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Abstract—Point cloud filtering and normal estimation are two fundamental research problems in the 3D field. Existing methods usually
perform normal estimation and filtering separately and often show sensitivity to noise and/or inability to preserve sharp geometric
features such as corners and edges. In this paper, we propose a novel deep learning method to jointly estimate normals and filter point
clouds. We first introduce a 3D patch based contrastive learning framework, with noise corruption as an augmentation, to train a
feature encoder capable of generating faithful representations of point cloud patches while remaining robust to noise. These
representations are consumed by a simple regression network and supervised by a novel joint loss, simultaneously estimating point
normals and displacements that are used to filter the patch centers. Experimental results show that our method well supports the two
tasks simultaneously and preserves sharp features and fine details. It generally outperforms state-of-the-art techniques on both tasks.
Our source code is available at https://github.com/ddsediri/CLINEPCF.

Index Terms—Point cloud filtering, normal estimation, contrastive learning, machine learning.

1 INTRODUCTION

OINT clouds have numerous applications as they pro-
Pvide a natural representation of 3D geometric infor-
mation. They have seen applications in fields such as au-
tonomous driving, robotics, 3D printing and urban plan-
ning [1], [2], [3], [4]. Captured using 3D sensors, point
clouds consist of unordered points which lack connectivity
information between individual points. The captured point
cloud information may be corrupted with noise. Therefore,
one fundamental research problem is point cloud filtering,
also known as denoising. Another fundamental task is nor-
mal estimation at individual points. Together, they facilitate
other tasks such as 3D rendering and surface reconstruction.

Conventional normal estimation methods, such as Prin-
cipal Component Analysis (PCA) and its variants [5], [6],
[7], [8] and Voronoi diagram based approaches [9], [10],
[11]], perform poorly when estimating the normals at sharp
features such as corners or edges and show high sensitivity
to noise. To address these issues, a number of learning based
methods have been recently proposed such as Deep Feature
Preserving (DFP) [12] and Nesti-Net [13]. However, they
have large network sizes and therefore are typically slow.
Methods such as AdaFit [14] and Deep Iterative (DI) [15]
offer more lightweight solutions that perform admirably,
but still show less robust results at higher noise levels.

Point cloud filtering can be classified into two main
types: normal based methods [12], [16], [17], [18] and posi-
tion based methods [19], [20], [21], [22]. The former utilizes
normal information at a given point in order to apply a
position update algorithm [12], while the latter does not
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require normal information and relies solely on position
information. Among position based methods, a common
issue is the inability to preserve sharp features during the
filtering process while normal based methods rely heavily
on normal accuracy. Learning based approaches seek to
resolve this. In particular, Pointfilter [22], performs effec-
tively at preserving sharp feature information on CAD-like
shapes yet fails to generalize to large scenes. Methods such
as PointCleanNet [21] and TotalDenoising [23]] also perform
sub-optimally, tending to smear sharp features.

In this paper, we propose a novel method capable of
simultaneously inferring point normals and displacements
while maintaining robustness to noise. Our method com-
prises of a feature encoder capable of generating latent
representations of patches based on patch similarity and
a regressor capable of inferring point normals and dis-
placements simultaneously. We introduce a 3D patch based
contrastive learning framework to train the feature encoder
which employs noise corruption as an augmentation tech-
nique, allowing the encoder to identify the sharp geometric
features of the underlying clean patch despite different lev-
els of noise corruptions. The regressor consumes the latent
representation of a patch and outputs the point normal
and the displacement required to filter the central point of
that patch. To train the regressor, we introduce a novel loss
function that jointly penalizes inferred point position error
and normal estimation error by exploiting the relationship
between a point’s position and normal. We intuitively as-
sume that a filtered point’s normal should correspond to a
ground truth point’s normal if this ground truth point first
corresponds to that filtered point in position, thus leading
to the relationship between filtering and normal estimation.

The main contributions of this paper are as follows.

o We develop a novel framework capable of inferring
both points’ displacements and normals simultane-
ously by introducing a loss function capable of con-
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straining both filtering and normal estimation tasks.
This joint loss penalizes both position regression error
and normal estimation prediction error and allows the
network to learn both filtered displacements and point
normals.

e We introduce 3D patch based contrastive learning to
generate effective patch-wise representations.

We conduct extensive experiments and demonstrate that
our method, in general, outperforms state-of-the-art normal
estimation and filtering techniques.

2 RELATED WORK

Normal estimation. In its earliest incarnation, normal
estimation was based on Principal Component Analysis
(PCA) [5]. Several variants of this initial PCA method have
also been proposed [6], [7], [8]. Thereafter, approaches based
on Voronoi cells were used to reconstruct surfaces while
preserving sharp features and estimating normals [9], [10],
[11]. Recently, Lu et al. [24] proposed a normal estima-
tion method based on a Low Rank Matrix Approximation
(LRMA) algorithm. Additionally, methods such as [25], [26],
[27], [28] utilized point statistics and clustering to determine
point normals.

Normal estimation (learning-based). One of the first
learning models for normal estimation, HoughCNN, em-
ploys a voting mechanism for estimating normals. They
utilize a local patch representation in Hough space that can
be consumed by a CNN [29]. However, with the advent
of PointNet [30] and PointNet++ [31]], newer methods have
been proposed that directly consume point sets. PCPNet is
one such example, which consumes point cloud patches at
multiple scales [32]. Similarly, Nesti-Net consumes patches
at multiple scales but also employs multiple sub-networks,
Mixture-of-Experts, that specialize in estimating normals at
these scales [13]. Wang and Prisacariu introduced NINor-
mal, a self-attention based normal estimation scheme [33]
while Lu et al. proposed Deep Feature Preserving (DFP),
a two step mechanism that classifies points into feature
and non-feature points and, subsequently, estimates their
normals based on this classification [12]. Finally, several
deep learning methods based on weighted least squares
plane fitting have been proposed [14], [15], [34]. While
these methods focus on accurately determining unoriented
normals, the work of Wang et al. [35] focuses on estimating
point normals and their orientations.

Point cloud filtering. Traditional filtering applications
center around Moving Least Squares (MLS) approaches [36],
[37]. Alexa et al. [38] built on MLS techniques to minimize
the approximation error of denoised point set surfaces.
These methods perform poorly on point sets with sharp
features, an issue that Adamson and Alexa [39] and Guen-
nebaud and Gross [40] aimed to tackle. Lipman et al. devel-
oped the Locally Optimal Projection (LOP) operator which
does not depend on a local data parametrization such as a
local normal or tangent plane [19]]. This projection operator
was further enhanced by Huang et al. and Preiner et al., who
proposed a Weighted LOP (WLOP) [20] and Continuous
LOP (CLOP) [41], respectively. The main drawback to these
MLS and LOP based techniques is their inability to pre-
serve sharp features. Oztireli, Guennebaud and Gross [16]
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proposed Robust Implicit Moving Least Squares [16] which
improves the filtering ability to preserve sharp features but
relies heavily on the accuracy of normal information. Lu
et al. proposed a point cloud filtering scheme based on
normals estimated by their LRMA algorithm [24]. Remil
et al. reformulated point cloud filtering as a global, sparse
optimization problem which is solved using Augmented
Lagrangian Multipliers [42].

Point cloud filtering (learning-based). PointProNets
used a CNN which consumes noisy height-maps and re-
turns filtered ones [43]. EC-Net employed a supervised
scheme for edge aware filtering and upsampling [44]. PCN
uses a L1 norm loss based network to remove outliers and
Ly norm loss based network to filter points [21]]. Pointfilter
takes into account local structure by considering points and
their ground-truth normals, during training time, to infer
filtered positions [22]]. DFP [12] employs the position update
mechanism of [24] to filter points based on the estimated
normals. ScoreDenoise (SD) models a noisy point cloud’s
underlying surface with a 3D distribution supported by
2D manifolds and estimates the score for the gradient of
the noise convolved distribution [45]. TotalDenoising (TD)
offers an unsupervised learning alternative to the aforemen-
tioned supervised schemes [23].

Contrastive learning. Recently, we have seen the in-
creased use of contrastive learning in generating faithful
representations based on similarity between inputs. Self-
supervised learning that maximizes agreement between
similar inputs was first proposed by Becker and Hinton [46].
Thereafter, contrastive learning was further exploited to
learn lower dimensional representations of high dimen-
sional image data by the work of Hadsell, Chopra and
LeCun [47]. Chen et al. utilized more recent neural network
architectures and data augmentation methods in their Sim-
CLR method [48]. Although initially designed for 2D image
processing tasks, contrastive learning is now seeing appli-
cations in 3D representation learning [49], [50], [51], [52]
and for specific point cloud processing tasks such as shape
completion, segmentation and scene understanding [53],
[54], [55]. However, it has never before been explored in
terms of the problems of normal estimation and point cloud
filtering, which we focus on in this work.

3 BACKGROUND AND MOTIVATION

In this section, we look at the motivation for our contrastive
learning based joint normal estimation and filtering method.

3.1 Patch-based contrastive learning

As mentioned earlier, contrastive learning has emerged as
an effective method of generating latent representations of
inputs such as images or point clouds based on similarity
between augmented pairs of inputs which are seen by the
network during training [48]. The work of Xie et al. [56] ex-
tended this method to 3D point clouds. Crucially, their work
focuses on generating representations of entire point clouds,
i.e., they use a global approach. However, as Guerrero et
al. [32] point out, normal estimation at a given point relies
on the local structure of the point neighborhood rather than
the global structure of the entire point cloud. This is also true
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Fig. 1. 3D patch based contrastive learning.

for the problem of point cloud filtering [21] as effective fil-
tering mechanisms must preserve sharp feature information
locally. This motivates our approach of developing a patch-
based contrastive learning mechanism where noise corrup-
tion of input patches is used as an augmentation to develop
different views of the same underlying clean patch. There-
after, we employ the Normalized Temperature-scaled Cross
Entropy (NT-XEnt) loss function detailed in Sec. 4.3| which
promotes similarity of generated latent representations for
a given positive pair of augmented patches. Inspired by the
work of [48], we do not explicitly sample negative pairs as
the remaining augmented pairs within a batch can be used
for this purpose. Furthermore, the goal of this contrastive
process is to bring representations of patches of the same
underlying clean structure closer together, which is unlike a
triplet based learning process which simultaneously brings
representations closer for similar patches while pushing
away representations of dissimilar patches.

3.2 Joint normal estimation and filtering

Normal estimation and point cloud filtering are two inter-
connected tasks. Accurately predicted normals are central
to reliable point cloud filtering and surface reconstruction
as mentioned by [12], [16]. In a similar manner, predicting
normals on less noisy patches provide more accurate results,
as opposed to noisier patches where outliers affect the final
prediction [15], [32]. This motivates our joint normal estima-
tion and filtering approach where our regression network
estimates patch normals along with point displacements to
filter central patch points. Thereafter, the estimated normals
are used to further refine the final filtered position. This
approach helps exploit the interlinked relationship between
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normal estimation and point cloud filtering and motivates
our joint approach.
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Fig. 2. The impact of using a feature encoder pretrained using con-
trastive learning compared to a feature encoder trained from scratch. We
consider t-SNE projections of latent representations of a sharp feature
patch and a non-sharp feature patch at different Gaussian noise levels
o, w.r.t. the bounding box diagonal (BBD) of the clean point cloud.
Respective clean patches are illustrated at the top.

3.3 Link between contrastive learning and regression
tasks

Feature encoders trained using contrastive learning are
adept at generating similar representations of similar in-
puts and dissimilar representations of dissimilar inputs.
Guided by the intuition that two noisy variants of the
same underlying clean patch should generate similar latent
representations, we develop a contrastive learning frame-
work with noise corruption as an augmentation to train
a feature encoder f(x) (see Fig.[I). This encoder is later
used as part of a regression network (Fig. [3) to infer point
normals and filtered displacements simultaneously. During
training of the regression network, the pretrained feature
encoder’s weights are kept frozen and only the regressor
h(x) is trained. The pretrained feature encoder is robust to
noise and generates representations that can be consumed
more effectively by the regression network during training.
Fig. 2| illustrates t-SNE projections of 250 noisy variants of
a given sharp feature patch and 250 noisy variants of a
non-sharp feature patch obtained from the Cube shape in
our dataset. The corresponding clean patches are illustrated
at the top of Fig. [2| Each noisy variant contains Gaussian
noise of standard deviation ¢, ranging from 1.0% to 2.5% of
the clean point cloud’s bounding box diagonal. We observe
that a feature encoder trained without contrastive learning
generates latent representations that are less similar for
differing noisy patch variants sharing a common underlying
clean structure, for both the sharp feature and non-sharp
feature patch. This is evident from Fig.|2|as low noise patch
variants (dark green markers) have projections that are far
apart from their respective higher noise counterparts (light
green/yellow markers).

The feature encoder pretrained using contrastive learn-
ing, with only noise corruption as an augmentation, gen-
erates latent representations whose t-SNE projections are
clustered more closely, indicating that representations are
more similar even as noise increases. This is due to the
contrastive pretraining that exploits noise corruption as an
augmentation and ensures robustness to noise. As such,
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Fig. 3. Overview of the Regression network for outputting filtered points and normals. Feature encoder is taken from contrastive learning.

latent representations generated by the feature encoder are
easier for the regression network to distinguish, even for
high noise patches, as these representations are similar
to that of the underlying clean counterparts. Thereby, the
contrastive learning based pretraining facilitates our joint
normal estimation and point cloud filtering method.

4 PROPOSED METHODOLOGY
4.1 Overview

We first introduce 3D patch-based contrastive learning to
train a feature encoder capable of producing representations
of point cloud patches (Fig. [T). This feature encoder consists
of a PointNet-like architecture, with 5 Conv1D layers and
a global max pool layer that generates a 1024 dimensional
representation of input point cloud patches. These repre-
sentations are projected to a 256 dimensional vector by a
projection head consisting of 3 fully connected layers. Once
the feature encoder has been trained, we use it to generate
latent representations of input patches for regression tasks.
Next, we train a regression network (Fig.|3)) to predict patch
normals and displacements simultaneously (i.e., normal and
displacement of the central point of a patch). The regressor
consists of the pretrained feature encoder and a MLP of
5 fully connected layers that output the desired normals
and displacements. During the testing phase, these displace-
ments are added to the initial point cloud, which produces
a filtered point cloud that is refined and becomes the input
for the next iteration of inference.

4.2 Contrastive pair construction

A clean point cloud consisting of n points is described by
P, ={pi|pi € R i =1,...,n} where s = 1,...,. M
enumerates all training shapes. A noisy point cloud P can,
thereafter, be characterized by the addition of noise onto the
clean point cloud

Py (o) =P, +N(0,0%), @)

where N (0, 02) corresponds to additive Gaussian noise with
a mean of 0 and standard deviation of ¢. For our training
set, o takes on values of 0.25%, 0.5%, 1.0%, 1.5% and 2.5% of
the bounding box diagonal length of P,. For a given shape,
the set of 6 variant point clouds (1 clean and 5 noisy), is
given by

A, ={P,,P,(0)|0=02%,...,25%}, )

Patches sampled from point clouds in A are utilized in the
contrastive learning process.

An input patch centered at p;, the i*" point of a given
point cloud P,(01) € A, can be described by

P ={pj | pj € Ps(o1) Allpj — pill, <7p}, ®)

We create a contrastive pair (P, Q) by randomly sampling
another point cloud P,(02) € A such that,

Q={qj | g € Ps(o2) Nlgj — pill, < 7o}, 4)

Here, P;(01) and P(02) correspond to two noisy variants
of the same underlying clean point cloud and o and o5 are
chosen randomly. The process of pairing P with Q, where
both share the same underlying clean patch structure, as
both are subsets of A and are centered at p;, is the first
augmentation. We note that 7?7 may have a different patch
radius to Q as the bounding box diagonal length of P4(o7)
differs from P (02) unless 01 = o3. The patch radii rp and
rg are taken to be 5% of the respective bounding box diag-
onals. Patches are maintained at a fixed size to simplify the
training procedure. Empirically, for each patch we sample
500 points. If the number of points is fewer, we increase it
by copying random points in the patch and downsampling
is applied otherwise. All patches are translated to the origin
and normalized to [-1, 1], ie, P = (P — p;)/rp and
Q=(2-pi)/ro.

For a batch of size IN, we have a total of 2NV aug-
mented patches, i.e, we have input patches and their noise
contrasted versions. The input patches are drawn from the
training set T, given by T = JY | A,. All pairs (P, Q)
and (Qp, Pr), where k = 1,..., N, form positive contrastive
pairs as these patches are drawn from point clouds of
the same shape, the set A, and correspond to the same
central point p;. Any pairs (Px, Q;) or (Q;, Pr) where
k,l=1,...,N Ak # [ constitute negative pairs. For each
augmented patch, there exists 1 positive pair and 2(N — 1)
negative pairs. We do not pair the augmented patch with
itself, i.e., we do not consider (P, Px) or (Qg, Qk)-

Positive contrastive pairs are put into the canonical basis
by taking the inverse of the eigenvector matrix, obtained
from the covariance matrix of Py, Eq. (5), and matrix multi-
plying both patches by it.

. > (i —pi)pi — )7, (5)

Cp, = o=
' |Pk| p; €EPk
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Finally, we apply a second augmentation to Qj, by randomly
rotating it around either the z, y, or z axis by an angle § €
{0,7/12,7/6,w/4,7w/3,7/2,Tn /12,270 /3,37 /4,57 /6,7 }.
This second augmentation allows the network to learn
patch similarity based on patch structure despite rotations
and reinforces the effect of contrastive learning.

4.3 Contrastive learning

Once contrastive pairs have been generated, we train our
feature encoder f(x) in a contrastive learning manner. As
patches within a positive pair correspond to the same
ground-truth patch, albeit with different levels of additive
noise and arbitrary rotations applied to them, they should
produce similar representations. As such, we adopt the
Normalized Temperature-scaled Cross Entropy (NT-XEnt)
loss [48] to achieve this. The loss for a positive pair (Pj, Q)
in the batch is given by

R

S22 Ly exp (2, - 2p,) /T
where [ = 1,...,2N enumerates over all projections. The
function 1y = 0if k = [ and 1 otherwise. We empirically
set 7 = 0.01 based on results. In Eq. (6), the projection
z. = g(f(x)) with g(*) and f(x) parameterized by the

projection head and feature encoder, respectively. Finally,
the contrastive loss for the entire batch is,

L'Pk.,Qk =-1 (6)

1 XN
= 9N (LPka + LQkJDk) ’ @)
k=1
where £ = 1,..., N enumerates over all positive pairs.

Fig. [I| shows how a single positive pair within a batch is
processed by the feature encoder and projection head. All
positive and negative pairs within the batch see the same
copy of the feature encoder and projection head and all
pairs are processed simultaneously. The larger the batch
size, the greater the number of negative pairs available
for the contrastive loss calculation. Once the training of
the contrastive learning network has been completed, we
discard the projection head and use the feature encoder as
the backbone for our regression network. Representations
generated by the feature encoder are consumed by the
regressor, comprising 5 MLPs, and outputs a 2-tuple of
displacement and normal vectors. During the training of
the regressor, the weights for the feature encoder are kept
frozen. The regression process is visualized in Fig.

4.4 Joint loss

We propose a novel, joint position and normal based loss for
training our regression network. This joint loss allows our
network to, when trained, perform both a position update
of a noisy point while also estimating its corresponding
normal. Therefore, our regressor loss function comprises
two main components: L, the position loss and L,ormal,
the normal loss.

Approximating the clean surface. The position loss term
is inspired by the work of [21]. We consider all points within
the ground-truth patch P* and seek to minimize the squared
Ly norm instead of solely using a single fixed target.

~ . ~ 2
Lyos (i P*) = min {15 = pil; ®

5

where p; is the filtered point from the regressor given a
noisy patch P centered at p;, i.e., the i’" point in P. The
ground truth patch P* = {p; | p; € P, A[lp; — pill, < rp}
is translated to the origin and normalized such that P* =
(P* —p;)/rp. This loss term allows the regressor to filter the
noisy central point back to the clean patch surface. However,
this does not ensure that the filtered point is centered within
the ground truth patch which leads to unwanted clustering
of filtered points.

Ensuring regular distribution of points. To avoid un-
wanted point clustering, we employ a regularization term
which promotes the centering of filtered points within
ground truth patches. By ensuring that filtered points lie
close to the central points of their corresponding ground
truth patches, we recover a regular distribution of points
within the filtered point cloud.

2 _ 2
Lpos(pi7p*) = p%%i le _pj||2 ’ ©)

Intuitively, if the filtered point lies away from the ground
truth patch center, this leads to a larger penalization due to
Eq. @) For example, given a circular patch with radius 7,
the minimum value of Eq. (9) is ? where the inferred point
lies at the center of the ground truth patch and the furthest
point is 7 away. L},,, and L?,. form the position based loss
contribution to the final loss

Lpos = (1 - /B)L;zlaos + BL?)OS?

where 3 is the parameter that controls the regularization
term’s contribution to the position loss. We empirically set
it to 0.01, as we notice that a large contribution affects the
convergence of the final loss function.

Normal estimation. We then develop a relationship be-
tween a regressed position and its normal. Intuitively, if the
ground-truth patch point, which minimizes the squared L,
norm between positions, corresponds to the true position
of the filtered point, then that point’s normal should corre-
spond to the true normal of the filtered point. If the ground-
truth patch’s central point which minimizes the squared L;
distance is given by

(10)

*_

p; = argmin ([5: — ;113) . (1)

p;EP*
then the angle difference between the predicted normal and
the ground-truth normal can be expressed in terms of cosine
similarity between the two:

cos(0) = np, - npr, (12)

where n;;, and n,: correspond to the normals at p; and p},
respectively. This cosine term can now be used to construct
our normal loss:

Lyormat = 1 — [§ cos(0)® + (1 — §) cos()?] . (13)

The loss function in Eq. is a periodic function
which penalizes 6 values away from 0 and 7. Therefore,
it encourages the predicted normal to be as close to the
ground-truth normal as possible. It also assumes that the
predicted normal with an angle difference of 7 is equivalent
to the ground-truth normal. The ¢ term, which is empirically
set to 0.3, serves to control the shape of loss function
Lormal, wherein, angle differences close to 7/2 are heavily
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penalized. This penalization decreases closer to 0 and .
Finally, we express our joint loss as

(14)

where « controls the relative contributions of the position
and normal losses to the final loss function. We empirically
set o to 0.9 as the emphasis for the regressor is denoising the
point cloud iteratively. This in turn leads to better normal
estimation results.

Lfinal - aLpos + (1 - O4)Lno’rﬂ’bal7

4.5 Alternative joint loss

We also examine Eq. , a variant of the joint loss function,
Eq. (I4), which utilizes the point-to-point correspondences
between ground truth points p; and filtered points p;, i.e.,
using fixed ground truth targets.

Lygs = l16: = 21 1l3 (15)

L?Llotrmal =1- [6 008(9)2 + (1 - 6) COS(G)VL (16)

Liina = 0 Ljos + (1= ) LG ar, (17)

where cos(f) = ng, - nyr with n; and n,: being the

predicted normal and ground truth normal, respectively.
As we regress the filtered point directly back to the ground
truth central point, Lgffs does not contain a repulsion term.
The regressor trained with this loss function performs sub-
optimally to that of the regressor trained using Eq. (14). As
noted in [21], multiple clean points, within a given neigh-
bourhood, may be perturbed in such a way as to result in
the same noisy point. Therefore, the Ly norm minimization
between a filtered point and ground truth point, Eq. (I5),
cannot successfully remove the noise component tangential
to the surface and leads to a lower filtering performance.
This motivates our use of Eq. which regresses the fil-
tered point back to the surface while ensuring it is centered
as best possible within the ground truth patch. More details
are given in Sec.[6.2}

4.6 Inference

The regression network h(x), trained based on the loss
function defined by Eq. (14), outputs a 6D vector or 2-tuple
(ho, h1) of 3D vectors. The first element corresponds to the
displacement required to obtain the filtered point p}, and
the second to the corresponding normal vector 7;. As these
two vectors are in the space defined by the eigenvectors of
the patch covariance matrix, they must first be transformed
back to the original space. Subsequently, the filtered point
is given by p} = p; + T Hh(f(T(P)))o) - rp with the
original noisy point p;. The normal vector in the original
space is nz, = T~ (R(f(T(P))))1) where f(x) is the feature
encoder.

Given pj, we apply refinement during post-processing to
obtain the final filtered point as suggested by [21], [24]. The
first is a Taubin smoothing-like inflation step [21] and the
second is the LRMA position update [24] to combat shrink-
ing of the point cloud and avoid incorrect displacement of
points along the surface, respectively. The ablation study on
the post-processing refinement is discussed in Section
The new position after applying the inflation step is given

by,
>0 i),

p;EN(p7)

1

p; = ;7 7 18
P =P D) %)

6

where we take p; € N(p}) as the neighborhood of 100
filtered points in the vicinity of p; and p; is the original
point position before filtering. The LRMA position update
yields our final filtered point. The position update is given
by,

_ 1

Di Zﬁﬁ'm Z (pj_pi)(ngjn;ﬁj +njnp,), (19)
Pl 5 ento

with N (p;) being the neighborhood of 20 points in the

vicinity of p;.

5 EXPERIMENTAL RESULTS

5.1 Dataset

Our training set consists of 22 synthetic point clouds (Fig. [):
11 CAD shapes and 11 non-CAD shapes. The validation set
consists of 3 shapes, 1 CAD and 2 non-CAD shapes, while
the test set consists of 23 shapes: 14 CAD and 9 non-CAD.
Each shape is a point cloud of 100K points, which have been
randomly sampled from their original surfaces. For train-
ing, we create 5 additional noisy variants of each training
shape by adding Gaussian noise with standard deviations
of 0.25%, 0.5%, 1.0%, 1.5% and 2.5% of the clean point
cloud’s bounding box diagonal. These 6 variants (clean and
5 noise levels) for each shape give a total of 132 point clouds
for training purposes. For validation, we consider 2 noisy
variants of the initial 3 clean validation shapes, with 0.5%
and 1.0% noise, resulting in a total of 6 validation point
clouds. In the testing phase, we examine the robustness of
our model at unseen noise levels by utilizing 0.6%, 0.8%,
1.1%, 1.5% and 2.0% Gaussian noise for each test shape,
yielding 115 test point clouds.

Fig. 4. Left: Meshes of synthetic point clouds used for training. Right:
Meshes of synthetic point clouds used for validation (3 on the left) and
for testing (23 on the right).

Sharp features. To evaluate performance at sharp fea-
tures, we classify points within our synthetic dataset as
feature and non-feature points. Please refer to the supple-
mentary document for more details.

5.2 Implementation

The contrastive learning and regression networks are both
trained on NVIDIA A100 GPUs using PyTorch 1.7.1 with
CUDA 11.0. The contrastive learning network is trained for
150 epochs, with the Adam optimizer and a learning rate of
3 x 10~%. The regression network is trained for 30 epochs,
utilizing the SGD optimizer with a learning rate of 1 x 1072,
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Fig. 5. Normal estimation (top half) and filtering (bottom half) results on shapes with 0.8% Gaussian noise w.r.t. the bounding box diagonal. For
normal estimation, the respective mean squared angular error (MSAE) is given below each shape and the heat map corresponds to the angle

difference at each point. For filtering, the Chamfer distance (x10~?)
normalized Point2Surface distance (x10~3).

5.3 Comparisons

We compare our method with state-of-the-art normal es-
timation and point cloud filtering methods. For nor-
mal estimation, we consider conventional PCA ,
HoughCNN [29], NINormal [33], PCPNet [32], Nesti-
Net [13], Deep Iterative (DI) and AdaFit on our test
set including synthetic and scanned point clouds. We do not
compare with DeepFit as AdaFit is based on DeepFit
and achieves better results. PCA requires the manual selec-
tion of neighborhood sizes for plane-fitting. For synthetic

is given below each shape and the heat map corresponds to the scale

shapes, we utilize three different neighborhood sizes, i.e., 60
points for 0.6% Gaussian noise, 150 points for 0.8% Gaussian
noise and 200 points for 1.1%, 1.5% and 2.0% Gaussian
noise. For scanned surfaces a neighborhood of 100 points
is used. Our metric for comparison is the Mean Squared
Angular Error (MSAE) where we calculate angle differences
between ground truth normals n; and predicted normals 73;
and take the mean of their squares.

For point cloud filtering, we compare with conventional
methods CLOP and WLOP and deep learning
methods TotalDenoising (TD) [23], ScoreDenoise (SD) [45],
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TABLE 1
Normal estimation results on synthetic and scanned data given by the MSAE average. The MSAE for NINormal on scanned data is not given as it
was not possible to test this method on input point clouds with over 100K points. The Gaussian noise standard deviation o is with respect to the
bounding box diagonal of the clean point cloud. Top results in bold and second best results are underlined.

PCA  NINormal HoughCNN PCPNet Nesti-Net DI AdaFit  Ours
Syn. (0=0.6%) 0.1637 0.2113 0.7418 0.1184 0.1029 0.1037  0.0958  0.1038
Syn. (6=0.8%) 0.1514 0.3277 1.0427 0.1414 0.1197 0.1246  0.1143  0.1126
Syn. (0=1.1%) 0.1954 0.4813 1.1595 0.1762 0.1467 0.1539  0.1472  0.1268
Syn. (6=1.5%) 0.2664 0.6160 1.1879 0.2174 0.1827 01932 0.1914  0.1502
Syn. (0=2.0%) 0.3632 0.7175 1.1853 0.2646 0.2319 0.2405  0.2440  0.1951
Syn. average 0.2280 0.4708 1.0634 0.1836 0.1568 0.1632 0.1585  0.1377
Sharp feat. ave. 0.4216 0.5872 1.0003 0.3947 0.3504 0.3913  0.3445  0.3230
Scanned average | 0.1010 — 0.4960 0.0550 0.0430 0.0370  0.0250  0.0390
Overall average | 0.2237 0.4550 1.0443 0.1793 0.1530 0.1590  0.1540  0.1344

TABLE 2

Average Chamfer and Point2Surface distance results on synthetic and scanned data. The Gaussian noise standard deviation o is with respect to
the bounding box diagonal of the clean point cloud. Top results in bold and second best results are underlined.

Noisy CLOP WLOP TD SD PCN PF Ours

Syn. (6=0.6%) 4.762 2.366 3.374 4.638 1.867 1467 1444 1.241

Syn. (0=0.8%) 7.517 4.163 3.921 4.038 3.127 1752 1.749 1.545

Syn. (6=1.1%) 12.746  8.311 6.533 3.508 6.903 2572 2355 1.987

Chamfer dist. | Syn. (6=1.5%) 21.637  16.13 14.24 7472  14.301 5.787  3.544 3.244
(x1075) Syn. (6=2.0%) 35.906 29.177 27.318 22.838 27943 17.658 5.307 8.055
Syn. average 16.514 12.029 11.077 8499 10.828 5.847 2.880 3.214

Scanned average 2.764 3.317 5.618 3.835 3.443 0.542 0482 0.472

Overall average 16.052 11.736  10.894 8.342 10.58 5669 2799 3.122

Syn. (6=0.6%) 4.658 2.392 2.423 3.195 2.262 1.380 1.141 1.067

Syn. (0=0.8%) 6.143 3.730 3.052 3.078 3.520 1592 1386 1.324

Syn. (6=1.1%) 8.306 5.976 4.810 3.063 6.009 2108 1.810 1.807

Point2Surf Syn. (0=1.5%) 11.073  8.959 8.418 5.471 9.259 3.100 2472 2937
dist. (x 10;3) Syn. (6=2.0%) 14432 12.685 12460 11.282 13.315 5124  3.440 5.020
: Syn. average 8.922 6.748 6.233 5.218 6.873 2.661 2.050 2.431
Sharp feat. ave. 9.082 6.867 6.324 6.409 6.893 3366 2339 2.887

Scanned average 3.795 3.410 4.037 2.990 3.957 1.000 0.722  0.705

Overall average 8.750 6.636 6.159 5.143 6.775 2.605 2.005 2.373

PointCleanNet [21] and Pointfilter [22] on two metrics,
the Chamfer distance (CD) and the Point2Surface distance
(P2S) [57]. The Chamfer distance between a ground truth
point cloud P, and a filtered point cloud P is defined by
Eq. (20). The first term provides a measure of the distance
from filtered points to the ground truth surface while the
second provides a measure of the relative even distribution
of filtered points w.r.t. the clean point cloud. P2S measures
the average distance between filtered points and the recon-
structed ground truth mesh. All learning based methods are
retrained on our dataset.

~ 1

. 2
Py P) =5 D min flpi = pill;
piEP
1 . 2
+ 57 min [p; — pi| (20)
|PS| pg)s pi€P ’ 2

Evaluation at sharp features. We take the MSAE for
sharp feature points as a measure of normal estimation
accuracy and the P25 distance for these points as a measure
of filtering accuracy. Tables and [f|give the MSAE and
P2S averages for each method on our dataset.

5.4 Performance on synthetic data

Tables[T]and [B|and the top half of Fig.[5|demonstrate normal
estimation results on shapes with Gaussian noise. For the
normal estimation task, our method outperforms all other

methods including ones which employ larger networks,
such as Nesti-Net, and recovers accurate normals in the
presence of noise. AdaFit offers competitive results at lower
noise levels but performs sub-optimally at higher noise.
Another key attribute is its ability to accurately predict
normals at sharp features. Both these attributes of the
network can be seen by its performance on the Fandisk
shape. Overall, it has the lowest MSAE at sharp feature
points and shows higher robustness to noise. Contrastive
learning facilitates this as patches from anisotropic surfaces
are trained to produce distinct feature representations which
can be better distinguished by the regressor. Additionally, as
positive contrastive pairs share the same underlying clean
surface, representations of a given patch at differing noise
levels remain similar. This allows the regressor to reliably
estimate normals as noise increases.

Table 2] and B|and the bottom half of Fig. [f| demonstrate
filtering results on shapes with Gaussian noise. A core
attribute of our method is that it generalises well between
both CAD-like and non-CAD like shapes. It is able to re-
cover the sharp feature information of CAD shapes such as
Fandisk while also achieving the highest accuracy on non-
CAD shapes such as Galera and Gargoyle. Furthermore,
on complex shapes such as Cup, our method outperforms
others at filtering noisy points along closely neighboring
surfaces. Pointfilter specializes in the point cloud filtering
task and it only outperforms our method on both metrics
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TABLE 3
Individual MSAE and Chamfer distance values for shapes presented in Fig. |5l at Gaussian noise levels of standard deviation o, with respect to the
bounding box diagonal of the clean point cloud.

Shape - Normal estimation - MSAE Filtering - Chamfer distance (x10~°)
P PCPNet  Nesti-Net DI AdaFit Ours | Noisy PCN PF Ours
0.6% 0.0615 0.0205 0.0148 0.0197 0.0159 | 4.735 0.896 0.748 0.747
0.8% 0.0787 0.0322 0.0283  0.0329 0.0196 | 7.674 1.033 0.887 0.878
Fandisk | 1.1% 0.1005 0.0534 0.0542  0.0563  0.0266 | 13.232  1.546 1.246 1.244
1.5% 0.1250 0.0708 0.0828 0.0948 0.0442 | 22.610 3.520 1.678 2.285
2.0% 0.1498 0.0945 0.1152  0.1366  0.0716 | 37.450 13952  2.916 6.613
0.6% 0.0194 0.0218 0.0262  0.0198 0.0213 | 5.276 3.488 2.384 2.117
0.8% 0.0277 0.0275 0.0314 0.0264 0.0239 | 8.082 4.285 3.678 2.771
Cup 1.1% 0.0451 0.0399 0.0389  0.0446  0.0287 | 12961  5.609 5.228 2.957
1.5% 0.0773 0.0645 0.0518  0.0749  0.0390 | 21.329 10.267  8.462 2.995
2.0% 0.1153 0.1108 0.0755 0.1027  0.0640 | 34.351 22.665 10917 5.057
0.6% 0.1504 0.1357 0.1469  0.1256 0.1324 | 4.924 1.422 1.516 1.334
0.8% 0.1898 0.1657 0.1899  0.1586  0.1494 | 7.669 1.697 1.875 1.653
Galera 1.1% 0.2416 0.2085 0.2472 02091 0.1747 | 12922  2.430 2.478 2.128
1.5% 0.2904 0.2609 02947 02670 0.2166 | 21.713 5930 3.493 3.324
2.0% 0.3403 0.3136 0.3441 03219 0.2775 | 35215 19.101 6.112 6.879
0.6% 0.0957 0.0896 0.0989 0.0741 0.0798 | 4.691 1.309 1.768 1.219
0.8% 0.1270 0.1168 0.1382  0.1040 0.0969 | 7.382 1.653 2.360 1.625
Lion 1.1% 0.1707 0.1570 0.1786  0.1481  0.1262 | 12489  2.567 3.160 2.273
1.5% 0.2205 0.2053 02185 0.2022 0.1684 | 21.135  6.105 4.130 3.606
2.0% 0.2755 0.2630 02718 0.2595 0.2279 | 34.894 19.627 6.181 8.796
0.6% 0.1305 0.1113 0.1250 0.1038 0.1134 | 4.710 1.518 1.661 1.345
0.8% 0.1771 0.1454 0.1722  0.1434 0.1344 | 7.346 1.839 2.042 1.74
Gargoyle | 1.1% 0.2445 0.2037 0.2340 02159 0.1753 | 12.16 2.968 3.034 2.441
1.5% 0.3077 0.2672 02953 02865 0.2253 | 19903 6.594 5.179 3.902
2.0% 0.3725 0.3383 0.3616  0.3523 0.3019 | 32.178 19.408  8.000 8.597
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Fig. 6. Normal estimation results on scanned shapes.

at the highest noise level. Although, at higher noise, Point-
filter has slightly lower Point2Surface distances, the higher
Chamfer distance indicates a relatively uneven distribution
of points along the filtered surface. This is due to the fact
that there are multiple displacements along which a point
may return to the underlying clean surface. Therefore, even
if the point is returned to the underlying surface, it may
be incorrectly positioned along the surface. Our method
reduces this longitudinal jitter by using estimated normals
in conjunction with the LRMA position update scheme
of [24]. This takes regressed point positions, the output
from our network, as input and updates them based on the
neighboring points” positions and normal information from
the previous iteration. Thereby, we are able to optimize both
the position and normal estimation predictions to generate
a filtered point cloud which more accurately represents the

Sharp CAD

Fig. 7. Visual filtering results on scanned shapes.

original clean point cloud. Additional visual results are
given in the supplementary document.

5.5 Performance on scanned data

Next, we look at the performance of each method on the
scanned dataset which comprises 3 CAD-like scans and
1 non-CAD like scan where the ground-truth normal and
position information are known. These scans are obtained
using the virtual scanner introduced by Yu et al [44]. Ad-
ditionally, we present comparisons on the Kinect vl and
Kinect v2 datasets, introduced by Wang, Liu and Tong [58],
comprising 71 and 72 scans respectively, obtained using
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Fig. 8. Visual filtering results for the two scenes extracted from the Rue-Madame data. Our method recovers sharp features and fine details of

vehicles and building facades while other methods perform sub-optimally.

Kinect v1 and v2 sensors. As these scans have no ground
truth normal information, we only present filtering results.
We also test the learning based filtering methods on two
scans extracted from the Paris-Rue-Madame database [59].
They are scans taken from Rue Madame, a street in the 6th
district of Paris. These scans capture many intricate details
like the street’s building facades and parked vehicles and
also provide a good example of real-world noise that is
encountered when obtaining such scans. Finally, we provide
results on two scans extracted from the Kitti-360 dataset
in the supplementary document. They capture scenes in
several suburbs of Karlsruhe, Germany, using Velodyne
HDL-64E sensors. As the Rue Madame and Kitti-360 scans
have no ground truth, only visual results are presented.
Tables[T|and 2] illustrate quantitative normal estimation and
filtering results on the scanned data. AdaFit outperforms
other methods in estimating normals on scanned data, but
is less robust to high noise. Our method, on average, per-
forms better than other methods and remains competitive at
estimating normals near sharp features, as shown in Fig. [

TABLE 4
Filtering results on the Kinect v1 and Kinect v2 datasets. Average
Chamfer distance (x10~°) and Point2Surface distance (x10~3) values
are presented for each method.

Noisy  PCN PF Ours

. CD | 14489 13469 12623 12.083
Kinect vl | pyg | 6270 5763 TB.029  4.947
. CD | 22633 21985 J0.174 18.785
Kinect v2 | prg | 7505 7269 6265  5.889

Among filtering methods, our method shows an ad-
vantage in recovering sharp feature information as well
as fine details, such as the braids in the girl’s hair in
Fig. [/l Our method also performs optimally on the Kinect
v1 and Kinect v2 datasets, as demonstrated by Table El We
outperform other methods on both the Chamfer distance
and Point2Surface metrics, indicating its ability to approx-
imate the surface and generate a regular distribution of
points. Visual results on the Kinect data are presented in
the supplementary document. Furthermore, Fig. |8 demon-
strates our method’s ability to filter complex scenes. Results

on Scene 1 and Scene 2 demonstrate our method’s ability
to maintain sharp features, in the presence of real-world
noisy artifacts, while other methods such as PointCleanNet
(PCN) and Pointfilter (PF) [21], tend to smear feature
information. For example, in Scene 1, the outlines of doors
and windows are filtered accurately by our method while
smoothing planar surfaces (surfaces of doors, walls). Fine
details such as the headlights of vehicles and the outlines of
tire rims are also recovered. Conversely, Pointfilter smears
such details while PointCleanNet only partially filters them
and is not successful in smoothing planar surfaces. In Scene
2, we demonstrate an ability to reliably filter details of
vehicles including side-mirrors and windows while other
methods perform sub-optimally.

Based on these results, we see that our method is very
competitive in filtering while holding a clear advantage in
normal estimation. On average (Tablesand IZ[), our method
outperforms other methods in both tasks.

5.6 Performance on shapes with varying density and
different noise patterns

The synthetic data results presented in Tables [I] and [
correspond to point clouds generated by uniformly sam-
pling their original meshes, with Gaussian random noise
subsequently added to them. We also evaluate normal esti-
mation and filtering methods on uniformly sampled point
clouds with an impulsive noise pattern and on point clouds
sampled with varying density. To generate point clouds
with an impulsive noise pattern, we apply Gaussian noise
of 0 = 1.5%, with respect to the bounding box diagonal,
to 30% of points in each clean point cloud within the test
set. To obtain varying density point clouds, two different
sampling regimes, gradient and striped, are applied to the
original test meshes. Thereafter, Gaussian noise of o = 0.8%
is applied to these point clouds. Further details on varying
density point clouds can be found in the supplementary
document. When evaluating the performance of methods on
test point clouds with varying density and different noise
patterns, we use models trained on our synthetic dataset
comprising of point clouds with Gaussian noise. TableEl and
Table [f| demonstrate our method’s ability to generalize well
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TABLE 5
MSAE results on point clouds with varying density (VD) and Impulsive
Noise (IN). The Gaussian noise standard deviation o is with respect to
the bounding box diagonal of the clean point cloud.

PCA PCPNet Nesti-Net DI AdaFit Ours

VD (0=0.8%) 0.143  0.102 0.098 0.089 0.083 0.075

VD sharp feat. ave.|0.298 0.294 0.273  0.278 0.247 0.242

IN (0=1.5%) 0.118 0.125 0.106  0.077 0.104 0.111

IN sharp feat. ave. |0.334 0.329 0.275 0.208 0.304 0.309
TABLE 6

Average Chamfer and Point2Surface distance results on point clouds
with varying density (VD) and Impulsive Noise (IN). The Gaussian
noise standard deviation o is with respect to the bounding box diagonal
of the clean point cloud.

Noisy PCN PF Ours

CD VD (6=0.8%) 7560 1730 1.680 1.530
(x107%) | IN (0=1.5%) 6366 3279 1.001 0.563
VD (0=0.8%) 6272  1.844 1564 1.637

P2S VD sharp feat. ave. | 6.380 2598 2.336 2.338
(x1073) | IN (0=1.5%) 3411 1862 1451 0.897
IN sharp feat. ave. 3.568 2993 2597 1.383

on point clouds with varying density for normal estimation
while performing competitively in filtering. For point clouds
with an impulse noise pattern, we perform optimally at the
filtering task.

5.7 Comparative runtimes

Finally, we look at the comparative runtimes for the different
methods among the best performing normal estimation and
filtering methods, respectively. The runtimes for normal
estimation are 20.9, 2.0 minutes/100K points for Nesti-Net
and AdaFit while for filtering, PointCleanNet and Point-
filter take 27.2, 1.8 minutes/100K points, respectively. Our
method, by comparison, takes 4.9 minutes/100K points for
the combined normal estimation and filtering tasks.

6 ABLATION STUDY

We empirically found optimal values for the three main
hyper-parameters, which are o = 0.9, v = 12 and the
contrastive batch size of 512. Please refer to Sec. [6.4] for
details.

TABLE 7
MSAE and Chamfer distance results on the validation set when only
one task, normal estimation (y=12, CBS=512) or filtering (CBS=512), is
performed as opposed to when they are jointly performed (a = 0.9,
=12, CBS=512).

Normal estimation  Filtering  Both
MSAE 0.052 — 0.034
CD (x1079) — 1609  1.431

6.1 Merely normal estimation or filtering

We test the variants with merely normal estimation or point
cloud filtering. Table [7] shows the results of merely normal
estimation, merely point cloud filtering, and the proposed
joint approach on the validation set. We see that our joint
approach achieves best quantitative results in terms of both
MSAE and Chamfer distance, confirming the effectiveness
of our joint method.

11

6.2 Alternative joint loss

Next, we look at the performance of the alternative loss
function, Eq. (I7), which considers the point-to-point cor-
respondences between ground truth points p; and filtered
points p;, i.e., using fixed ground truth targets. We see
poorer results for this alternative loss function on the val-
idation set, i.e., MSAE: 0.038 vs 0.034, Chamfer distance:
1.58 x 1075 vs 1.43 x 10~°. The latter results correspond to
the original joint loss in Eq. (I4). As expected, the original
joint loss produces filtered point clouds closer to the corre-
sponding ground truth point clouds, with smaller Chamfer
distances between them while the Ly norm minimization of
the alternative joint loss function, Eq. (I7), is less successful
at the filtering task.

6.3 Effect of 3D patch based contrastive learning

. t-SNE projection w/o CL (0 =2.0% of BBD) o t-SNE projection w/ CL (0= 2.0% of BBD)
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Fig. 9. T-SNE projections of latent representations of sharp feature
patches and non-sharp feature patches. On the left, projections are
for latent representations generated by a feature encoder without con-
trastive learning-based (CL) pretraining and on the right, projections
generated by a feature encoder pretrained using contrastive learning.
The pretrained feature encoder is able to better distinguish between
sharp feature and non-sharp feature patches.

Contrastive pretraining can be used to better distinguish
between latent representations of sharp feature patches from
non-sharp feature patches. We can see this in Fig. f] where
the t-SNE projections of latent representations of sharp
feature patches are better separated from those of non-sharp
feature patches when a feature encoder with contrastive
pretraining is used. Here, we looked at 250 sharp feature
and 250 non-sharp feature patches, extracted from the Cube
shape, and the projections of their respective representa-
tions.

We evaluate a variant without the contrastive learning
stage on the validation set to gauge the effect of contrastive
learning. This is done by training a regressor with a fea-
ture encoder whose weights are randomly initialized and
updated along with the weights of the regressor. As given
by Table [7] the model with contrastive learning achieves a
MSAE of 0.034 and a Chamfer distance of 1.431x1075. The
network trained without contrastive learning has a MSAE
of 0.037 and a Chamfer distance of 1.445x107?, indicating
the performance gain from contrastive learning.

Next, we look at the effect of utilizing a larger dataset for
pretraining the feature encoder while training the regressor
on a limited amount of labeled data. To achieve this, we par-
tition our training set into 2 parts. Dataset Partition 1 (DSP1)
consists of 18 shapes and is used to train the the feature
encoder. Dataset Partition 2 (DSP2) consists of the remaining
4 shapes and is only used to train the regressor. Again,
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TABLE 8
Performance of regression network (1) on the test set when trained on
the limited DSP2 data with its feature encoder pretrained on DSP1
using contrastive learning (CL). We compare this to regression network
(2) trained on DSP2, without pretraining its feature encoder.

Trained model MSAE | CD (x10~°)
(1) Regr. network trained on DSP2 w/ CL | 0.1660 3.961
(2) Regr. network trained on DSP2 wo/ CL | 0.1713 4.057

we train a variant from scratch, without the contrastive
pretraining, given by (2) in Table [8| We evaluate the normal
estimation and filtering performance on the test set. We see
that, with limited training data for the regression task, the
positive impact of the contrastive pretraining becomes more
apparent.

Finally, we investigate the impact of pretraining the
feature encoder on different noise patterns. Therefore, in ad-
dition to the Gaussian noise pattern, we augment DSP1 with
simulated Lidar noise. In order to achieve this, we utilize the
Blensor toolkit [61] to create noisy variants of the initial 18
shapes of DSP1. The regressor is trained on the limited DSP2
point clouds containing only Gaussian noise, i.e., simulated
Lidar noise is not seen by the regressor during training.
Thereafter, we look at filtering results on simulated Lidar
point clouds with the noise level set to 1.5%. We compare
these results with network (1), with contrastive pretraining
on DSP1 with only Gaussian noise and (2), trained from
scratch on DSP2. The network trained without contrastive
learning, (2) has a Chamfer distance of 3.796x107°. Net-
work (1), pretrained on DSP1 with noisy point clouds con-
taining only Gaussian noise, fairs marginally better with a
Chamfer distance of 3.787x10~°. However, for network (3)
pretrained on DSP1 with both Gaussian and simulated Lidar
noise patterns, the average Chamfer distance is 3.731 x 1075,
This indicates the power of pretraining the feature encoder
on additional noise patterns.

6.4 Ablation study on hyperparameters

The three main hyper-parameters which control the predic-
tive power of the network are the following;:

e «a, the weight controlling the relative contributions of
the position and normal losses to the overall final loss,
Eq (14), during training of the regression network,

o 7, the exponent of the cosine similarity term in Eq.
of the main paper, which penalizes the angle difference
between predicted and ground-truth normals,

« and the contrastive batch size (CBS) used during train-
ing of the feature encoder.

We use MSAE as our main evaluation metric for the ablation
study as it typically provides a larger degree of agreement
with qualitative (visual) comparisons [62]. Furthermore, we
observe a noticeably large deviation in MSAE due to the
choice of hyperparameters, as opposed to the deviation in
Chamfer distance values.

In order to find the optimal values of v and the con-
trastive batch size, we perform a grid search over both. We
search over ~ values of 8, 10 and 12 and CBS values of 32,
128 and 512. Each respective network, for a given pair of
values, is evaluated on the validation set and corresponding
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TABLE 9
MSAE results on the validation set for different contrastive batch sizes
and different values of ~. Here, « is set to 0.9.

CBS

32 128 512

MSAE 8 0.038 0.038 0.037
10 0.036 0.036 0.036
12 0.035 0.039 0.034

TABLE 10
MSAE results on the validation set for different values of o with v=12
and a contrastive batch size of 512.

« 0.8
MSAE | 0.038

0.85 0.9
0.037  0.034

0.92
0.035

0.95
0.037

MSAE values are given in Table E} Here, it was necessary
to set a value of a to perform the grid search. We set
a = 0.9 based on empirical results. The pair (12, 512) of
v, CBS values optimizes MSAE results. Once the best v
and CBS values are determined, we use them to gauge the
effect of varying o and justify our selection of & = 0.9 as
demonstrated in Table The triplet of values o = 0.9,
v = 12 and CBS = 512 indeed minimizes the MSAE.

TABLE 11
MSAE results on the validation set for different 8 and 6. Here, o = 0.9,
v =12 and CBS = 512.

[
8 0.2 0.3 0.4
MSAE | 0.01 |0.036 0.034 0.035
0.02 | 0.035 0.034 0.036
0.03 | 0.035 0.037 0.036

Next we perform additional ablation studies to confirm
our chosen values of 5 and § which appear in Eq.
and Eq. (13), respectively. Table [I1] displays the validation
results. The values § = 0.01 and 6 = 0.3 minimize the
MSAE.

6.5 Contrastive learning without rotational augmenta-
tion

We consider the case of a feature encoder trained without
applying the second augmentation to contrastive patches
Q. Therefore, the only augmentation applied to generate
augmented pairs is noise corruption. For such an encoder,
we retrain the regression network with hyperparameters
a =09 8 =001, =03 v =12 and CBS = 512.
We recover a MSAE of 0.037, compared to a lower MSAE
of 0.034 with the second, rotational, augmentation. This
indicates the importance of the rotation augmentation to the
representation learning process.

6.6 Evaluation without post-processing refinement

Finally, we observed our iterative filtering strategy would
shrink the filtered point cloud, which necessitates Taubin
smoothing-like inflation (TS). PointCleanNet (PCN) [21] also
used a similar post-step, so we compare with it. Further-
more, to maximize the interaction between normal esti-
mation and point cloud filtering, a point update strategy
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TABLE 12
Results on the validation set for PCN and our method when using
post-processing Taubin Smoothing (TS) and Low Rank Matrix
Approximation (LRMA) position update. Our method outperforms PCN
on the filtering task, with and without the Taubin smoothing-like post
processing step. Moreover, our method, unlike PCN, estimates point
normals that are then used to further improve filtering results.

Post Processing | PCN  Ours
None N/A  0.054
MSAE TS N/A  0.034
TS+LRMA N/A  0.034
None 2.83 2.10
(C>P10* 5 | TS 171 163
TS+LRMA N/A 143

like that in [24] (LRMA) is used. Previous research rarely
exploits this interconnected relationship between normal
estimation and filtering. Table[I2)shows that Taubin smooth-
ing is important to PCN and our method, and our pure
network output is better than PCN’s pure network output
(CD:2.10x107° vs 2.83x1079).

7 LIMITATIONS

Noisy PF

Ours

Fig. 10. Visual results for the Cube shape with 10K points and 0.8%
Gaussian noise.

Similar to previous deep learning methods [22], our
method cannot handle sparsely sampled point clouds well.
Fig.[10|demonstrates the filtering results for the Cube shape
with 10K points (0.8% Gaussian noise). Our method is able
to recover some sharp features such as edges, yet fails to
recover the planar surfaces. Pointfilter, by comparison, does
not recover edge information.

8 CONCLUSION

In this paper, we introduced a deep learning method that
jointly learns point displacements and their respective nor-
mals from point cloud data. This approach of a simul-
taneous inference of both position and normal informa-
tion yields accurate filtered positions and normals. Our
method displays an ability to preserve sharp features and
fine details. This ability is derived from the 3D patch
based contrastive learning which faithfully outputs patch
representations based on their distinct geometric structure
and the introduced joint loss that encourages the effective
learning of normal and position information. We conduct
extensive experiments and show that our method generally
performs better than state-of-the-art methods in terms of
both point cloud filtering and normal estimation. It also
generalizes well between both CAD-like and non-CAD-like
point clouds.
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Contrastive Learning for Joint Normal Estimation
and Point Cloud Filtering: Supplementary

Dasith de Silva Edirimuni, Xuequan Lu, Senior Member, IEEE, Gang Li, Senior Member, IEEE,
and Antonio Robles-Kelly, Senior Member, IEEE

Here we provide supplementary material to the main
paper. In particular, we provide additional information on
the following:

1) Sharp feature points classification

2) Varying density point clouds

3) Further comparisons on synthetic and real-world scan
data

A SHARP FEATURE POINTS CLASSIFICATION

g86 X

Fig. 11. Sharp feature points are given in red.

In order to explicitly analyze the performance of normal
estimation and filtering methods at sharp features on our
synthetic data, we must first determine which points cor-
respond to sharp features, i.e., points that lie on anisotropic
surfaces. To achieve this, we exploit the ground truth normal
information for each clean synthetic point cloud. For each
point in the clean point cloud, we consider neighborhoods
of their 10 nearest neighbors. Nearest neighbors whose
normals make an angle 77/6 < 6 < 57/6 with the neighbor-
hood’s central point’s normal are classified as feature points.
Here, the threshold angle between normals for determining
a sharp feature point is 7/6. If the angle is below the
threshold, the surface varies smoothly. An angle greater
than 57 /6 most likely corresponds to a normal of a point
on a surface parallel to that of the central point and is not
considered. This scheme allows us to extract points along
sharp edges and corners. The unique indices corresponding
to these points (on ground truth and filtered point clouds)
are used to determine MSAE and Point2Surface distance
values at sharp features.

e D. de Silva Edirimuni, X. Lu, G. Li and A. Robles-Kelly are with
the School of Information Technology, Deakin University, Waurn
Ponds, Victoria, 3216, Australia (e-mail: {dtdesilva, xuequan.lu, gang.li,
antonio.robles-kelly }@deakin.edu.au). A. Robles-Kelly is also with the
Defense Science and Technology Group, Australia.

Manuscript received Month Day, Year; revised Month Day, Year.
(Corresponding author: Xuequan Lu.)

B VARYING DENSITY POINT CLOUDS

Fig. 12. Left: Point clouds sampled with the gradient varying density
regime. Right: Point clouds sampled with the striped varying density
regime.

Varying density point clouds are obtained by applying
two different sampling regimes, gradient and striped, to the
original test meshes. Fig. [12] illustrates point clouds from
these two regimes. Thereafter, Gaussian noise of o = 0.8%
is added to each point cloud in order to evaluate the
robustness of normal estimation and filtering methods on
noisy, varying density point clouds.

C FURTHER COMPARISONS ON SYNTHETIC AND
REAL-WORLD SCAN DATA

Fig. |13| displays normal estimation and filtering results on
additional shapes within our synthetic data for Gaussian
noise with standard deviation of 0.8% of the bounding box
diagonal and Table [13| details performance across all noise
levels, for each respective shape. In the normal estimation
task, we outperform other methods and generalize well be-
tween CAD shapes such as StarSharp and non-CAD shapes
such as Netsuke, especially at higher noise levels. For the
filtering task, we perform competitively, and our method is
able to reliably recover sharp features on CAD shapes such
as StarSharp and PipeCurve and fine details on non-CAD
shapes such as Netsuke.

On the Kinect vl and v2 datasets, we outperform other
methods as depicted by Fig. The average Chamfer
distance and Point2Surface results are given in Table 4 of
the main paper. Fig. 15| provides an evaluation on 2 scenes
of the Kitti-360 dataset. This dataset contains sparse point
clouds with high amounts of real world noise which makes
it difficult to filter these scenes. However, as shown in scene
1, we perform better at filtering noise and retrieving the
underlying shapes of parked cars as compared to other
methods.
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NINormal ~ HoughCNN PCPNet Nesti-Net AdaFit Ours
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Fig. 13. Normal estimation (top half) and filtering (bottom half) results on shapes with 0.8% Gaussian noise with respect to the bounding box
diagonal. For normal estimation, the respective mean squared angular error (MSAE) is given below each shape and the heat map corresponds to
the angle difference at each point. For filtering, the Chamfer distance (x10~5) is given below each shape and the heat map corresponds to the
scale normalized Point2Surface distance (x1073).



18

TABLE 13
Individual MSAE and Chamfer distance values for shapes presented in Fig.[T3] at different noise levels. The standard deviation o is with respect to
the bounding box diagonal of the clean point cloud. Top results in bold and second best results are underlined.

Shape o Normal estimation - MSAE Filtering - Chamfer distance (x10~°)
PCPNet  Nesti-Net DI AdaFit Ours | Noisy PCN PF Ours
0.6% 0.0169 0.0068 0.0056 0.0146  0.0115 | 5.190 1.482 1.015 1.024
0.8% 0.0193 0.0105 0.0087  0.0303  0.0123 | 8.067 2.167 1.341 1.158

PipeCurve | 1.1% 0.0230 0.0173 0.0132  0.0689  0.0121 | 12922  5.041 4.691 1.651
1.5% 0.0304 0.0324 0.0214  0.0597 0.0196 | 19.805 11.395 11.26 3.214
2.0% 0.0398 0.0433 0.0280  0.0421  0.0272 | 30.269 25.024 16.563 7.103
0.6% 0.1628 0.1552 0.1793  0.1440 0.1591 | 4.555 1.263 1.545 1.237
0.8% 0.1953 0.1808 02125 01714  0.1712 | 7.209 1.49 1.823 1.500
Netsuke 1.1% 0.2462 0.2163 02526 02155  0.1964 | 12209  2.160 2.294 2.040
1.5% 0.3122 0.2736 03054 02763  0.2459 | 20.832  4.585 .

2.0% 0.3714 0.3447 0.3631 0.3463  0.3044 | 33.812 14.521  5.077 9.593

0.6% 0.1371 0.1257 0.1029  0.0801 0.1039 | 4.002 0.93 0.895 0.822

0.8% 0.1732 0.1684 0.1484 0.1177  0.1148 | 6.564 1.219 1.284 1.195

StarSharp | 1.1% 0.2280 0.2309 01977  0.1671  0.1338 | 11.572 2416 1.980 2.597

1.5% 0.2776 0.2811 0.2558  0.2226  0.1622 | 20.749  7.205 3.535 6.190

2.0% 0.3219 0.3206 0.3020  0.2849  0.1696 | 36.616 20.958  5.770 14.617
0.6% 0.1562 0.1302 0.1337  0.1310  0.1526 | 4.644 1.494 1.613 1.443

0.8% 0.2117 0.1725 0.1800  0.1725  0.1787 | 7.294 1.862 2.085 1.893

Dragon 1.1% 0.2857 0.2279 02329 02287 02087 | 12.183  2.858 2.863 2.609

1.5% 0.3765 0.3170 03301 03245 02772 | 20.215  6.577 4.491 4.394

2.0% 0.4768 0.4279 0.4386  0.4240 0.3684 | 32.734 19.231  6.269 9.000

0.6% 0.0128 0.0119 0.0218  0.0103  0.0112 | 4.720 0.817 0.642 0.638

0.8% 0.0184 0.0170 0.0274  0.0165 0.0134 | 7.645 0.901 0.676 0.721

Genus 1.1% 0.0318 0.0303 0.0394 0.0370 0.0178 | 13.249  1.370 0.909 0.973

1.5% 0.0570 0.0486 0.0526  0.0628  0.0248 | 22.718  3.647 2.025 2.000

2.0% 0.1022 0.0865 0.0724  0.1119  0.0478 | 37.945 14.607  3.835 6.064

0.6% 0.2225 0.2113 02298  0.1953 02174 | 4.371 1.220 1.393 1.150

0.8% 0.2715 0.2532 0.2738  0.2358  0.2442 | 6.877 1.461 1.712 1.473

Monkey 1.1% 0.3372 0.3083 03297 02964 02788 | 11.706  2.112 2175 1.978

1.5% 0.4125 0.3719 03948 03745 0.3326 | 19.968  4.956 2.896 3.621

2.0% 0.4856 0.4516 0.4754  0.4626 0.4103 | 32578 16.503  4.651 9.033

Noisy Pointfilter Ours

Girl Cone Boy

Pyramid

Point2Surface distance (x10-3)

19.284 18.592 17.493 16.948

Fig. 14. Filtering results on the Kinect v1 and v2 datasets, the Chamfer distance (x 10~5) is given below each shape and the heat map corresponds
to the scale normalized Point2Surface distance (x10~3).
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Fig. 15. Visual filtering results on 2 scans from the Kitti-360 dataset. Scene 1 corresponds to vehicles parked on grass, next to a road while scene
2 depicts parked vehicles and houses along a street.

19



	1 Introduction
	2 Related work
	3 Background and Motivation
	3.1 Patch-based contrastive learning
	3.2 Joint normal estimation and filtering
	3.3 Link between contrastive learning and regression tasks

	4 Proposed Methodology
	4.1 Overview
	4.2 Contrastive pair construction
	4.3 Contrastive learning
	4.4 Joint loss
	4.5 Alternative joint loss
	4.6 Inference

	5 Experimental Results
	5.1 Dataset
	5.2 Implementation
	5.3 Comparisons
	5.4 Performance on synthetic data
	5.5 Performance on scanned data
	5.6 Performance on shapes with varying density and different noise patterns
	5.7 Comparative runtimes

	6 Ablation Study
	6.1 Merely normal estimation or filtering
	6.2 Alternative joint loss
	6.3 Effect of 3D patch based contrastive learning
	6.4 Ablation study on hyperparameters
	6.5 Contrastive learning without rotational augmentation
	6.6 Evaluation without post-processing refinement

	7 Limitations
	8 Conclusion
	References
	Biographies
	Dasith de Silva Edirimuni
	Xuequan Lu
	Gang Li
	Antonio Robles-Kelly

	A Sharp Feature Points Classification
	B Varying density point clouds
	C Further comparisons on synthetic and real-world scan data

