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Abstract

Image-based 3D detection is an indispensable compo-
nent of the perception system for autonomous driving. How-
ever, it still suffers from the unsatisfying performance, one
of the main reasons for which is the limited training data.
Unfortunately, annotating the objects in the 3D space is ex-
tremely time/resource-consuming, which makes it hard to
extend the training set arbitrarily. In this work, we focus
on the semi-supervised manner and explore the feasibility
of a cheaper alternative, i.e. pseudo-labeling, to leverage
the unlabeled data. For this purpose, we conduct exten-
sive experiments to investigate whether the pseudo-labels
can provide effective supervision for the baseline models
under varying settings. The experimental results not only
demonstrate the effectiveness of the pseudo-labeling mech-
anism for image-based 3D detection (e.g. under monocu-
lar setting, we achieve 20.23 AP for moderate level on the
KITTI-3D testing set without bells and whistles, improving
the baseline model by 6.03 AP), but also show several inter-
esting and noteworthy findings (e.g. the models trained with
pseudo-labels perform better than that trained with ground-
truth annotations based on the same training data). We
hope this work can provide insights for the image-based 3D
detection community under a semi-supervised setting. The
codes, pseudo-labels, and pre-trained models will be pub-
licly available.

1. Introduction

As a crucial component of the self-driving system [2, 15,
53], 3D object detection has attracted extensive attention
from both academia and industry. Especially, image-based
3D detection [34] has gradually become a hot problem in
recent years. However, although lots of breakthroughs [1, 6,
9, 10, 11, 16, 23, 31, 33, 35, 36, 38, 44, 50, 52, 58, 60, 61,
66] have been made, the performance of the image-based
methods still significantly lags behind that of LiDAR-based
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methods, such as [8, 12, 20, 46, 47, 67], and one of the main
reasons for the unsatisfying performances of these methods
is the limited training samples.

Unfortunately, although the raw data is relatively easy to
collect, manually annotating the objects in the 3D space is
a complicated and labor-consuming task. To seek a cheap
alternative to the manually annotate labels, we investigate
whether the pseudo-labels can provide effective supervi-
sion for the image-based 3D object detectors. Particularly,
as shown in Figure 1, we adopt the following paradigm
to train the image-based 3D object detectors: (i) train a
teacher model with the annotated key-frames; (ii) generat-
ing the pseudo-labels for the unlabeled data using the well-
trained teacher model; (iii) training the image-based 3D de-
tectors with the resulting pseudo-labels. Fortunately, our
exploratory experiments reveal that the pseudo-labels can
play the role of supervisor well, which encourages us to in-
vestigate it under more settings and going deeper for this
mechanism.

Specifically, we first adopt the LiDAR-based methods
[12, 46] as the pseudo-label generators. We argue this
choice is meaningful because the LiDAR sweeps are re-
quired in the annotation process to provide 3D coordinates
of the objects (and applying LiDAR points in the train-
ing phase is a common practise for existing image-based
models, such as [5, 9, 11, 16, 18, 21, 41, 44, 61]). By
this way, we demonstrate that the pseudo-labels generated
from LiDAR-based models perform well in image-based
3D detection task, and existing models can be further im-
proved by introducing more training samples. More in-
terestingly, based on the same training samples, the mod-
els trained with the pseudo-labels significantly outperform
these trained with the manual annotations. This counter-
intuitive result suggests the promising application potential
of pseudo-labeling in the field of image-based 3D detec-
tion, and we provide the empirical interpretation of this phe-
nomenon.

Besides, we apply the pseudo-labeling approach on vary-
ing settings, e.g. semi-supervised learning with few anno-
tated samples, and significantly surpasses current state of

1

ar
X

iv
:2

20
8.

07
13

7v
1 

 [
cs

.C
V

] 
 1

5 
A

ug
 2

02
2



Labeled Data 3D Detector Image-basedDetector

Training

Raw Data

Training InferenceSampling&
Annotating

Sampling and Manual Annotation Training Training Image-based DetectorPseudo Label Generation

Raw Data with Pseudo Label

Figure 1. The proposed pipeline for training an image-based 3D detector. After collecting the raw data, the empirical practice is to
sample some key-frames and annotate them to generate the training data. Based on these training samples, we further train the 3D detectors
and generate pseudo-labels for remaining unlabeled data. Finally, we use all frames to train our models.

the art (SOTA) for most of them. Note that almost all the
leading image-based models such as [9, 11, 16, 44] leverage
LiDAR signals in their training phase, and we can build a
fair environment to compare with them. The experimental
results demonstrate our method still superior to these works
in performance. Furthermore, we also study whether the
pseudo-label mechanism still works without LiDAR sweeps
or better 3D detection models. Encouragingly, we find the
models can also be effectively supervised by the knowledge
they have learned before. In particular, take the monocular
model GUPNet[31] as an example, we first train this model
on the annotated frames, and then generate the pseudo-
labels for the interframe sequences. After that, our model
can benefited from the enlarged training set.

In summary, we provide an empirical study of the
pseudo-labeling mechanism for image-based 3D object de-
tection. In this work, we show that the pseudo-labeling can
significantly improve the performance of existing image-
based 3D detectors under varying settings. This simple ap-
proach can cooperatively work to almost all current SOTA
methods and then provide new baselines for this commu-
nity. Besides, we provide extensive experiments on the
KITTI-3D benchmark [15] to show the pseudo-labeling
scheme in all-around, and the promising results firmly
demonstrate the effectiveness of our method.

2. Related Work

Image-only-based 3D object detection. In the standard
setting, only the RGB images, camera parameters, and ob-
ject annotations are available for the image-based 3D de-
tection task. However, even for the powerful convolutional
neural networks (CNNs), it is extremely hard to build the
mapping from 2D images to 3D bounding boxes based on
such limited information. In order to better learn this map-
ping, the existing methods proposed for this setting mainly
based on: geometric priors [1, 10, 10, 22, 26, 31, 37, 42,
43, 48, 62, 63], novel network designs [1, 9, 19, 23, 32, 45],
and better loss formulations [36, 52]. Different from these
methods, our method choose to provide more samples with
supervision to help the CNNs to find the hidden patterns. In

this work, we use some representive models proposed for
this setting as our baseline to show the effectiveness of our
strategy.
Image-based 3D detection with extra data. An effective
method to improve the visual 3D detectors in performance
is introducing extra data. Specifically, [13, 56, 60, 69]
choose use an depth estimator to predict the depth maps and
then use them to augment the RGB images. [3, 3, 33, 35, 51,
58, 59] adopt the ‘pseudo-LiDAR’ paradigm, which trans-
form the estimated depth maps into point clouds and then
apply the LiDAR-based 3D detection methods on the result-
ing data. Note that the there is no depth annotation in the
provided data for this task, and the ground-truth depth maps
are generally derived from the LiDAR sweeps by them-
selves or the KTITT team [15]. Besides, some methods
[5, 9, 16, 44] also use LiDAR points to supervise their pro-
posed networks/modules. In summary, these works use Li-
DAR sweeps as extra annotations (or to generate geometry
features) for existing samples, while we use LiDAR sweeps
to generate annotations for more samples. Beside, we argue
the proposed strategy is orthogonal to these works, and can
work collaboratively with them.
Pseudo-labeling mechanism [21] for image-based 3D de-
tection. As as a common semi-supervised learning method,
pseudo-labeling has been successfully applied in various
computer vision tasks, such as image classification, object
detection, semantic segmentation. Recently, an arXiv pa-
per also aware of the pseudo-labeling can be applied into
monocular 3D detection. In particular, Peng et al. [39]
apply the this strategy on monocular 3D detection. How-
ever, this work only present a preliminary attempt for this
problem at one setting. By contrast, we make a deeper ex-
ploration, provide in-depth analysis, discuss this problem in
novel perspective and varting settings.
Semi-supervised learning for image-based 3D Detection.
As a promising research direction, semi-supervised learn-
ing (SSL) attracted lots of attentions. For 3D detection, the
annotation resource is valuable and there are lots of unla-
beled data, which makes this task very suitable for apply-
ing SSL methods. Unfortunately, although several works
[55, 64, 65] have introduce SSL to LiDAR-based 3D detec-
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tion, little work [25] has been done to discuss this prob-
lem for image-based models. In this work, we leverage
the LiDAR-based methods’ enormous potential to gener-
ate pseudo-labels for the unlabeled frames, and train the
monocular/stereo 3D detectors on the unlabeled dataset
without ground truth while obtaining better performance
over the state-of-the-art monocular/stereo detectors trained
on the labeled dataset.

3. Approach
The objective of this work is to study the pseudo-label

mechanism [21] in image-based 3D detection. As shown
in Figure 1, the whole pipeline can be clearly divided into
two parts: generating pseudo-labels using teacher mod-
els and training the baseline models with the resulting
pseudo-labels. Next, we detail the settings we used in this
work, including the pseudo-label generators, baseline mod-
els, datasets, etc.
Datasets and metrics. We conduct the experiments on the
most commonly used KITTI-3D dataset [15], which pro-
vides 7,481 annotated frames for training and 7,518 frames
for testing. Following [7, 8], we split the 7,481 training
samples into a training set (3,712 frames) and a validation
set (3,769 frames). Besides, we also use the KITTI raw data,
which provides 155 video sequences, with about 48K unla-
belled frames in total. Note that these frames include the
∼7K frames in KITTI-3D’s training set, while the raw data
for the testing set is not released. We further split the raw
data into several sub-sets to evaluate the pseudo-labeling ap-
proach under varying settings. The summary of these splits
is presented in Table 1. Besides, some sub-sets of these
splits are used to show the performance changes w.r.t. the
size of training data, which will be further explained in the
corresponding experiment parts. As for the metrics, follow-
ing [52], we evaluate the models with the AP|R40 for both
3D detection and Bird’s Eye View (BEV) detection tasks.
We mainly focus on the Car category, and both 0.7 and 0.5
IoU thresholds are considered. The performance of Pedes-
trian and Cyclist is also reported for reference.

train val eigen eigen-clean all
# annotated 3,712 3,769 - - 7,481
# total 13,596 10,670 23,488 14,940 47,937

Table 1. Summary of the data splits. We generate train/val split
by collecting all the frames from the video sequences which corre-
spond to the KITTI 3D’s training/validation images. Eigen denotes
Eigen’s training set [14] which is commonly used in the KITTI
Depth benchmark. Following [50], we generate the eigen-clean
split by removing the images geometrically close to the images in
the KITTI 3D’s validation set.

Baseline models. To ensure the generality and repro-
ducibility, we choose some recently published methods with

official codes as our baselines. In particular, we choose two
monocular 3D detectors (i.e., one-stage MonoDLE [36] and
two-stage GUPNet [31]) which only need images and cam-
era parameters in both training and inference phases as our
baseline models. For the stereo setting, we use the LIGA-
Stereo [16] in our experiments. Note that LiDAR points
are required in the training phase for this baseline. Thus,
we also build a pure stereo baseline by removing the rele-
vant requirements (i.e., depth loss on the cost-volume and
the cross-modality knowledge distillation losses), marked
as LIGA-Stereo in our experiments. More details about the
baseline models can be found in Appendix A.1.
Pseudo-label generators. We first adopt two LiDAR-based
models (PV R-CNN [46] and Voxel R-CNN [12]) to gen-
erate the pseudo-labels. Although this makes the LiDAR
points involve in the training phase, we argue this strategy
is meaningful, mainly based on the following two consider-
ations:

• annotating objects in the 3D space requires the accu-
rate spatial information, which is usually provided by
LiDAR points. Therefore, the training of the teacher
models is hard to completely avoid the involve of Li-
DAR points.

• almost all SOTA image-based 3D detectors adopt Li-
DAR points as supervision in the training phase, so we
also test our method under this setting for a fair com-
parison.

Besides, to explore the monocular/stereo only setting, we
also use GUPNet and LIGA-Stereo as the pseudo-label gen-
erators. Note that using original LiDAR-Stereo to gener-
ate pseudo-labels is lack of practical significance, because
training LIGA-Stereo also requires LiDAR points, and we
can directly use LiDAR detectors to generate pseudo-labels
at this setting.
Implementation. We adopt the same hyper-parameters and
training protocols in [12, 16, 31, 36, 46] unless otherwise
stated. The codes, pseudo-labels, and pre-trained models
will be released for the reproducibility.

4. Experiments and Analysis
4.1. Quality of the Generated Pseudo-Labels

The first problem is whether the pseudo-labels can be
used as the training labels of image-based 3D detectors or
not. If yes, what is the quality of the pseudo-labels com-
pared with the official annotations? To investigate these
problems, we first generate the pseudo-labels for the official
training images and then compare the performances of the
image-based 3D detectors trained from these pseudo-labels
or official annotations.
First attempt on pseudo-labeling. We first investigate
whether the LiDAR-based 3D detectors, representing the
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MonoDLE GUPNet LIGA-Stereo LiGA Stereo
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PV R-CNN 19.32 14.96 13.45 23.24 17.37 15.58 - - - - - -
Voxel R-CNN 20.34 15.78 13.82 24.99 18.10 16.22 77.21 58.67 55.84 83.85 66.40 63.23

GT 17.97 14.30 12.18 21.88 15.80 13.23 75.82 57.53 54.09 81.18 64.58 59.45
PV R-CNN 60.32 44.98 41.02 63.00 47.65 42.42 - - - - - -

Voxel R-CNN 59.71 46.38 42.69 64.98 48.83 44.89 96.64 88.43 80.28 97.02 89.87 87.94
GT 57.88 44.03 39.40 58.99 43.85 38.94 94.80 87.58 79.92 96.77 89.59 87.60

Table 2. Quality of the pseudo-labels. We report the performances of four baseline models trained from the pseudo-labels generated by
two LiDAR-based detectors (PV R-CNN and Voxel R-CNN). Metrics are the AP|R40 for 3D detection with 0.7 (upper group) and 0.5 IoU
thresholds (lower group). We also show the performances of the models trained from the ground truth (GT) for reference. All the baselines
are trained on the 3,712 training images and evaluated on validation set.

best-performing 3D detectors, can generate good enough
pseudo-labels. To avoid biased conclusions caused by the
over-fitting of the pseudo-label generators on the training
split, we train the LiDAR-based models on the KITTI val-
idation set, and generate the pseudo-labels for the training
set. After that, we train our baseline models with the gen-
erated labels. The summary of the experimental results are
shown in Table 2. From these results, we can observe that
the pseudo-labels perform well in providing supervision,
even better than the manually annotated labels (especially
for the monocular baselines). This shows the promising po-
tential of pseudo-labeling for image-based 3D detection.

Besides, note that the KITTI dataset captures the 3D
points with a 64-beam LiDAR, and sparser LiDAR singals
are also well applied in other datasets (e.g. nuScenes [2] and
Argoverse [4] adopt the 32-beam LiDAR), thus we gener-
ate the simulated 32-beam and 16-beam LiDAR sweeps for
further investigation, and the experiments for this part can
be found in Appendix A.2.
Removing low-quality pseudo-labels by confidence. In
the above experiments, we directly use the pseudo-labels to
train our models. By analysing the detection results, we find
there are some noisy samples in the results of the LiDAR-
based 3D detectors. To remove the potential negative im-
pact caused by these noises, we further filter the pseudo-
labels by their confidences. Specifically, we conduct a small
grid search on the confidence thresholds, and show the re-
sults in Figure 2. We can find 0.7 threshold gives a good
results, although it is not always the best, and we use this
threshold for the following experiments in default. Mean-
while, we also show the accumulated instances along with
confidences, which suggests about 18K car instances are
kept at 0.7 confidence. Note that the annotations provide
about 14K ground-truth cars for the same frames.
Can pseudo-labeling work without LiDAR points? We
mainly discuss the LiDAR-based pseudo-labeling above,
and the further problem is can pseudo-labeling work with-
out LiDAR points? For this problem, we consider the fol-
lowing settings: (i) both the stereo and monocular images
are available, and (ii) only the monocular images are avail-

AP|R40
@3D AP|R40

@BEV
method Easy Mod. Hard Easy Mod. Hard
VisualDet3D[29] 23.63 16.16 12.06 - - -
DLE[27] 26.43 16.72 13.02 34.06 22.59 16.96
SGM3D[68] 25.96 17.81 15.11 34.10 23.62 20.49
Baseline (mono) 21.88 15.80 13.23 - - -
Ours 27.72 19.38 17.11 - - -

Table 3. Comparison on the methods apply stereo images in the
training phase. The data of upper group are from their papers. All
models are trained from 3,712 frames.

able. For the first setting, we can use the stereo 3D detectors
to generate the pseudo-labels for monocular models. This
setting is also adopted by several methods [26, 27, 29, 68],
here we compare the proposed method to these works in Ta-
ble 3. For a fair comparison, we do not introduce any other
frames, and use the same data with pseudo-labels generated
from LIGA-Stereo to train our model. The experimental re-
sults show the stereo 3D detectors can also generate good
pseudo-labels for monocular ones, and our method shows
better performance than the competitors with the same set-
ting ([27, 29] use stereo images to augment the training set
while [68] use stereo 3D detector to provide guidance for
their model using knowledge distillation [17]).

As for the more challenging setting (ii), we find it can
also work in some specific scenarios, and we will further
discuss it in Section 4.3.

4.2. Scalability of the Training Samples

After confirming the effectiveness of the pseudo-labels,
this section will provide more applications and in-depth
analysis of pseudo-labeling for image-based 3D detection.
Training with more samples. We first investigate whether
the 3D detectors can benefit from more training samples.
Particularly, we train the pseudo-label generators on the
training set and generate the pseudo-labels for the KITTI
raw data. Then we divide the raw data into several splits
(see Table 1 for more details of these data splits) and
compare the performances of the selected baseline models
trained from them. The experiments shown in Table 4 in-
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MonoDLE 0.5 21.42 16.26 14.87
MonoDLE 0.6 21.84 17.32 15.33
MonoDLE 0.7 22.14 16.97 15.56
MonoDLE 0.8 21.23 16.86 15.38
GUPNet 0.5 25.62 18.76 16.83
GUPNet 0.6 24.91 18.28 16.45
GUPNet 0.7 26.97 19.05 17.01
GUPNet 0.8 26.17 18.71 16.91

Figure 2. Left: the accumulated numbers (cars) of pseudo-labels with the confidence. Right: threshold grid search for monocular detectors.
We show the AP|R40 under moderate setting with 0.7 IoU threshold. The pseudo-label generators are trained on training set, and the data
are collected on validation.

AP|R40@IoU=0.7 AP|R40@IoU=0.5
split # images Easy Mod. Hard Easy Mod. Hard
a. training (gt) 3,712 22.37±0.65 16.21±0.42 13.98±0.63 60.50±1.41 44.97±1.25 39.99±1.01

b. training (pl) 3,712 25.87±1.39 19.07±0.91 16.52±0.88 64.30±2.37 48.83±1.63 44.31±1.31

c. train 13,596 26.68±0.34 19.92±0.52 17.50±0.20 66.36±0.74 50.90±0.64 46.58±0.65

d. eigen-clean 14,940 31.82±0.71 23.49±0.85 20.97±0.49 67.65±0.72 51.58±0.58 48.04±0.20

e. train ∪ eigen-clean 28,536 35.77±0.63 26.00±0.54 22.69±0.16 73.56±0.69 57.55±0.33 53.47±0.27

f. eigen 23,488 50.94 40.05 35.32 80.35 68.10 62.25
g. eigen-sampling 14,940 50.85 38.56 34.75 79.92 65.94 60.12

Table 4. More training samples. Performances on KITTI validation set of GUPNet trained from different data splits. ± captures the
standard deviation over 5 runs. Pseudo-labels are generated by Voxel R-CNN trained from KITTI-3D’s training split.

dicates that the monocular 3D detectors can benefit from
more training samples. For instances, 10K/25K more train-
ing data (b→d and b→e) can bring another 4.42/6.93 AP
improvements (IoU=0.7, moderate setting).

Stability. A common issue for existing monocular 3D de-
tectors is the unstable performance, especially on the KITTI
3D benchmark. In this work, we find this problem can be
largely alleviated by introducing more training samples, es-
pecially the temporal sequences. In particular, in the ex-
periments presented by Table 4, we conduct multiple runs
and report the mean and standard deviation for the unbi-
ased comparison. From these results, we can find that (i):
increasing the training samples (b→d, d→e) is helpful for
improving the stability, along with the accuracy, of the al-
gorithms; (ii): compared with simply extending the size
of training set, introducing the temporal sequences (video
cues) can better improve the stability (b→c). In summary,
these two observations imply that introducing images with
novel scenes tend to boost the models in performance, while
more annotated samples in the same scenes can make the
models more stable.

Data leakage. Lots of monocular 3D detection methods
adopted depth estimators, which are generally pre-trained
on the KITTI raw data with Eigen’s split [14], to provide

depth cues for their models. However, there is an over-
lap between Eigen’s training set and KITTI-3D’s validation
set. In particular, these two data splits share eight video se-
quences with 2,859 frames in total. Although the KITTI
3D validation set only include some key-frames among
them, there are still 1,258 validation images overlap with
the Eigen’s training set. Here we quantitatively analyze the
bias in performance caused by the data leakage. In partic-
ular, following [50], we remove the images, which are ge-
ographically close to any images in the validation set, and
compare the performances of the models trained from this
split (eigen-clean) and Eigen’s training set (eigen). Further-
more, we also randomly sample the images from eigen split
to generate a new training set (eigen-sampling), which has
the same size as eigen-clean split, for a fairer comparison.
As shown in Table 4, both the models trained on eigen and
eigen-sampling splits show anomalous high performances,
compared with that trained from eigen-clean, which sug-
gests the data leakage will cause seriously unfair perfor-
mance comparison on validation set.

Sampling rate. We use all frames in the video sequences
as training data in Table 4. However, a reasonable conjec-
ture is we may not need all the frames because the con-
tents captured by adjacent frames are similar, thus providing
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Figure 3. Illustration of the sampling strategies. Top: Uniform sampling, we use this sampling scheme to simulate the different frame rates
during data collection. Bottom: Cluster sampling, we use this sampling scheme to divide images into several clips.
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Figure 4. Sampling rate. Performance curve of the GUPNet trained with varying sampling rate. Metrics are the AP|R40 with 0.5 IoU
(left) and 0.7 IoU (right) thresholds on the KITTI validation set.

limited information. Although previous experiments show
that denser sampling rate can make the model more stable,
presenting the trade-off between the sampling rate and fi-
nal performance is still meaningful. For this purpose, we
uniformly sample the frames from 28,536 training images
(train + eigen-clean) to generate several sub-sets, and eval-
uate the models trained from these sub-sets on validation
set. As shown in Figure 4, we can see that about 62.5%
of the data can meet the training needs, and more training
data does not bring obviously performance improvement.
Note that this conclusion can not be directly applied to other
datasets due to the different frame rates and moving speed
at the data collecting phase. For reference, the KITTI team
collected data at 10 Hz with varying driving speeds.

Scenes diversity. Compared with denser sampling from
the same image set, a more effective way to expand the
dataset is collecting more video clips at different scenes.
To study the effect of scenes diversity on the performance
of monocular 3D detectors, we divide the raw data (train
+ eigen-clean) into several clips (see Figure 3) and use
them to train our models. In particular, each clip contains
200 images (about 20 seconds) and at least 200 images are
skipped between adjacent clips. Figure 5 shows the perfor-
mance changes of the baseline model w.r.t the increase of
the scenes. We can see that the baseline model continues to

improve as the increase of the scenes, which indicates the
importance of the scenes diversity. We hope these data can
provide useful knowledge in data collecting and (pseudo)
labeling for future work.

Training with less manual annotations. Except for intro-
ducing unlabeled data, another dimension to evaluate the
semi-supervised method is reducing the number of labeled
samples. Our method also perform good in this setting
when the LiDAR signals are available. The results summa-
rized in Figure 6 (left) demonstrate the effectiveness of our
method in semi-supervised setting, where our method ob-
tain comparable performance to the fully supervised base-
line/final model with only 50/100 labeled samples. The
performance curve shown in Figure 6 (right) reveals why
it works. For the LiDAR-based 3D detectors, the rich and
accurate spatial features make the CNN models can learn
the mapping function from LiDAR data to 3D results eas-
ily, and we can apply lots of augmentations, e.g. scaling,
rotation, shifting, and copy-paste, to effectively extend the
training samples for this kind of data. Both of them make
the LiDAR-based 3D detectors still work with a few anno-
tations (e.g. Voxel R-CNN gets 66.35 AP|R40

with only
50 labeled samples, and reaches ‘saturation’ at about 500
samples). The pseudo-labeling scheme build a bridge be-
tween LiDAR-based models and image-based models, and
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Figure 5. Scenes diversity. Performance curve of the GUPNet train with varying scenes diversity. Metrics are the AP|R40 with 0.5 IoU
(left) and 0.7 IoU (right) thresholds on the KITTI validation set.
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methods # imgs Easy Mod. Hard
baseline 3,712 22.37 16.21 13.98
ours 50 21.13 16.25 13.66
ours 100 26.86 18.84 15.96
ours 500 26.91 19.38 16.59
ours 3,712 25.87 19.07 16.52

Figure 6. Left: the performance curve for Voxel R-CNN with the increase of labeled samples. Right: the performance of our method under
semi-supervised setting. # imgs denotes the numbers of labeled data, and all models are trained with 3,712 training images. All models
are evaluated on KITTI-3D validation set with AP|R40 .

then the latter can also work well under few-shot setting by
leveraging LiDAR-based models’ feature.

4.3. More Discussions

Why pseudo-labeling works? Here we give an empirical
interpretation for the success of pseudo-labeling scheme.
First, MonoDLE [36] reports that removing some hard (far)
instances can boost the models in performance because
these samples are hard to detect for monocular detectors and
affect CNN’s optimization. The pseudo-labeling also works
in a similar way: the teacher model plays the role of the fil-
ter to remove the hard instances (MonoDLE uses human
designed rules for this purpose), and let the images-based
models focus on the remaining samples, which can make
the CNN learns the mapping function easier. This suppose
is supported by the experiments in Figure 2: removing the
low-confidence labels can improve the model’s accuracy.
Because the removed samples are not only noised, but also
hard to detect. Second, the pseudo-labeling correct some
error cases in the annotations (see Figure 7). In particular,
annotating 3D bounding boxes is a complicated task that

involves multi-modal data. For some reason, some objects
was not annotated or fully annotated (such as the ‘Dont-
Care’ objects in KITTI-3D, only the 2D bounding boxes
are provides, while the 3D bounding boxes are missed). For
the image data, these objects have the similar texture for
the annotated ones, but are regarded as negative samples
in the training phase, which misleads the image-based 3D
detectors. For our pseudo-labeling scheme, these samples
are re-labeled, and then can provide effective supervision to
our models. Third, pseudo-labeling does increase the size
of training set and leverage the unlabeled data. Lastly, the
pseudo-labeling is kind of label-smoothing scheme, which
is also beneficial to CNN’s optimization. Based on the
above reasons, pseudo-labeling significantly boosts the per-
formances of image-based 3D detectors.

Self-pseudo-labeling. In Section 4.1 and 4.2, we show
that the pseudo-labels generated from LiDAR/stereo-based
methods can provide reliable supervision for monocular 3D
detectors (or the LiDAR/stereo combination). This is rea-
sonable because the pseudo-label generators are generally
superior to the baseline methods in performance. However,
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Figure 7. Comparison of the ground truth and pseudo-labels. We show the ‘DontCare’ cases in the ground truths in red, and the
psuedo-labels in blue. These cases suggest the proposed method can provide more effective supervision than ground truth in some cases.
We only show the 2D bounding boxes for clearer presentation.

it is questioning whether pseudo-labeling still works with-
out better models? To study this problem, we generate the
pseudo-labels using the GUPNet trained from training split,
and then train the baseline models using the resulting la-
bels. Interestingly, as shown in Table 5, the models trained
on train split and eigen-clean split show contrary results.
Combined with the fact that the train split shares the same
scenes with the training set of pseudo-label generator, we
can get the following conclusion: the self-pseudo-labeling
scheme still works if the target data share a similar distribu-
tion with the labeled data. In other words, it is still a fea-
sible scheme that manually annotate the key-frames of the
raw data and then extend the training set by pseudo-labeling
the interframe sequences. .

4.4. Comparing with SOTA Methods

Monocular version. We select the results of some rep-
resentive settings and evaluate them on the KITTI test-
ing server. In particular, the proposed method surpasses
DLE [27] by 0.54% for 3D detection, and 1.42% for BEV
under (b) setting; surpasses MonoDistill [11] by 1.05% for
3D detection, and 2.19% for BEV under (c) setting; and sur-
passes DFR-Net [69] 6.6% for 3D detection, and 8.53% for
BEV, respectively. These new SOTA performances firmly
demonstrate the effectiveness of the proposed methods. See
Table 6 for more details.
Stereo version. As shown in Table 7, to verify the effective-
ness of pseudo label, we also submitted our stereo-based
results trained based on trainval dataset with pseudo label
from Voxel R-CNN [12] to the official evaluation bench-
mark for evaluating our performance on the test set of the
KITTI dataset. Under the pure stereo-based setting, we pro-
vide LIGA-Stereo results by removing the depth loss and
imitation loss in LIGA-Stereo [16]. For BEV performance,
we surpass RTS3D by 19.44% mAP. For 3D detection per-
formance, we surpass RTS3D by 21.19% mAP. Compared

with using both stereo images and LiDAR signals in train-
ing phase, ours surpass LIGA-Stereo 2.31% mAP for 3D
detection, and 0.62% for BEV, respectively.

5. Conclusion
In this work, we present the pseudo-labeling scheme

for image-based 3D detection. In this approach, we lever-
age the side-products in the data collecting and annotating
phases, and use these data to generate the pseudo-labels,
and then augment the training set of image-based models.
Surprisingly, except for the increased size of training data,
the pseudo-labels themselves have significantly positive im-
pact on the monocular/stereo models, and we provide em-
pirical explanation for it. Besides, we also conduct ex-
tensive experiments under varying settings to explore the
potential scenarios for our method, and our method gets
impressive performances for all of them, i.e. our method
achieves new SOTA for multiple settings on the KITTI-3D
testing benchmark.
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split # images Easy Mod. Hard Easy Mod. Hard
baseline 3,712 22.37 16.21 13.98 60.50 44.97 39.99
train 13,596 24.49 17.36 15.31 61.28 45.43 40.75
eigen-clean 14,940 21.57 16.24 13.92 59.05 44.69 38.92

Table 5. Pseudo-labeling without LiDAR sweeps. Metrics are the APR40 with 0.7/0.5 IoU and 0.5 IoU thresholds. The baseline model
also serve as the pseudo-label generator.

Method Venue 3D BEV
Easy Mod. Hard Easy Mod. Hard

a MonoFlex[62] CVPR’21 19.94 13.89 12.07 - - -
AutoShape[30] ICCV’21 22.47 14.17 11.36 30.66 20.08 15.59
GUPNet∗[31] ICCV’21 20.11 14.20 11.77 30.29 21.19 18.20
MonoCon [28] ICCV’21 22.50 16.46 13.95 31.12 22.10 19.00

b RTM3D[26] ECCV’20 14.41 10.34 8.77 19.17 14.20 11.99
VisualDet3D[29] RA-L’21 21.65 13.25 9.91 29.81 17.98 13.08
DLE[27] BMVC’21 24.23 14.33 10.30 31.09 19.05 14.13
Ours - 23.93 14.87 12.45 33.17 20.47 17.31

c MonoPSR[18] CVPR’19 10.76 7.25 5.85 18.33 12.58 9.91
MonoRUn [5] CVPR’21 19.65 12.30 10.58 27.94 17.34 15.24
CaDDN [44] CVPR’21 19.17 13.41 11.46 27.94 18.91 17.19
MonoDistill [52] ICLR’22 22.97 16.03 13.60 31.87 22.59 19.72
Ours 24.43 17.08 15.25 33.38 24.78 22.00

d Demystifying [50] ICCV’21 22.40 12.53 10.64 - - -
DDMP-3D [56] CVPR’21 19.71 12.78 9.80 28.08 17.89 13.44
PCT[57] NeurIPS’21 21.00 13.37 11.31 29.65 19.03 15.92
DFR-Net[69] ICCV’21 19.40 13.63 10.35 28.17 19.17 14.84
Ours 28.29 20.23 17.55 37.81 27.70 24.61

Table 6. Comparing with SOTA methods for monocular setting on KTTI test set. We show the performances of the proposed method
and best-performing counterparts under following settings: (a) only the monocular images provided by the KITTI-3D are available in
the training phase; (b) both monocular images and stereo images provided by the KITTI-3D are available in the training phase; (c) both
monocular images and LiDAR signals provided by the KITTI-3D are available in the training phase; (d) both images and LiDAR signals
provided by the KITTI 3D and KITTI raw are available in the training phase; Method are ranked by the AP|R40 under moderate setting on
testing set in each group. ∗: our baseline model.

Method Venue 3D BEV
Easy Mod. Hard Easy Mod. Hard

a Stereo R-CNN [23] CVPR’19 47.58 30.23 23.72 61.92 41.31 33.42
SIDE WACV’19 47.69 30.82 25.68 - - -
Stereo CenterNet Neurocomputing’22 49.94 31.30 25.62 - - -
RTS3D AAAI’21 58.51 37.38 31.12 72.17 51.79 43.19
LIGA-Stereo (Ours) 77.81 58.57 52.13 86.67 71.23 64.08

b YOLOStereo3D ICRA’21 65.68 41.25 30.42 - - -
DSGN CVPR’20 73.50 52.18 45.14 82.90 65.05 56.60
CDN NeurIPS’20 74.52 54.22 46.36 83.32 66.24 57.65
LIGA Stereo [16] ICCV’21 81.39 64.66 57.22 88.15 76.78 67.40
LIGA-Stereo (Ours) 83.77 66.97 58.41 90.76 77.40 70.00

Table 7. Comparing with SOTA methods for stereo setting on KTTI test set. We show the performances of the proposed method and
best-performing counterparts under following settings: (a) only the stereo images provided by the KITTI-3D in the training phase; (b) both
stereo images and LiDAR signals provided by the KITTI-3D are available in the training phase. Method are ranked by the AP|R40 under
moderate setting on testing set in each group.
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A. Appendix
A.1. Details of the Models

We provide more details about the models used in this
work. In particular, we train the LiDAR-based models,
i.e. PV R-CNN [46] and Voxel R-CNN [67], using their
official codebase: OpenPCDet [54]. For the monocular
baselines, we use the official codes provided by MonoDLE
[36] and GUPNet [31]. Note that, the authors’ of Mon-
oDLE adopt the confidence normalization in their open-
source code, which makes open-source model performs
better than the original version described in the paper by
around 1 AP|R40

. For the stereo baseline, we choose
the top-performing LIGA-Stereo [16], which requires Li-
DAR points in the training phase. Note that the models
in [9, 16] report a stereo-only baseline model which sur-
passes the existing stereo methods in performance, thus we
build a stereo-only baseline by removing the requirements
of LiDAR points in LIGA-Stereo, instead of adopting exist-
ing stereo models, to evaluate the proposed method under
stereo-only setting. We compare the performances of our
stereo baseline, LIGA-Stereo, and existing methods in Ta-
ble 8, where suggests our baseline is superior to existing
methods in performance, and there are lots of improvement
room for existing stereo-only methods.

A.2. Simulated Sparse LiDAR Signals

As we mentioned in Section 4.1, we also evaluate our
method with sparse LiDAR points. In particular, following
[61], we generate the simulated 32-beam and 16-beam Li-
DAR points, and train the LiDAR-based models from the
resulting data. We use GUPNet and Voxel R-CNN as the
baseline model and PL generator for this part. The exper-
imental results shows that although the resolution of Li-
DAR signals has a certain impact on the quality of pseudo-
labels (see Table 10), we can still generate good enough
pseudo-labels from the low-resolution LiDAR signals (e.g.
16-beam) to train monocular models (see Table 9).

A.3. Performances of the PL Generators

Here we show the performance of the pseudo-label (PL)
generators used in this work in Table 10. In particular,
model (a) is the default PL generator in the experiments
part, and model (h) is used to investigate the impact on
the student models caused by a different PL generator and
show the generalization of the proposed method (Section
4.1). Besides, model (h) is also used to generate the cy-
clist/pedestrian pseudo-labels (Section A.5). We train mod-
els (d, i) to avoid the biased conclusion caused the over-
fitting (Section 4.1), and the models (b, c) are used to show
our method when the resolution of LiDAR signals is low
(Section A.2). Besides, models (e, f, g) are used to show
that our method still performs well when the training sam-

ples are limited (Section 4.2), and models (j, k, l) are serve
for the scenarios when LiDAR signals are not available
(Section 4.4 and A.4).

A.4. More Experiments on Stereo Models

Due to the space limitation, we mainly show the experi-
mental results for the monocular models. Here we provide
corresponding experiments to show that the stereo models
can also benefit from the larger training set. In particu-
lar, just like the monocular models, we train our two stereo
baselines on some larger splits with pseudo-labels, and the
results are shown in Table 11 and 12. To provide more reli-
able and stable results, we report the mean and standard de-
viation over the last 10 epochs (60 epochs in total). All the
experiments suggest that more training samples can boost
the stereo models in performance.

A.5. Cyclist and Pedestrian

Due to the high variances in cyclist/pedestrian detec-
tion, previous works mainly focus on the car category
and attribute this to the limited training samples of cy-
clist and pedestrian categories. In this work, we introduce
more samples and show the performance changes of cy-
clist/pedestrian detection. In particular, we use the PV R-
CNN (Voxel R-CNN is designed for car detection) to gen-
erate pseudo-labels and report the mean and standard devia-
tion over the last 10 epochs (140 epochs in total) in Table 13.
First, overall, we can see that the stereo models trained with
pseudo-labels achieve better performances than the base-
lines (a→b, e→f). However, different from the car category,
the pseudo-labels are not always better than ground-truth
labels, and this may caused by the following two reasons:
(i) LiDAR-based models are not good at detecting small or
holed objects, which makes quality of pseudo-labels of cy-
clists/pedestrians worse than those of cars (see Figure 8 for
an error case of cyclist/pedestrian detection); (ii) we directly
adopt the hyper-parameter (i.e. confidence threshold) tuned
from car detection, and the models may be enhanced by
further fine-tuning. Second, increasing the training samples
also improves the accuracy of cyclist/pedestrian detection
(b→c, f→g). Third, we can find that the proportion of cor-
responding samples among training set by comparing ex-
periments in Table 13 and the statistical information shown
in Table 14.

A.6. Qualitative Results

Videos. We run our monocular version model and its base-
line on three video sequences from KITTI-3D validation
set, and provide the video presentation in the supplemen-
tary materials. Please refer to the video for the qualitative
results (our results are more accurate and stable than those
of the baseline).
Errors case of pseudo-labels. In Section 4.3, we explain
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AP|R11
@3D AP|R11

@BEV AP|R40
@3D AP|R40

@BEV
method Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard
Stereo R-CNN[23] 54.11 36.69 31.07 68.50 48.30 41.47 - - - - - -
Stereo CenterNet[49] - - - - - - 55.25 41.44 35.13 71.26 53.27 45.53
SIDE[40] - - - - - - 61.22 44.46 37.15 72.75 53.71 46.16
RTS3D[24] - - - - - - 64.76 46.70 39.27 77.50 58.65 50.14
LIGA-Stereo 76.18 57.74 54.14 86.74 68.36 65.15 77.50 58.83 52.06 88.33 70.79 63.66

Table 8. Comparison of the stereo-based 3D detection models on the KITTI validation set. We show both AP|R11 and AP|R40 for a fair
comparison.

AP|R40
@IoU=0.7 AP|R40

@IoU=0.5
settings Easy Mod. Hard Easy Mod. Hard
baseline 22.37 16.21 13.98 60.50 44.97 39.99
w/ 64-beam 25.87 19.07 16.52 64.30 48.83 44.31
w/ 32-beam 24.55 19.02 16.57 64.33 49.12 44.39
w/ 16-beam 24.62 18.44 15.25 62.32 47.08 42.37

Table 9. Performances of the models trained from the pseudo-
labels generated from sparse LiDAR points. Metrics are the
AP|R40 under 0.7 and 0.5 IoU thresholds. All models are trained
from 3,712 training images.

why pseudo-labels perform better ground-truth annotations.
However, compared with the ground truths, pseudo-labels
inevitably introduces some noisy labels, and may mislead
the CNNs in training. Here we show a error case in the
pseudo-labels generated by PV R-CNN in Figure 8, where
the LiDAR-based models wrongly recognize some back-
ground objects as cyclists or pedestrians. These background
objects are hard to recognize in 3D space using the point
clouds, while are easy to classify with the RGB textures.
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models data setting Easy Mod. Hard
a. Voxel R-CNN LiDAR train→ val 92.34 85.13 82.83
b. Voxel R-CNN LiDAR (32-beam) train→ val 92.06 80.45 77.89
c. Voxel R-CNN LiDAR (16-beam) train→ val 88.51 71.96 69.22
d. Voxel R-CNN LiDAR val→ train 91.85 82.77 77.67
e. Voxel R-CNN LiDAR (500 samples) train→ val 92.09 82.26 79.81
f. Voxel R-CNN LiDAR (100 samples) train→ val 88.20 76.10 71.33
g. Voxel R-CNN LiDAR (50 samples) train→ val 80.94 66.35 59.82
h. PV R-CNN LiDAR train→ val 92.17 84.53 82.38
i. PV R-CNN LiDAR val→ train 92.32 82.84 77.66
j. GUPNet Mono train→ val 23.43 17.06 14.84
k. LIGA Stereo Stereo train→ val 77.05 58.26 51.85
l. LIGA Stereo Stereo train→ val 82.32 64.29 59.34

Table 10. Performances of the PL generators used in this work. Metrics are AP|R40 for 3D detection under 0.7 threshold. Train and val
denote the KITTI-3D training and validation set.

AP|R40
@IoU=0.7 AP|R40

@IoU=0.5
split # images Easy Mod. Hard Easy Mod. Hard
a. training (gt) 3,712 77.05±0.26 58.26±0.48 51.85±0.13 97.63±1.00 89.46±0.61 82.36±0.05

b. training (pl) 3,712 79.19±1.83 59.61±1.23 54.19±1.57 98.04±0.75 89.62±0.86 84.40±0.85

c. train 13,596 79.31±0.90 61.20±0.88 55.90±1.21 96.45±0.71 89.91±0.17 84.75±0.16

d. train ∪ eigen-clean 28,536 84.55±1.00 68.72±1.26 63.48±0.97 97.40±0.82 91.96±0.22 88.12±0.89

Table 11. Performances (AP|R40 ) on KITTI validation set of LIGA Stereo trained from different data splits. ± captures the standard
deviation over the last 10 epochs. Pseudo-labels are generated by Voxel R-CNN trained from KITTI-3D’s training split.

AP|R40
@IoU=0.7 AP|R40

@IoU=0.5
split # images Easy Mod. Hard Easy Mod. Hard
a. training (gt) 3,712 82.32±1.15 64.29±1.75 59.34±1.61 98.76±0.78 92.81±0.29 87.72±0.25

b. training (pl) 3,712 85.04±0.86 66.77±1.03 61.97±0.94 98.65±0.91 92.78±0.29 89.02±0.96

c. train 13,596 85.66±1.03 67.22±0.51 62.44±0.42 98.63±0.10 92.70±0.13 89.84±0.17

d. train ∪ eigen-clean 28,536 87.41±0.55 72.98±0.56 68.56±0.77 98.60±0.23 94.63±0.15 91.76±0.53

Table 12. Performances (AP|R40 ) on KITTI validation set of LIGA Stereo trained from different data splits. ± captures the standard
deviation over the last 10 epochs. Pseudo-labels are generated by Voxel R-CNN trained from KITTI-3D’s training split.

AP|R40@IoU=0.5 AP|R40@IoU=0.25
split # images Easy Mod. Hard Easy Mod. Hard
a. training (gt) 3,712 8.75±0.33 7.00±0.46 5.42±0.39 33.96±0.33 26.51±0.23 22.15±0.19

b. training (pl) 3,712 10.59±0.22 8.29±0.16 6.38±0.12 30.08±0.58 26.79±0.20 21.98±0.73

c. train 13,596 20.08±0.32 15.27±0.22 12.12±0.15 41.53±0.66 33.15±0.18 27.04±0.13

d. eigen-clean 14,940 1.21±0.19 0.98±0.15 0.66±0.05 9.00±0.52 7.25±0.22 6.15±0.19

e. training (gt) 3,712 8.68±0.64 4.48±0.18 4.08±0.36 24.36±0.51 13.86±0.26 12.62±0.20

f. training (pl) 3,712 8.93±0.69 4.31±0.39 3.90±0.18 28.05±0.74 15.44±0.42 14.23±0.35

g. train 13,596 10.24±0.32 5.58±0.24 4.95±0.13 30.01±0.81 17.96±0.40 16.33±0.34

h. eigen-clean 14,940 5.92±0.40 2.84±0.34 2.61±0.15 26.87±0.88 14.07±0.46 12.38±0.46

Table 13. Performances of GUPNet on KITTI validation set for Pedestrian (upper group) and Cyclist (lower group). ± captures the
standard deviation over the last 10 epochs. Pseudo-labels are generated by PV R-CNN trained from KITTI-3D’s training split.

training (gt) training (pl) train (pl) eigen-clean (pl)
# images 955 of 3,712 1,045 of 3,712 5,173 of 13,596 1,451 of 14,940
# instances 2,207 2,209 10,189 1,767
# images 514 of 3,712 566 of 3,712 2,019 of 13,596 1,205 of 14,940
# instances 734 826 3,048 1,270

Table 14. The numbers of images and instances of pedestrians (upper group) and cyclists (lower group). For pseudo-labels, we only
consider the instances with confidence over 0.7.
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Figure 8. An error case in the generated pseudo-labels. We visualize cars, cyclists, and pedestrians with yellow, purple, and green boxes.
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