targets for pretraining ViT-Large. We compare
the results of finetuning (FT) and linear probing (LP) on ImageNet-1K (IN1K), object detection (OD) and instance segmentation (IS) on
COCO, and semantic segmentation (SS) on ADE20K.

Method Epochs Top-1 (%)

KD 400 84.0
MILAN 400 85.4

Table 10. Compare MILAN with knowledge distillation (KD)
on ImageNet-1K using ViT-Base model. Both methods use the
representations produced by the CLIP image encoder as the target
features. We report the finetuning top-1 accuracy. “Epoch” refers
to the pretraining epochs.

coder only to predict the target features on the unmasked
patches, which can be regarded as a semantic aware knowl-
edge distillation (KD) method. For KD, we also use the
image features from the pretrained CLIP image encoder as
the target, and the pretraining loss is the mean squared error
between the normalized target features and the encoder’s
output features. After pretraining, the encoder model is
finetuned end-to-end with the same recipe a MILAN. The
results are shown in Table 10. KD achieves 84.0% top-1
accuracy, while direct finetuning of the CLIP image encoder

only yields 82.1% accuracy. Due to the possible data distri-
bution gap between the pretraining data (OpenAI’s 400M)
and the finetuning data (ImageNet-1K), finetuning the CLIP
image encoder may not lead to a strong performance. But
the gap can be overcome by pretraining the model with
a KD objective on ImageNet-1K followed by finetuning.
Moreover, MILAN achieves 1.4% higher accuracy than KD.
MILAN creates a more challenging pretraining task, where
the model not only needs to predict the latent features of the
visible unmasked patches but also learns to reconstruct the
representations of the invisible masked patches through the
decoder. The masked image reconstruction task can better
leverage the guidance from the target features and improve
the representation quality.

Impact of different CLIP image encoders. In Table 9,
we compare the results of using ViT-Base version and ViT-
Large version of the CLIP image encoder to pretrain our ViT-
Large model in the MILAN framework. The results are ob-
tained by 400 epochs of pretraining on ImageNet-1K dataset,
followed by finetuning, linear probing or transfer learning,
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(a) (b) (c) (d) (a) (b) (c) (d)

Figure 4. Visualizations of (a) original images, (b) the attention features extracted from the last self-attention layer of the ViT-Base model
pretrained by MAE, (c) MAE with CLIP reconstruction target, and (d) our MILAN method. MILAN can better extract the important visual
contents inside the images compared to both MAE and MAE with CLIP target.

Figure 5. Visualization of the original images (left), masked images by the semantic aware sampling strategy with 75% masking ratio
(middle), and the reconstruction loss patch-by-patch (right). For the plots of reconstruction loss, darker green colors indicate higher loss
values. As shown, both unmasked patches and masked foreground patches have lower losses.

using the same procedures as described in Appendix A.1. Us-
ing image features produced from the ViT-Large CLIP image
encoder as the targets consistently improves the performance
on all tasks. For example, it achieves 1.1% higher accuracy

than using the ViT-Base CLIP image encoder on ImageNet
finetuning. Our improvements on ViT-Large are consistent
with those on ViT-Base. For ViT-Large, MILAN achieved
87.8% top-1 accuracy (2.4% higher than our ViT-Base re-
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sults) at 224x224 resolution and 88.3% top-1 accuracy at
384x384 resolution on ImageNet. MILAN outperforms pre-
vious state-of-the-arts data2vec [2] and PeCo [18] by 1.2%
and 1.3%, respectively. The results clearly show that MI-
LAN scales well with model sizes.

A.3. Visualizations

In Figure 4, we provide visualizations of the learned repre-
sentations from MAE, MAE+CLIP, and our MILAN method.
MILAN can better extract the important visual contents in-
side the images compared to both MAE and MAE+CLIP,
indicating that the proposed prompting decoder and semantic
aware sampling contribute significantly to learning higher
quality visual representations on top of the using the CLIP
image features as reconstruction targets. Moreover, in Fig-
ure 5, we show that the proposed semantic aware sampling
indeed favours more important image regions. The 25% un-
masked patches cover the contents that are more related to
the objects in the images. The semantic aware sampling facil-
itates the model to learn better on more important foreground
regions, leading to accuracy improvements on finetuning, lin-
ear probing and semantic segmentation tasks as shown in
our ablation studies.

A.4. Limitation

Similar to [3, 9, 33, 57] which rely on external datasets to
train their image tokenizers, the reconstruction target in MI-
LAN is obtained from the CLIP model which also requires
an extra image-text dataset. Training the CLIP model, if it
is not amortized for many downstream tasks, is considered
an extra training step. However, in practice, we use publicly
available pretrained CLIP models, so our method does not
require a bespoke CLIP training step. Moreover, we only per-
form inference on the CLIP image encoders to produce the
reconstruction targets, which are only used in the pretraining
phase. CLIP is not used in finetuning or linear probing stages,
regardless of the classification, detection or segmentation
tasks. Although the feedfoward pass of the CLIP model in-
curs extra computation in the pretraining phase, we find that
MILAN requires much less pretraining epochs compared
to previous methods such as MAE [25] and MaskFeat [56].
For example, the actual wall-clock pretraining time of MI-
LAN for ViT-Base is only half of the pretraining time of
MAE. Moreover, the language-image models like CLIP are
becoming important and popular pretrained models to be
applied to downstream tasks. Our method can be regarded
as a useful intermediate step, given that our obtained mod-
els notably outperform these strong multi-modal models on
various vision tasks.

A.5. Societal impacts

The proposed MILAN method produces transferable rep-
resentations based on the learned statistics of the training

dataset. Therefore, the trained model may also reflect the
biases in the training data. Moreover, since MILAN uses
the image features generated from the CLIP model as the
reconstruction targets and the CLIP model itself is trained
on an uncurated image-text dataset containing English-only
captions, performance on images collected from non-English
speaking countries requires further research. In future works,
one may apply the MILAN method by taking multi-lingual
language assisted representations as the reconstruction target.
Extension to large-scale transformer model pretraining on
video datasets using the MILAN framework could also be a
future direction.
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