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Abstract—The ground motion prediction equation is commonly
used to predict the seismic intensity distribution. However, it is
not easy to apply this method to seismic distributions affected
by underground plate structures, which are commonly known as
abnormal seismic distributions. This study proposes a hybrid of
regression and classification approaches using neural networks.
The proposed model treats the distributions as 2-dimensional
data like an image. Our method can accurately predict seismic
intensity distributions, even abnormal distributions.

Index Terms—seismic intensity prediction, earthquake, ma-
chine learning, neural networks

I. INTRODUCTION

Predicting the seismic intensity distributions of earthquakes
is important for evaluating the risk of seismic hazards. The
ground motion prediction equations (GMPEs) is a standard
tool for assessing seismic ground-motion intensity [1]], [2].
Some studies have applied machine learning models to the pre-
diction of the ground-motion intensity [3]], [4]. However, these
approaches are unsuitable for predicting the seismic intensity
distributions affected by regional underground structures, such
as abnormal seismic distributions.

In this study, we propose a new data-driven method that
treats epicenter data and seismic intensity distributions as 2-
dimensional data, similar to an image. Our model is a hybrid
of the regression and classification models. We compared the
performance of the proposed model with only classification or
only regression models in terms of the following metrics: cor-
relation coefficient, mean squared error (MSE), and F-score.
The proposed model achieved well-balanced values for all
three metrics: correlation coefficient of 0.78, MSE of 0.39, and
F-score of 0.61. Furthermore, our method accurately predicts
seismic intensity distributions, even abnormal distributions.

II. METHODS

a) Dataset: We use 1,819 seismic intensity data of
earthquakes of magnitude 5.0 or greater between 1997 and
2019 [ﬂ The dataset was divided into 1,461 training data and
358 test data. The elements used in this study were the latitude,
longitude, depth of the hypocenter and the earthquake’s mag-
nitude, seismic intensity on the Japan Meteorological Agency

Uhttps://www.data.jma.go.jp/eqev/data/bulletin/shindo_e.html
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Fig. 1: Input format and network schematic.

scale, and instrumental seismic intensity at each observation
station.

b) Data format: We used a Mercator map on a rectan-
gular region of 30°N to 46°N, and 128°E to 146°E, divided
into 64 x 64 square cells. The input and output data were also
64 x 64 2-dimensional data, and each cell’s seismic intensity
was predicted.

c) Method: We used regression and classification predic-
tors in combination. The regressor predicts the instrumental
seismic intensity at each cell () . The classifier performs
binary classification of whether a shock can be felt (y. €
{0,1}). Here, ¢ = 1 for all the intensities greater than O.
We combine the regressor and classifier using the following
equation: § = g, — a X (1 — ), where § is the instrumental
intensity predicted by the hybrid predictor and « is the scaling
factor. This equation prevents overestimation of areas where
shocks cannot be felt.

d) Input data: Each input data is expanded to a k X k
range centered on the epicenter for the classification model.
Although the input data are not expanded in the regression
forecasting, a large kernel size is set in the first convolution
layer to simulate the expansion. In addition, the magnitude
and depth of the input data were each multiplied by a power.
This increases the dynamic range of the magnitude and depth
values, and facilitates training. The dataset did not contain
seismic intensity data less than 0.5. Therefore, in the regression
model, the data were ignored during the training. In contrast,
in the classification model, such data were treated as having
seismic intensities of 0.
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Fig. 2: Relationship between observed and pre-
dicted intensity

TABLE I: Mean squared error (MSE), correlation coefficient (r),
and F-score of each predictor.

(a) Observed

Predictor MSE T F-score
Regression 0.37 0.77 0.44
Classification 1.2 0.59 0.70
Regression + Classification 0.39 0.78 0.61

III. RESULTS

In this section, we show that our method can accurately
predict the seismic intensity and even the abnormal seismic
intensity distributions. The architecture used was one fully
connected layer for the classification model, one convolutional
layer, and one fully connected layer for the regression model.
Parameters £ = 15, kernel-size of the convolutional layer 125,
and o« = 0.30 were used. As inputs for the classification
predictor, the ninth-order terms of magnitude and the Ist-
order term of depth were stored uniformly in the cells. For
the regression predictor, the first- to fourteenth-order terms of
magnitude and depth were stored.

Fig. [2| shows the relationship between predicted and ob-
served seismic intensities. There is a positive correlation,
which indicates that our model can predict seismic intensity
distributions. Predicted values are overall lower than the ob-
served ones. This derives from the bias in the dataset. Tab. [l
shows that our hybrid model recorded the best correlation
coefﬁcient[ﬂ among the three models. The proposed model did
not achieve the best results in terms of MSE 2 and F-score E];
however, our model still achieved well-balanced values for
MSE and F-score. The regression model had a low F-score,
which indicates that it cannot accurately predict the extent
of shaking. The classification model had a low correlation
coefficient and a high F-score, indicating that it can accurately
predict the extent of shaking, but not the intensity.

Our method can also accurately predict abnormal seismic
intensity distributions. An abnormal seismic intensity distri-

2Calculated using data from cells whose observed intensity is 0.5 or higher.
3Calculated using data from cells at which observation stations exist.

(b) Predicted

Fig. 3: Abnormal distribution prediction. The hypocenter locates at 144°E (Longitude),
46°N (Latitude), and 387km (Depth). The magnitude is 5.5.

bution for deep earthquakes is a phenomenon in which strong
motions in the fore-arc are larger than those in the back-
arc [5]. The intensity at a distance from the epicenter may
be stronger than that closer to the epicenter. Fig. |3| shows
the distribution of observed abnormal distributions and their
predicted results. The proposed method can predict the seismic
intensity distribution, even in areas far from the epicenter.

IV. CONCLUSION

This study proposed a new method, developed by combining
regression and classification models, for predicting seismic
intensity distributions of earthquakes. The proposed method
treats the seismic intensity distribution as 2-dimensional in-
formation. Our hybrid model achieved higher correlation co-
efficients and a well-balanced MSE and F-score compared
with the only classification or regression models. Furthermore,
we could accurately predict even abnormal seismic intensity
distributions. In the future, we intend to develop a method
that combines the model proposed in the present study with
conventional physical models to further improve the accuracy
of predicting seismic intensity distribution.

REFERENCES

[1] J. Douglas and B. Edwards, “Recent and future developments in earth-
quake ground motion estimation,” Earth-Science Reviews, vol. 160, pp.
203-219, 2016.

[2] N. Morikawa and H. Fujiwara, “A new ground motion prediction equation
for Japan applicable up to M9 mega-earthquake,” Journal of Disaster
Research, vol. 8, no. 5, pp. 878-888, 2013.

[3] B. Derras, P.-Y. Bard, F. Cotton, and A. Bekkouche, “Adapting the neural
network approach to PGA prediction: An example based on the KiK-net
data,” Bulletin of the Seismological Society of America, vol. 102, no. 4,
pp. 1446-1461, 2012.

[4] H. Kubo, T. Kunugi, W. Suzuki, S. Suzuki, and S. Aoi, “Hybrid predictor
for ground-motion intensity with machine learning and conventional
ground motion prediction equation,” Scientific Reports, vol. 10, 7 2020.

[5] K. Iwakiri, M. Hoshiba, K. Nakamura, and N. Morikawa, “Improvement
in the accuracy of expected seismic intensities for earthquake early
warning in Japan using empirically estimated site amplification factors,”
Earth, planets and space, vol. 63, no. 2, pp. 57-69, 2011.



	I Introduction
	II Methods
	III Results
	IV Conclusion
	References

