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Abstract. Contrastive learning has shown great potential in video rep-
resentation learning. However, existing approaches fail to sufficiently ex-
ploit short-term motion dynamics, which are crucial to various down-
stream video understanding tasks. In this paper, we propose Motion Sen-
sitive Contrastive Learning (MSCL) that injects the motion information
captured by optical flows into RGB frames to strengthen feature learn-
ing. To achieve this, in addition to clip-level global contrastive learning,
we develop Local Motion Contrastive Learning (LMCL) with frame-level
contrastive objectives across the two modalities. Moreover, we introduce
Flow Rotation Augmentation (FRA) to generate extra motion-shuffled
negative samples and Motion Differential Sampling (MDS) to accurately
screen training samples. Extensive experiments on standard benchmarks
validate the effectiveness of the proposed method. With the commonly-
used 3D ResNet-18 as the backbone, we achieve the top-1 accuracies
of 91.5% on UCF101 and 50.3% on Something-Something v2 for video
classification, and a 65.6% Top-1 Recall on UCF101 for video retrieval,
notably improving the state of the art.

Keywords: Video Representation Learning, Self-supervised Learning,
Local Motion Contrastive Learning, Motion Differential Sampling

1 Introduction

Video understanding has become a necessity in the past decade due to the rapid
and massive growth of data. In this challenging task, video representation is the
most fundamental and important issue and has received consistently increasing
attention. In the literature, many efforts have been made along with the release
of several large-scale benchmarks, such as Kinetics [25] and YouTube-8M [IJ,
where representations are learned in a supervised manner from manually anno-
tated samples. Unfortunately, building such databases inevitably incurs enor-
mous human and time cost.
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Fig.1: (a) The RGB frames are not sensitive enough to short-term motion
changes, while the optical flows are able to capture subtle motion dynamics
between frames, where the changes of motion vectors (in different colors) are
clearly observed from the flow maps. (b) Comparison between our method and
previous ones using optical flows. Existing works generate clip-level features with
temporal pooling, while we focus on more fine-grained frame-level features.

Self-supervised learning has recently emerged as a promising alternative in
visual representation. Different from the case on images that only considers spa-
tial variations, that on videos puts more emphasis in temporal characteristics. A
number of studies on videos have shown huge potential to learn general features
by making use of a tremendous amount of unlabeled data available on the Inter-
net, facilitating diverse downstream applications, including action recognition,
action detection, video retrieval, etc.

Among current self-supervised video representation learning methods, con-
trastive learning based ones [12J36] have delivered a great success. They treat
the clips from the same video as positive pairs while the ones from different
videos as negative pairs and apply the InfoNCE loss [31] to train the model,
which is expected to distinguish the clips of a given video from the ones of oth-
ers. However, clip-level contrastive learning is relatively coarse and primarily
benefits global (a.k.a. long-term) features [49] without meticulously capturing
local (a.k.a. short-term) dynamics, thus limiting the performance, in particular
in fine-grained scenarios.

More recently, some attempts have compensated this by designing and con-
ducting contrastive learning across video clips with additional views, e.g. global
vs. local [10] and long ws. short [4]. Although local temporal modeling is en-
hanced to some extent with decent improvements reported, they still suffer from
two major downsides. On the one hand, for the continuity and redundancy of
video data, it is really difficult to handle the discrepancy between the frames
within a small time slot, e.g. at adjacent timestamps, without high-level su-
pervision, making their representations not sufficiently powerful. On the other
hand, existing global-local or long-short contrastive learning requires repetitive
temporal interval sampling, leading to multiple forward processes, for a single
video, which is both time- and memory-consuming.
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In this paper, we propose a novel self-supervised contrastive based approach
for video representation learning, namely Motion Sensitive Contrast Learning
(MSCL). To overcome the shortcomings aforementioned, besides encoding the
global motion from RGB frames, it also fully exploits local temporal clues by
introducing optical flows since they prove sensitive to very short-term dynamics,
as illustrated in Fig. [1| (a). To fulfill this, we propose Local Motion Contrastive
Learning (LMCL) that directly leverages optical flows as the supervisory sig-
nal for frame-level local dynamics learning. Specifically, LMCL matches cross-
modality (RGB vs. optical flows) features at the same timestamp so that subtle
motions are modeled. Meanwhile, to restrict the temporal receptive field of flow
features in frame-level contrast, different from previous works [B7UT6/51] on clip-
level contrast, we adopt a lightweight 2D CNN as the encoder without temporal
message passing, as illustrated in Fig. [1| (b) and elaborated in Section In this
way, those features capturing local dynamics can be efficiently obtained from the
2D flow encoder, bypassing the cumbersome phase of extra local interval sam-
pling required in [4JT0]. In addition, we present two practical strategies to further
facilitate LMCL. First, as LMCL introduces frame-level contrast, clips with lim-
ited motions tend to bring negative effects to the learning process. To solve this
problem, we design Motion Differential Sampling (MDS) to enhance the sam-
pling probability of clips with large motion differential. Second, Flow Rotation
Augmentation (FRA) takes rotated flows with different motion vectors as extra
negative samples, thereby highlighting motion information on local features.

We summarize our main contributions as follows:

— We propose LMCL, taking advantage of optical flows to underline subtle
motions for frame-level contrastive learning, which substantially strengthens
self-supervised video representations.

— We present MDS and FRA to optimize temporal interval sampling and op-
tical flow augmentation respectively, both of which further facilitate LMCL.

— We achieve competitive results on several standard benchmarks, i.e., UCF101,
HMDB51, and Something-Something v2, in video classification and retrieval.

2 Related Work

2.1 Self-supervised Video Representation Learning

Various self-supervised video representation learning methods have been devised
to take advantage of unlabeled video data on the Internet. These methods learn
to accomplish various human-designed pre-tasks, including frame sorting [27],
pace prediction [45], speed prediction [5I19], and spatio-temporal jigsaw solving
[2002]. More recent works have been inspired by the success of contrastive learn-
ing in the image domain such as [I7I8IT46], which can be viewed as instance
discrimination tasks [50]. Since videos contain extra attributes that contribute
to distinguishing instances, [36/12] take time-shift as the invariant attribute and
[18[7] regard speed as the variant attribute. More generally, multiple attributes
are explored jointly by the combination of temporal transforms in [22/33]. In [34],
transforms are performed in the feature space to reduce memory consumption.
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2.2 Optical Flows in Video Understanding

Temporal information is of high importance in video understanding. Optical
flows, corresponding to motion vectors across frames, have shown potential in
modeling dynamics in the two-stream structure [39]. However, [38123] indicate
that motion information does not work as expected. For example, in supervised
action recognition, the shuffling operation at input stage has much more impact
on RGB sequences than flow ones. The motivation behind is on the property of
appearance-invariance [38], where the motion foreground is described with a low
variety. Some self-supervised learning methods can also be seen as taking advan-
tage of this property. COCLR [16] highlights the prior that videos belonging to
the same class have similar flow patterns but significant variations in the RGB
space, and MoDist [51] distills the flow information to make RGB features focus
more on motion foreground. Unlike these methods, we make use of the motion
information itself as guidance to improve the ability of modeling local dynamics
in RGB features.

2.3 Fine-grained Temporal Features

Learning local dynamics is an important topic for video understanding. Some
works attempt to improve modeling through dedicatedly designed structures
[47124] or explicit constraints [48]. But in the self-supervised learning domain,
existing methods do not pay enough attention to fine-grained temporal features.
For instance, [12I36] can be viewed as learning slow features [49], which are
more relevant to scene information. To encode more temporal clues in self-
supervised video representation learning, LSFD [4] introduces feature contrast
between long-term and grouped short-term features, and TCLR [I0] directly
compares features with different time-spans. Although these works do make im-
provements, they require extra sampled clips in the forward process for short
views and cannot take advantage of local motion information in flows.

3 Method

In this section, we introduce the proposed self-supervised framework for video
representation learning in detail. We begin by introducing the global and local
feature extraction pipelines for the two modalities (i.e., RGB and optical flow),
respectively. Subsequently, we present the commonly-used global contrastive
losses and the proposed Local Motion Contrastive Learning (LMCL), includ-
ing sample pair construction and augmentation. Finally, we introduce the mo-
tion differential sampling policy, which provides meaningful samples for learning
more effective local temporal features. An overview of our proposed framework
is illustrated in Figure

3.1 Global and Local Feature Extraction

Given a sequence of video frames, we first extract optical flow images from pairs
of frames with stride s. We learn both clip-level global and frame-level local
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Fig. 2: Overview of the proposed Motion Sensitive Contrast Learning (MSCL)
framework. Clips with large motion differentials are sampled from the video
and random augmentations are employed for generating queries {V?, M7} and
keys {V¥ M¥} w.r.t. the RGB and flow modalities. Then, global features
{I/glb, Vglb, mglb, mglb} are extracted for global contrastive learning, where EMA
indicates the momentum key encoder in [I7]. In order to inject motion dynamics
from flow to RGB features, Local Motion Contrastive Learning (LMCL) is con-
ducted based on local features {1}, m{.}. To further enforce the model to focus
on the motion information, rotation augmentation is applied on the flow inputs

and the corresponding local features 1, are used to enhance negative samples
in LMCL.

features in terms of both RGB and optical flow modalities. Specifically, we adopt
the spirit of contrastive learning to build self-supervised features, and randomly
sample video clips {V4, V¥} with the corresponding optical flows {M9, M*} as
the queries and keys. As we follow the symmetric structure of MoCo [17] where
queries and keys are encoded in a similar way, we only elaborate how to extract
features for queries for brevity.

In the RGB pathway, a 3D CNN is employed as the feature encoder, where
the output features of different stages (i.e., conv3, conv4d and convb layers) are
denoted as {v], v{, v}, respectively. We extract video-level global features based
on the output of the last stage (i.e., vd). More concretely, we apply spatio-
temporal pooling on vZ, followed by a 2-layer MLP as the projection head. For
frame-level local features, we use a 3-layer Temporal Pyramid Network (TPN)
[54] to merge multi-level features. Specifically, we compute the global features
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Vglb and the local features v, in the RGB pathway as follows:

Ve, = MLP(STPool (1)),

vl = SPool(?4), v§,0d, vd = TPN(vg, vi, vd), @
where STPool(-) and SPool(-) indicate spatio-temporal pooling and bpatial pool-
ing, respectively. In practice, we only use the first-stage output 7§ from TPN,
due to two reasons. First, the receptive fields of temporal features in later stages
of 3D CNNs (especially those with temporal down-sampling, e.g., S3D [52] and
R(241)D [43]) are too large to compute the frame-level contrastive loss. Second,
TPN makes local features benefit more from multi-level information conveyed in
the RGB image.

For the flow pathway, we use a 2D CNN as the feature encoder to extract
optical flow features. This design pushes the feature only containing the temporal
information in the single flow which benefit LMCL in Section and avoid the
temporal position leakage [21] by zero padding in 3D CNN. Since the variability
of flows is less than that of RGB frames, we decrease the number of channels to
1/8 of that of the RGB counterpart, as suggested in [ITJ51]. Different from the
RGB pathway, there exists no temporal down-sampling (i.e., temporal receptive
field is not enlarged), so we directly apply the output of the last stage m? to
extract both global and local features as follows:

mgdy, = MLP(STPool(mj)),

¢ . (2)
my, = SPool(mj).

Similarly, we can obtain the global features of the keys V* and M* w.r.t. RGB

and flow as Véb and mglb, respectively. Note that there is no need to extract

local features for the keys as the local contrastive learning is applied on the query

features only (see Sec. [3.3).

3.2 Global Contrastive Learning

In this section, we introduce the global contrastive learning based on clip-level
features. We follow the basic pipeline of MoCo [I7] for both pathways, where the
momentum encoder is employed for key inputs, and the memory bank is used
for saving negative clips. There are two types of global contrastive losses in our
method. The first intra-modality loss is applied on the features from either the
RGB or the flow modality to make them discriminative in their own domains.
Specifically, we adopt the widely-used InfoNCE [31] loss for global contrastive
learning, which is defined as:

h(Vh, Vi)
MV glb) +Z¢ L MV z,glb)

h ,mk
Lriow = —lOg ( glb glb) ;

h(mgy,, glb)+zi=1 h(Mgpys M5 g,

Lras = —log

)
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where h(z,y) = exp(zTy/||z||||y||7) is the distance between two feature vectors
x and y; Df’glb and mﬁ oIb Tepresent the i-th global features of the two modalities
in the memory bank with size N, respectively; 7 is the temperature parameter.
The second inter-modality loss is applied across the two modalities, with the aim
of making the RGB features focus more on motion foreground areas [51], which
contribute to the subsequent local contrastive learning. Concretely, the loss term
is formulated as follows:

h(Vgu,’ mglb)
N
h(”glb’mglb)+2i:1 AV 17 fglb)

h(mglbv Véib) )
N _ b)
h(mgy,, Vglb) + 2 i1 h(mgy, Vzk,glb)

Lrr = — (log +
(4)

log

and different from [51], the positive and negative keys come from the same
modality, which we find in our experiments is more stable in early training.
With the intra- and inter-modality losses, we can obtain discriminative global
features for both modalities, and at the same time focus on motion foreground
areas, which are essential for the subsequent local motion contrastive learning
phase.

3.3 Local Motion Contrastive Learning

The features learned based on the global contrastive losses have difficulty in
modeling local dynamics. To address this, we use optical flows to capture local
motion information, and introduce frame-level contrastive losses for learning
time-variant features. For the local features vl and mf,, we only take frame-
level features at the same timestamp as positive pairs. Thus, the local motion
contrastive loss can be formulated as:

h(VL(3), mL (i)
L = lo ) 5
LMe = 239 (AL (1), miL () + Y11 s (W (0), L (7)) )

where vl (i) represents the frame-level features at timestamp ¢, and T is the total
number of sampled video frames.

Flow Rotation Augmentation. To make this loss focus more on local motion
information, we augment the optical flow with extra negative samples. Specif-
ically, the flow is rotated with a specific angle that is randomly sampled from
[a, 2 — «] and the corresponding local features after rotation are treated as
negative samples. In this manner, the local motion contrastive loss turns into:

T

mecnm»+ZM%omm»
Jj= 1,3751 j=1 (6)

’ o V1c i), mh;( )
Lo = Zl ThOAL @), mE(D) + AG)
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Fig.3: (a) Illustration of Flow Rotation Augmentation (FRA). We randomly
sample one angle from [, 27 — a] and rotate the motion vector. (b) Illustration
of Motion Differential Sampling (MDS). The notations are consistent with those
in Eq. @ The foreground regions are highlighted for better viewing.

where 7], is the local query feature of the augmented flow. As shown in Figure
(a), the augmented flow shares the same outline but different motion vectors
(reflected in different colors) with the original one. The augmentation strategy
improves the ability of distinguishing local flows by motion vectors, which is in
line with the goal of learning local dynamics.

The final learning objective is a linear combination of the global and local
contrastive losses, simply weighted by a hyperparameter A:

L = Lrgs + Lriow + Lrr + AL{yio- (7)

3.4 Motion Differential Sampling

Temporal distinct features are expected to be learned after optimizing the above
LMC loss. However, if the motion is similar across different timestamps, it is
still difficult for the model to distinguish the corresponding local features. To
address this issue, Motion Differential Sampling (MDS) is proposed to enhance
the training procedure by choosing samples with larger motion differentials in
the foreground. More concretely, suppose oy = {x¢, y:} and opys = {Tiys, Yrrs}
are two adjacent flow maps, we calculate the weighted map w; that coarsely
locates the motion foreground at timestamp ¢ as:

wy = softmax(up_down(Sobel(o;))), (8)
where Sobel(-) is the Sobel operator [40] for motion boundary detection and

up_down(-) is a coarsening operator implemented by downsampling and upsam-
pling with stride r, which is set to 28 in practice. Then, the motion differentials
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in the foreground area can be defined as:

ar = v(0) 0 Wy, Qs = V(0445) © Wes,

z¢ = sum(d(ay, atys))

(9)

where v(-) follows [3] to convert flows into RGB images, d(-) calculates the Eu-
clidean distance along the channel dimension, s is the stride between frames, o is
the Hadamard product, and sum(+) is the summation operation in the spatial do-
main. More concretely, at timestamp t, we first calculate the pixel-level distance
map between two masked flow maps in the RGB space, and then the differential
value z; is the summation of the distance map. As the samples with larger motion
differentials in the foreground contribute more to LMCL, we use the differential
value as measurement. For one clip, we take the averaged frame-level differential
values as the clip-level score. Finally, MDS is performed by choosing those clips,
whose differential values are above the threshold, which is simply the median of
the values of all candidate clips in the same video.

4 Experiments

4.1 Datasets

The UCF101 [41] and Kinetics400 (K400) [25] datasets are used for pre-training.
To evaluate the action classification task, we conduct experiments on UCF101,
HMDB51 [26], as well as Something-Something v2 (SSv2) [I3]. As for the video
retrieval task, we employ the UCF101 and HMDB51 datasets.

4.2 Experimental Settings

Backbones. For the RGB pathway, we follow the common practice in [4J10] and
choose ResNet3D-18 (R3D-18) as the general backbone. We also use S3D [52] as
the auxiliary backbone for apple-to-apple comparison with more counterparts.
For the flow modality, thanks to its simple appearances, we always use ResNet-18
with 1/8 channels as the backbone.

Pre-training Details. The input clip contains 8 frames with the stride of 16
for K400 and 8 for UCF101, as the latter does not have sufficient frames for
large strides. We use a 2-layer MLP like [9] for both pathways. For the RGB
inputs, we follow the augmentation in [9] including random grayscale, color jitter,
Gaussian blur and horizontal flip. For the motion inputs, we extract flows by
RAFT [42] and visualize them to 3-channel images. For the consistency in motion
information, we copy the flip transforms in RGB inputs to the corresponding
motion ones and ignore other augmentations. During training, « is set to 7/3
and the rotation angle keeps consistent in one clip. We set the memory size N to
65,536 and the temperature 7 is 0.07. The model is pre-trained with 200 epochs
on the K400 training set and 600 epochs on the UCF101 training set (split-1),
with a batch size of 128. The initial learning rate is 0.01 and decreased by the
cosine schedule [30]. The optimizer is SGD with a momentum of 0.9 and a weight
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Table 1: Ablation study on different designs of MSCL.

Contrastive Losses LMCL Policies Finetune Retrival R@1
Lrr Limvc FA MDS 3D UCF101 SSV2 UCF101 HMDB51

65.1 39.1 22.0 13.7

v 71.4 41.0 36.5 22.1
v v 71.2 41.3 35.6 23.6

v 70.5 40.3 31.2 19.6
v v 75.6 42.2 45.7 26.7
v v v 76.8 42.5 47.3 27.9
v v v 76.4 42.6 46.5 27.2
v v v v 77.3 42.9 48.0 28.1

decay of 1le — 4. After pre-training, the RGB backbone is used as initialization
parameters for other video tasks. In ablation study, we conduct all experiments
on the subset of K400 with 80k videos like [53] and reduce the epochs to 100.
Downstream Tasks. We follow the evaluation protocol in [16], including two
types of downstream tasks. (1) Action classification: we add a single layer for
classification and then train the full model with both the linear probe and fine-
tune policy. We evaluate the top-1 accuracy. (2) Action retrieval: the backbone is
directly used for feature extraction and no further training is required. We take
the representations of videos from the test set to query the k-nearest neighbours
(k-NNs) in the training set and report Recall at k (RQk) for comparison.

4.3 Ablation Study

Motion Sensitive Contrastive Learning. We analyze how different designs
contribute to MSCL, including the contrastive losses Lgr and Lyyic as well as
the MDS and FRA strategies. When only Lgp is used, we add the experiment
with the 3D backbone in the flow pathway, as there is no need to keep the flow fea-
tures corresponding to very short-term motions without LMCL. The results are
summarized in Table [I} The cross-modality contrastive loss Lgr and local mo-
tion contrastive loss Liyc are complementary. As shown in [51], Lgr forces the
model to focus on motion areas, which improves the appearance-invariant prop-
erty (features are activated on motion areas regardless of appearances). Then,
Limc enhances modeling local dynamics, which exhibits consistent performance
gains. The comparison also demonstrates the potential of motion information in
optical flows, which is not fully explored in recent self-supervised works. MDS
and FRA boost the results independently and their combination leads to further
improvement. Their contributions lie in different perspectives: MDS provides
better training samples for LMCL and FRA aims at motion-related features.

Feature Extractor. Here, we first study the effect of the 2D backbone in the
flow pathway. To achieve this, we exchange 2D ResNet-18 with 3D ResNet-18,
whose temporal receptive field is enlarged by pooling and convolution. From the
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Table 2: Ablation study on the feature extractor.

Flow Backbone Finetune Retrieval R@Q1
Arch T-pad TPN UCF101 SSV2 UCF101 HMDB51
R3D-18 Zero 71.3 41.3 35.6 23.6
R3D-18 reflect 70.7 40.8 33.9 22.1
ResNet-18 Zero 72.3 40.8 38.6 23.9
ResNet-18 Zero v 75.6 42.2 45.7 26.7

results shown in Table[2] we can see that the 3D network delivers the worst per-
formance, due to that zero padding incurs the leakage of the position information
as [21] shows, which degrades LMCL. The result of a 3D network without reflect
padding is also inferior, which verifies that detailed dynamics in the flow features
encoded by 2D CNNs are more crucial to LMCL. We also present the effect of
TPN in the RGB pathway. The model without TPN directly uses the conv3 out-
put and adds one more fully-connected layer for consistency in depth. As Table
shows, TPN boosts the performance in terms of all the metrics. This can be
attributed to the fact that multi-level local features improve the collaboration
with global features (from convb).

Interval Sampling. We study the effect of the proposed MDS by ablating the
score function. In Table [3] we observe that when combining both the weight and
differential maps, the result is significantly improved, much better than either
of the single ones. This phenomenon shows that large motion differentials on
foreground areas are beneficial for LMCL.

Flow Rotation. Table [4] shows how different rotation ranges influence video
representation learning. From the table, we can see that larger ranges usually
lead to better results, which is probably due to that augmented flows increase
the difficulty of LMCL, making the features focus more on motion dynamics. It
is also noteworthy that the performance decreases a bit when the rotation angle
is very small. In this case, the augmented flow is similar to the original one,
which confuses the contrastive learning procedure.

How LMCL Works? The model can learn to optimize Lryc from two as-
pects: the motion vector itself and the deformation of the object. We show that
LMCL indeed takes advantage of both factors. To verify this, we remove Lgrp
and conduct two kinds of experiments. First, we employ the original Liyc with-
out augmentation in Eq. , and take the motion boundary (extracted by the
Sobel operator [40]) as input. In this manner, motion vectors are removed from
the flow map. From Table [5] we can see the motion boundary obtains inferior
results compared with the flow input, indicating both vector information and de-
formation are considered in LMCL. Second, we study the superiority of LMCL in
learning motion information. To this end, we conduct experiments which directly
learn to recognize these transforms. More concretely, we only use the augmented
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Table 3: Ablation on sampling methods. Table 4: Ablation on rotation ranges.

Finetune Finetune
Score Function UCF101 SSV2 Rotation Range UCF101 SSV2
- 75.6 422 - 75.6  42.2
sum (w; ) 757 422 [7/2,37/2] 760 423
sum (o) 76.1 423 [7/3,57/3] 76.8  42.5
sum(azow)  76.8  42.5 [x/6,117/6] 765 424

Table 5: Ablation study on different paradigms for learning motion information.

Finetune Retrival R@Q1

Flow Input Linvc Aug. UCF101 SSV2 UCF101 HMDB51
flow Eq.(5) - 70.5 40.3 31.2 19.6
boundary Eq.(5) - 68.2 39.3 30.2 17.7
- - - 65.1 39.1 22.0 13.7
flow shift 66.9 39.2 27.3 15.7
flow rotate 66.7 39.4 27.2 14.8
flow shift+rotate 66.9 39.5 27.2 15.7

flows as negative samples, i.e., A(i) in Eq. (6)) becomes:

N
IEDBUCHORMO (10)

where Th;{l .(4) indicates the local feature of the j-th augmented flow at timestamp
1, and N is the number of augmentations, which is set to 3. Note that, different
from Eq. @, the augmented negative sample at each timestamp is independent.
To take the deformation into consideration, we use shift with the same padding
as the extra augmentation. Table[f] depicts the results, which, interestingly, show
negligible improvement. This, once again, verifies the necessity and effectiveness
of the proposed LMCL.

4.4 Comparison to State-of-the-Art Methods

Action Classification. We first evaluate our method on the action classifica-
tion task. The results including the linear probe and fine-tune policy are shown
in Table [6] In terms of the K400 pre-training setting, MSCL outperforms pre-
vious methods with the same R3D-18 backbone. For the major counterpart,
MoDist [51], MSCL can achieve better top-1 accuracies on both datasets with
only half of the epochs. We also notice that the results are still lower than those
of the methods like CVRL or pMoCo and the reason lies in that they use the
more advanced R3D-50 backbone and more training epochs. When pre-training
is applied on UCF101 only, MSCL can achieve better results. We also perform
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Table 6: Action classification results on UCF101 and HMDB51. ‘U+1’ denotes
the combination of UCF101 and ImageNet. Note that ‘Sizes’ refer to the test
setting.

Method Network  Year  Dataset Sizes  Epochs UCF101 HMDB51
Playback [56] R18 2020 UCF101 16x112 300 69.0/- 33.7/-

CoCLR [I6]  S3D 2020 UCF101 32x224 - 81.4/70.2 52.1/39.1
MFO [35] R18 2021 UCF101 16x112 300 76.2/- 44.1/ -
TCLR [10] R18 2021 UCF101 16x112 400 824/- 52.9/ -
Ours R18 - UCF101 8x112 400 82.1/72.553.7/39.9
Ours R18 - UCFI101 16x112 400 86.7/77.1 58.9/45.3
TCLR [10] R18 2021 K400 16x112 100 84.1/- 53.6/ -
VideoMoCo[32]  R18 2021 K400 32x112 200 74.1/- 43.6/ -
MFO [35] R18 2021 K400 16x112 100  79.1/63.2 47.6/33.4
LSFD [4] R18 2021 K400 16x112 500 77.2/-  53.7/-
ASCNet [I8]  RI8 2021 K400 16x112 200 80.5/-  52.3/-
MCN [29] R18 2021 K400 32x128 500  89.7/73.1 59.3/42.9
TE [22] R18 2021 K400 16x128 200 87.1/-  63.6/-
MoDist [5I]  RI8 2021 K400 32x112 800  91.3/90.4 62.1/57.5
CVRL [36] R50 2021 K400 32x256 800  92.2/89.2 66.7/57.3
pMoCo [I2]  R50 2021 K400 8x256 200 91.0/- - /-
Ours R18 - K400 16x112 200  90.7/86.1 62.3/55.6
Ours R18 - K400 16x112 400 91.5/88.7 62.8/56.5

Table 7: Action classification results on SSv2. T denotes our reproduced result.

Method Network Year Dataset Size Epochs Top-1
RSPNet [7] R18 2021 K400 16x112 50 44.0
MoDist [51]° R18 2021 K400 16x112 200 49.1

Ours R18 - K400 16x112 200 50.3

evaluation on the SSv2 dataset in Table [7|and reproduce MoDist [51] under the
same training setting, where the results show MSCL outperforms others with a
50.3% top-1 accuracy.

Video Retrieval. Similar to the action classification task above, we validate
our method with two pre-training datasets and the results are shown in Table ]
On the K400 dataset, our method outperforms the recent state-of-the-art ones
with RQ1 of 63.7 and 32.6, respectively. On the UCF101 dataset, our method
performs better on UCF101 but slightly worse on HMDB51 when compared with
the advanced counterpart TE [22]. It is worth noting that MCL [28] applies extra
MoCo [I7] pre-training on ImageNet, which takes advantage of more training
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Table 8: Video retrieval performance on UCF101 and HMDB51. T indicates ad-
ditional pretraining on ImageNet is applied.

UCF101 HMDB51
Method Network Year Dataset R@l1 R@5 R@10 R@1 R@5 R@I10

MemDPC [I5] R18 2020 UCF101 20.2 404 524 7.7 25.7  40.6
CoCLR [16] S3D 2020 UCF101 53.3 694 820 232 432 53.5
BE [46] R18 2021 UCF101 11.9 31.3 445 - - -
TCLR [10] R18 2021 UCF101 56.2 722 79.0 228 454 578
MFO [35] R18 2021 UCF101 39.6 576 69.2 18.8  39.2 51.0
MCN [29] R18 2021 UCF101 53.8 70.2 783 24.1 46.8  59.7

TE [22) RIS 2021 UCF101 63.6 79.0 84.8 322 61.3 71.6
Ours $3D - UCF101 632 787 839 258 521 66.5
Ours RI8 - UCFI0l 656 80.3 861 289 562 68.3
SpeedNet [5]  S3D 2020 K400 13.0 281 375 - - -
STS [44] RI8 2021 K400 383 59.9 689 180 372 50.7
MFO [35]  RI18 2021 K400 415 60.6 712 207 408 552
LSFD [4] RIS 2021 K400 449 64.0 73.2 267 547 66.4
Ours RI8 - K400 637 791 840 326 585 705

data. These results also demonstrate the effectiveness of MSCL on the retrieval
task.

5 Conclusion

In this work, we propose a self-supervised learning framework, namely MSCL, to
build motion sensitive video representations. We perform clip-level contrastive
learning with intra-modality and inter-modality losses as well as frame-level
contrastive learning LMCL to inject motion dynamics from optical flows into
RGB frames. Moreover, FRA and MDS are developed to further enhance the
contrastive learning procedure by providing better motion-related features and
training samples, respectively. Extensive experiments on standard benchmarks
show that our MSCL leads to significant performance gains over state-of-the-art
methods in terms of two downstream tasks.
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