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Abstract—This paper proposes a method to reconstruct the
neural radiance field with equirectangular omnidirectional im-
ages. Implicit neural scene representation with a radiance field
can reconstruct the 3D shape of a scene continuously within a
limited spatial area. However, training a fully implicit represen-
tation on commercial PC hardware requires a lot of time and
computing resources (15 ∼ 20 hours per scene). Therefore, we
propose a method to accelerate this process significantly (20 ∼ 40
minutes per scene). Instead of using a fully implicit representation
of rays for radiance field reconstruction, we adopt feature voxels
that contain density and color features in tensors. Considering
omnidirectional equirectangular input and the camera layout,
we use spherical voxelization for representation instead of cubic
representation. Our voxelization method could balance the recon-
struction quality of the inner scene and outer scene. In addition,
we adopt the axis-aligned positional encoding method on the
color features to increase the total image quality. Our method
achieves satisfying empirical performance on synthetic datasets
with random camera poses. Moreover, we test our method with
real scenes which contain complex geometries and also achieve
state-of-the-art performance. Our code and complete dataset will
be released at the same time as the paper publication.

Index Terms—Human-centered computing, Virtual Reality,
Immersive Experience, Free-viewpoint Videos, Image-based Ren-
dering

I. INTRODUCTION

With the increasingly accurate reproduction of natural
scenes by neural rendering technology, lifelike reconstruction
of real scenes in Virtual Reality (VR) is gradually becoming
possible. The most representative techniques to promote this
research are Neural Radiance Field (NeRF) and Multi-Plane
Image (MPI). In the foreseeable future, real scene reconstruc-
tion will increasingly be applied to the field of VR as well as
many other multimedia fields like tele-education and virtual
tourism. However, most cameras can only provide perspective
views as input, and the number of images required to build a
complete scene can be huge. Using omnidirectional shots to
reconstruct the entire scene reduces the need for the number
of pictures and the extra attention to the coverage area that
needs to be considered for the shot.

Omnidirectional reproduction of real scenes has been put
into use for several years. Years before, this procedure required
the use of multiple perspective views for stitching. However,
for hand-held photography, it is hard to strictly make the po-
sitions of different cameras identical when capturing multiple
perspective images, which leads to the result that the stitching
will produce displacements and distortions at the seams of
adjacent images. Today, omnidirectional scenes are shot with
ultra-wide-angle fish-eye lenses and built-in algorithms for
real-time stitching. The quality of the omnidirectional images
generated in this way is stable.

Our goal is to reconstruct the 3D space of the captured
scene holistically with equirectangular omnidirectioal inputs
in a relatively short time. We focus on the fact that the
omnidirectional image contains the ray information from all
directions space to the camera position. Therefore, from the
original hypothesis of NeRF, we assume that learning ray
information from multiple spherical panoramas can generate a
continuous omnidirectional radiance field that is fully capable
of representing visual information within a whole space.
However, training on new scenes based on this assumption
takes a vast amount of time, also the limitations of NeRF in
representing rays lead to a low quality reconstruction. Our
proposed method modeled the 3D scene into latent voxels
to accelerate the reconstruction speed for the radiance field
and to increase the speed. When modeling rays from multi-
view panoramas with original assumptions of NeRF, we find
that the intersection among rays is not evenly distributed from
the center to the edge of the scene. This property results in
an uneven quality of the reconstruction of the scene from
inside to outside for unbounded scenes. Therefore,we propose
to use the spherical coordinate voxelization method instead
of the traditional cubic voxel representation using Cartesian
coordinates. This paper discusses the reconstruction quality
as well as the processing speed of previous Omnidirectional
NeRF and the two voxelization with the proposed method for
different scenarios.

Our voxelization method adopt a tensor decomposition
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approach to reduce spatial complexity, enabling us to train
models with higher resolution. Due to the much higher
frequency of omnidirectional images than perspective ones,
the traditional positional encoding method is not enough to
get satisfying results. We applied the axis-aligned positional
encoding method to the color features to increase the detail
quality for the final results on captured images. In addition,
we produced a complete dataset that can be used for indoor re-
construction tasks, including 315 equirectangular photographs
captured by a high-resolution omnidirectional camera under
fixed lighting conditions and their camera parameters. We
also provide ground truth depth information scanned by the
LiDAR scanner. In summary, our main contributions are listed
as follows:
• We propose a method that uses only RGB information

from multiple captured panoramas to reconstruct the
radiance field holistically within a short time.

• We elaborate and experimentally demonstrate that the
reconstruction quality of the voxel-based partial explicit
representation is better than the ray-based implicit repre-
sentation when using panoramas for free viewpoint image
generation.

• We provide a comprehensive dataset for omnidirectional
novel view synthesis task including over 1500 equirect-
angular omnidirectional photographs with their camera
parameters. This dataset contains four different scenes
including indoor, outdoor and synthesized scenes. We
also provide the ground truth depth information for indoor
and synthesized scenes.

II. RELATED WORK

Novel view synthesis aims to solve this problem by syn-
thesizing new views using a limited number of RGB im-
ages. In the past three years, various implicit neural scene
representation methods using deep learning have achieved
compelling results for the novel view synthesizing task. [1]–
[4]. Among them, Neural Radiance Field (NeRF) [3] and its
derivative methods [5], [6] receive wide range of attention.
Unlike traditional scene reconstruction [7]–[9], which requires
an explicit representation of the scene geometry as a first
step, NeRF implicitly represents the scene as rays observed
from the viewpoint using neural networks with the structure
of multilayer perceptron (MLP). This representation allows
the reconstruction of the scene to be continuous within space.
Another essential feature of NeRF (i.e. “positional encoding”)
enables low-dimensional inputs to be projected into higher
dimensions [3], which not only allows the gradient of the
interpolation function describing the volume density of the
space to be calculated but also significantly improves the
accuracy of the final function obtained by deep learning.

For boundless scenes, however, the performance of NeRF is
relatively low. The intersection of light sampled from different
cameras becomes increasingly sparse as the actual spatial
distance gets farther away, which reduces the quality of NeRF
when learning the representation of a distant scene or the
objects in the background. NeRF++ [10] proposes to solve

this problem by sampling based on disparity outside a specific
range instead of sampling based on distance.

Another common problem that NeRF ignored is that the
pixel on each image cannot actually be represented by the
rays it modeled. This produces ambiguous features sampled
on adjacent space points, thereby limiting NeRF’s performance
significantly, especially for unbounded scenes. Mip-NeRF-360
[6] adopted cone sampling and integrated positional encoding
to substantially increase the scene representation quality for
unbounded scenes.

With the gradual unification of the structure of omni-
directional cameras, i.e., consisting of multiple wide-angle
lenses, and the gradual decrease of their cost, the acquisi-
tion of spherical panoramic photos is no longer complicated.
Therefore, research on synthesizing novel views directly on
omnidirectional images comes out these years [11], [12].
Recently, some contemporary works have adopted equirect-
angular omnidirectional images as input for the reconstruction
of the radiance field. Several recent works [13] show their
attempt at omnidirectional radiance field representation. In
their methods, the depth information of the scene is known,
which allows them to obtain accurate results with almost no
prediction of the transparency of the scene. Another work
[14]used only RGB images and the camera parameters as input
for reconstruction, but their results are very bad compared with
SOTA methods. One common problem is that their methods
take a lot of time (15 ∼ 20 hours per scene) for reconstruction,
while our method only requires a much shorter time (20 ∼ 40
minutes per scene).

III. METHOD

A. Flexible Spherical Voxelization

Since it is impossible to choose the shooting direction with
an omnidirectional camera, a spherical panorama is thus more
likely to contain a boundless scene than a perspective view. In
addition, commercial omnidirectional cameras require hand-
held or tripod shots, which will result in a significant portion
of the panorama being occupied by near objects. These two
points lead us to consider the reconstruction quality of both
near and far scenes. If we use voxels uniformly distributed
along the Cartesian coordinate system, then as the distance to
the camera increases, less and less light will pass through the
same voxel. As a result, the quality of the reconstruction will
vary with the distance to the camera. Therefore, we devise a
spherical voxelization approach to balance the reconstruction
quality of distant and close views for unbounded scenes.

In the proposed method, the spherical voxel representation
explicitly models the color and density features in spherical
grid cells. We store these modalities separately in 3 tensors
along r, θ, and φ coordinates. We optimize the partitioning
on the r-axis in the voxelization process. The interval of
voxelization along the r-axis decreases as the distance from
the center increases as shown in the following equation:

Ti = ln (ti + 1), i ∈ [0, N ], (1)



where Ti is the real sampling distance on the radius for ith
voxel, and ti represents the distance between the ith evenly
distributed voxel and the ray origin. N is the total number
of voxels sampled on the radius. This distribution effectively
reduces the difference in the number of voxels per ray passed
by cameras farther away from the scene center during sampling
relative to cameras closer to the scene center. Then, the scene
would be easily represented by interpolation. The trilinear
interpolation method has been adopted to interpolate the
queried 3D positions.

B. Tensor Decomposition.

Inspired by TensoRF [15], we applied Vector-Matrix (VM)
decomposition on the tensors to decrease memory consump-
tion. In our case, scene is represented by 3D tensor modes
corresponding with r,θ, and φ axis. Given a 3D tensor
T ∈ RR×Θ×Φ, VM decomposition factorizes a tensor into
multiple vectors and matrices; the following equation shows
this process:

T =

N1∑

n=1

V Rn ⊗MΘ,Φ
n +

N2∑

n=1

V Θ
n ⊗MR,Φ

n +

N3∑

n=1

V Φ
n ⊗MR,Θ

n ,

(2)
where V Rn , V Θ

n , V Φ
n corresponds to a rank-one tensor

component, MΘ,Φ
n , MR,Φ

n , MR,Θ
n , are matrix factors for two

(represented by superscripts) of the three modes that different
from the tensor components denoted in the corresponding
vector. In 3D representation with the Cartesian coordinate,
a scene can distribute and appear equally complex along its
three axes, and in that case, N1 = N2= N3. In our case,
we also set N1 = N2 = N3, the balance between R (N1)
and Θ,Φ (N2, N3) is adjusted by the scale of R. 3D tensor
would be enough for representing the volume density, while
color requires one more dimension for the representation
of channels. This is represented by a vector b multiplied
by each color tensor. In addition, we use three component
tensors to simplify notation and the following discussion in
later sections: ARn = V Rn ⊗MΘΦ

n , AΘ
n = V Θ

n ⊗MRΦ
n , and

AΦ
n = V Φ

n ⊗MRΘ
n . Then the volume density and color of the

3D voxels can be expressed as




Gσ =

Nσ∑

n=1

∑

m∈RΘΦ

Amσ,n,

Gc =

Nc∑

n=1

ARc,n ⊗ b3n−2 +AΘ
c,n ⊗ b3n−1 +AΦ

c,n ⊗ b3n,

(3)
where Gσ and Gc represents the 3D geometric tensor

for density and color. In total, we parameterize the voxels
into 3Nσ + 3Nc matrices and 3Nσ + 6Nc vectors. Fig. 1
gives a more intuitive explanation of the whole procedure.
An important benefit of representing voxels using tensor
decomposition is that the computational effort of trilinear
interpolation necessary to reconstruct neural radiation sites is
greatly reduced. Interpolate the component tensor trilinearly

is equivalent to interpolate the corresponding modes of its
vector/matrix factors linearly/bilinearly. Therefore, it save a
lot of time and computing costs which enables us to train
higher resolution of images and voxels than other volelization
approaches.

C. Positional Encoding

In original NeRF, positional encoding is essential for per-
formance improvement. It is attributed to the difficulty of
MLPs to learn high-frequency functions due to spectral biases,
which can make the network learned by MLPs with only 5D
inputs unable to restore scene details adequately. The NeRF
experiments obtained good results with a heuristic sinusoidal
mapping of the input coordinates (i.e., “position encoding”)
to allow MLPs to represent higher frequency content. Since
the average amount of information per pixel contained in an
equirectangular panorama is higher than that of a perspective
view with the same number of pixels in most cases, the
frequency of information required to be restored for our task
is much higher than that of the original NeRF. We applied
positional encoding along the direction of aligned axes to
improve the reconstruction quality of high-frequency informa-
tion. Our generic positional encoding mapping γ inputs points
v ∈ [0,1)d to the surface of a hypersphere that has much
higher dimensions with a set of sinusoids:

γ(v) = [a1 cos(2πbT
1 v),a1 sin(2πbT

1 v),

· · · ,am cos(2πbT
mv),am sin(2πbT

mv)]T.
(4)

For our axis aligned positional encoding:

ai = Jd,bi = σj/m, (5)

where j = 0, · · · ,m − 1. σ is a hyperparameter that is
different for various tasks. In our case, σ = 2. In both
positional encoding methods, ai is a vector that only contains
1s with the same element number of the input dimension d.
The embedding size for the positional encoding method is m.
In our method, we applied the axis aligned positional encoding
methods on the color features before input them to the MLP
decoder.

D. Rendering and Learning

We render the image with volumetric differentiable renderer
same as NeRF, for each pixel, the color result is integrated
numerically by weighting the sum of the RGB values and the
volume density at a set of discrete sampling points on the ray
as the following equation:

Ĉ(r) =

N∑

i=1

Ti(1− exp(−σiδi))ci, (6)

Ti = exp(−
i−1∑

j=1

σiδi), (7)

where N is the number of the sampling points, δi is the
distance between adjacent samples. The function adopts tra-
ditional alpha blending method with alpha values αi =
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Fig. 1. Tensor decomposition and rendering: We decompose the tensors representing spherical voxelized feature grids into a set of vectors(V ) and matrices
(M ). Same as equation(5) the appearance features are multiplied by an appearance matrix B. The volume density values are directly summed by the density
components, while the appearance features are proceeded by axis aligned positional encoding, and finally put into MLP for RGB regression. Then RGB values
of image can be rendered by volume density σ and appearance feature c.

1 − exp(−σiδi) . δi represents the volume density at the
sampled point. The Ti function calculates the accumulated
transmittance between the two samples along the ray.

With the above rendering method, we can render the omnidi-
rectional image spherically, then we compare the image sphere
and the ground truth and calculate the photometric loss and
L1 sparsity loss. Our total loss function is like the following:

L = ‖C − C̃‖22 + ω · L1, (8)

where ω represents the weight for L1 loss, and C̃ is the ground
truth color.

IV. EXPERIMENTS

A. Datasets

We tested our method on the dataset made by our own. For
synthesized data, we acquire camera parameters from Blender
during rendering. For actual data, we use Pix4D mapper
software to get the extrinsic parameters of the cameras. We
use about 1/3 of them for training, 1/3 for validation, and 1/3
for testing.

B. Implementation Details

During the experiment, the indoor and Blender images were
resized to the resolution of 1024 × 2048 while the outdoor
images kept their primitive resolution at 960 × 1920. We set
the batch size 4096, which is the number of rays we sampled
for each unit sphere. AdamW optimizer is used during the
training process. We initialize the learning rate at 5 × 10−4

and exponentially reduce it to 5 × 10−5 during all training
steps. We set the weight of L1 loss as 8× 10−5 We train our
voxelization models for 30 thousand epochs in all experiments
on a single RTX 3090 GPU. As a comparison, we trained the
omnidirectional NeRF model for 250 thousand epochs for their
best performance.

TABLE I
QUANTITATIVE RESULTS

Metric\Scene Indoor Outdoor1 Outdoor2 Blender
PSNR↑
Omninerf 18.77 21.80 23.39 26.50
Omninerf APE 19.73 22.32 23.79 27.01
Omnivoxel Cubic 22.33 27.24 27.91 33.14
Omnivoxel Cubic APE 26.70 27.51 28.00 32.96
Omnivoxel Sphere 23.38 27.10 27.95 33.23
Omnivoxel Sphere APE 26.87 27.38 27.94 33.19
SSIM↑
Omninerf 0.752 0.764 0.815 0.902
Omninerf APE 0.729 0.780 0.826 0.916
Omnivoxel Cubic 0.805 0.824 0.893 0.936
Omnivoxel Cubic APE 0.815 0.808 0.892 0.932
Omnivoxel Sphere 0.796 0.798 0.892 0.937
Omnivoxel Sphere APE 0.805 0.802 0.891 0.936
LPIPS (Alex)↓
Omninerf 0.583 0.376 0.346 0.183
Omninerf APE 0.448 0.364 0.328 0.131
Omnivoxel Cubic 0.301 0.355 0.234 0.125
Omnivoxel Cubic APE 0.266 0.344 0.233 0.116
Omnivoxel Sphere 0.303 0.350 0.237 0.110
Omnivoxel Sphere APE 0.279 0.328 0.234 0.112
LPIPS(VGG)↓
Omninerf 0.538 0.418 0.407 0.373
Omninerf APE 0.420 0.396 0.375 0.306
Omnivoxel Cubic 0.339 0.379 0.319 0.294
Omnivoxel Cubic APE 0.329 0.369 0.327 0.303
Omnivoxel Sphere 0.349 0.376 0.326 0.289
Omnivoxel Sphere APE 0.341 0.361 0.323 0.291

C. Results

In Tab. I, we compare different encoding methods within
our method quantitatively in PSNR, SSIM, and LPIPS. Our
experimental results in Fig. 2 show that voxel representation
achieved much better result than NeRF-based approach. The
performance of spherical voxelization and cubic voxelization
method are similar many different evaluation metrics. Axis-
aligned positional encoding method has advantages in scenes
with complex colors. Axis-aligned positional encoding per-
forms well in real scenes because our reconstructed data are
real-world 3D voxels, so the frequency domain of the infor-



NeRF NeRF(APE) Cubic Cubic(APE) Sphere Sphere(APE) GT

Indoor

Blender

Fig. 2. Close-up view of Results with different methods in different scenes, in which APE represents axis-aligned positional encoding, Cubic and Sphere
means cubic and spherical voxelization methods, respectively.

mation is oriented along the spatial axes (for both Cartesian
and Spherical coordinate systems), rather than isotropic within
dimensions. Even though we cannot compare directly with
other methods on perspective dataset, it was evident that our
result shows that the proposed method reached state-of-the-
art performance for unbounded scene reconstruction and has
similar performance to what mip-NeRF-360 [6] and NeRF++
[10] have for their dataset.

Due to space limitations, we cannot show the full-size
equirectangular image results in the main text. They are
included in the supplementary materials. As a result, spherical
voxelization could balance the quality of the close and distant
views of the center of the space. Also, the axis-aligned
positional encoding method can reconstruct details of the
tripod object while the original positional encoding can’t. We
also developed some satisfying flying-through videos with the
trained models attached in the supplementary materials.

Another notable point is that our approach is far faster than
directly applying the NeRF model to train on the spherical
ray representation. Our method takes only 40 minutes to train
a full representation on the Indoor dataset while NeRF takes
more than 15 hours. Our proposed method makes it possible
to reconstruct the entire scene using omnidirectional photos
quickly and in high quality.

V. CONCLUSION

We present a method for fast holistic reconstruction of the
neural radiance field with multiple omnidirectional images.
Our key idea is to use voxel grid representation and tensor
decomposition to replace the fully implicit representation.
We use the Unit Sphere model to sample the rays in dif-
ferent directions and adopt a spherical voxelization method
to balance the quality of closer and distant views from the
center of the scene. By modifying the positional encoding
approaches, we quantitatively increase the quality of our result.
Our method achieves satisfying empirical performance on
synthetic datasets with random camera poses. Moreover, our
experiments on real datasets show that we can continuously
reconstruct the unbounded omnidirectional scene at state-of-
art-performance.
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OmniVoxel: A Fast and Precise Reconstruction
Method of Omnidirectional Neural Radiance Field:

Supplemental Materials

I. MATERIAL CONTENTS

In this supplemental material, we add some more related
works, more figure for the procedure of the whole method and
explanations of difference of the ray sampling error between
the perspective camera and the omnidirectional camera. Also,
we provide all the complete images used in the main text
to compare the experimental results. We have attached some
flying-through videos for reference, we recommend using the
basic application of RICHO THETA (https://support.theta360.
com/en/download/) for viewing them.

II. ADDITIONAL RELATED WORKS

A. Voxel Based Radiance Field Representations

Fully implicit scene representations have the advantage of
a high upper limit of reconstruction quality, but the time
required for a scene to be trained from scratch is very long.
In contrast, partially explicit reconstruction of neural radiation
fields based on voxel rendering can substantially increase the
training speed with similar quality of results. This approach
has been a very active research direction in the last year [1]–
[5]. However, these methods all use cubic voxels to represent
the scene, which works well enough for datasets consisting
of synthetic images or forward-facing photographs. However,
for unbounded scenes, the use of uniformly distributed voxels
may result in voxels far from the center of the captured scene
not effectively representing the pixels representing the location
in the image. This problem is similar to the one mentioned in
the previous paragraph.

III. METHOD PRELIMINARIES

Our method aims to reconstruct the whole scene with
only RGB information from multiple omnidirectional images
captured in the space. We consider o ∈ R3 as the position of
a viewpoint, d ∈ R2 as a vector representing a ray’s direction,
and t ∈ R+ as the distance of a point on the ray to the
viewpoint. Therefore a discrete sample on the ray could be
written as r(t) = o + td. Simultaneously, the whole scene
is divided into N different voxels, which are arranged along
with the spherical coordinates with the origin at the center
of the scene inferred from the camera positions. We store
the density σ and color feature Ĉ information inside those
grids as feature tensors and apply the tensor decomposition
method to them. With the input of viewpoint position within
the capturing scene (x, y, z) and the viewing direction (θ, ϕ)
, we integrate through these voxels along the ray directions

using the neural volume renderer to finally obtain the RGB
values. Then we can learn the view-dependent color features
Ĉ(V) and the volume density σ(V) of the volume in the
whole space with very shallow MLPs. After performing an
equirectangular projection on the inference results, we can
obtain an omnidirectional image at the viewpoint.

IV. OMNIDIRECTIONAL RAY SAMPLING

Existing radiance field reconstruction methods only sample
on perspective images. Therefore, the sampling model is
based on the pinhole camera model. The ray directions are
determined by the intrinsic and extrinsic parameters of the
camera. In the spatial coordinates of the actual scene, rays
are sampled between the image plane and a parallel plane,
which defines the farthest sampling distance as shown in
Fig. 6(a). The commonly used exampled datasets are mainly
rendered by the Blender software, and the backgrounds are
set to transparent. This setup allows NeRFs to easily learn the
transparency and the color features associated with the viewing
directions of objects. However, in the case of forward-facing
images, rays are usually converted to Normalized Device
Coordinates (NDC) for sampling between the image plane
and infinite far distance. NDC space can preserve parallel
lines when converting the z axis (camera axis) to be linear in
disparity. However, 3D geometry in the NDC space is different
from that in the real space. Thus, NeRF with NDC space has
poor performance with the 360 datasets.
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Fig. 1. Comparison of ray sampling:(a) and (b) are ray sampling models
for perspective and omnidirectional images. O and O′ represents the camera
positions. The yellow volumes on (a) and (b) are the effective sampling
range in the real environment.f represents the focal length for the pinhole
camera model for perspective image, while in our model, the focal length of
omnidirectional camera is zero.
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Fig. 2. Equirectangular projection: P represents a point on the surface of the
sphere, which is corresponding to P ′, a point on the equirectangular image.
The coordinates of P ′ on the image (i, j) are derived from the coordinates of
P (x, y, z) by Eq. 1, In the figure, R represents the radius in the sphere and a
scalar in the equirectangular image, which is related to the overall resolution.
θ and ϕ represent the polar and azimuth angle of P in spherical coordinate
,they are intermediate parameters for calculation.

On the other hand, omnidirectional camera doesn’t have
intrinsic parameters, therefore, rays can’t be sampled with
previously mentioned approaches. Our method samples the
rays evenly in all directions with a unit sphere model for
omnidirectional cameras. The focal length of an omnidirec-
tional camera is zero, which means the representation of rays
includes all the range from the camera position to the outer
bound of sampling as shown in Fig. 6(b).

V. UNIT SPHERE CAMERA MODEL

We project the equirectangular image to the two-step unit
sphere model for sampling. First, we convert the 2D coordinate
of the pixel on the equirectangular image to the normalized
Cartesian coordinate of points on the unit sphere as the
following equations:




θ =

P ′
j ∗ π
H

, ϕ = −P ′
i ∗ π
H

,

Px = sinϕ ∗ sinθ, Py = cosϕ, Pz = − sinϕ ∗ cos θ,
(1)

where P ′
i , P ′

j represent the row and column index of the
equirectangular images, H and W represent its height and
width.θ and ϕ represent the azimuth and polar angle for the
point in spherical coordinate. Px , Py , Pz are the position of
the point in the right-hand Cartesian coordinate system. Fig. 2
shows the equirectangular projection from the sphere’s surface
to the image plane.

Our second step is to move and rotate the sphere with
the camera’s extrinsic parameters. In our proposed method,
the camera orientation is derived from the Structure from
Motion(SfM), as shown in Fig. 3(a),(b). We assume that
when the camera rotation angle of all three axes is zero, the
camera’s orientation is nadir (looking down perpendicular to
the ground)—the top of the equirectangular image points in
the positive direction parallel to Y axis.

X′ = R · (X−T) (2)

Note that X and X′ represent the coordinate of the points
on the sphere before and after the conversion, respectively. T
stands for the spatial coordinates of the camera position. R is
the rotation matrix of the camera in the right-hand Cartesian
coordinate system. After conversion, the image spheres will
be aligned to same directions as Fig. 3(c).

In particular, since NDC space is unavailable in our method,
we decide not to perform camera rays queries for infinite
distances. We scale the whole scene to make the reconstructed
scene inside as many Unit spheres as possible. This scaling is
a hyperparameter that needs to be considered in conjunction
with the values of the SFM reconstruction and the actual size
of the scene. Our tests achieve the best results when each unit
sphere contains the scene to be reconstructed. If the scalar
is too large, i.e., the size of the Unit sphere is much larger
than the scene, the reconstruction quality of will severely
degrade the reconstruction quality of the close view. And if the
scaling is too low, the overlap between the unit spheres will
be reduced, which will result in a blurred image of the scene
reconstruction like myopia. The space where we can perform
novel view synthesis also needs to be covered by at least two
unit spheres.

Actually, if we implicitly use rays to represent the scene,
then the apporach above would be enough for our modeling
section. However, there are problems with the original NeRF
itself that cause it to not accurately model rays. Let us assume
that there are two cameras in different positions and that
the intersection of some two rays received by these two
cameras. The sampling of that intersection point along the
direction of these two rays should be obtained by querying
the information of the pixel through which each of these
two rays passes. In reality, however, the information of these
two pixels represents two cones in space along the edges of
the pixel from the camera point, not two rays of infinitely
small diameter. Therefore the model can mistakenly take the
information representing a finite volume as representing a
definite point, which can cause the reconstruction of the area
around that point to become blurred, as mentioned by mip-
NeRF [6]. In addition, due to the presence of reprojection
errors, this blurred area becomes larger as the distance of the
sampled point coordinates from the scene center increases.
This problem is much more severe for the panorama than
for the standard perspective view because for the panorama
projected onto the spherical model and the normal perspective
image at the same resolution, the angular difference in the
direction of the rays of adjacent pixels in the panorama is much
larger than in the perspective view. The conical truncated body
along the pixel edges of the panorama contains a larger volume
than in the perspective view. As a result, the reconstruction
quality will be very poor when we directly use the above
approach to model the light of the panoramic image and
apply the NeRF model. Also, the places farther away from
the capturing position would become more blurred from the
areas closer to the shooting point, no matter how we adjust
the parameters and sampling methods. Therefore, we propose
to use flexible spherical voxelization to represent the space.
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Fig. 3. Generation of training dataset: (a) Equirectangular images are captured by omnidirectional cameras with different pose and position; (b) camera
position and orientation are acquired from SFM; (c) Equirectangular images are projected to Unit sphere model with the orientation and position obtained
from (b). Therefore we get the ground truth of RGB information for different 5D input (x, y, z, θ, ϕ)
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Fig. 4. Comparison of the sampling error of NeRF on perspective image
and omnidirectional image: NeRF’s point-based sampling ignore the shape
and size viewed by each ray. This produces ambiguous point-sampled feature
within the interception volume. In this image, we show and compare the
interception volume size between the perspective and panorama views at
the same resolution. It is obvious that omnidirectional camera has larger
cross volume, and therefore the problem of ambiguous view is more severe,
especially for distant areas.

VI. RAY SAMPLING ERROR AND VOXELIZATION

As we claimed in the main text, In NeRF [7], the ray is
sampled by capturing the pixel through which the light passes,
and the ray information represented by the pixel includes not
only the ray but also a volume of the cone-truncated head that
passes through the pixel from the camera, which can lead to
blurring when generating a new viewpoint due to reprojection
errors [6]. As shown in Fig. 4, the above ambiguity of the
omnidirectional images is much higher than perspective ones.
Therefore, voxelization method could improve the overall
quality of the reconstruction.

However, since the density of intersection points between
panoramic cameras becomes sparse as the distance from the
filmed scene increases, a uniform voxelization method will
result in different amounts of light passing through different
voxels, which will reduce the efficiency of the model in
learning the overall scene. Thus we try to adopt a spherical
voxel method as shown in Fig. 5 to alleviate this problem and
achieve some indoor-scenes results.

VII. DATASET DETAIL

We tested our method on the dataset made by our own.
The components of this dataset are collected from different
sources, including generated images rendered by Blender and
natural images of multiple scenes captured by commercially

O1

O2

O1

O2

(a) (b)

'

'

Fig. 5. The difference between cubic voxelization and spherical voxelization
for panoramic cameras: As seen from the figure, the cross volume of rays
sampled by panoramic cameras at different locations is different, and the use
of spherical voxelization can effectively increase the overlapping between the
voxels and the ray cross volume.

available omnidirectional cameras. For synthesized data, we
acquire camera parameters from Blender during rendering. For
actual data, we use Pix4D mapper software to get the extrinsic
parameters of the cameras. The number of synthesized images
is 1000 in total with the primitive resolution of 1024× 2048.

The natural dataset consists of indoor and outdoor scenes.
The indoor scene comprises 315 images captured by a tripod-
mounted Insta360 OneX camera with a native resolution of
3040×6080. The cameras are placed 7×9×5 cubic lattices in
the capturing space. It is noteworthy that these images are cap-
tured under static lighting conditions without any disturbance
around. Also, this dataset contains very complex geometry
and is very challenging for the omnidirectional novel view
synthesis task. We also provide the ground truth point cloud
from 3 points in this space captured by Leica BLK360 LiDAR
scanner for point cloud registration and depth estimation tasks.
We hope our dataset will help to promote the research for
computer vision on omnidirectional images.

The images in both outdoor scenes datasets are obtained
from a tripod-mounted Theta S camera by hand-holding video
and sampling at 30 frames per second at a frame rate with
a native resolution of 960 × 1920. All images and camera
parameters of the dataset will be released at the same time
as the paper publication; however, only the indoor dataset
contains the ground truth point cloud captured by the LiDAR
scanner.



Fig. 6. Full images used in the main text to compare the experimental results

VIII. COMPARISON IMAGE

We attached the full image for comparison in the next page.
As a result, our voxelization method increased the overall
reconstruction quality holistically.

REFERENCES

[1] Sara Fridovich-Keil and Alex Yu, M. Tancik, Q. Chen, B. Recht, and
A. Kanazawa, “Plenoxels: Radiance fields without neural networks,” in
CVPR, 2022.

[2] A. Yu, R. Li, M. Tancik, H. Li, R. Ng, and A. Kanazawa, “PlenOctrees
for real-time rendering of neural radiance fields,” in ICCV, 2021.

[3] C. Sun, M. Sun, and H.-T. Chen, “Direct voxel grid optimization: Super-
fast convergence for radiance fields reconstruction,” in CVPR, 2022.

[4] A. Chen, Z. Xu, A. Geiger, J. Yu, and H. Su, “Tensorf: Tensorial radiance
fields,” in European Conference on Computer Vision (ECCV), 2022.

[5] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics
primitives with a multiresolution hash encoding,” in CVPR, 2022.

[6] J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman, R. Martin-Brualla, and
P. P. Srinivasan, “Mip-nerf: A multiscale representation for anti-aliasing
neural radiance fields,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), October 2021, pp. 5855–5864.

[7] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “Nerf: Representing scenes as neural radiance fields for view
synthesis,” in ECCV, 2020.


	I Introduction
	II Related Work
	III Method
	III-A Flexible Spherical Voxelization
	III-B Tensor Decomposition.
	III-C Positional Encoding
	III-D Rendering and Learning

	IV Experiments
	IV-A Datasets
	IV-B Implementation Details
	IV-C Results

	V Conclusion
	References

