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Abstract

Few-shot segmentation of point cloud remains a chal-
lenging task, as there is no effective way to convert lo-
cal point cloud information to global representation, which
hinders the generalization ability of point features. In
this study, we propose a bidirectional feature globaliza-
tion (BFG) approach, which leverages the similarity mea-
surement between point features and prototype vectors to
embed global perception to local point features in a bidi-
rectional fashion. With point-to-prototype globalization
(Po2PrG), BFG aggregates local point features to proto-
types according to similarity weights from dense point fea-
tures to sparse prototypes. With prototype-to-point glob-
alization (Pr2PoG), the global perception is embedded to
local point features based on similarity weights from sparse
prototypes to dense point features. The sparse prototypes
of each class embedded with global perception are sum-
marized to a single prototype for few-shot 3D segmentation
based on the metric learning framework. Extensive experi-
ments on S3DIS and ScanNet demonstrate that BFG signif-
icantly outperforms the state-of-the-art methods.

1. Introduction

Thanks to the powerful representation capabilities of
Convolutional Neural Networks and the open source of nu-
merous point cloud annotation datasets, we have witnessed
unprecedented progress [[18, 3} [11 26, 30, [16l [17] in point
cloud segmentation. However, annotating large-scale point
cloud datasets is laborious and extensive, which hinders the
application of point cloud segmentation in various scenar-
ios.

In recent years, few-shot 3D point cloud segmenta-
tion [34] is explored. Given base classes with sufficient
training data and new classes of few supervisions, this task
aims to generalize the 3D representation model initialized
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Figure 1. Overview of our bidirectional feature globalization
(BFG). BFG first realizes the prototype feature globalization by
integrating dense point features through similarity weights (Up-
per). Point feature globalization is then performed by integrating
sparse prototypes through similarity weights (Lower). Equipped
with BFG, both prototypes and point features are endowed with
global perception, which facilitates few-shot 3D segmentation.

upon the base classes to new classes. Early researches sim-
ply imitate the few-shot segmentation methods from 2D to
3D tasks. For example, the single prototype method [J5]]
leverages global average pooling to produce 3D semantic
prototypes, which are used to classify point sets in a metric
learning framework. The multi-prototype method [34]] gen-
erates prototypes by aggregating point features from differ-
ent object parts to improve the semantic representation.

In spite of the substantial progress, existing methods are
impacted by serious false segmentation when the instance
consists of complex parts. By our investigation, we real-
ize that the false segmentation is caused by the locality of
point convolution, which lacks the ability to capture global
feature perception. Such global perception is crucial to pro-



duce correct segmentation when deformation or scale vari-
ation occur.

In this paper, we focus on designing a bidirectional fea-
ture globalization (BFG) approach (Fig. (1) to regularize the
training procedure of semantic prototypes and endow each
point feature and prototype the global feature perception.
BFG defines a bidirectional module which uses the dense
local point features to generate sparse global prototypes and
then leverages the global prototypes to guide globalization
of local point features. With such a bidirectional module,
both point features and prototypes are endowed with global
perception.

Specifically, the proposed approach is rooted in a metric
learning framework, which consists of two branches (sup-
port branch and query branch), Fig.[2| The support branch is
responsible for the globalization of prototypes and support
point features, which goes through two modules in order:
Point-to-Prototype Globalization (Po2PrG) and Prototype-
to-Point Globalization (Pr2PoG). Given the sparse proto-
types initialized by the sparse prototype generation (SP-
Gen) module, Po2PrG and Pr2PoG perform globalization
on prototypes and point features in a bidirectional fashion
according to the similarity weights between sparse proto-
types and dense point features. Finally, sparse prototype as-
sembly (SPA) is carried out to obtain the optimal prototype
representation of support point features for metric learning.
The query branch generates the similarity maps between the
prototypes from the support branch and the query point fea-
tures to obtain point cloud segmentation results.

To conclude, the main contributions of our BFG are sum-
marized as follows:

* We propose bidirectional feature globalization (BFG),
defining a simple-yet-effective way to embed global
perception to local point features and their prototypes
in a mutual enhancement fashion.

e We design point-to-prototype globalization (Po2PrG)
and prototype-to-point globalization (Pr2PoG) mod-
ules based on the similarity weights, which activate the
global perception of prototypes and point features, re-
spectively.

* By assembling sparse prototypes embedded with
global perception, we achieve a new state-of-the-
art performance on the popular S3DIS and ScanNet
datasets.

2. Related Work

Point Cloud Segmentation. Point Cloud semantic seg-
mentation for point-wise classification of a class of in-
stances has been extensively studied. PointNet [18] learns
the features of each point independently through MLP, and
utilizes a symmetric function (such as max pooling) to

solve the disorder problem while aggregating global fea-
tures. On this basis, a large number of point-based meth-
ods [[19} [15} 126]] have sprung up. Point-wise MLP meth-
ods [19, 111} 133} 7] employ shared MLP as the basic block
of the network for feature extraction. Point Convolution
methods [[15 12} 13} 28] 13} 29| 23| [14] aim to extract high-
quality point features and learn local relationships by de-
signing efficient point convolution operators. Graph-based
methods [26 25} [12]] aim to learn the spatial geometric fea-
tures of points through constructing graphs inside point sets
and designing novel graph convolutions.

However, these methods heavily depend on large-scale
training sets and are incapable of generalizing to new
classes, which limits the application of many real-world
scenarios. To improve the generalization capability of 3D
representation models, few-shot segmentation task of point
cloud has been the research focus of the community.

Few-shot Learning. Current methods of few-shot learn-
ing mainly concentrate on metric learning [24} 22| 32| |31}
21]] and meta-learning [27, 20,6, 9]. The methods based on
metric learning mainly focus on employing distance met-
ric to predict whether two regions belong to the same class.
The main idea of meta-learning based methods is to spec-
ify an optimization procedure or loss function to gain the
ability to learn faster and adapt to new classes. The ef-
fectiveness of the prototype concept for few-shot learning
is demonstrated [24! [31]] in various metric learning frame-
works. Inspired by these, the methods of prototype learning
is widely adopted in the few-shot segmentation task, which
greatly reduces the computational budget while maintaining
high performance.

Few-shot 3D Point Cloud Segmentation. Current few-
shot segmentation methods [5} [34] of point cloud largely
follow the metric learning framework, which learns seman-
tics from the support point sets. Such stores the semantics
in the form of prototype vectors, which are generalized to
segment the query point sets. ProtoNet [S]] uses a single
prototype to centrally express the features of each seman-
tic class in the support point sets. It designs a mask aver-
age pooling strategy to generate prototype vectors, and then
applies a similarity measurement function to build the rela-
tionship between the prototypes and the features of query
point sets. MPTI [34]] introduces a method of transductive
learning to predict the semantic classes of the query point
sets based on the prototypes. It also extracts multiple pro-
totypes of the support point features to better represent the
rich foreground semantic.

In spite of the substantial progress, existing methods are
impacted by serious false segmentation when there exists
deformation and/or scale variation. By our investigation,
we realize that the false segmentation is caused by the local-
ity of point convolution, which lacks the ability to capture
global feature perception. The multi-prototype method [34]]



took a step to alleviate this. However, it requires the signifi-
cant increase of the number of prototypes, which aggregates
the computational complexity. In this paper, we propose the
bidirectional feature globalization (BFG) approach, which
aims to globalize features to obtain the optimal representa-
tion with a single prototype vector of each class.

3. Method
3.1. Overview

The flowchart of our BFG approach is illustrated in
Fig. @, which uses ProtoNet [5] as the baseline. As a few-
shot 3D segmentation network, BFG consists of two net-
work branches: the support branch (upper) and the query
branch (lower). The two network branches use a weight
shared feature embedding network to extract point features.
Let F'and I represent point features after passing through
the embedding network of support branch and query branch,
respectively. In the support branch, the prototypes are first
generated by sparse prototype generation (SPGen) upon
the point features F' and the corresponding mask. By
passing the point-to-prototype globalization (Po2PrG) and
prototype-to-point globalization (Pr2PoG) modules, these
prototype vectors are endowed with global feature percep-
tion. A sparse prototype assembly (SPA) module is applied
to aggregate the prototypes for semantic representation. In
the query branch, similarity maps between the extracted fea-
tures g of query point sets and the prototypes extracted by
the support branch are calculated by the distance function
(cosine distance or squared Euclidean distance). Such sim-
ilarity maps are directly used to produce semantic segmen-
tation results. In the query branch, the network is driven by
the cross-entropy loss Lo g, as Liotal = LoE-

In what follows, we first introduce the SPGen module
and then present the feature globalization procedure with
Po2PrG and Pr2PoG modules.

3.2. Sparse Prototype Generation

Sparse prototype generation (SPGen) produces the ini-
tial representation of prototypes, Fig. For each class
of support point sets, we first use the mask of points to get
the foreground and background points. Inspired by [10, 8],
the foreground points are partitioned into multiple groups
which correspond to object parts. Each part corresponds to
a prototype vector. Following [34], the sparse prototypes
are initialized by two steps: object part construction and
prototype extraction.

Object Part Construction. Denote N and D as the num-
ber and the channel of point features, respectively. Given
the support point feature ' € RV *P | the coordinate J €
RN >3 and the mask M¢ € RV*! (crepresents the class) of
support point sets, the masked point feature ¢ = { ff ;’;Cl
and its coordinate J¢ = {j¢}7, (m® represents the num-

ber of support points belonging to the class c¢) are obtained
through its corresponding mask M¢ and implemented by
keeping points of class ¢ and culling points of other classes.

Based on the point feature F¢ and coordinate 7 ¢, sam-
pling seed points and point-to-seed assignment [34] are ex-
ecuted sequentially. The farthest point sampling (FPS) al-
gorithm is employed to sample a subset of K seed points
which are from the same class. The seed points represent
the centers of the parts. Let {5} | C {f¢}7 denote the
sampled seeds. After that, we compute the point-to-seed
distance and assign point features to these part centers ac-
cording to the index of the closest part center of each point.

Prototype Extraction. We perform global average pool-
ing within each part to extract prototypes. Formally, the
initial sparse prototype u¢ of class c is defined as:

c c c c 1 c
14 :{u’lvvﬂK‘/u‘k: |IC‘ Z f7, }7
k

fi €Ty

K
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IC
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)

where the masked point features F¢ = {f¢}7 is parti-
tioned to K sets Z¢ = {Z{,--- ,Z%} such that ff € Z7 is
assigned to sf. At the same time, the coordinate of each
point ji € 77 ; is also assigned to sj. In this way, we get
the coordinates of the part sets as 7% = {Z% ;,--- ,Z% i }.
Similarly, the coordinate of each prototype is defined as:

C C C C 1 -C
Hg = {Mj,u'" aﬂj,KWj,k = Tc | E ]i}
Tkl jeere
i T,k
(2)
3.3. Bidirectional Feature Globalization

Since the initialized prototypes are extracted within ob-
ject parts, the prototype semantics are limited to local point
features. To solve this issue, we propose point-to-prototype
globalization (Po2PrG) to perform global representation of
sparse prototypes, Fig. [B[left). Similarly, due to the local-
ity of point convolution, dense point features extracted by
the embedding network ignore the global semantic percep-
tion between object parts. Prototype-to-point globalization
(Pr2PoG) is proposed to solve this problem, Fig. [B[right).

The Po2PrG and Pr2PoG modules leverage the seman-
tic perception of point-to-prototype and prototype-to-point
similarity, respectively. With Po2PrG and Pr2PoG, BFG
embeds the global perception to both prototype vectors and
point features in a bidirectional fashion.

Before introducing Po2PrG and Pr2PoG, we define the
similarity measurement for the generation of similarity
weights. To leverage the spatial information, the coordinate
J¢ is introduced to the similarity measurement. Thus, the
similarity between point features F and sparse prototypes
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Figure 2. Flowchart of our BFG approach. The support branch is responsible for sparse prototype generation (SPGen), bidirectional feature
globalization (BFG), and sparse prototype assembly (SPA). The query branch calculates the similarity maps between the query point

features and the prototypes, and predicts the segmentation results.

¢ can be defined as:

J(FEue T6 uG) = e PIHE T - 3)
where D(-) denotes the distance measurements defined on
either Ly-Norm or inner product operation in what follows.

(1) La-Norm is commonly used to calculate the sim-
ilarity between two feature vectors. With this opera-

tion, D(-) is defined as: D = \/d(]-"c,uc) +d(T¢, 1),
where d(FS,pus) = ﬁ(ﬁ) Zii1 | FS: — P i

B 2
ATg 1 1) = Sy 1750 = i gl 2 and || - || denotes
the Lo-Norm. A is the scale factor that keeps F, feature-
based distances and J,; coordinate-based distances orders
of magnitude consistent and set to 0.85 in our experiments.

1%,

(2) Inner product operation is formulated as: D =
¢- {d(}'c,uc) +d(TJ° 1% )|, where d(FS, pug) = pg" Fe
and (+)7 is the transpose operation of the matrix. Similarly,

AT 15 ) = uf%ij,f. ¢ denotes the concentration fac-
tor, which is set to 0.5 in our experiments.

3.3.1 Point-to-Prototype Globalization.

Point-to-Prototype globalization is carried out based upon
the similarity weights from dense point features to sparse
prototypes. Specifically, similarity measurement, weights
generation, and prototype globalization are carried out in
order.

Similarity Measurement. Given the initialized prototypes
{u®, % }, we compute the similarity between point features
and prototype vectors, as f1(F¢, u% J¢ p%) = e 21 In
experiments, D; is defined as Ly-Norm.

Weights Generation. In this procedure, we convert the
dense point features into the weights w,, 1, which is defined

on the similarity between the point features and each proto-
type vector, as:

fl;n,k: ]:c”uc;jc,uc
Wo k= — ( J)c : )
Zn:l fl;mk(}—cvuc; Je, /u'j)

where f1,n,1(F€, pu T, uS) is the similarity between the
n-th point feature F;; and the k-th prototype vector uj.
Such similarity weights represent the semantic similarity
between prototypes and point features. A larger weight
value means higher semantic similarity.

Prototype Globalization. After generating the semantic
similarity, prototype globalization is implemented by calcu-
lating the weighted average of the point features through the
similarity weights. The new prototype vy, is formulated as:

N
v = Z Wy, kg F - %)
n=1

With the weighted average of point features, the global
perception is embedded to the sparse prototypes.

3.3.2 Prototype-to-Point Globalization.

After Po2PrG, the sparse prototypes have acquired global
perception. However, the local point features remain lo-
cal dependency. To solve it, Pr2PoG based on similarity
weights is introduced to embed global perception to local
point features. This is implemented through four steps: sim-
ilarity measurement, weights generation, point feature glob-
alization, and prototype globalization.

Similarity Measurement. Given sparse prototypes v¢ =
{v§}E | which incorporate global perception, we compute
the similarity between point features and global prototypes,
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Figure 3. Diagram of point-to-prototype globalization (Po2PrG) and prototype-to-point globalization (Pr2PoG). Prototypes and point fea-
tures are enhanced with global perception by generating similarity weights in a bidirectional fashion.

as fo(F¢, 0% T%0G) = e~ P2 where v% = pS. In experi-
ments, D is defined as the inner product operation.

Weights Generation. With the similarity measurement,
we correlate the global prototypes with local point features
through the semantic perception i.e., the similarity weights
from global prototypes to dense point features. The simi-
larity weight wy, ,, from the k-th prototype to the n-th point
feature is defined as:

~ f2;k,n(fc7vc; jcaU%)
wk,n = K .
Zk:l fQ;k,n(]:C7 CRVAS Uf7)

In the weights space, a prototype with higher similarity
to the point feature is assigned a higher weight, and vice
versa.

Point Feature Globalization. — Based on the semantic
similarity, the updated point features 7, are obtained by the
weighted average through the similarity weights, as:

(6)

K
Fo=F5+ > Whnvf.

k=1

)

Prototype Globalization. To globalize the prototypes, we
employ weights generation to convert the updated point fea-
tures into new weights w,, ., which is formulated as:

f2;n,k(gc7 Uc; \767 ’Uf’])
Sone frnn (3,05 T, 0%)
The prototype globalization of Po2PrG is then used

to compute the weighted average through the similarity
weights and obtain enhanced prototypes 77, as:

Wn,k =

®)

N
E= Y B ©)
n=1

After Pr2PoG, point features are correlated with the
sparse prototypes and the enhanced prototypes are obtained
for the following prototype assembly.

3.4. Sparse Prototype Assembly

After prototype globalization, we obtain the enhanced
prototypes with global semantic perception, as r¢ =
{r¢}& . When performing semantic segmentation in the
following metric learning procedure, it requires to generate
the similarity maps between query features and prototype
vectors. To perform the measurement, the sparse prototypes
from each class require to be fused at first. We first apply
MLP to the prototypes, as: 7 = M{r¢} € RP*X_We
then calculate the mean prototype z¢ of each class, as

K
2= apofy, (10)
k=1

_ ek
where o) = S o
vector of the prototypes for class ¢, and o is the Hadamard

product. The prototypes of all classes are z = {z¢ le.

€ RPx1 is the normalized weight

4. Experiments

The proposed BFG is evaluated on two point cloud seg-
mentation benchmarks, including the Stanford Large-Scale
3D Indoor Spaces (S3DIS) [[1] and ScanNet [4].

4.1. Datasets

S3DIS. S3DIS is a dataset which collects 3D RGB point
clouds from 272 rooms in six indoor environments. Each
point is annotated with one of the semantic labels from 13
classes (12 semantic classes plus the clutter). ScanNet. The
ScanNet dataset contains a total of 1513 scanned scenes.



Table 1. Performance on S3DIS. ‘Embed. Net’ denotes the embe(_iding network (backbone). ‘DGCNN w/o SAN’ and ‘DGCNN w/ SAN’
denote DGCNN backbone without and with SAN, respectively. S* represents the split i is selected to test our BFG.

2-way 3-way

Method Embed. Net 1-shot [ 5-shot 1-shot 5-shot

SP ST mean | S st mean SY St mean S S mean
FT [34] 36.34 38.79 37.57 56.49 56.99 56.74 30.05 32.19 31.12 46.88 47.57 47.23
ProtoNet [5] DGCNN w/o SAN 48.39 49.98 49.19 57.34 63.22 60.28 40.81 45.07 42.94 49.05 53.42 51.24
MPTI [34] 52.27 51.48 51.88 58.93 60.56 59.75 44.27 46.92 45.60 51.74 48.57 50.16
BFG(ours) 52.50 53.26 52.88 59.26 62.82 61.04 43.80 47.76 45.78 49.80 55.10 52.45
ProtoNet [5] 50.98 51.90 51.44 61.02 65.25 63.14 42.16 46.76 44.46 52.20 56.20 54.20
MPTI [34] DGCNN w/ SAN 53.77 55.94 54.86 61.67 67.02 64.35 45.18 49.27 47.23 54.92 56.79 55.86
BFG(ours) 55.60 55.98 55.79 63.71 66.62 65.17 46.18 48.36 47.27 55.05 57.80 56.43

Table 2. Performance on ScanNet. ‘Embed. Net’ denotes the embe_dding network (backbone). ‘DGCNN w/o SAN’ and ‘DGCNN w/ SAN’
denote DGCNN backbone without and with SAN, respectively. S* represents the split i is selected to test our BFG.

2-way 3-way

Method Embed. Net 1-shot [ 5-shot 1-shot 5-shot

SP ST mean | S° st mean SY St mean S S mean
FT [34] 31.55 28.94 30.25 42.71 37.24 39.98 23.99 19.10 21.55 34.93 28.10 31.52
ProtoNet [5] DGCNN w/o SAN 33.92 30.95 32.44 45.34 42.01 43.68 28.47 26.13 27.30 37.36 34.98 36.17
MPTI [34] 39.27 36.14 37.71 46.90 43.59 45.25 29.96 27.26 28.61 38.14 34.36 36.25
BFG(ours) 38.63 36.82 37.73 45.67 42.36 44.02 30.57 29.02 29.80 38.64 34.75 36.70
ProtoNet [5] 37.99 34.67 36.33 52.18 46.89 49.54 32.08 28.96 30.52 44.49 39.45 41.97
MPTI [34] DGCNN w/ SAN 42.55 40.83 41.69 54.00 50.32 52.16 35.23 30.72 32.98 46.74 40.80 43.77
BFG(ours) 42.15 40.52 41.34 51.23 49.39 50.31 34.12 31.98 33.05 46.25 41.38 43.82

All the points except the unannotated space are annotated
by 20 semantic classes.

Data pre-processing. Following [34], we divide the
semantic classes of each dataset into two non-overlapping
combinations S° (S3DIS: beam, board, bookcase, ceiling,
chair, column. ScanNet: bathtub, bed, bookshelf, cabinet,
chair, counter, curtain, desk, door, floor) and St (S3DIS:
door, floor, sofa, table, wall, window. ScanNet: other fur-
niture, picture, refrigerator, show curtain, sink, sofa, table,
toilet, wall, window) according to the alphabetical order. To
facilitate the point cloud be fed to the network, we process
the datasets following [18, 34]: splitting the rooms into
1m x 1m blocks and sampling 2048 points from the block
each time. After that, the S3DIS and ScanNet datasets are
split into 7547 and 36350 blocks, respectively. Since the
area of each block is small, the sampled points can only
contain one instance object or a local area of an instance
object. For each dataset, the cross-validation is performed
to our method, which is implemented by selecting one split
S? as the train class set and regarding the other split S*~% as
the test class set. If S* (S© or S1) is used as the test class set,
the blocks containing the S? class are selected as the test set,
and the blocks containing the S~ class is selected as the
training set. Following [34], the sampling process of each
episode in the training process is as follows: (1) Randomly
selecting a combination of IV classes from the train class
set S? to set up N-way as the foreground, and the remain-
ing classes are regarded as the background. (2) Randomly
sampling K (K -shot) support sets and query sets based on
the selected N-way class combination in the training set.
When testing, we take the same operation to preprocess the

data of the test class set.

4.2. Experimental Settings

Evaluation Protocols. Mean intersection over union
(mloU), which is widely used in point cloud segmentation,
is selected as the metric for performance evaluation.

Implementation Details. DGCNN [26] is proposed
as a basic point cloud classification and segmentation net-
work that is widely used for many point cloud processing
tasks. SAN [34] is introduced to explore correlations of se-
mantic context within the point set. Based on this, DGCNN
(without or with SAN) is selected as the backbone. Our
approach utilizes ProtoNet [34] as the baseline. Follow-
ing [34], Gaussian jittering operation and random rotation
operation around z-axis data augmentation strategies are
used in the training process. Our approach runs on a single
NVIDIA TITAN RTX GPU with the batch size set to 1 and
the number of training iterations set to 80000. The Adam
optimizer is used with an initial learning rate of 0.0001 for
the embedding network. Furthermore, an initial learning
rate for the remaining parts is set to 0.001. Since S3DIS
and ScanNet belong to the same type of indoor scene point
cloud data, the number of sparse prototypes is set to 5 on
both S3DIS and ScanNet through extensive experiments.

4.3. Performance

S3DIS. In Table |1} our BFG is compared with the state-
of-the-art methods. DGCNN without and with SAN are se-
lected as the backbone, BFG outperforms state-of-the-art
methods in all experimental settings. With the 2-way 1-
shot setting and DGCNN (with SAN) backbone, our BFG
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Figure 4. Feature perception of prototypes and point features during training. Both prototype vectors and local point features with BFG are
gradually embedded with global perception, which extends the receptive fields to full instance extent. (Best viewed in color)

achieves 4.35% (55.79% vs. 51.44%) performance im-
provement over the baseline ProtoNet. Note that for the
S0 setting in 2-way 1-shot experiments, BFG improves the
baseline ProtoNet by 4.62%, which outperforms the state-
of-the-art method MPTI by 1.83%. Compared with Pro-
toNet, it is concluded that the extraction of sparse proto-
types does help to improve the segmentation performance.
Compared with MPTI, we can see that too many prototypes
will not have higher performance. On the contrary, a mod-
erate number of prototypes with the optimal global repre-
sentation after BFG greatly improve the performance.

ScanNet. Table [2] displays the segmentation per-
formance on ScanNet. BFG again outperforms state-of-
the-art methods in most experimental settings. For the 2-
way 1-shot setting and DGCNN (without SAN) backbone,
BFG improves the baseline ProtoNet by 5.29% (37.73%
vs. 32.44%), which is a large margin for the challenging
few-shot 3D segmentation problem. Compared to S3DIS,
there are more classes and point sets in ScanNet, which fa-
cilities learning richer representation related to various in-
stances. Thereby, the improvement on 2-way 1-shot setting
of ScanNet is larger than that on S3DIS. With the DGCNN
(with SAN) backbone, our BFG is better than or on par with
state-of-the-arts.

4.4. Visualization Analysis

Feature Perception. As Fig.[d]shows, we visualize the
feature perception of different prototypes and point features
during training, respectively. In the left part, the feature per-
ception of different prototypes in the same class without and
with BFG is clearly displayed. Prototype feature percep-
tion in Fig.[]is reflected by the similarity between the point
features and each prototype. In the right part, the feature
perception of point features without and with BFG is given.
Point feature perception in Fig. [ is reflected by the point

feature maps before and after adding BFG. One can see that
with BFG, both the prototypes and the point features grad-
ually approach global perception. From the visualizations,
the feature perception of both the prototypes and the point
features after our BFG can be extended to full instance ex-
tent. These clearly demonstrate the superiority of our BFG
in feature representation over previous prototype methods.

Segmentation Results. As Fig. [5] shows, we compare
the segmentation performance by the baseline method and
our BFG on S3DIS and ScanNet datasets. The segmenta-
tion results show that by introducing bidirectional feature
globalization, BFG has achieved good segmentation perfor-
mance on the instances with scale variation and deforma-
tion. In addition, the optimal sparse prototypes also greatly
alleviate the false segmentation between classes.

4.5. Ablation Study

We conducted ablation studies with 2-way 1-shot setting
on the S3DIS dataset to verify the effectiveness of BFG.
ProtoNet [5] is selected as the baseline.

Table 3. Ablation study of modules in our BFG approach. The first
row is the performance of the baseline ProtoNet. ‘SPGen’ denotes
the sparse prototype generation module with Sparse Prototype As-
sembly, ‘Po2PrG’ denotes Point-to-Prototype Globalization, and
‘Pr2PoG’ denotes Prototype-to-Point Globalization.

+SPGen  +Po2PrG  +Pr2PoG | Mean A YA
51.44

v 5334 190 1.90

v v 5439 1.05 295

v v v 5579 140 435

SPGen. As shown in Table [3 with sparse prototype
generation, BFG improves the segmentation performance
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Figure 6. Ablation study of the hyper-parameters and modules. (a)
Prototype number K. (b) Distance measurement function combi-
nations (‘N’ represents Lo-Norm and ‘IP’ represents inner product
operation). (c) Hyper-parameter £. (d) Hyper-parameter \.

by 1.90% (53.34% vs. 51.44%) on mean IoU of the S° and
St split, which validates that multiple prototypes improve
segmentation performance more significantly. To maximiz-
ing the performance gain, a proper number of prototypes
should be used. As shown in Fig. [6(a), 20 prototypes can
reach the best performance.

Po2PrG. In Table [3| Po2PrG further improves the per-
formance by 1.05% (54.39% vs. 53.34%), which validates
the prototypes acquire global perception after Po2PrG em-
beds local point features to the prototypes.

Pr2PoG. As shown in Table 3] by using Pr2PoG, our
BFG improves the segmentation performance by 1.40%
(55.79% vs. 54.39%), validating that the local point fea-
tures obtain the global perception through embedding the
global prototypes to the local point features. This clearly
demonstrates the superiority of our BFG over other meth-

<5 o 2

ods on global feature representation.

Number of Sparse Prototypes. Since S3DIS and Scan-
Net are divided into the blocks of 1mx Im, the input of the
network is 2048 points sampled from a small block. There-
fore, for the input of the network, the point set only contains
a single object or a part of a single object, and there will not
be multiple objects. Thus, the theory that each of the proto-
types represents a part of an object is sound enough. From
the red line in Fig. |§ka), we validate that after adding BFG,
setting the number of prototypes to K = 5 can achieve the
best performance, where the number of prototypes is within
an acceptable range. Moreover, the value of K shows an
upward trend in segmentation performance within a certain
interval [1,5], and reaches a peak when K = 5. As the
K value gradually increases, the segmentation performance
decreases. Adding BFG makes the peak of the performance
curve come early and greatly reduces the number of multi-
ple prototypes, which surpasses the performance of MPTI
with 100 prototypes while using just K = 5 prototypes.
This once again verifies that BFG can extract the optimal
representation of prototypes.

Distance Measurement. In Fig. [6[b), we compare the
combination of Ly-Norm and inner product operation for
distance measurement. The results from the combinations
show that the distance measurement defined by (L2-Norm,
Inner Product) is preferable. As Fig. |§Kc) and (d) show, we
illustrate the effects of hyper-parameter £ in inner product
operation and )\ in Ly-Norm. For ), the best performance of
our BFG occurs at A = 0.85. Furthermore, the best perfor-
mance of the parameter £ which is a numerical adjustment
of the distance occurs at 0.5. Obviously, the segmentation
performance of our BFG is insensitive to them.



5. Conclusion

We propose bidirectional feature globalization (BFG),
which improves the representation ability of prototypes by
incorporating global feature perception in a bidirectional
fashion. BFG realizes the optimal representation of part-
wised semantics through globalizing sparse prototypes and
dense point features. BFG implements prototype combi-

nation towards fusing part-wised object semantics.

Ex-

tensive experiments on commonly used 3D segmentation
datasets demonstrate the effectiveness of BFG, in striking
contrast with other state-of-the-art methods. As a simple-
yet-effective approach, BFG provides a fresh insight to the
challenging few-shot segmentation task of point clouds.
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